US9011418B2 - Ophthalmic device positioning system and associated methods - Google Patents
Ophthalmic device positioning system and associated methods Download PDFInfo
- Publication number
- US9011418B2 US9011418B2 US11/493,081 US49308106A US9011418B2 US 9011418 B2 US9011418 B2 US 9011418B2 US 49308106 A US49308106 A US 49308106A US 9011418 B2 US9011418 B2 US 9011418B2
- Authority
- US
- United States
- Prior art keywords
- eye
- image
- ophthalmic device
- optimal
- edge feature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/15—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
- A61B3/152—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1015—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for wavefront analysis
Definitions
- the present invention relates to systems and methods for performing corneal wavefront measurements and laser-assisted corneal surgery, and, more particularly, to such systems and methods for optimizing a focus of the eye undergoing such surgery.
- a wavefront sensor measures an aberration map and its position relative to anatomical landmarks, which can be intrinsic or externally applied features.
- Aberration data sometimes along with geometric registration information, can be transferred directly to a treatment excimer laser, which is typically used to perform the ablation.
- a measuring or ablation device In ophthalmic devices, the positioning of a measuring or ablation device a known distance from, and correctly aligned to, an eye, such that the device can be therapeutically effective, is of great importance. In some systems the eye must be centered and in clear focus for interaction of the image with an operator. It can also be important for a laser beam to come to focus at a predetermined plane with respect to the eye, for example, in an excimer laser system, or to have the eye positioned for an effective subsequent measurement of the eye, for example, a wavefront measurement.
- the known techniques for assisting in positioning an ophthalmic device are the breaking of a plurality of light beams, such as infrared light beams, by the corneal apex, and the projection onto the cornea of a plurality of light beams, which can subsequently be analyzed either automatically or by an operator to assess accuracy of eye positioning. If the eye is deemed not to be in a therapeutically effective position, then the device and/or head/eye can be moved so as to reposition the eye optimally or to within defined acceptable tolerances.
- a plurality of light beams such as infrared light beams
- the present invention is directed to a system and method for determining an optimal position of an eye relative to an ophthalmic device.
- An optimal position can be any position that places the eye such that the ophthalmic device can be therapeutically effective in its designed for purpose.
- Optimal positioning can include positioning the eye such that the ophthalmic device can perform to the limits of its design tolerances, as well as anywhere in the ophthalmic devices designed for therapeutically effective range.
- an optimal position can be a position in which an image of a selected feature of the eye is at a best focus achievable with the ophthalmic device within any incremental positioning constraints.
- An embodiment of the method of the present invention comprises the step of receiving data comprising an image of a surface of an eye with the eye at a first position relative to an ophthalmic device.
- An edge feature in the image is located, and a sharpness calculation on the edge feature is performed using a predetermined algorithm to yield a sharpness value.
- the eye surface is then adjusted to a second position relative to the ophthalmic device, and the previous steps are repeated until the sharpness value is maximized based on the predetermined algorithm, which is one indication that an optimal eye position has been achieved.
- a positioning adjustment can be made incrementally in a first direction until a sharpness value, goes through a maximum value and then begins to decrease, indicating that the optimal focus position has been passed through.
- a positioning adjustment in a second direction opposite to the first can then be made to return to the position at which the sharpness value was determined to have achieved the maximum value.
- An embodiment of the system for determining an optimal position of an eye relative to an ophthalmic device in accordance with the present invention can comprise a processor and a software package executable by the processor.
- the software package is adapted to perform the calculations as above.
- Means are also provided for adjusting the eye surface to a second position relative to the ophthalmic device.
- the software package then receives the new image data on the eye in the second position, and the calculational steps are repeated until the sharpness value is maximized in accordance with a predetermined algorithm. Maximizing the sharpness value is one indication that an optimal eye position has been achieved.
- Embodiments of the system and method of the present invention have an advantage that no additional hardware is required if the ophthalmic device already comprises means for imaging the surface of the eye and for capturing that image.
- An additional element can comprise a software package for computing optimal centering and focal position, and for either indicating a required ophthalmic device movement, or for driving the ophthalmic device position depending upon the presence of an automatic positioning capability.
- features in the image be as sharp as possible, within the limits of the ophthalmic device.
- Embodiments of the present invention can optimize focus by maximizing the clarity of the features in the image.
- FIG. 1 is a schematic of one embodiment of the eye positioning system of the present invention
- FIGS. 2A and 2B provide a flowchart of an exemplary embodiment of the method of the present invention, for the case of a fast Fourier transform sharpness algorithm
- FIG. 3 is an in-focus image of an eye
- FIGS. 4A-4J are eye images ranging from sharpest to most blurred ( FIGS. 4A-4E ), along with the corresponding fast Fourier transform plots ( FIGS. 4F-4J );
- FIG. 5 is a plot of the variation in the medium- and higher-frequency spectral content versus the level of image blur.
- FIGS. 6A-6C are eye images, including lashes and lids, showing the difference between minimal blurring ( FIG. 6A ) and the maximal blurring ( FIG. 6C ) used in FIG. 5 .
- FIGS. 1-6C An exemplary embodiment eye positioning system 10 is depicted schematically in FIG. 1 , and an exemplary method 100 , in FIGS. 2A and 2B .
- An embodiment 100 of the method for determining an optimal (therapeutically effective) position of an eye relative to an ophthalmic device 11 comprises the step of receiving data into a processor 12 (block 102 ).
- the data comprise an image of a surface of an eye 13 that has been collected with, for example, a video camera, digital camera, still camera or frame grabber 14 , in communication with the processor 12 .
- the image is collected with the eye at a first position relative to the ophthalmic device 11 (block 101 ).
- Ophthalmic device 11 can be, for example, and without limitation, a femptosecond laser microkeratome, a treatment laser, such as an excimer laser, an aberrometer, or any other ophthalmic device as will be known to those familiar with the art for which accurate positioning of an eye may be required.
- a treatment laser such as an excimer laser, an aberrometer, or any other ophthalmic device as will be known to those familiar with the art for which accurate positioning of an eye may be required.
- a software package 15 which can be resident in a memory 17 (here shown as part of processor 12 ), includes a code segment for locating an edge feature in the image (block 103 ).
- Memory 17 can be a separate memory operably coupled to processor 12 , or can be an integral part of processor 12 .
- the edge feature may include, but is not intended to be limited to, a scleral blood vessel or a feature of the iris. It is assumed that a well-focused image of the eye has relatively sharp edges, and thus that the selected eye feature is most clearly defined when the image is in focus. When the image is somewhat out of focus, the image is softened, and the edges of these features are less clear. Further, when the image has clearly defined edges, then the amount of high-frequency information in the image is higher.
- Processor 12 may be a single processing device or a plurality of processing devices.
- a processing device may be a microprocessor, micro-controller, digital signal processor, microcomputer, central processing unit, field programmable gate array, programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device that manipulates signals (analog and/or digital) based on operational instructions.
- the memory 17 coupled to the processor 12 or control circuit may be a single memory device or a plurality of memory devices.
- Such a memory device may be a read-only memory, random access memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital information.
- the memory storing the corresponding operational instructions may be embedded within, or external to, the circuitry comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry.
- the memory stores, and the microprocessor or control circuit executes, operational instructions (e.g., software package 15 ) corresponding to at least some of the steps and/or functions illustrated and described in association with FIGS. 2A and 2B .
- Software package 15 can also comprise a code segment operable to cause processor 12 to perform a sharpness calculation on the edge feature using a predetermined sharpness function algorithm to yield a sharpness value.
- the sharpness function algorithm is selected at block 104 .
- the algorithm may include, but is not intended to be limited to, an estimate of image grey-level variance and amplitude, a computation of an intensity difference between adjacent regions of the image, a histogram-based approach, an edge-detection mask such as a Laplacian, and a Fourier transform function.
- the sharpness function algorithm may be selected, for example, based upon image attributes, frequency with which the algorithm is to be applied, and/or accuracy requirements.
- Fourier transform-based approaches yield a large amount of detailed data, and very sophisticated functions can be developed and fine-tuned to optimally address a defined problem.
- Fourier transforms of large images require a significant number of computations, and the relatively large amount of time taken to perform the processing can be problematic in certain applications.
- a Fourier-based approach By computing a Fourier transform, typically a fast Fourier transform, of the area or areas of interest on the image, the amount of information present in the higher spatial frequencies can be determined.
- the image focus can be optimized, and thus the eye-to-device distance is also optimized (e.g., the ophthalmic device will be therapeutically effective to the limits of the device).
- FIG. 3 illustrates a typical image of an eye captured on a wavefront sensor. This eye is well focused, and scleral and iris features are clearly visible. A region of interest is selected from the image, and from images of the same eye in various degrees of de-focus (block 105 ). Preferably an area is selected that does not contain eyelids or eyelashes. Multiple regions can be used if desired, such as different regions on the sclera (for example, to the left, right, above, and below the sclera), regions from the iris, or combinations of these.
- the software package 15 may also comprise an algorithm for selecting area(s) of interest which can automatically eliminate artifacts in the image, such as images of the light source.
- FIGS. 4A-4E are pseudo-color plots of each of the images, from sharpest ( FIG. 4A ) to most blurred ( FIG. 4E ) and the corresponding FFTs are provided in FIGS. 4F-4J .
- the FFT sizes used are 256 ⁇ 512, although this is not intended as a limitation.
- the data close to DC are eliminated in order to make the medium- and high-frequency content easier to see (block 108 ).
- a harmonic windowing function such as a Hamming window
- a sensitivity of the invention to slight decentration or shift of the region(s) that could result from uncompensated eye movement can be reduced. This benefit is achieved since data near the periphery of the region(s) are maximally attenuated by the windowing function.
- metrics can be computed (block 109 ) comprising the integral over the FFT from a lower frequency out to the maximum frequency in the data.
- the lower-frequency values are varied so as to increase or decrease the amount of data used in computing the integral.
- These metrics are normalized so as to have a peak value of 1.0, as shown in the plot of FIG. 5 . It can be seen that, when only the highest-frequency components are used ( ⁇ ), the metric is extremely sensitive to even minor amounts of blurring. These data are beneficial for precisely determining when the object is in best focus. However, this metric cannot be used to discriminate between images with different but modest levels of blur, because the value becomes effectively constant (the line in FIG. 5 is flat) after even a small amount of blur.
- FIGS. 6A-6C illustrate some full images in grey scale to illustrate how little difference there appears to be between the initial ( FIG. 6A ) and minimally blurred ( FIG. 6B ) images. This shows the extreme sensitivity of the invention when looking at just higher-frequency information. Also shown in FIG. 6C is the maximally blurred case from the examples.
- the example presented herein indicates how the post-FFT data have the information necessary to facilitate optimal device-to-eye positioning.
- eye surface images can be taken a plurality of times (e.g., if the desired position is not achieved) (block 111 ), with the eye surface 13 being adjusted to a second position relative to the ophthalmic device 11 (block 112 ), and the previous steps are repeated until the sharpness value is maximized, which is an indication that an optimal eye position has been achieved.
- Positioning the eye can be effected manually or automatically under control of the software 15 and processor 12 , by means which will be familiar to those skilled in the art and which are intended to be within the scope of the present invention, such as by using a positioning device 16 .
- the patient can be manually positioned, the ophthalmic device can be manually positioned, and/or the ophthalmic device or table/chair (e.g., positioning device 16 ) on which the patient is being supported can be automatically positioned by mechanical and electrical control systems, or any combination of these methods.
- a desired procedure can be performed on the eye 13 using the ophthalmic device 11 (block 114 ).
- positioning errors may be displayed to an operator, for example, in units of length.
- the information may also be used to inhibit or pause a procedure until a calibration step is performed.
- the information may be used to vary the device-to-eye distance a small, known amount around the optimal position prior to commencing the procedure, in order to relate spectral (post-FFT) data to distance errors.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Image Processing (AREA)
- Prostheses (AREA)
- Eye Examination Apparatus (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
have relatively minimal computational issues, but lack the flexibility of the Fourier-based approach. Therefore, different functions may be preferred depending upon the specific implementation details and requirements. Such different functions will be known to those having skill in the art and are contemplated to be within the scope of the present invention.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/493,081 US9011418B2 (en) | 2005-07-29 | 2006-07-26 | Ophthalmic device positioning system and associated methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70361805P | 2005-07-29 | 2005-07-29 | |
US11/493,081 US9011418B2 (en) | 2005-07-29 | 2006-07-26 | Ophthalmic device positioning system and associated methods |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070027442A1 US20070027442A1 (en) | 2007-02-01 |
US9011418B2 true US9011418B2 (en) | 2015-04-21 |
Family
ID=37450934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/493,081 Active 2033-06-30 US9011418B2 (en) | 2005-07-29 | 2006-07-26 | Ophthalmic device positioning system and associated methods |
Country Status (12)
Country | Link |
---|---|
US (1) | US9011418B2 (en) |
EP (1) | EP1909636B1 (en) |
JP (1) | JP5243246B2 (en) |
KR (1) | KR101248492B1 (en) |
CN (1) | CN101237811B (en) |
AT (1) | ATE523139T1 (en) |
AU (1) | AU2006275852B2 (en) |
BR (1) | BRPI0614619B8 (en) |
CA (1) | CA2615705C (en) |
ES (1) | ES2373056T3 (en) |
TW (1) | TWI409049B (en) |
WO (1) | WO2007016231A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10314657B2 (en) | 2013-10-18 | 2019-06-11 | Medicrea International | Methods, systems, and devices for designing and manufacturing a spinal rod |
US10842375B2 (en) * | 2017-08-28 | 2020-11-24 | Topcon Corporation | Ophthalmologic apparatus and method of controlling the same |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005102200A2 (en) | 2004-04-20 | 2005-11-03 | Wavetec Vision Systems, Inc. | Integrated surgical microscope and wavefront sensor |
KR101248492B1 (en) | 2005-07-29 | 2013-04-03 | 알콘 리프랙티브호리존스, 인코포레이티드 | Ophthalmic device positioning system and associated methods |
ES2339486T3 (en) * | 2005-12-31 | 2010-05-20 | Alcon Refractivehorizons, Inc. | DETERMINATION OF THE OPTIMAL POSITIONING OF OPHTHALMIC DEVICES BY THE USE OF PROCESSING TECHNIQUES AND SELF-FOCUS OF IMAGES. |
US20080218692A1 (en) | 2007-03-06 | 2008-09-11 | Hopler Mark D | Reflectometry/Interferometry System and Method for Corneal Plane Positioning |
US7594729B2 (en) | 2007-10-31 | 2009-09-29 | Wf Systems, Llc | Wavefront sensor |
US7530691B1 (en) * | 2008-01-31 | 2009-05-12 | J&J Vision Care | Ophthalmic lenses for correction of aberration and processes for production of the lenses |
CN102105122B (en) * | 2008-06-30 | 2014-04-02 | 威孚莱有限公司 | Device for ophthalmologic, particularly refractive, laser surgery |
ES2656406T3 (en) | 2008-06-30 | 2018-02-27 | Wavelight Gmbh | Device for ophthalmic surgery, especially for laser refractive surgery |
WO2010054268A2 (en) | 2008-11-06 | 2010-05-14 | Wavetec Vision Systems, Inc. | Optical angular measurement system for ophthalmic applications and method for positioning of a toric intraocular lens with increased accuracy |
US8876290B2 (en) | 2009-07-06 | 2014-11-04 | Wavetec Vision Systems, Inc. | Objective quality metric for ocular wavefront measurements |
ES2653970T3 (en) | 2009-07-14 | 2018-02-09 | Wavetec Vision Systems, Inc. | Determination of the effective position of the lens of an intraocular lens using aphakic refractive power |
WO2011008609A1 (en) | 2009-07-14 | 2011-01-20 | Wavetec Vision Systems, Inc. | Ophthalmic surgery measurement system |
US9504608B2 (en) * | 2009-07-29 | 2016-11-29 | Alcon Lensx, Inc. | Optical system with movable lens for ophthalmic surgical laser |
EP2309307B1 (en) * | 2009-10-08 | 2020-12-09 | Tobii Technology AB | Eye tracking using a GPU |
US20150366705A1 (en) * | 2012-07-13 | 2015-12-24 | Lutronic Corporation | Ophthalmic treatment apparatus and method for controlling same |
US9072462B2 (en) | 2012-09-27 | 2015-07-07 | Wavetec Vision Systems, Inc. | Geometric optical power measurement device |
JP6338851B2 (en) * | 2013-12-13 | 2018-06-06 | 株式会社トプコン | Ophthalmic equipment |
US10993837B2 (en) * | 2014-04-23 | 2021-05-04 | Johnson & Johnson Surgical Vision, Inc. | Medical device data filtering for real time display |
NZ773844A (en) | 2015-03-16 | 2022-07-01 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
KR20220040511A (en) | 2016-04-08 | 2022-03-30 | 매직 립, 인코포레이티드 | Augmented reality systems and methods with variable focus lens elements |
KR102520143B1 (en) * | 2016-07-25 | 2023-04-11 | 매직 립, 인코포레이티드 | Light field processor system |
US11376159B2 (en) | 2016-10-28 | 2022-07-05 | Alcon Inc. | System and method for automated position maintenance of an ophthalmic surgery cone |
IL268427B2 (en) | 2017-02-23 | 2024-03-01 | Magic Leap Inc | Variable-focus virtual image devices based on polarization conversion |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05207352A (en) | 1992-01-24 | 1993-08-13 | Olympus Optical Co Ltd | Focusing detector |
JPH09103408A (en) | 1995-10-13 | 1997-04-22 | Canon Inc | Ophthalmometer |
JPH09149914A (en) | 1995-09-29 | 1997-06-10 | Nidek Co Ltd | Ophthalmologic operation device |
US5796859A (en) * | 1991-10-08 | 1998-08-18 | Computed Anatomy Incorporated | Processing of keratoscopic images employing local spatial phase |
GB2359375A (en) | 2000-02-15 | 2001-08-22 | Ian Marshall | Ophthalmoscope optical system |
WO2001060241A1 (en) | 2000-02-15 | 2001-08-23 | Ian Marshall | Ophthalmoscope with multiple interchangeable groups of optical components |
US6280436B1 (en) * | 1999-08-10 | 2001-08-28 | Memphis Eye & Cataract Associates Ambulatory Surgery Center | Eye tracking and positioning system for a refractive laser system |
JP2001275033A (en) | 2000-03-27 | 2001-10-05 | Minolta Co Ltd | Digital still camera |
US20020005862A1 (en) * | 2000-01-11 | 2002-01-17 | Sun Microsystems, Inc. | Dynamically adjusting a sample-to-pixel filter to compensate for the effects of negative lobes |
JP2002094865A (en) | 2000-09-12 | 2002-03-29 | Matsushita Electric Ind Co Ltd | Image verification device |
JP2002334325A (en) | 2001-05-11 | 2002-11-22 | Matsushita Electric Ind Co Ltd | Method and device for picking up image to be authenticated |
US6532298B1 (en) * | 1998-11-25 | 2003-03-11 | Iridian Technologies, Inc. | Portable authentication device and method using iris patterns |
WO2003053228A2 (en) | 2001-12-21 | 2003-07-03 | Sensomotoric Instruments Gmbh | Method and apparatus for eye registration |
JP2005095354A (en) | 2003-09-25 | 2005-04-14 | Canon Inc | Refraction measuring instrument |
US20050105044A1 (en) | 2003-11-14 | 2005-05-19 | Laurence Warden | Lensometers and wavefront sensors and methods of measuring aberration |
WO2005048829A2 (en) * | 2003-11-14 | 2005-06-02 | Ophthonix, Inc. | Ophthalmic binocular wafefront measurement system |
JP2005177166A (en) | 2003-12-19 | 2005-07-07 | Matsushita Electric Ind Co Ltd | Camera apparatus and iris imaging camera apparatus |
JP2006333902A (en) | 2005-05-31 | 2006-12-14 | Matsushita Electric Ind Co Ltd | Method for detecting foreign matter and apparatus for observing eyeball |
WO2007016231A1 (en) | 2005-07-29 | 2007-02-08 | Alcon Refractivehorizons, Inc. | Ophthalmic device positioning system and associated methods |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3599523B2 (en) * | 1997-03-04 | 2004-12-08 | 株式会社ニデック | Ophthalmic equipment |
DE10300322A1 (en) * | 2003-01-09 | 2004-07-29 | Oculus Optikgeräte GmbH | Eye refractometer and method for operating an eye refractometer |
-
2006
- 2006-07-26 KR KR1020087003400A patent/KR101248492B1/en active IP Right Grant
- 2006-07-26 WO PCT/US2006/029169 patent/WO2007016231A1/en active Application Filing
- 2006-07-26 US US11/493,081 patent/US9011418B2/en active Active
- 2006-07-26 JP JP2008524142A patent/JP5243246B2/en active Active
- 2006-07-26 AU AU2006275852A patent/AU2006275852B2/en active Active
- 2006-07-26 ES ES06800383T patent/ES2373056T3/en active Active
- 2006-07-26 CN CN2006800278241A patent/CN101237811B/en active Active
- 2006-07-26 BR BRPI0614619A patent/BRPI0614619B8/en not_active IP Right Cessation
- 2006-07-26 AT AT06800383T patent/ATE523139T1/en not_active IP Right Cessation
- 2006-07-26 EP EP06800383A patent/EP1909636B1/en active Active
- 2006-07-26 CA CA2615705A patent/CA2615705C/en active Active
- 2006-07-28 TW TW095127757A patent/TWI409049B/en not_active IP Right Cessation
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5796859A (en) * | 1991-10-08 | 1998-08-18 | Computed Anatomy Incorporated | Processing of keratoscopic images employing local spatial phase |
JPH05207352A (en) | 1992-01-24 | 1993-08-13 | Olympus Optical Co Ltd | Focusing detector |
JPH09149914A (en) | 1995-09-29 | 1997-06-10 | Nidek Co Ltd | Ophthalmologic operation device |
JPH09103408A (en) | 1995-10-13 | 1997-04-22 | Canon Inc | Ophthalmometer |
US6532298B1 (en) * | 1998-11-25 | 2003-03-11 | Iridian Technologies, Inc. | Portable authentication device and method using iris patterns |
US6280436B1 (en) * | 1999-08-10 | 2001-08-28 | Memphis Eye & Cataract Associates Ambulatory Surgery Center | Eye tracking and positioning system for a refractive laser system |
US20020005862A1 (en) * | 2000-01-11 | 2002-01-17 | Sun Microsystems, Inc. | Dynamically adjusting a sample-to-pixel filter to compensate for the effects of negative lobes |
GB2359375A (en) | 2000-02-15 | 2001-08-22 | Ian Marshall | Ophthalmoscope optical system |
WO2001060241A1 (en) | 2000-02-15 | 2001-08-23 | Ian Marshall | Ophthalmoscope with multiple interchangeable groups of optical components |
JP2001275033A (en) | 2000-03-27 | 2001-10-05 | Minolta Co Ltd | Digital still camera |
JP2002094865A (en) | 2000-09-12 | 2002-03-29 | Matsushita Electric Ind Co Ltd | Image verification device |
JP2002334325A (en) | 2001-05-11 | 2002-11-22 | Matsushita Electric Ind Co Ltd | Method and device for picking up image to be authenticated |
WO2003053228A2 (en) | 2001-12-21 | 2003-07-03 | Sensomotoric Instruments Gmbh | Method and apparatus for eye registration |
JP2005095354A (en) | 2003-09-25 | 2005-04-14 | Canon Inc | Refraction measuring instrument |
US20050105044A1 (en) | 2003-11-14 | 2005-05-19 | Laurence Warden | Lensometers and wavefront sensors and methods of measuring aberration |
WO2005048829A2 (en) * | 2003-11-14 | 2005-06-02 | Ophthonix, Inc. | Ophthalmic binocular wafefront measurement system |
JP2005177166A (en) | 2003-12-19 | 2005-07-07 | Matsushita Electric Ind Co Ltd | Camera apparatus and iris imaging camera apparatus |
JP2006333902A (en) | 2005-05-31 | 2006-12-14 | Matsushita Electric Ind Co Ltd | Method for detecting foreign matter and apparatus for observing eyeball |
WO2007016231A1 (en) | 2005-07-29 | 2007-02-08 | Alcon Refractivehorizons, Inc. | Ophthalmic device positioning system and associated methods |
Non-Patent Citations (3)
Title |
---|
International Preliminary Report on Patentability for PCT/US2006/029169, Publication No. WO2007016231, dated Jun. 22, 2007, 6 pages. |
International Search Report for PCT/US2006/029169, Publication No. WO2007016231, dated Dec. 18, 2006, 3 pages. |
UK Patent Publication, Aug. 2001, GB, Marshall. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10314657B2 (en) | 2013-10-18 | 2019-06-11 | Medicrea International | Methods, systems, and devices for designing and manufacturing a spinal rod |
US10842375B2 (en) * | 2017-08-28 | 2020-11-24 | Topcon Corporation | Ophthalmologic apparatus and method of controlling the same |
Also Published As
Publication number | Publication date |
---|---|
KR101248492B1 (en) | 2013-04-03 |
TWI409049B (en) | 2013-09-21 |
TW200724085A (en) | 2007-07-01 |
BRPI0614619B1 (en) | 2018-03-13 |
CA2615705A1 (en) | 2007-02-08 |
CN101237811A (en) | 2008-08-06 |
ES2373056T3 (en) | 2012-01-31 |
BRPI0614619A2 (en) | 2011-04-12 |
JP5243246B2 (en) | 2013-07-24 |
BRPI0614619B8 (en) | 2021-06-22 |
US20070027442A1 (en) | 2007-02-01 |
WO2007016231A1 (en) | 2007-02-08 |
JP2009502346A (en) | 2009-01-29 |
ATE523139T1 (en) | 2011-09-15 |
CA2615705C (en) | 2016-06-28 |
EP1909636A1 (en) | 2008-04-16 |
KR20080028996A (en) | 2008-04-02 |
EP1909636B1 (en) | 2011-09-07 |
AU2006275852A1 (en) | 2007-02-08 |
CN101237811B (en) | 2011-07-20 |
AU2006275852B2 (en) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9011418B2 (en) | Ophthalmic device positioning system and associated methods | |
US7665846B2 (en) | Determining optimal positioning of ophthalmic devices by use of image processing and autofocusing techniques | |
JP4256342B2 (en) | System for superimposing first eye image and second eye image | |
EP1909637B1 (en) | Ophthalmic device lateral positioning system and associated methods | |
US8998411B2 (en) | Light field camera for fundus photography | |
WO2021256132A1 (en) | Ophthalmic device, method for controlling ophthalmic device, and program | |
MX2008000953A (en) | Ophthalmic device positioning system and associated methods | |
CN118542641A (en) | Fundus photographing method and device based on self-adaptive pupil dilation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALCON REFRACTIVELHORIZONS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAMPIN, JOHN A.;BOWES, JOHN J.;REEL/FRAME:018136/0361 Effective date: 20060720 |
|
AS | Assignment |
Owner name: ALCON REFRACTIVEHORIZONS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAMPIN, JOHN A.;BOWES, JOHN J.;REEL/FRAME:018735/0781;SIGNING DATES FROM 20070105 TO 20070108 Owner name: ALCON REFRACTIVEHORIZONS, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CAMPIN, JOHN A.;BOWES, JOHN J.;SIGNING DATES FROM 20070105 TO 20070108;REEL/FRAME:018735/0781 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ALCON REFRACTIVEHORIZONS, LLC, TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:ALCON REFRACTIVEHORIZONS, INC.;REEL/FRAME:051299/0581 Effective date: 20071231 |
|
AS | Assignment |
Owner name: ALCON INC., SWITZERLAND Free format text: CONFIRMATORY DEED OF ASSIGNMENT EFFECTIVE APRIL 8, 2019;ASSIGNOR:ALCON REFRACTIVEHORIZONS, LLC;REEL/FRAME:051330/0824 Effective date: 20191111 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |