US8991457B2 - Steel cord for reinforcement of rubber articles and pneumatic tire using the same - Google Patents

Steel cord for reinforcement of rubber articles and pneumatic tire using the same Download PDF

Info

Publication number
US8991457B2
US8991457B2 US12/997,387 US99738709A US8991457B2 US 8991457 B2 US8991457 B2 US 8991457B2 US 99738709 A US99738709 A US 99738709A US 8991457 B2 US8991457 B2 US 8991457B2
Authority
US
United States
Prior art keywords
sheath
filaments
outermost layer
strands
cord
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/997,387
Other versions
US20110088825A1 (en
Inventor
Eiji Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Bridgestone Sports Co Ltd
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Assigned to BRIDGESTONE SPORTS CO., LTD. reassignment BRIDGESTONE SPORTS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUDO, EIJI
Assigned to BRIDGESTONE CORPORATION reassignment BRIDGESTONE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUDO, EIJI
Publication of US20110088825A1 publication Critical patent/US20110088825A1/en
Application granted granted Critical
Publication of US8991457B2 publication Critical patent/US8991457B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0613Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the rope configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0633Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration having a multiple-layer configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1044Rope or cable structures twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1052Rope or cable structures twisted using lang lay, i.e. the wires or filaments being inclined relative to the rope axis
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2006Wires or filaments characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2051Cores characterised by a value or range of the dimension given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2059Cores characterised by their structure comprising wires
    • D07B2201/2061Cores characterised by their structure comprising wires resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3057Steel characterised by the carbon content having a high carbon content, e.g. greater than 0,8 percent respectively SHT or UHT wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2801/00Linked indexing codes associated with indexing codes or classes of D07B
    • D07B2801/10Smallest filamentary entity of a rope or strand, i.e. wire, filament, fiber or yarn
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2801/00Linked indexing codes associated with indexing codes or classes of D07B
    • D07B2801/24Rope
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/902Reinforcing or tire cords

Definitions

  • the present invention relates to a steel cord for reinforcement of rubber articles and a pneumatic tire using it (hereinafter also simply referred to as “cord” and “tire”), more concretely, a steel cord for reinforcement of various rubber articles such as pneumatic tires and conveyer belts, and a pneumatic tire using it.
  • steel cords used for reinforcement of carcass plies and belt plies in tires for construction vehicles and reinforcement of conveyer belts require high strength. Therefore, for these uses, a steel cord having a multi-twisted structure wherein strands having a plurality of steel filaments twisted together are further twisted together, is widely used.
  • Patent Document 1 discloses a technology for a steel cord for reinforcement of rubber, which steel cord has a 7 ⁇ 19 structure constituted by (1+6+12)+6 ⁇ (1+6+12), to obtain a high cord strength by prescribing the tensile strength of filaments in the outermost layer of sheath strands and the tensile strength of filaments in the adjacent inner layer such that a specific ratio is attained between these.
  • Patent Document 2 discloses a technology for a steel cord for reinforcement of rubber articles, which steel cord has a multi-twisted structure, to obtain a high cord strength by setting the tensile strength of outermost layer sheath filaments constituting strands to not more than 3,040 N/mm 2 and the tensile strength of all the inner filaments other than the outermost layer sheath filaments to not less than 3,140 N/mm 2 .
  • Patent Document 3 discloses a technology to obtain a high cord strength by employing outermost layer filaments constituting strands thicker than the filaments in the inner side thereof to avoid preceding break of the outermost layer filaments.
  • Patent Document 4 discloses a technology to obtain a high cord strength by prescribing the tensile strength of the filaments constituting each strand as “the filament tensile strength of the layer close to the center of the strand ⁇ the filament tensile strength of the layer distant from the center of the strand” and the average tensile strength of the strands as “the average tensile strength of the strands in the layer close to the center of the cord ⁇ the average tensile strength of the strands in the layer distant from the center of the cord” to prevent preceding break of filaments.
  • the tensile strength of the outermost layer sheath filaments constituting strands is set to not more than 3,040 N/mm 2 and the tensile strength of all the inner filaments other than the outermost layer sheath filaments are set to not less than 3,140 N/mm 2 , but in the 3+9, 3+9+15 and 1+6+12 structures which are standard strand structures, the number of the outermost layer sheath filaments accounts for not less than a half of the total number of the filaments. Therefore, in these strand structures, even if the filament strength of the inner layer is increased by 10% aiming to further enhance the strength, the total cord strength is increased by only not more than 5% which is a half of the level of the enhancement.
  • a conventional method wherein the cord strength is enhanced by enhancement of the tensile strength of filaments is effective for a steel cord having a single-twisted structure or a normal layered twisted structure, and also effective for a steel cord having a multi-twisted structure wherein a plurality of steel filaments are twisted together to form each strand in cases where the tensile strength of the filaments is not more than 3,040 N/mm 2 , but with a tensile strength higher than this, an increase in the cord strength comparable to the increase in the tensile strength of the filaments cannot be obtained, which has been problematic.
  • the steel cord described in Patent Document 3 has also been applied to actual tires, and by employing outermost layer filaments constituting each strand thicker than the filaments in the inner side thereof, its effect is sufficiently exerted immediately after the production and a steel cord having a high strength can be obtained.
  • the cord strength greatly decreases relative to that immediately after the production, which has been problematic.
  • the present invention aims to provide a steel cord for reinforcement of rubber articles, whose cord strength is enhanced, without causing problems such as those in the above-described conventional arts, by preventing occurrence of preceding break of the outermost layer filaments in a steel cord having a multi-twisted structure, and a pneumatic tire using it as a reinforcing material.
  • the present inventor intensively studied a method for improving the cord strength of a steel cord having a multi-twisted structure in consideration also of long-term storage and influence of the thermal history during tire vulcanization, and discovered that, by setting dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, to 1.05 to 1.25, the shear stress due to the contact load to the outermost layer filaments of the core strand which may cause preceding break can be reduced and hence the preceding break can be suppressed, leading to enhancement of the cord strength, thereby completing the present invention.
  • dc/ds which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments
  • the steel cord for reinforcement of rubber articles of the present invention is a steel cord for reinforcement of rubber articles having a multi-twisted structure in which a plurality of strands are twisted together, the strands having a layered twisted structure in which a plurality of steel filaments are twisted together,
  • dc/ds which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, is 1.05 to 1.25.
  • the twist angle of the sheath strand is preferably not less than 1.4 rad, and the direction of twist of the outermost layer sheath filaments constituting the outermost layer sheath of the core strand and the direction of twist of the sheath strands are preferably the same.
  • the tensile strength of all the filaments constituting the strands are not less than 3,040 N/mm 2 .
  • the carbon contents of the filaments constituting the strands are not less than 0.80% by weight.
  • the pneumatic tire of the present invention is characterized in that the above-described steel cord for reinforcement of rubber articles of the present invention is employed as its reinforcing material.
  • the present invention by employing the above-described constitution, occurrence of preceding break at contact portions among outermost layer filaments of a steel cord having a multi-twisted structure can be suppressed, thereby enabling realization of a steel cord for reinforcement of rubber articles, which has a higher cord strength than before.
  • the steel cord for reinforcement of rubber articles of the present invention as a reinforcing material for a pneumatic tire, a pneumatic tire which can realize all of weight saving, increase in the fuel efficiency and suppression of the cost of transportation can be obtained.
  • FIG. 1 is a cross-sectional view showing a steel cord for reinforcement of rubber articles as one preferred example of the present invention.
  • FIG. 2 is a magnified cross-sectional view showing a part of a pneumatic tire as one preferred example of the present invention.
  • FIG. 3 is a graph showing the relationship between dc/ds and the rate of preceding break.
  • the steel cord for reinforcement of rubber articles of the present invention has a multi-twisted structure in which a plurality of strands are twisted together, the strands having a layered twisted structure in which a plurality of steel filaments are twisted together.
  • a steel cord having a relatively small diameter such as one having a single-twisted structure or a normal layered twisted structure has a cord strength determined by tensile strength of individual filaments.
  • the cord strength is affected not only by the tensile strength of the individual filaments but also by strong contact among the strands due to cord tension. At the contact sites, the stress may be concentrated to their outermost layer filaments to cause preceding shear failure of the outermost layer filaments, thereby preventing increase in the cord strength comparable to the increase in the tensile strength of the individual filaments.
  • the present invention is intended for a steel cord having the above-described multi-twisted structure in which such a phenomenon has occurred in the past.
  • FIG. 1 is a cross-sectional view showing a steel cord for reinforcement of rubber articles as one example of the present invention.
  • Preferred examples of the present invention include a steel cord having a (3+9+15)+8 ⁇ (3+9)+1 structure as shown in the figure, wherein a core strand 1 having a layered twisted structure composed of:
  • first sheath having 9 first sheath filaments 12 sequentially arranged around the circumference of the core
  • a second sheath having 15 second sheath filaments 13 is twisted together with 8 sheath strands 2 having a layered twisted structure composed of:
  • spiral filament 16 is further spirally wound.
  • the spiral filament 16 is wound in order to strengthen a bundle of the cords, and is not indispensable and may be omitted in the present invention.
  • dc/ds which represents the ratio between dc, the diameter of the second sheath filaments 13 constituting the outermost layer sheath of the core strand 1 , and ds, the diameter of the first sheath filaments 15 constituting the outermost layer sheath of the sheath strands 2 , of 1.05 to 1.25, preferably 1.05 to 1.20.
  • the filaments constituting the outermost layer sheath of the sheath strands become subject to preceding break, and the increase in the tensile strength of these filaments cannot be directly reflected to enhancement of the cord strength.
  • the twist angle of the sheath strands 2 is preferably not less than 1.4 rad, especially preferably 1.40 to 1.50 rad. This is because, with a twist angle of the sheath strands 2 of less than 1.4 rad, the load bearing of the core strand 1 and the contact load from the sheath strands 2 become large under a tensile load, and therefore the cord strength largely decreases.
  • the twist direction of the second sheath filaments 13 in the core strand 1 and the twist direction of the sheath strands 2 are preferably the same. This is because, by twisting them in the same direction together, the contact angle between the second sheath filaments 13 of the core strand 1 and the first sheath filaments 15 of the sheath strands 2 becomes small and the contacting area increases, leading to suppression of preceding break.
  • the tensile strength of all the filaments constituting each strand is preferably not less than 3,040 N/mm 2 , more preferably in the range of 3,040 to 4,200 N/mm 2 . With a tensile strength of the filaments of less than 3,040 N/mm 2 , preceding break does not occur, so that application of the present invention is not necessary.
  • the carbon content of the material of the filaments is preferably not less than 0.80% by weight.
  • the cord of the present invention as long as the relationship between dc, the diameter of the outermost layer sheath filaments constituting the outermost layer sheath of the core strand 1 , and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of the sheath strands 2 , satisfies the above condition, other conditions such as the specific diameter, the twist direction and the twist pitch of each filament are not restricted, and the cord may be appropriately constituted according to a conventional method depending on its use.
  • the cord strength is improved compared to conventional steel cords having a multi-twisted structure. Therefore, for example, in a pneumatic radial tire for construction vehicles wherein a ply, in which cords of the present invention were used instead of conventional steel cords having a multi-twisted structure and a plurality of the cords of the present invention were arranged in parallel each other and embedded in a rubber sheet, is applied to a belt or a carcass, all of weight saving, increase in the fuel efficiency and suppression of the cost of transportation can be realized.
  • Preferred examples of the pneumatic tire of the present invention include a large off-road radial tire having a tire size of about 40.00R57 as shown in FIG. 2 .
  • the tire shown in the figure has a layer of carcass ply 22 extending toroidally between bead cores 21 embedded respectively in a left-and-right pair of bead portions and 6 layers of belts 24 arranged in the outside of tread portion 23 in the radial direction of the tire.
  • the steel cord of the present invention may be suitably applied to such a tire as a reinforcing material for the carcass ply 22 or the like.
  • the end count of the cord for the carcass ply 22 may be, for example, in the range of 8.0 to 8.5 cords/50 mm, especially 8.0 cords/50 mm.
  • the pneumatic tire of the present invention may be one wherein the steel cord of the present invention is used as a reinforcing material for a carcass ply or a belt, and in terms of the other details of the tire structure, the material of each member and the like, those conventionally used may be appropriately employed and there is no restriction.
  • the steel cord shown in FIG. 1 is the cord of Example 1 most suitable for use as a reinforcing material for pneumatic tires, and has a cord structure of (3+9+15)+8 ⁇ (3+9)+1. That is, the steel cord of Example 1 shown in the figure was formed by twisting 8 sheath strands 2 around a core strand 1 , followed by spirally winding one spiral filament 16 around the resultant, wherein the core strand 1 was formed by twisting 9 first sheath filaments 12 and 15 second sheath filaments 13 around 3 core filaments 11 and the sheath strand 2 was formed by twisting 9 first sheath filaments 15 around 3 core filaments 14 .
  • the carbon content of each filament was 0.82% by weight.
  • the rate of reduction in the cord breaking strength by twisting was evaluated for each steel cord in Examples and Comparative Examples immediately after the production and after heating.
  • the rate of reduction by twisting (%) means the percentage of the difference between the total sum of the breaking strength of the filaments constituting the cord and the cord breaking strength.
  • the immediately after production—after heating changing rate (%) was represented by the rate of change in the cord breaking strength based on comparison between that observed immediately after the production and that observed after heating at 145° C. for 40 minutes.
  • Results obtained by stopping the testing apparatus immediately before the complete break of the cord to observe the preceding break rate of each filament in the cord for the core strand outermost layer filaments, the sheath strand outermost layer filaments and the like are also shown in Tables 1 and 2 below.
  • FIG. 3 is a graph showing the relationships between dc/ds and the rates of preceding break in Examples 1 to 3 and Comparative Examples 1 to 8.
  • preceding break occurred in mostly the core strand outermost layer filaments at dc/ds of not more than 1.00, while the other filaments began to undergo preceding break at dc/ds of not less than 1.30. It can be seen also from this graph that, to obtain a high cord strength, it is important to avoid concentration of preceding break to specific filaments, and that dc/ds within the range of 1.05 to 1.25 is appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ropes Or Cables (AREA)
  • Tires In General (AREA)

Abstract

A steel cord for reinforcement of rubber articles, whose cord strength is enhanced by preventing occurrence of preceding break of the outermost layer filaments in the steel cord having a multi-twisted structure, and a pneumatic tire using it as a reinforcing material are provided.
In a steel cord for reinforcement of rubber articles having a multi-twisted structure in which a plurality of strands are twisted together, which strands have a layered twisted structure in which a plurality of steel filaments are twisted together, dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, is 1.05 to 1.25.

Description

TECHNICAL FIELD
The present invention relates to a steel cord for reinforcement of rubber articles and a pneumatic tire using it (hereinafter also simply referred to as “cord” and “tire”), more concretely, a steel cord for reinforcement of various rubber articles such as pneumatic tires and conveyer belts, and a pneumatic tire using it.
BACKGROUND ART
In general, steel cords used for reinforcement of carcass plies and belt plies in tires for construction vehicles and reinforcement of conveyer belts require high strength. Therefore, for these uses, a steel cord having a multi-twisted structure wherein strands having a plurality of steel filaments twisted together are further twisted together, is widely used.
On the other hand, to meet the demands related to environmental problems and improvement of energy efficiency in recent years, tires are demanded to achieve increase in the fuel efficiency and suppression of the cost of transportation by weight saving and reduction of the rolling resistance. Therefore, as a means to increase the strength of a steel cord, enhancement of the strength of filaments was attempted by changing the quality of their material (especially, carbon content) and/or the method of manufacturing thereof (e.g., reduction of area).
However, although a conventional method which enhances the cord strength by enhancement of the tensile strength of filaments was effective for a steel cord having a single-twisted structure or a normal layered twisted structure, it was not sufficiently effective for a steel cord having a multi-twisted structure comprising strands in which a plurality of steel filaments are twisted together. This is because, in such a cord having a multi-twisted structure, an increase in the filament strength is not directly linked to an increase in the cord strength, depending on the state of contact among the strands or the filaments. Thus, to solve this problem, various improvements have been carried out so far.
In terms of improvement of a steel cord having a multi-twisted structure, for example, Patent Document 1 discloses a technology for a steel cord for reinforcement of rubber, which steel cord has a 7×19 structure constituted by (1+6+12)+6×(1+6+12), to obtain a high cord strength by prescribing the tensile strength of filaments in the outermost layer of sheath strands and the tensile strength of filaments in the adjacent inner layer such that a specific ratio is attained between these. Further, Patent Document 2 discloses a technology for a steel cord for reinforcement of rubber articles, which steel cord has a multi-twisted structure, to obtain a high cord strength by setting the tensile strength of outermost layer sheath filaments constituting strands to not more than 3,040 N/mm2 and the tensile strength of all the inner filaments other than the outermost layer sheath filaments to not less than 3,140 N/mm2.
Further, Patent Document 3 discloses a technology to obtain a high cord strength by employing outermost layer filaments constituting strands thicker than the filaments in the inner side thereof to avoid preceding break of the outermost layer filaments. Patent Document 4 discloses a technology to obtain a high cord strength by prescribing the tensile strength of the filaments constituting each strand as “the filament tensile strength of the layer close to the center of the strand≧the filament tensile strength of the layer distant from the center of the strand” and the average tensile strength of the strands as “the average tensile strength of the strands in the layer close to the center of the cord<the average tensile strength of the strands in the layer distant from the center of the cord” to prevent preceding break of filaments.
RELATED ART REFERENCES Patent Documents
  • Patent Document 1: Japanese Patent No. 3439329 (Claims and the like)
  • Patent Document 2: Japanese Patent No. 3709551 (Claims and the like)
  • Patent Document 3: Japanese Unexamined Patent Application Publication (Translation of PCT Application) No. 01/034900 (Claims and the like)
  • Patent Document 4: Japanese Unexamined Patent Application Publication No. 2005-248373 A (Claims and the like)
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Among these, in the steel cord described in Patent Document 2, the tensile strength of the outermost layer sheath filaments constituting strands is set to not more than 3,040 N/mm2 and the tensile strength of all the inner filaments other than the outermost layer sheath filaments are set to not less than 3,140 N/mm2, but in the 3+9, 3+9+15 and 1+6+12 structures which are standard strand structures, the number of the outermost layer sheath filaments accounts for not less than a half of the total number of the filaments. Therefore, in these strand structures, even if the filament strength of the inner layer is increased by 10% aiming to further enhance the strength, the total cord strength is increased by only not more than 5% which is a half of the level of the enhancement.
That is, a conventional method wherein the cord strength is enhanced by enhancement of the tensile strength of filaments is effective for a steel cord having a single-twisted structure or a normal layered twisted structure, and also effective for a steel cord having a multi-twisted structure wherein a plurality of steel filaments are twisted together to form each strand in cases where the tensile strength of the filaments is not more than 3,040 N/mm2, but with a tensile strength higher than this, an increase in the cord strength comparable to the increase in the tensile strength of the filaments cannot be obtained, which has been problematic.
Further, the steel cord described in Patent Document 3 has also been applied to actual tires, and by employing outermost layer filaments constituting each strand thicker than the filaments in the inner side thereof, its effect is sufficiently exerted immediately after the production and a steel cord having a high strength can be obtained. On the other hand, however, in cases where it is stored for a long time and in cases where it is influenced by the thermal history during production of a tire, the cord strength greatly decreases relative to that immediately after the production, which has been problematic.
Further, in the steel cords described in Patent Document 1 and Patent Document 4, strong cord strength can be obtained, but the problem of preceding break of the outermost layer filaments cannot be solved sufficiently.
That is, by a conventional technology, in a steel cord having a multi-twisted structure, the problem of preceding break of the outermost layer filaments upon attempting to further enhance the cord strength cannot be solved sufficiently, so that attainment of a superior improvement technology has been demanded.
Thus, the present invention aims to provide a steel cord for reinforcement of rubber articles, whose cord strength is enhanced, without causing problems such as those in the above-described conventional arts, by preventing occurrence of preceding break of the outermost layer filaments in a steel cord having a multi-twisted structure, and a pneumatic tire using it as a reinforcing material.
Means for Solving the Problems
To solve the above problems, the present inventor intensively studied a method for improving the cord strength of a steel cord having a multi-twisted structure in consideration also of long-term storage and influence of the thermal history during tire vulcanization, and discovered that, by setting dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, to 1.05 to 1.25, the shear stress due to the contact load to the outermost layer filaments of the core strand which may cause preceding break can be reduced and hence the preceding break can be suppressed, leading to enhancement of the cord strength, thereby completing the present invention.
That is, the steel cord for reinforcement of rubber articles of the present invention is a steel cord for reinforcement of rubber articles having a multi-twisted structure in which a plurality of strands are twisted together, the strands having a layered twisted structure in which a plurality of steel filaments are twisted together,
wherein dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of a core strand, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of sheath strands, is 1.05 to 1.25.
In the present invention, the twist angle of the sheath strand, among the above strands, is preferably not less than 1.4 rad, and the direction of twist of the outermost layer sheath filaments constituting the outermost layer sheath of the core strand and the direction of twist of the sheath strands are preferably the same. Further, preferably, the tensile strength of all the filaments constituting the strands are not less than 3,040 N/mm2. Further, also preferably, the carbon contents of the filaments constituting the strands are not less than 0.80% by weight.
The pneumatic tire of the present invention is characterized in that the above-described steel cord for reinforcement of rubber articles of the present invention is employed as its reinforcing material.
Effect of the Invention
According to the present invention, by employing the above-described constitution, occurrence of preceding break at contact portions among outermost layer filaments of a steel cord having a multi-twisted structure can be suppressed, thereby enabling realization of a steel cord for reinforcement of rubber articles, which has a higher cord strength than before. Thus, by employing the steel cord for reinforcement of rubber articles of the present invention as a reinforcing material for a pneumatic tire, a pneumatic tire which can realize all of weight saving, increase in the fuel efficiency and suppression of the cost of transportation can be obtained.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional view showing a steel cord for reinforcement of rubber articles as one preferred example of the present invention.
FIG. 2 is a magnified cross-sectional view showing a part of a pneumatic tire as one preferred example of the present invention.
FIG. 3 is a graph showing the relationship between dc/ds and the rate of preceding break.
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be described in detail referring to the drawings.
The steel cord for reinforcement of rubber articles of the present invention has a multi-twisted structure in which a plurality of strands are twisted together, the strands having a layered twisted structure in which a plurality of steel filaments are twisted together.
As mentioned above, a steel cord having a relatively small diameter such as one having a single-twisted structure or a normal layered twisted structure has a cord strength determined by tensile strength of individual filaments. However, as described above, in the case of a steel cord having a multi-twisted structure wherein a plurality of strands are twisted together, the cord strength is affected not only by the tensile strength of the individual filaments but also by strong contact among the strands due to cord tension. At the contact sites, the stress may be concentrated to their outermost layer filaments to cause preceding shear failure of the outermost layer filaments, thereby preventing increase in the cord strength comparable to the increase in the tensile strength of the individual filaments. In particular, such a preceding break phenomenon is frequently observed in filaments having a high tensile strength which are subject to shear failure, and especially in filaments having a tensile strength of not less than 3,040 N/mm2, increase in the cord strength is suppressed as the tensile strength of the filaments increases, and in some cases, the cord strength even decreases due to long-term storage and/or the thermal history during production of a tire. In view of this, the present invention is intended for a steel cord having the above-described multi-twisted structure in which such a phenomenon has occurred in the past.
FIG. 1 is a cross-sectional view showing a steel cord for reinforcement of rubber articles as one example of the present invention. Preferred examples of the present invention include a steel cord having a (3+9+15)+8×(3+9)+1 structure as shown in the figure, wherein a core strand 1 having a layered twisted structure composed of:
a core having 3 core filaments 11;
a first sheath having 9 first sheath filaments 12 sequentially arranged around the circumference of the core; and
a second sheath having 15 second sheath filaments 13; is twisted together with 8 sheath strands 2 having a layered twisted structure composed of:
a core having 3 core filaments 14; and
9 first sheath filaments 15 sequentially arranged around the circumference of the core;
and around the resultant, a spiral filament 16 is further spirally wound. The spiral filament 16 is wound in order to strengthen a bundle of the cords, and is not indispensable and may be omitted in the present invention.
In the present invention, as shown in the figure, it is important for the above-described steel cord having a multi-twisted structure to have dc/ds, which represents the ratio between dc, the diameter of the second sheath filaments 13 constituting the outermost layer sheath of the core strand 1, and ds, the diameter of the first sheath filaments 15 constituting the outermost layer sheath of the sheath strands 2, of 1.05 to 1.25, preferably 1.05 to 1.20. This is because, by setting dc, the diameter of the outermost layer sheath filaments constituting the outermost layer sheath of the core strand where preceding break occurs, to not less than 1.05 times larger than ds, the diameter of the outermost layer sheath filaments constituting the outermost layer sheath of the sheath strands, the cross-sectional area of the filaments increases and the shear stress is reduced by the contact load, thereby suppressing the preceding break, so that the increase in the tensile strength of these filaments can be directly reflected to enhancement of the cord strength. However, in cases where the ratio exceeds 1.25, the filaments constituting the outermost layer sheath of the sheath strands become subject to preceding break, and the increase in the tensile strength of these filaments cannot be directly reflected to enhancement of the cord strength.
In the present invention, the twist angle of the sheath strands 2, among the strands constituting the cord, is preferably not less than 1.4 rad, especially preferably 1.40 to 1.50 rad. This is because, with a twist angle of the sheath strands 2 of less than 1.4 rad, the load bearing of the core strand 1 and the contact load from the sheath strands 2 become large under a tensile load, and therefore the cord strength largely decreases.
Further, in the present invention, the twist direction of the second sheath filaments 13 in the core strand 1 and the twist direction of the sheath strands 2 are preferably the same. This is because, by twisting them in the same direction together, the contact angle between the second sheath filaments 13 of the core strand 1 and the first sheath filaments 15 of the sheath strands 2 becomes small and the contacting area increases, leading to suppression of preceding break.
In the present invention, especially in the above-described steel cord having a multi-twisted structure, the tensile strength of all the filaments constituting each strand is preferably not less than 3,040 N/mm2, more preferably in the range of 3,040 to 4,200 N/mm2. With a tensile strength of the filaments of less than 3,040 N/mm2, preceding break does not occur, so that application of the present invention is not necessary. The carbon content of the material of the filaments is preferably not less than 0.80% by weight.
Further, in the cord of the present invention, as long as the relationship between dc, the diameter of the outermost layer sheath filaments constituting the outermost layer sheath of the core strand 1, and ds, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of the sheath strands 2, satisfies the above condition, other conditions such as the specific diameter, the twist direction and the twist pitch of each filament are not restricted, and the cord may be appropriately constituted according to a conventional method depending on its use.
As mentioned above, in the steel cord for reinforcement of rubber articles of the present invention, the cord strength is improved compared to conventional steel cords having a multi-twisted structure. Therefore, for example, in a pneumatic radial tire for construction vehicles wherein a ply, in which cords of the present invention were used instead of conventional steel cords having a multi-twisted structure and a plurality of the cords of the present invention were arranged in parallel each other and embedded in a rubber sheet, is applied to a belt or a carcass, all of weight saving, increase in the fuel efficiency and suppression of the cost of transportation can be realized.
Preferred examples of the pneumatic tire of the present invention include a large off-road radial tire having a tire size of about 40.00R57 as shown in FIG. 2. The tire shown in the figure has a layer of carcass ply 22 extending toroidally between bead cores 21 embedded respectively in a left-and-right pair of bead portions and 6 layers of belts 24 arranged in the outside of tread portion 23 in the radial direction of the tire. The steel cord of the present invention may be suitably applied to such a tire as a reinforcing material for the carcass ply 22 or the like. In this case, the end count of the cord for the carcass ply 22 may be, for example, in the range of 8.0 to 8.5 cords/50 mm, especially 8.0 cords/50 mm.
The pneumatic tire of the present invention may be one wherein the steel cord of the present invention is used as a reinforcing material for a carcass ply or a belt, and in terms of the other details of the tire structure, the material of each member and the like, those conventionally used may be appropriately employed and there is no restriction.
EXAMPLES
The present invention will be described in more detail by way of Examples.
Examples 1 to 3, Comparative Examples 1 to 8
According to the conditions shown in Tables 1 and 2 below, steel cords for reinforcement of rubber articles having a multi-twisted structure wherein 1+6 to 9 strands are twisted together, which strands have a layered twisted structure in which a plurality of steel filaments are twisted together, were prepared.
The steel cord shown in FIG. 1 is the cord of Example 1 most suitable for use as a reinforcing material for pneumatic tires, and has a cord structure of (3+9+15)+8×(3+9)+1. That is, the steel cord of Example 1 shown in the figure was formed by twisting 8 sheath strands 2 around a core strand 1, followed by spirally winding one spiral filament 16 around the resultant, wherein the core strand 1 was formed by twisting 9 first sheath filaments 12 and 15 second sheath filaments 13 around 3 core filaments 11 and the sheath strand 2 was formed by twisting 9 first sheath filaments 15 around 3 core filaments 14. The carbon content of each filament was 0.82% by weight.
The rate of reduction in the cord breaking strength by twisting was evaluated for each steel cord in Examples and Comparative Examples immediately after the production and after heating. Here, the rate of reduction by twisting (%) means the percentage of the difference between the total sum of the breaking strength of the filaments constituting the cord and the cord breaking strength. The immediately after production—after heating changing rate (%) was represented by the rate of change in the cord breaking strength based on comparison between that observed immediately after the production and that observed after heating at 145° C. for 40 minutes. When the rate of reduction by twisting is not more than 10% immediately after the production and the rate of reduction by twisting is not more than 15% after heating, reduction in the strength can be said to be small, which is good.
Results obtained by stopping the testing apparatus immediately before the complete break of the cord to observe the preceding break rate of each filament in the cord for the core strand outermost layer filaments, the sheath strand outermost layer filaments and the like are also shown in Tables 1 and 2 below.
TABLE 1
Comparative Comparative Comparative Comparative Comparative Comparative
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6)
Cord structure 7 × (3 + 9 + 15) 7 × (3 + 7 × (3 + (3 + 9 + 15) + (3 + 9 + 15) + (3 + 9 + 15) +
9 + 15) 9 + 15) 7 × (3 + 9 + 15) 8 × (3 + 9 + 15 9 × (3 +
9 + 15) 9 + 15
Core strand Core Number 3 3 3 3 3 3
Diameter (mm) 0.240 0.240 0.240 0.320 0.320 0.320
Tensile strength 2,849 3,542 3,542 3,231 3,231 3,231
(N/mm2)
Pitch (mm) 6.5 6.5 6.5 8.7 8.7 8.7
Direction of Z Z Z Z Z Z
twist
First Number 9 9 9 9 9 9
sheath Diameter (mm) 0.240 0.240 0.240 0.320 0.320 0.320
Tensile strength 2,849 3,542 3,542 3,231 3,231 3,231
(N/mm2)
Pitch (mm) 12.5 12.5 12.5 16.6 16.6 16.6
Direction of Z Z Z Z Z Z
twist
Second Number 15 15 15 15 15 15
sheath Diameter dc (mm) 0.240 0.240 0.240 0.320 0.320 0.320
Tensile strength 2,849 3,542 3,542 3,231 3,231 3,231
(N/mm2)
Pitch (mm) 19.0 19.0 19.0 25.5 25.5 25.5
Direction of Z Z Z Z Z Z
twist
Sheath strand Core Number 3 3 3 3 3 3
Diameter (mm) 0.240 0.240 0.240 0.245 0.195 0.165
Tensile strength 2,849 3,542 3,542 3,590 3,631 3,645
(N/mm2)
Pitch (mm) 6.5 6.5 6.5 6.8 5.3 4.4
Direction of Z Z Z Z Z Z
twist
First Number 9 9 9 9 9 9
sheath Diameter (mm) 0.240 0.240 0.240 0.245 0.195 0.165
Tensile strength 2,849 3,542 3,542 3,590 3,631 3,645
(N/mm2)
Pitch (mm) 12.5 12.5 12.5 13.0 10.2 8.7
Direction of Z Z Z Z Z Z
twist
Second Number 15 15 15 15 15 15
sheath Diameter ds (mm) 0.240 0.240 0.240 0.245 0.195 0.165
Tensile strength 2,849 3,542 3,542 3,590 3,631 3,645
(N/mm2)
Pitch (mm) 19.0 19.0 19.0 19.1 15.0 12.8
Direction of Z Z Z Z Z Z
twist
Ratio between diameters of 1.00 1.00 1.00 1.306 1.641 1.939
outermost layer filaments:
dc/ds
Total strength of filaments 24,358 30,286 30,286 39,001 30,437 25,954
(N)
Sheath strand Pitch (mm) 61.0 61.0 61.0 72.6 64.1 61.4
Direction of S S Z Z Z Z
twist
Twist angle 1.418 1.418 1.418 1.421 1.417 1.419
(rad)
Immediately Cord breaking 22,994 23,835 25,016 34,757 25,990 21,657
after strength (N)
production Rate of 5.6 21.3 17.4 10.9 14.6 16.6
reduction by
twisting (%)
After heating Cord breaking 23,067 22,684 22,805 31,443 24,673 21,530
strength (N)
Rate of 5.3 25.1 24.7 19.4 18.9 17.0
reduction by
twisting (%)
Immediately after 0.3 −4.8 −8.8 −9.5 −5.1 −0.6
production - after heating
changing rate (%)
Rate of Core strand 100 85.7 3.4 0.0 0.0
preceding outermost
break layer
filament (%)
Sheath strand 0.0 0.0 93.1 100 100
outermost
layer
filament (%)
Others (%) 0.0 14.7 35 0.0 0.0
TABLE 2
Comparative Comparative
Example 7 Example 8 Example 1 Example 2 Example 3
Cord structure (3 + 9 + 15) + (3 + 9 + 15) + (3 + 9 + 15) + (3 + 9 + 12) + (3 + 9 + 11) +
7 × (3 + 9) 9 × (3 + 9) 8 × (3 + 9) 7 × (3 + 9) 7 × (3 + 9)
Core strand Core Number 3 3 3 3 3
Diameter (mm) 0.320 0.320 0.320 0.260 0.250
Tensile strength 3,231 3,231 3,231 3,363 3,412
(N/mm2)
Pitch (mm) 8.7 8.7 8.7 7.1 6.8
Direction of twist Z Z Z Z Z
First Number 9 9 9 9 9
sheath Diameter (mm) 0.320 0.320 0.320 0.260 0.250
Tensile strength 3,231 3,231 3,231 3,363 3,412
(N/mm2)
Pitch (mm) 16.6 16.6 16.6 13.5 13.0
Direction of twist Z Z Z Z Z
Second Number 15 15 15 12 11
sheath Diameter dc (mm) 0.320 0.320 0.320 0.350 0.375
Tensile strength 3,231 3,231 3,231 3,085 2,961
(N/mm2)
Pitch (mm) 25.5 25.5 25.5 21.6 21.6
Direction of twist Z Z Z Z Z
Sheath strand Core Number 3 3 3 3 3
Diameter (mm) 0.360 0.245 0.290 0.325 0.325
Tensile strength 3,209 3,590 3,441 3,245 3,245
(N/mm2)
Pitch (mm) 6.5 6.5 6.5 8.7 8.7
Direction of twist Z Z Z Z Z
First Number 9 9 9 9 9
sheath Diameter ds (mm) 0.360 0.245 0.290 0.325 0.325
Tensile strength 3,209 3,590 3,441 3,245 3,245
(N/mm2)
Pitch (mm) 12.5 12.5 12.5 17.4 17.4
Direction of twist Z Z Z Z Z
Ratio between diameters of outermost 0.889 1.306 1.103 1.077 1.154
layer filaments: dc/ds
Total strength of filaments (N) 34,449 25,293 28,836 28,314 28,217
Sheath strand Pitch (mm) 69.6 61.4 64.1 64.1 64.1
Direction of twist Z Z Z Z Z
Twist angle (rad) 1.416 1.419 1.416 1.420 1.420
Immediately Cord breaking strength 31,783 22,697 26,490 26,383 26,313
after (N)
production Rate of reduction by 7.7 10.3 8.1 6.8 6.7
twisting (%)
After heating Cord breaking strength 29,007 21,253 24,757 24,750 24,413
(N)
Rate of reduction by 15.8 16.0 14.1 12.6 13.5
twisting (%)
Immediately after production - −8.7 −6.4 −6.5 −6.2 −7.2
after heating changing rate (%)
Rate of Core strand outermost 88.9 0.0 33.3 54.5 34.4
preceding layer filament (%)
break Sheath strand outermost 11.1 100 66.7 9.1 3.1
layer filament (%)
Others (%) 0 0 0 36.4 62.5
As shown in the above Tables 1 and 2, in the steel cords for reinforcement of rubber articles in Examples 1 to 3 having the predetermined multi-twisted structure wherein dc/ds, which represents the ratio between dc, the diameter of outermost layer sheath filaments constituting the outermost layer sheath of the core strand, and ds, the diameter of the outermost layer sheath filaments constituting the outermost layer sheath of the sheath strands, was set to 1.05 to 1.25, it was confirmed that the rate of reduction by twisting was small immediately after the production and therefore a high cord strength could be realized, and that, since the rate of reduction by twisting was small also after the heating, the reduction of the cord strength was small even after the heating.
FIG. 3 is a graph showing the relationships between dc/ds and the rates of preceding break in Examples 1 to 3 and Comparative Examples 1 to 8. As shown in FIG. 3, in terms of the rate of preceding break of the filaments in the cord immediately before the complete break of the cord, preceding break occurred in mostly the core strand outermost layer filaments at dc/ds of not more than 1.00, while the other filaments began to undergo preceding break at dc/ds of not less than 1.30. It can be seen also from this graph that, to obtain a high cord strength, it is important to avoid concentration of preceding break to specific filaments, and that dc/ds within the range of 1.05 to 1.25 is appropriate.
DESCRIPTION OF SYMBOLS
  • 1. Core strand
  • 2. Sheath strand
  • 11. Core strand core filament
  • 12. Core strand first sheath filament
  • 13. Core strand second sheath filament (outermost layer sheath filament)
  • 14. Sheath strand core filament
  • 15. Sheath strand first sheath filament (outermost layer sheath filament)
  • 16. Spiral filament
  • 21. Bead core
  • 22. Carcass ply
  • 23. Tread portion
  • 24. Belt
  • dc The diameter of each outermost layer sheath filament in the core strand
  • ds The diameter of each outermost layer sheath filament in the sheath strand

Claims (5)

The invention claimed is:
1. A steel cord for reinforcement of rubber articles, having a multi-twisted structure in which a plurality of strands are twisted together, said strands having a layered twisted structure in which a plurality of steel filaments are twisted together,
wherein dc/ds, which represents the ratio between dc, the diameter of each outermost layer sheath filament constituting the outermost layer sheath of a core strand, and ds, the diameter of each outermost layer sheath filament constituting the outermost layer sheath of sheath strands, is 1.05 to 1.25,
wherein said core strand consists of a core, a first sheath, and a second sheath, and said sheath strands consist of a core and a first sheath,
wherein the number of said core strand is only one,
wherein the twist angle of the sheath strand, among said strands, is not less than 1.4 rad, and
wherein the core strand has a structure of 3+9+11 filaments.
2. The steel cord for reinforcement of rubber articles according to claim 1, wherein the direction of twist of the outermost layer sheath filaments constituting the outermost layer sheath of said core strand and the direction of twist of said sheath strands are the same.
3. The steel cord for reinforcement of rubber articles according to claim 1, wherein the tensile strength of all the filaments constituting said strands are not less than 3,040 N/mm2.
4. The steel cord for reinforcement of rubber articles according to claim 1, wherein the carbon contents of the filaments constituting said strands are not less than 0.80% by weight.
5. A pneumatic tire wherein the steel cord for reinforcement of rubber articles according to claim 1 is employed as a reinforcing material.
US12/997,387 2008-06-13 2009-06-12 Steel cord for reinforcement of rubber articles and pneumatic tire using the same Expired - Fee Related US8991457B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-155606 2008-06-13
JP2008155606A JP5455181B2 (en) 2008-06-13 2008-06-13 Steel cord for reinforcing rubber articles and pneumatic tire using the same
PCT/JP2009/060804 WO2009151127A1 (en) 2008-06-13 2009-06-12 Steel cord for reinforcement of rubber product and pneumatic tire using same

Publications (2)

Publication Number Publication Date
US20110088825A1 US20110088825A1 (en) 2011-04-21
US8991457B2 true US8991457B2 (en) 2015-03-31

Family

ID=41416829

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/997,387 Expired - Fee Related US8991457B2 (en) 2008-06-13 2009-06-12 Steel cord for reinforcement of rubber articles and pneumatic tire using the same

Country Status (7)

Country Link
US (1) US8991457B2 (en)
EP (1) EP2298986B1 (en)
JP (1) JP5455181B2 (en)
CN (1) CN102066653B (en)
BR (1) BRPI0915008A2 (en)
ES (1) ES2645013T3 (en)
WO (1) WO2009151127A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150368859A1 (en) * 2013-02-21 2015-12-24 Tokusen Kogyo Co., Ltd. Steel cord and elastic crawler using same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011116493A1 (en) * 2010-03-23 2011-09-29 Nv Bekaert Sa Open off-the-road cord with preformed filaments
CN102812177B (en) * 2010-03-23 2016-06-08 贝卡尔特公司 There is the open type off-the-highway tire steel cable of preformed wires
FR3014913B1 (en) * 2013-12-16 2016-12-09 Michelin & Cie TWO-LAYER MULTI-TONE METAL CABLE
FR3014914B1 (en) * 2013-12-16 2016-12-09 Michelin & Cie TWO-LAYER MULTI-TONE METAL CABLE
CN103911893B (en) * 2014-04-14 2017-02-15 江苏法尔胜技术开发中心有限公司 Steel wire rope for conveying belt
US10895037B2 (en) 2014-07-28 2021-01-19 Bridgestone Corporation Steel cord for reinforcing rubber article
US10906353B2 (en) 2014-07-28 2021-02-02 Bridgestone Corporation Steel cord for reinforcing rubber article
CN105415986A (en) * 2015-12-14 2016-03-23 刘安林 Tire and cable type tire ring thereof
JP6683570B2 (en) * 2016-08-05 2020-04-22 株式会社ブリヂストン Pneumatic tire
EP3555680B1 (en) 2016-12-19 2023-06-28 Lawrence Livermore National Security, LLC Wavelength selective transfer of optical energy
CN110546324B (en) * 2017-04-28 2022-02-18 株式会社普利司通 Steel cord for reinforcing rubber article, method for producing same, and tire
JP6892374B2 (en) * 2017-12-15 2021-06-23 株式会社ブリヂストン Steel cords and tires for reinforcing rubber articles
KR20200099147A (en) * 2017-12-25 2020-08-21 엔브이 베카에르트 에스에이 Steel cord
BR112021016266A2 (en) * 2019-02-26 2021-10-13 Nv Bekaert Sa STEEL CABLE FOR RUBBER REINFORCEMENT
FR3122672A1 (en) * 2021-05-07 2022-11-11 Compagnie Generale Des Etablissements Michelin Two-layer multi-strand rope with improved areal breaking energy
FR3122677A1 (en) 2021-05-07 2022-11-11 Compagnie Generale Des Etablissements Michelin Two-Layer Multi-Strand Rope with Improved Areal Breaking Energy

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413799A (en) 1966-09-07 1968-12-03 Michelin & Cie Metallic cable
WO2001034900A1 (en) 1999-11-11 2001-05-17 Bridgestone Corporation Rubber article-reinforcing steel cord and tire
JP2002030586A (en) 2000-07-12 2002-01-31 Bridgestone Corp Steel cord for reinforcing rubbery material and pneumatic tire using the same
JP2002339277A (en) 2001-05-11 2002-11-27 Bridgestone Corp Steel cord for reinforcing rubber article and tire
JP3439329B2 (en) 1997-08-29 2003-08-25 東京製綱株式会社 Steel cord for rubber reinforcement
US20040045652A1 (en) * 2000-12-01 2004-03-11 Stijn Vanneste Steel cord for reinforcing off-the-road tires and conveyor belts
EP1479535A2 (en) 2003-05-23 2004-11-24 The Goodyear Tire & Rubber Company Two piece tire with improved tire tread belt
JP2005248373A (en) 2004-03-04 2005-09-15 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic tire using the same
JP3709551B2 (en) 1997-07-08 2005-10-26 株式会社ブリヂストン Steel cord for reinforcing rubber articles and pneumatic tires
CN1745187A (en) 2003-01-27 2006-03-08 新日本制铁株式会社 High-carbon steel wire rod with high strength and high toughness
JP2006104636A (en) 2004-10-08 2006-04-20 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic radial tire
US20060137776A1 (en) 2003-01-27 2006-06-29 Shingo Yamasaki High strength, high toughness, high carbon steel wire rod and method of production of same
JP2007107136A (en) 2005-10-13 2007-04-26 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic radial tire
WO2008026271A1 (en) * 2006-08-31 2008-03-06 Bridgestone Corporation Rubber reinforcing steel cord and pneumatic radial tire
JP2008150757A (en) * 2006-12-20 2008-07-03 Bridgestone Corp Rubber article-reinforcing steel cord and pneumatic tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3713007A1 (en) 1987-04-16 1988-10-27 Hydro Geraetebau Gmbh & Co Kg DEVICE FOR PICKING UP PLANES

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413799A (en) 1966-09-07 1968-12-03 Michelin & Cie Metallic cable
JP3709551B2 (en) 1997-07-08 2005-10-26 株式会社ブリヂストン Steel cord for reinforcing rubber articles and pneumatic tires
JP3439329B2 (en) 1997-08-29 2003-08-25 東京製綱株式会社 Steel cord for rubber reinforcement
WO2001034900A1 (en) 1999-11-11 2001-05-17 Bridgestone Corporation Rubber article-reinforcing steel cord and tire
US6863103B1 (en) 1999-11-11 2005-03-08 Bridgestone Corporation Steel cord for the reinforcement of a rubber article and tire
JP2002030586A (en) 2000-07-12 2002-01-31 Bridgestone Corp Steel cord for reinforcing rubbery material and pneumatic tire using the same
US20040045652A1 (en) * 2000-12-01 2004-03-11 Stijn Vanneste Steel cord for reinforcing off-the-road tires and conveyor belts
JP2002339277A (en) 2001-05-11 2002-11-27 Bridgestone Corp Steel cord for reinforcing rubber article and tire
US20060137776A1 (en) 2003-01-27 2006-06-29 Shingo Yamasaki High strength, high toughness, high carbon steel wire rod and method of production of same
CN1745187A (en) 2003-01-27 2006-03-08 新日本制铁株式会社 High-carbon steel wire rod with high strength and high toughness
EP1479535A2 (en) 2003-05-23 2004-11-24 The Goodyear Tire & Rubber Company Two piece tire with improved tire tread belt
JP2005248373A (en) 2004-03-04 2005-09-15 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic tire using the same
JP2006104636A (en) 2004-10-08 2006-04-20 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic radial tire
JP2007107136A (en) 2005-10-13 2007-04-26 Bridgestone Corp Steel cord for reinforcing rubber article and pneumatic radial tire
WO2008026271A1 (en) * 2006-08-31 2008-03-06 Bridgestone Corporation Rubber reinforcing steel cord and pneumatic radial tire
US20090205308A1 (en) * 2006-08-31 2009-08-20 Bridgestone Corporation Steel cord for reinforcing rubber and pneumatic radial tire
JP2008150757A (en) * 2006-12-20 2008-07-03 Bridgestone Corp Rubber article-reinforcing steel cord and pneumatic tire

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Anonymous:' High Tensile Strength Steel Cord Constructions for Tyres, Research Disclosure, Mason Publications, Hampshire, GB, vol. 340, No. 54, (Aug. 1, 1992), XP007118007, ISSN: 0374-4353.
English language machine translation of JP2008-150757, 2008. *
European Search Report dated Apr. 8, 2014 issued in corresponding EP application 09 762 557.8.
International Search Report issued in PCT/JP2009/060804 dated Oct. 6, 2009 (4 pages).
Japanese Office Action, dated Jul. 26, 2013, issued in corresponding Japanese Patent Application No. 2008-155606.
Wolf et al. "Alternative Konstruktionen von Stahlzugtragern in Fordergurten", Kautschuk and Gummi-Kunststoffe, Huthig Verlag, Heidelberg, DE, vol. 46, No. 9, (Sep. 1, 1993), pp. 727-731, XP000397379, ISSN: 0948-3276.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150368859A1 (en) * 2013-02-21 2015-12-24 Tokusen Kogyo Co., Ltd. Steel cord and elastic crawler using same

Also Published As

Publication number Publication date
EP2298986A4 (en) 2014-05-07
ES2645013T3 (en) 2017-12-01
EP2298986B1 (en) 2017-08-09
BRPI0915008A2 (en) 2015-10-27
JP2009299223A (en) 2009-12-24
CN102066653A (en) 2011-05-18
CN102066653B (en) 2015-11-25
JP5455181B2 (en) 2014-03-26
EP2298986A1 (en) 2011-03-23
WO2009151127A1 (en) 2009-12-17
US20110088825A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
US8991457B2 (en) Steel cord for reinforcement of rubber articles and pneumatic tire using the same
EP3027805B2 (en) High elongation steel cord and pneumatic tire comprising said cord
EP3196354B1 (en) Steel cord for reinforcing rubber article
US10895037B2 (en) Steel cord for reinforcing rubber article
US5894875A (en) Pneumatic radial tire with flat 1×6 steel belt cord
WO2012081624A1 (en) Steel cord for reinforcing rubber article, and pneumatic tire using same
JP4628239B2 (en) Steel cords for reinforcing rubber articles and pneumatic radial tires
US20170211229A1 (en) Steel cord for reinforcing rubber article
JP5083943B2 (en) Steel cord for reinforcing rubber articles and pneumatic tire using the same
JP5718086B2 (en) Pneumatic tire
EP3603995B1 (en) Pneumatic tire
EP1344864B1 (en) Steel cord, method of making the same and pneumatic tire including the same
KR102174837B1 (en) Ply-twisted yarn cord containing organic fibers
JP2009108460A (en) Steel cord for rubber article reinforcement and pneumatic tire using the steel cord
EP3196353B1 (en) Steel cord for reinforcing rubber article
JP3709551B2 (en) Steel cord for reinforcing rubber articles and pneumatic tires
JPH04202869A (en) Steel cord for reinforcing rubber article and pneumatic radial tire
US20190263179A1 (en) Steel cord for reinforcing rubber articles and rubber crawler and tire using same
JPH09156313A (en) Pneumatic radial tire
JP5602609B2 (en) Steel cord for reinforcing rubber articles and pneumatic tire using the same
JP2007031890A (en) Steel cord and pneumatic radial tire
JP6171759B2 (en) Pneumatic radial tire
JP5615498B2 (en) Steel cord for reinforcing rubber articles and pneumatic tire using the same
WO2021117297A1 (en) Pneumatic tire
JP2009084727A (en) Rubber-steel cord composite material, production method thereof, and pneumatic tire produced by using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE SPORTS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUDO, EIJI;REEL/FRAME:025471/0925

Effective date: 20101126

Owner name: BRIDGESTONE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUDO, EIJI;REEL/FRAME:025472/0032

Effective date: 20101126

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20230331