US8946031B2 - Method for fabricating MOS device - Google Patents
Method for fabricating MOS device Download PDFInfo
- Publication number
- US8946031B2 US8946031B2 US13/353,227 US201213353227A US8946031B2 US 8946031 B2 US8946031 B2 US 8946031B2 US 201213353227 A US201213353227 A US 201213353227A US 8946031 B2 US8946031 B2 US 8946031B2
- Authority
- US
- United States
- Prior art keywords
- layer
- hard mask
- forming
- fin structure
- implant process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 239000007943 implant Substances 0.000 claims abstract description 56
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000004020 conductor Substances 0.000 claims description 24
- 239000004065 semiconductor Substances 0.000 claims description 17
- 125000006850 spacer group Chemical group 0.000 claims description 10
- 239000011810 insulating material Substances 0.000 claims description 7
- 238000000059 patterning Methods 0.000 claims 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 21
- 125000001475 halogen functional group Chemical group 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 238000005530 etching Methods 0.000 description 14
- 229910052581 Si3N4 Inorganic materials 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- OKZIUSOJQLYFSE-UHFFFAOYSA-N difluoroboron Chemical compound F[B]F OKZIUSOJQLYFSE-UHFFFAOYSA-N 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- KJXBRHIPHIVJCS-UHFFFAOYSA-N oxo(oxoalumanyloxy)lanthanum Chemical compound O=[Al]O[La]=O KJXBRHIPHIVJCS-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- CEPICIBPGDWCRU-UHFFFAOYSA-N [Si].[Hf] Chemical compound [Si].[Hf] CEPICIBPGDWCRU-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66787—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
- H01L29/66795—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
- H01L29/66803—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with a step of doping the vertical sidewall, e.g. using tilted or multi-angled implants
Definitions
- This invention relates to a semiconductor process, and more particularly relates to a method for fabricating a metal-oxide-semiconductor (MOS) device.
- MOS metal-oxide-semiconductor
- MOS is a basic structure widely applied to various semiconductor devices, such as memory devices, image sensors and display devices.
- FinFET fin field-effect transistor
- the implant angle of the implant process for forming the source/drain (S/D) extension regions and the halo regions is much limited, so the process margin is very small.
- the S/D extension and the halo regions thus formed are uneven in dopant concentration and depth, and even cause leakage.
- this invention provides a method for fabricating a MOS device, which allows the S/D extension regions and the halo regions to be formed in a uniform dopant concentration and a uniform depth and thus improve the process margin of the implant process of the S/D extension regions and the halo regions.
- a first hard mask layer is formed over a semiconductor substrate.
- the first hard mask layer is patterned and a portion of the substrate removed to form a first patterned hard mask and a fin structure surrounded by a trench, wherein the fin structure extends in a first direction.
- An insulating layer is formed at the bottom of the trench.
- a gate conductive layer is formed on the insulating layer in the trench, extending in a second direction.
- a first implant process is performed with the first patterned hard mask as a mask to form first S/D extension regions in the sidewalls of the fin structure.
- the first patterned hard mask is removed to expose the top of the fin.
- a second implant process is performed to form second S/D extension regions in the top of the fin structure.
- the above method may further include: performing a 1 st halo implant process before or after the 1 st implant process to form 1 st pocket doped regions in the sidewalls of the fin structure, and performing a 2 nd halo implant process before or after the 2 nd implant process to form 2 nd pocket doped regions in the top of the fin structure.
- the gate conductive layer is formed with the following steps.
- a conductive material layer is formed on the insulating layer in the trench and then planarized using the first patterned hard mask as a stop layer.
- a second hard mask layer is formed on the conductive material layer, and then the second hard mask layer and the conductive material layer are patterned into a second patterned hard mask and the gate conductive layer, respectively.
- the gate conductive layer is formed with the following steps.
- a conductive material layer is formed on the insulating layer in the trench.
- the conductive material layer is planarized, wherein the top surface of the remaining conductive material layer is higher than that of the first patterned hard mask.
- the conductive material layer is then patterned into the gate conductive layer.
- the implanted regions in the first (halo) implant process and the second (halo) implant process are different and the doses of the two processes can be controlled independently, the S/D extension regions (and the halo regions) each can be formed in a uniform dopant concentration and a uniform depth. Moreover, the implant angle of the first (halo) implant process is not much limited, so the process margin can be improved.
- FIGS. 1-7 illustrate, in a side view along the first direction, a method for fabricating a MOS device according to an embodiment of this invention.
- FIGS. 5A-7A are perspective views of the structures shown in FIGS. 5-7 .
- FIGS. 8-11 illustrate, in a side view along the first direction, a method for fabricating a MOS device according to another embodiment of this invention.
- FIGS. 9A-11A are perspective views of the structures shown in FIGS. 9-11 .
- FIGS. 1-7 illustrate, in a side view along the first direction, a method for fabricating a MOS device according to an embodiment of this invention.
- FIGS. 5A-7A are perspective views of the structures shown in FIGS. 5-7 .
- a hard mask material layer 12 is formed over the substrate 10 .
- the substrate 10 may include a semiconductor material, such as silicon.
- the hard mask material layer 12 may be a single material layer or include two or more material layers.
- the hard mask material layer 12 includes a silicon dioxide (SiO 2 ) layer and a silicon nitride (SiN) layer thereon.
- the SiO 2 layer and the SiN layer can be formed by CVD.
- the SiO 2 layer may have a thickness of 20-200 angstroms.
- the SiN layer may have a thickness of 500-3000 angstroms.
- lithography and etching processes are performed to pattern the hard mask material layer 12 and remove a portion of the substrate 10 , forming a fin structure 14 surrounded by a trench 16 and extending in a first direction, and a patterned hard mask 12 a .
- An insulating material layer 18 is then formed over the substrate 10 , possibly including silicon oxide and possibly being formed by CVD.
- a planarization process such as a chemical mechanical polishing (CMP) process, is performed using the patterned hard mask 12 a as a stop layer to remove the portion of the insulating material layer 18 over the patterned hard mask 12 a .
- a portion of the remaining insulating material layer 18 in the trench 16 is then removed, leaving the insulating material layer 18 at the bottom of the trench 16 as an insulating layer 18 a for device isolation.
- a conductive material layer 20 is then formed on the insulating layer 18 a in the trench 16 .
- the layer 20 may include single-crystal silicon, undoped poly-Si, doped poly-Si, amorphous silicon, SiGe, or a combination thereof, may be formed by CVD, and may be 500-2000 angstroms thick.
- the conductive material layer 20 is planarized, possibly by CMP, using the patterned hard mask 12 a as a stop layer.
- Another hard mask material layer 22 is then formed over the conductive material layer 20 .
- the hard mask material layer 22 may be a single material layer or include two or more material layers.
- the layer 22 may include a silicon dioxide (SiO 2 ) layer, a silicon nitride (SiN) layer, a silicon carbide (SiC) layer, a silicon carbonitride (SiCN) layer, or a combination thereof, may be formed by CVD, and may be 50-1000 angstroms thick.
- lithography and etching processes are performed to pattern the hard mask material layer 22 and the conductive material layer 20 into a patterned hard mask 22 a and a gate conductive layer 20 a , respectively.
- the gate conductive layer 20 a extends in a second direction that is substantially perpendicular to the first direction in which the fin structure 14 extends, and clips the fin structure 14 . More specifically, the fin structure 14 is located between two portions of the gate conductive layer 20 a.
- a first implant process 24 is performed using the first patterned hard mask 12 a as a mask to form first S/D extension regions 26 in sidewalls of the fin structure 14 . Another implant process is then performed to form first pocket doped regions.
- the first implant process 24 has an implant angle ⁇ 1 larger than 30°, possibly 30°-60°.
- the patterned hard mask 12 a is removed to expose the top of the fin structure 14 , possibly by an etching process, such as a dry or wet etching process.
- the removal process may include removing the SiN layer with the SiO 2 layer as an etching stop layer and then removing the SiO 2 layer.
- a second implant process 28 is then performed to form second S/D extension regions 30 in the top of the fin structure 14 .
- Another implant process is then performed to form second pocket doped regions (not shown).
- the second implant process 28 has an implant angle ⁇ 2 of 90° substantially.
- the second S/D extension regions 30 have a conductivity type that is the same as that of the first S/D extension regions 26 but different from that of the first and second pocket doped regions.
- the first and second S/D extension regions 26 and 30 are of p-type, and the first and second pocket doped regions are of n-type.
- the first and second S/D extension regions 26 and 30 are of n-type and the first and second pocket doped regions are of p-type.
- the p-type dopant can be boron or boron difluoride.
- the n-type dopant can be phosphorus or arsenic.
- a spacer is then formed on the sidewalls of the gate conductive layer 20 a .
- An etching process is then performed to remove a portion of the fin structure and form two recesses in the substrate 10 at both sides of the spacer.
- the recesses may have a depth of hundreds of angstroms.
- the shape of each recess is not particularly limited, and may be a diamond shape or a rectangular shape.
- a semiconductor compound layer is then formed in each recess.
- the semiconductor compound may be an IV-IV semiconductor compound, which may include a first IV-group element and a second IV-group element. It is possible that the first IV-group element is silicon and the second IV-group element is germanium or carbon; i.e., the IV-IV semiconductor compound is SiGe or SiC.
- the semiconductor compound layer may be doped with a dopant.
- the semiconductor compound layer includes SiGe and is p-doped possibly with boron or boron difluoride.
- the semiconductor compound layer includes SiC and is n-doped possibly with P or As.
- an implant process is performed to dope the semiconductor compound layer and form S/D regions.
- the conductivity type of the S/D regions is the same as that of the 1 st and 2 nd S/D extension regions 26 and 30 .
- the S/D regions are p-doped, wherein the p-type dopant can be boron or boron difluoride.
- the S/D regions are n-doped, wherein the n-type dopant can be phosphorus or arsenic.
- an etching stop layer and a dielectric layer are formed over the substrate 10 .
- the material of the etching step layer is different from that of the dielectric layer, for the etching stopping in the later etching step of the dielectric layer.
- the etching step layer may include SiN or SiON, may be formed by CVD, and may have a thickness of 50-1000 angstroms.
- the dielectric layer may include SiO, may be formed by CVD and may have a thickness of 1000-5000 angstroms.
- a portion of the dielectric layer and a portion of the etching stop layer are removed to expose the gate conductive layer 20 a . This may be done by performing CMP to the etching stop layer and the dielectric layer with the gate conductive layer 20 a as a stop layer.
- the gate conductive layer 20 a is then removed to form an opening.
- a dielectric layer, a work-function metal layer and a metal layer are sequentially formed over the insulating layer in the opening.
- the dielectric layer may include a high-K material with a K-value greater than 4, such as hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), lanthanum aluminum oxide (LaAlO), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), zirconium silicon oxide (ZrSiO 4 ), or hafnium zirconium oxide (HfZrO).
- the work-function metal layer may include Ti, Ta, TiN, TaN, TiC, Ti—Al alloy, or a combination thereof.
- the metal layer may include Al, Cu, W, Ti, Ta or an alloy thereof, and may be formed by CVD or sputtering.
- a portion of the metal layer, a portion of the work-function metal layer and a portion of the dielectric layer are removed to form a gate metal layer, a work-function metal layer and a gate dielectric layer.
- the removal process may utilize CMP or etching-back.
- the high-K dielectric layer is formed after the opening is formed in the above process, this invention is not limited thereto. If a gate dielectric layer with a high dielectric constant (K>4) is formed on the fin structure 14 before the conductive material layer 20 is formed ( FIG. 3 ), it is not necessary to form the high-k (k>4) dielectric layer.
- FIGS. 8-11 illustrate, in a side view along the first direction, a method for fabricating a MOS device according to another embodiment of this invention.
- FIGS. 9A-11A are perspective views of the structures shown in FIGS. 9-11 .
- a fin structure 14 , a patterned hard mask 12 a , an insulating layer 18 a and a conductive material layer 20 are formed as above.
- the conductive material layer 20 is planarized in a manner such that the top surface of the remaining conductive material layer 20 b is higher than that of the patterned hard mask 12 a.
- the remaining conductive material layer 20 b is patterned through lithography and etching to form a gate conductive layer 20 c.
- a spacer 54 is formed around the gate conductive layer 20 c , possibly by forming a substantially conformal spacer material layer and then performing an anisotropic etching process.
- the spacer material layer may include SiN or SiO 2 , and may be formed by CVD or thermal oxidation.
- a first implant process 24 is performed using the patterned hard mask 12 a and the spacer 54 as a mask to form first S/D extension regions 56 in the sidewalls of the fin structure 14 .
- Another implant process is then performed to form first pocket doped regions (not shown).
- the first implant process 24 has an implant angle larger than 30°, possibly 30°-60°. Because the spacer 54 is disposed around the gate conductive layer 20 c , the distance (channel length) between the first S/D extension regions 56 in this embodiment is larger than that between the first S/D extension regions 26 in the precedent embodiment.
- the patterned hard mask 12 a is then removed as shown in FIG. 7 / 7 A to expose the top of the fin structure 14 , and then a second implant process 28 is performed to form second S/D extension regions 58 in the top of the fin structure 14 .
- Another implant process is then performed to form second pocket doped regions (not shown).
- the 2 nd implant process 28 has an implant angle of 90° substantially.
- the spacer 54 is disposed around the gate conductive layer 20 c , the distance (channel length) between the second S/D extension regions 58 in this embodiment is larger than that between the second S/D extension regions 30 in the precedent embodiment.
- this invention performs two implant processes to form S/D extension regions in different surfaces of the fin structure, and may further perform two halo implant processes to form pocket doped regions in the different surfaces.
- the surface of the fin structure is covered by the first patterned hard mask so that the top of the fin structure is not implanted and only the sidewalls of the same are implanted to form first S/D extension regions and first pocket doped regions.
- the top of the fin structure is later implanted to form second S/D extension regions in the second implant process and form second pocket doped regions in the second halo implant process after the first implant process and the first halo implant process are performed and the first patterned hard mask is removed.
- the S/D extension regions (and the pocket doped regions) each can be formed in a uniform dopant concentration and a uniform depth.
- the implant angle of the first implant process is not much limited, so that the process margin thereof can be improved.
- the method of this invention allows a MOS device (FinFET) having a 3D structure and a uniform dopant concentration to be form, includes a simple process with a large process margin, and does not much increase the manufacturing cost.
- a MOS device FinFET
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/353,227 US8946031B2 (en) | 2012-01-18 | 2012-01-18 | Method for fabricating MOS device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/353,227 US8946031B2 (en) | 2012-01-18 | 2012-01-18 | Method for fabricating MOS device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130183804A1 US20130183804A1 (en) | 2013-07-18 |
US8946031B2 true US8946031B2 (en) | 2015-02-03 |
Family
ID=48780250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/353,227 Active US8946031B2 (en) | 2012-01-18 | 2012-01-18 | Method for fabricating MOS device |
Country Status (1)
Country | Link |
---|---|
US (1) | US8946031B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9093477B1 (en) * | 2014-11-09 | 2015-07-28 | United Microelectronics Corp. | Implantation processing step for a recess in finFET |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8629420B1 (en) * | 2012-07-03 | 2014-01-14 | Intel Mobile Communications GmbH | Drain extended MOS device for bulk FinFET technology |
CN103839816B (en) * | 2012-11-25 | 2019-04-19 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
US9093476B2 (en) * | 2013-07-30 | 2015-07-28 | GlobalFoundries, Inc. | Integrated circuits having FinFETs with improved doped channel regions and methods for fabricating same |
KR102070564B1 (en) * | 2013-08-09 | 2020-03-02 | 삼성전자주식회사 | Method of Fabricatng Semiconductor devices |
KR102175854B1 (en) * | 2013-11-14 | 2020-11-09 | 삼성전자주식회사 | Semiconductor device and method of manufacturing the same |
US20150187915A1 (en) * | 2013-12-26 | 2015-07-02 | Samsung Electronics Co., Ltd. | Method for fabricating fin type transistor |
CN105336611A (en) * | 2014-06-18 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Manufacturing method of Fin FET device |
CN106206303B (en) * | 2015-04-30 | 2019-09-27 | 中芯国际集成电路制造(上海)有限公司 | The forming method of N-type fin formula field effect transistor |
CN106328528B (en) * | 2015-06-30 | 2020-03-10 | 中芯国际集成电路制造(上海)有限公司 | Method for forming semiconductor structure |
US10651296B2 (en) * | 2018-07-30 | 2020-05-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Methods of fabricating Fin Field Effect Transistor (FinFET) devices with uniform tension using implantations on top and sidewall of Fin |
Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6043138A (en) | 1996-09-16 | 2000-03-28 | Advanced Micro Devices, Inc. | Multi-step polysilicon deposition process for boron penetration inhibition |
US6150209A (en) * | 1999-04-23 | 2000-11-21 | Taiwan Semiconductor Manufacturing Company | Leakage current reduction of a tantalum oxide layer via a nitrous oxide high density annealing procedure |
US20010011740A1 (en) * | 1998-02-26 | 2001-08-09 | Deboer Scott Jeffrey | Capacitor having tantalum oxynitride film and method for making same |
US6368915B1 (en) * | 1999-03-17 | 2002-04-09 | U.S. Philips Corporation | Method of manufacturing a semiconductor device |
US6448142B1 (en) * | 2001-05-29 | 2002-09-10 | Macronix International Co., Ltd. | Method for fabricating a metal oxide semiconductor transistor |
US6492216B1 (en) | 2002-02-07 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Method of forming a transistor with a strained channel |
US20030062525A1 (en) * | 2001-07-23 | 2003-04-03 | Cree Lighting Company | Gallium nitride based diodes with low forward voltage and low reverse current operation |
US6716690B1 (en) | 2003-03-12 | 2004-04-06 | Advanced Micro Devices, Inc. | Uniformly doped source/drain junction in a double-gate MOSFET |
US6743682B2 (en) * | 1999-12-17 | 2004-06-01 | Koninklijke Philips Electronics N.V. | Method of manufacturing a semiconductor device |
US20040195624A1 (en) | 2003-04-04 | 2004-10-07 | National Taiwan University | Strained silicon fin field effect transistor |
US20050051825A1 (en) * | 2003-09-09 | 2005-03-10 | Makoto Fujiwara | Semiconductor device and manufacturing method thereof |
US6921963B2 (en) | 2003-01-23 | 2005-07-26 | Advanced Micro Devices, Inc | Narrow fin FinFET |
US20060081895A1 (en) * | 2004-10-19 | 2006-04-20 | Deok-Huyng Lee | Semiconductor device having fin transistor and planar transistor and associated methods of manufacture |
US20060099830A1 (en) | 2004-11-05 | 2006-05-11 | Varian Semiconductor Equipment Associates, Inc. | Plasma implantation using halogenated dopant species to limit deposition of surface layers |
US7087477B2 (en) | 2001-12-04 | 2006-08-08 | International Business Machines Corporation | FinFET SRAM cell using low mobility plane for cell stability and method for forming |
US7091551B1 (en) | 2005-04-13 | 2006-08-15 | International Business Machines Corporation | Four-bit FinFET NVRAM memory device |
US7141856B2 (en) * | 2003-08-14 | 2006-11-28 | Samsung Electronics Co., Ltd. | Multi-structured Si-fin |
US20060286729A1 (en) | 2005-06-21 | 2006-12-21 | Jack Kavalieros | Complementary metal oxide semiconductor integrated circuit using raised source drain and replacement metal gate |
US20070020896A1 (en) * | 2002-02-28 | 2007-01-25 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US20070052039A1 (en) * | 2005-08-31 | 2007-03-08 | Toshihiko Iinuma | Semiconductor device and method for manufacturing the same |
US20070108528A1 (en) | 2005-11-15 | 2007-05-17 | International Business Machines Corporation | Sram cell |
US20070158756A1 (en) | 2006-01-12 | 2007-07-12 | Lars Dreeskornfeld | Production method for a FinFET transistor arrangement, and corresponding FinFET transistor arrangement |
US7247887B2 (en) | 2005-07-01 | 2007-07-24 | Synopsys, Inc. | Segmented channel MOS transistor |
US7250658B2 (en) | 2003-06-26 | 2007-07-31 | International Business Machines Corporation | Hybrid planar and FinFET CMOS devices |
US7309626B2 (en) | 2005-11-15 | 2007-12-18 | International Business Machines Corporation | Quasi self-aligned source/drain FinFET process |
US7352034B2 (en) | 2005-08-25 | 2008-04-01 | International Business Machines Corporation | Semiconductor structures integrating damascene-body FinFET's and planar devices on a common substrate and methods for forming such semiconductor structures |
US20080157208A1 (en) | 2006-12-29 | 2008-07-03 | Fischer Kevin J | Stressed barrier plug slot contact structure for transistor performance enhancement |
US20080274600A1 (en) * | 2007-05-04 | 2008-11-06 | Freescale Semiconductor, Inc. | Method to improve source/drain parasitics in vertical devices |
US7449373B2 (en) | 2006-03-31 | 2008-11-11 | Intel Corporation | Method of ion implanting for tri-gate devices |
US7470570B2 (en) | 2006-11-14 | 2008-12-30 | International Business Machines Corporation | Process for fabrication of FinFETs |
US20090026553A1 (en) * | 2007-07-25 | 2009-01-29 | Krishna Kumar Bhuwalka | Tunnel Field-Effect Transistor with Narrow Band-Gap Channel and Strong Gate Coupling |
US7494862B2 (en) | 2006-09-29 | 2009-02-24 | Intel Corporation | Methods for uniform doping of non-planar transistor structures |
US7531437B2 (en) | 2004-09-30 | 2009-05-12 | Intel Corporation | Method of forming metal gate electrodes using sacrificial gate electrode material and sacrificial gate dielectric material |
US20090124097A1 (en) | 2007-11-09 | 2009-05-14 | International Business Machines Corporation | Method of forming narrow fins in finfet devices with reduced spacing therebetween |
US7569857B2 (en) | 2006-09-29 | 2009-08-04 | Intel Corporation | Dual crystal orientation circuit devices on the same substrate |
US20090242964A1 (en) | 2006-04-26 | 2009-10-01 | Nxp B.V. | Non-volatile memory device |
US20090269916A1 (en) | 2008-04-28 | 2009-10-29 | Inkuk Kang | Methods for fabricating memory cells having fin structures with semicircular top surfaces and rounded top corners and edges |
US20100048027A1 (en) | 2008-08-21 | 2010-02-25 | International Business Machines Corporation | Smooth and vertical semiconductor fin structure |
US20100072553A1 (en) | 2008-09-23 | 2010-03-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | METAL GATE STRESS FILM FOR MOBILITY ENHANCEMENT IN FinFET DEVICE |
US20100144121A1 (en) | 2008-12-05 | 2010-06-10 | Cheng-Hung Chang | Germanium FinFETs Having Dielectric Punch-Through Stoppers |
US20100167506A1 (en) | 2008-12-31 | 2010-07-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Inductive plasma doping |
US20110024841A1 (en) * | 2008-05-15 | 2011-02-03 | Advanced Micro Devices, Inc. | Mosfet with asymmetrical extension implant |
US20110062443A1 (en) * | 2009-09-16 | 2011-03-17 | Globalfoundries Inc. | Thin body semiconductor devices having improved contact resistance and methods for the fabrication thereof |
US20120241864A1 (en) * | 2011-03-21 | 2012-09-27 | Globalfoundries Dresden Module One Limited Liability Company & Co. Kg | Shallow Source and Drain Architecture in an Active Region of a Semiconductor Device Having a Pronounced Surface Topography by Tilted Implantation |
US8310013B2 (en) * | 2010-02-11 | 2012-11-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating a FinFET device |
US8426283B1 (en) * | 2011-11-10 | 2013-04-23 | United Microelectronics Corp. | Method of fabricating a double-gate transistor and a tri-gate transistor on a common substrate |
-
2012
- 2012-01-18 US US13/353,227 patent/US8946031B2/en active Active
Patent Citations (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6043138A (en) | 1996-09-16 | 2000-03-28 | Advanced Micro Devices, Inc. | Multi-step polysilicon deposition process for boron penetration inhibition |
US20010011740A1 (en) * | 1998-02-26 | 2001-08-09 | Deboer Scott Jeffrey | Capacitor having tantalum oxynitride film and method for making same |
US6368915B1 (en) * | 1999-03-17 | 2002-04-09 | U.S. Philips Corporation | Method of manufacturing a semiconductor device |
US6150209A (en) * | 1999-04-23 | 2000-11-21 | Taiwan Semiconductor Manufacturing Company | Leakage current reduction of a tantalum oxide layer via a nitrous oxide high density annealing procedure |
US6743682B2 (en) * | 1999-12-17 | 2004-06-01 | Koninklijke Philips Electronics N.V. | Method of manufacturing a semiconductor device |
US6448142B1 (en) * | 2001-05-29 | 2002-09-10 | Macronix International Co., Ltd. | Method for fabricating a metal oxide semiconductor transistor |
US20030062525A1 (en) * | 2001-07-23 | 2003-04-03 | Cree Lighting Company | Gallium nitride based diodes with low forward voltage and low reverse current operation |
US7087477B2 (en) | 2001-12-04 | 2006-08-08 | International Business Machines Corporation | FinFET SRAM cell using low mobility plane for cell stability and method for forming |
US6492216B1 (en) | 2002-02-07 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Method of forming a transistor with a strained channel |
US20070020896A1 (en) * | 2002-02-28 | 2007-01-25 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method for fabricating the same |
US6921963B2 (en) | 2003-01-23 | 2005-07-26 | Advanced Micro Devices, Inc | Narrow fin FinFET |
US6716690B1 (en) | 2003-03-12 | 2004-04-06 | Advanced Micro Devices, Inc. | Uniformly doped source/drain junction in a double-gate MOSFET |
US20040195624A1 (en) | 2003-04-04 | 2004-10-07 | National Taiwan University | Strained silicon fin field effect transistor |
US7250658B2 (en) | 2003-06-26 | 2007-07-31 | International Business Machines Corporation | Hybrid planar and FinFET CMOS devices |
US7141856B2 (en) * | 2003-08-14 | 2006-11-28 | Samsung Electronics Co., Ltd. | Multi-structured Si-fin |
US20050051825A1 (en) * | 2003-09-09 | 2005-03-10 | Makoto Fujiwara | Semiconductor device and manufacturing method thereof |
US7531437B2 (en) | 2004-09-30 | 2009-05-12 | Intel Corporation | Method of forming metal gate electrodes using sacrificial gate electrode material and sacrificial gate dielectric material |
US20060081895A1 (en) * | 2004-10-19 | 2006-04-20 | Deok-Huyng Lee | Semiconductor device having fin transistor and planar transistor and associated methods of manufacture |
US20060099830A1 (en) | 2004-11-05 | 2006-05-11 | Varian Semiconductor Equipment Associates, Inc. | Plasma implantation using halogenated dopant species to limit deposition of surface layers |
US7091551B1 (en) | 2005-04-13 | 2006-08-15 | International Business Machines Corporation | Four-bit FinFET NVRAM memory device |
US20060286729A1 (en) | 2005-06-21 | 2006-12-21 | Jack Kavalieros | Complementary metal oxide semiconductor integrated circuit using raised source drain and replacement metal gate |
US7247887B2 (en) | 2005-07-01 | 2007-07-24 | Synopsys, Inc. | Segmented channel MOS transistor |
US7352034B2 (en) | 2005-08-25 | 2008-04-01 | International Business Machines Corporation | Semiconductor structures integrating damascene-body FinFET's and planar devices on a common substrate and methods for forming such semiconductor structures |
US20070052039A1 (en) * | 2005-08-31 | 2007-03-08 | Toshihiko Iinuma | Semiconductor device and method for manufacturing the same |
US20070108528A1 (en) | 2005-11-15 | 2007-05-17 | International Business Machines Corporation | Sram cell |
US7309626B2 (en) | 2005-11-15 | 2007-12-18 | International Business Machines Corporation | Quasi self-aligned source/drain FinFET process |
US20070158756A1 (en) | 2006-01-12 | 2007-07-12 | Lars Dreeskornfeld | Production method for a FinFET transistor arrangement, and corresponding FinFET transistor arrangement |
US7449373B2 (en) | 2006-03-31 | 2008-11-11 | Intel Corporation | Method of ion implanting for tri-gate devices |
US20090242964A1 (en) | 2006-04-26 | 2009-10-01 | Nxp B.V. | Non-volatile memory device |
US7569857B2 (en) | 2006-09-29 | 2009-08-04 | Intel Corporation | Dual crystal orientation circuit devices on the same substrate |
US7494862B2 (en) | 2006-09-29 | 2009-02-24 | Intel Corporation | Methods for uniform doping of non-planar transistor structures |
US7470570B2 (en) | 2006-11-14 | 2008-12-30 | International Business Machines Corporation | Process for fabrication of FinFETs |
US20080157208A1 (en) | 2006-12-29 | 2008-07-03 | Fischer Kevin J | Stressed barrier plug slot contact structure for transistor performance enhancement |
US20080274600A1 (en) * | 2007-05-04 | 2008-11-06 | Freescale Semiconductor, Inc. | Method to improve source/drain parasitics in vertical devices |
US20090026553A1 (en) * | 2007-07-25 | 2009-01-29 | Krishna Kumar Bhuwalka | Tunnel Field-Effect Transistor with Narrow Band-Gap Channel and Strong Gate Coupling |
US20090124097A1 (en) | 2007-11-09 | 2009-05-14 | International Business Machines Corporation | Method of forming narrow fins in finfet devices with reduced spacing therebetween |
US20090269916A1 (en) | 2008-04-28 | 2009-10-29 | Inkuk Kang | Methods for fabricating memory cells having fin structures with semicircular top surfaces and rounded top corners and edges |
US20110024841A1 (en) * | 2008-05-15 | 2011-02-03 | Advanced Micro Devices, Inc. | Mosfet with asymmetrical extension implant |
US20100048027A1 (en) | 2008-08-21 | 2010-02-25 | International Business Machines Corporation | Smooth and vertical semiconductor fin structure |
US20100072553A1 (en) | 2008-09-23 | 2010-03-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | METAL GATE STRESS FILM FOR MOBILITY ENHANCEMENT IN FinFET DEVICE |
US20100144121A1 (en) | 2008-12-05 | 2010-06-10 | Cheng-Hung Chang | Germanium FinFETs Having Dielectric Punch-Through Stoppers |
US20100167506A1 (en) | 2008-12-31 | 2010-07-01 | Taiwan Semiconductor Manufacturing Co., Ltd. | Inductive plasma doping |
US20110062443A1 (en) * | 2009-09-16 | 2011-03-17 | Globalfoundries Inc. | Thin body semiconductor devices having improved contact resistance and methods for the fabrication thereof |
US8310013B2 (en) * | 2010-02-11 | 2012-11-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating a FinFET device |
US20120241864A1 (en) * | 2011-03-21 | 2012-09-27 | Globalfoundries Dresden Module One Limited Liability Company & Co. Kg | Shallow Source and Drain Architecture in an Active Region of a Semiconductor Device Having a Pronounced Surface Topography by Tilted Implantation |
US8426283B1 (en) * | 2011-11-10 | 2013-04-23 | United Microelectronics Corp. | Method of fabricating a double-gate transistor and a tri-gate transistor on a common substrate |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9093477B1 (en) * | 2014-11-09 | 2015-07-28 | United Microelectronics Corp. | Implantation processing step for a recess in finFET |
Also Published As
Publication number | Publication date |
---|---|
US20130183804A1 (en) | 2013-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8946031B2 (en) | Method for fabricating MOS device | |
US10790280B2 (en) | Multi-gate device and method of fabrication thereof | |
TWI711123B (en) | Multi-gate device and method for fabricating the same | |
US9196613B2 (en) | Stress inducing contact metal in FinFET CMOS | |
US9184100B2 (en) | Semiconductor device having strained fin structure and method of making the same | |
US8541274B1 (en) | Methods of forming 3-D semiconductor devices with a nanowire gate structure wherein the nanowire gate structure is formed after source/drain formation | |
US20150021699A1 (en) | FIN Field Effect Transistors Having Multiple Threshold Voltages | |
US8368147B2 (en) | Strained semiconductor device with recessed channel | |
US9142651B1 (en) | Methods of forming a FinFET semiconductor device so as to reduce punch-through leakage currents and the resulting device | |
US10879399B2 (en) | Method of manufacturing semiconductor device comprising doped gate spacer | |
US10211311B2 (en) | Method for fabricating semiconductor device | |
US8183101B2 (en) | Multiple gate transistor having fins with a length defined by the gate electrode | |
WO2012151797A1 (en) | Fin field effect transistor and manufacture method thereof | |
US20180068951A1 (en) | Semiconductor device and method for fabricating the same | |
US9236258B2 (en) | Methods of forming gate structures for semiconductor devices using a replacement gate technique and the resulting devices | |
US11532711B2 (en) | PMOSFET source drain | |
US10522660B2 (en) | Method for fabricating semiconductor device | |
TW201729265A (en) | Fin field effect transistor | |
US9524967B1 (en) | Semiconductor device and method of forming the same | |
US9960083B1 (en) | Method for fabricating semiconductor device | |
US9450094B1 (en) | Semiconductor process and fin-shaped field effect transistor | |
US10566327B2 (en) | Method for enlarging tip portion of a fin-shaped structure | |
TWI518790B (en) | Semiconductor device and method of making the same | |
US20170287843A1 (en) | Semiconductor device having contact plugs with different interfacial layers | |
TWI521611B (en) | Method for fabricating mos device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED MICROELECTRONICS CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WANG, CHIH-JUNG;CHEN, TONG-YU;REEL/FRAME:027568/0357 Effective date: 20120112 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |