TWI521611B - Method for fabricating mos device - Google Patents

Method for fabricating mos device Download PDF

Info

Publication number
TWI521611B
TWI521611B TW101103778A TW101103778A TWI521611B TW I521611 B TWI521611 B TW I521611B TW 101103778 A TW101103778 A TW 101103778A TW 101103778 A TW101103778 A TW 101103778A TW I521611 B TWI521611 B TW I521611B
Authority
TW
Taiwan
Prior art keywords
layer
forming
mos device
hard mask
gate
Prior art date
Application number
TW101103778A
Other languages
Chinese (zh)
Other versions
TW201334081A (en
Inventor
王志榮
陳東郁
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101103778A priority Critical patent/TWI521611B/en
Publication of TW201334081A publication Critical patent/TW201334081A/en
Application granted granted Critical
Publication of TWI521611B publication Critical patent/TWI521611B/en

Links

Description

金氧半導體元件的製造方法Method for manufacturing MOS semiconductor device

本發明是有關於一種金氧半導體元件的製造方法。The present invention relates to a method of fabricating a MOS device.

金氧半電晶體是一種廣泛使用於諸如是記憶元件、影像感測器或是顯示器等各種半導體元件的基本結構。Gold oxide semi-transistors are a basic structure widely used in various semiconductor elements such as memory elements, image sensors, or displays.

傳統的金氧半場效電晶體受製程的限制,難以發展至更小尺寸,因而發展出多重閘極金氧半導體電晶體。雙閘極金氧半導體電晶體具有較佳的特性。鰭狀場效電晶體(FinFET)元件是一種雙閘極金氧半導體電晶體,因具有三面立體式之閘極結構設計,可增強閘極對通道之控制能力與抑制通道擊穿效應所產生之漏電流,故較相同尺寸傳統MOSFET具有較佳之閘極控制能力。Conventional gold oxide half field effect transistors are limited by the manufacturing process and are difficult to develop to smaller sizes, thus developing multiple gate MOS transistors. Double gate MOS transistors have better characteristics. The FinFET device is a double-gate MOS transistor. It has a three-sided three-dimensional gate structure design, which can enhance the control of the gate to the channel and suppress the channel breakdown effect. Leakage current, so the traditional MOSFET of the same size has better gate control capability.

然而,在目前的FinFET製程中,形成源極/汲極延伸區以及口袋型摻雜區的離子植入製程的植入角度受到相當大的限制,製程的裕度非常小。而且,所形成的源極/汲極延伸區以及口袋型摻雜區,會有摻雜濃度以及深度分佈不均,甚至有漏電的問題。However, in the current FinFET process, the implantation angle of the ion implantation process for forming the source/drain extension and the pocket-type doping region is considerably limited, and the process margin is very small. Moreover, the formed source/drain extension region and the pocket-type doped region have a problem of uneven doping concentration and depth distribution, and even electric leakage.

本發明提供一種金氧半導體元件的製造法,其可以形成摻雜濃度以及深度均勻的源極與汲極延伸區以及口袋型摻雜區。The present invention provides a method of fabricating a gold oxide semiconductor device which can form a source and drain extension region and a pocket type doped region having a uniform doping concentration and a uniform depth.

本發明提供一種金氧半導體元件的製造法,其可以提升離子植入的製程裕度。The present invention provides a method of fabricating a MOS device that can enhance the process margin of ion implantation.

本發明提出一種金氧半導體元件的製造方法,包括在基底上形成第一硬罩幕材料層,然後,圖案化第一硬罩幕材料層並移除部分基底,以形成被溝渠環繞的鰭狀物與第一硬罩幕層,其中鰭狀物在第一方向延伸。之後,於溝渠的底部形成絕緣層,再於溝渠的絕緣層上形成一閘極導體層,閘極導體層在第二方向延伸。其後,以第一硬罩幕為罩幕,進行第一離子植入製程,於鰭狀物的側壁形成第一源極與汲極延伸區。然後,移除第一硬罩幕層,裸露出鰭狀物的頂部。之後,進行第二離子離子植入製程,於鰭狀物的頂部形成第二源極與汲極延伸區。The present invention provides a method of fabricating a MOS device, comprising forming a first hard mask material layer on a substrate, then patterning the first hard mask material layer and removing a portion of the substrate to form a fin surrounded by a trench And a first hard mask layer, wherein the fins extend in a first direction. Thereafter, an insulating layer is formed on the bottom of the trench, and a gate conductor layer is formed on the insulating layer of the trench, and the gate conductor layer extends in the second direction. Thereafter, the first ion implantation process is performed by using the first hard mask as a mask, and the first source and the drain extension are formed on the sidewall of the fin. Then, remove the first hard mask layer and expose the top of the fin. Thereafter, a second ion implantation process is performed to form a second source and drain extension on the top of the fin.

上述方法可更包括:在第一離子植入製程之後進行第一口袋型離子植入製程,以於鰭狀物的側壁形成第一口袋型摻雜區,且在第二離子植入製程之後進行第二口袋型離子植入製程,以於鰭狀物的頂部形成第二口袋型摻雜區。The method may further include: performing a first pocket type ion implantation process after the first ion implantation process to form a first pocket type doped region on the sidewall of the fin, and performing after the second ion implantation process A second pocket type ion implantation process forms a second pocket-type doped region on top of the fin.

依照本發明一實施例所述,上述閘極導體的形成方法包括於溝渠的絕緣層上形成導體材料層,再以第一硬罩幕層為停止層,平坦化導體材料層,之後,於導體材料層上形成第二硬罩幕材料層,然後,圖案化第二硬罩幕材料層與導體材料層,以形成第二硬罩幕層與上述閘極導體層。According to an embodiment of the invention, the method for forming the gate conductor comprises forming a conductor material layer on the insulating layer of the trench, and then using the first hard mask layer as a stop layer to planarize the conductor material layer, and then, on the conductor A second hard mask material layer is formed on the material layer, and then the second hard mask material layer and the conductor material layer are patterned to form a second hard mask layer and the gate conductor layer.

依照本發明一實施例所述,上述閘極導體層的形成方法包括於溝渠的絕緣層上形成導體材料層,接著,平坦化導體材料層,留下的導體材料層的表面高於第一硬罩幕層的表面。之後,圖案化導體材料層以形成上述閘極導體層。According to an embodiment of the invention, the method for forming the gate conductor layer comprises forming a layer of a conductor material on the insulating layer of the trench, and then planarizing the layer of the conductor material, leaving a surface of the conductor material layer higher than the first hard The surface of the mask layer. Thereafter, the conductor material layer is patterned to form the above-described gate conductor layer.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括於進行第一離子植入製程之前,於閘極導體層之周圍形成第一間隙壁。According to an embodiment of the invention, the method for fabricating the MOS device further includes forming a first spacer around the gate conductor layer before performing the first ion implantation process.

依照本發明一實施例所述,上述絕緣層的形成方法包括於基底上形成絕緣材料層,之後,以第一硬罩幕層為停止層,平坦化絕緣材料層,然後移除溝渠中的部分絕緣材料層,以形成上述絕緣層。According to an embodiment of the invention, the method for forming the insulating layer includes forming a layer of insulating material on the substrate, and then planarizing the layer of insulating material with the first hard mask layer as a stop layer, and then removing portions of the trench A layer of insulating material to form the above insulating layer.

依照本發明一實施例所述,上述金氧半導體元件的製造方法中,第一離子植入製程的離子植入角度為30°-60°。According to an embodiment of the invention, in the method for fabricating the MOS device, the ion implantation angle of the first ion implantation process is 30°-60°.

依照本發明一實施例所述,上述第二離子植入製程的離子植入角度為90°。According to an embodiment of the invention, the ion implantation angle of the second ion implantation process is 90°.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括於閘極導體層的側壁形成第二間隙壁,然後,移除部分鰭狀物,以於閘極導體層的兩側分別形成一凹槽,再於各凹槽中形成半導體化合物,之後,於各半導體化合物中形成源極與汲極區。According to an embodiment of the invention, the method for fabricating the MOS device further includes forming a second spacer on a sidewall of the gate conductor layer, and then removing a portion of the fin to be on both sides of the gate conductor layer. A recess is formed, and a semiconductor compound is formed in each recess, and then a source and a drain region are formed in each semiconductor compound.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括於基底上形成蝕刻停止層,再於蝕刻停止層上形成一介電層。According to an embodiment of the invention, the method for fabricating the MOS device further includes forming an etch stop layer on the substrate and forming a dielectric layer on the etch stop layer.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括移除部分介電層與蝕刻停止層,至裸露出閘極導體層,接著,移除閘極導體層,以形成開口,然後,於開口中形成閘極金屬層。According to an embodiment of the invention, the method for fabricating the MOS device further includes removing a portion of the dielectric layer and the etch stop layer to expose the gate conductor layer, and then removing the gate conductor layer to form an opening. Then, a gate metal layer is formed in the opening.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括於開口中形成閘極金屬層之前,於開口中形成功函數金屬層。According to an embodiment of the invention, the method for fabricating the MOS device further includes forming a successful function metal layer in the opening before forming the gate metal layer in the opening.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括於形成閘極導體層之前,於鰭狀物上形成第一閘介電層。According to an embodiment of the invention, the method of fabricating the MOS device further includes forming a first thyristor layer on the fin before forming the gate conductor layer.

依照本發明一實施例所述,上述第一閘介電層之介電常數低於4。According to an embodiment of the invention, the first gate dielectric layer has a dielectric constant of less than 4.

依照本發明一實施例所述,上述金氧半導體元件的製造方法更包括:在移除閘極導體層之後移除介電常數低於4的第一閘介電層,並在移除第一閘介電層之後,形成介電常數高於4的第二閘介電層。According to an embodiment of the invention, the method for fabricating the MOS device further includes: removing the first thyristor layer having a dielectric constant lower than 4 after removing the gate conductor layer, and removing the first After the gate dielectric layer, a second gate dielectric layer having a dielectric constant higher than 4 is formed.

基於上述,本發明實施例之金氧半導體元件,其可以形成摻雜濃度以及深度均勻的源極與汲極延伸區以及口袋型摻雜區。Based on the above, the MOS device of the embodiment of the present invention can form a source and drain extension region and a pocket type doping region having a uniform doping concentration and a uniform depth.

本發明實施例之種金氧半導體元件的製造法,可以提升離子植入的製程裕度。The manufacturing method of the MOS device of the embodiment of the invention can improve the process margin of ion implantation.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1至圖7是依照本發明一實施例所繪示之一種金氧半導體元件的製造方法沿第一方向的側視圖。圖8至圖11是延續圖7之金氧半導體元件的製造方法沿第二方向的流程剖面示意圖。圖5A至7A是圖5至圖7之立體圖。1 to 7 are side views of a method of fabricating a MOS device in a first direction, in accordance with an embodiment of the invention. 8 to FIG. 11 are schematic cross-sectional views showing a process of manufacturing the MOS device of FIG. 7 in a second direction. 5A to 7A are perspective views of Figs. 5 to 7.

請參照圖1,在基底10上形成硬罩幕材料層12。基底10材料包括半導體,例如是矽。硬罩幕材料層12可以是單一材料層或是兩層以上的材料層所構成。在一實施例中,硬罩幕材料層12例如是由氧化矽(SiO2)層與氮化矽層所構成(由下而上)。氧化矽層與氮化矽層的形成方法例如是化學氣相沉積法。氧化矽層的厚度例如是20埃至200埃。氮化矽層的厚度例如是500埃至3000埃。Referring to FIG. 1, a hard mask material layer 12 is formed on the substrate 10. The substrate 10 material includes a semiconductor such as germanium. The hard mask material layer 12 may be a single material layer or a material layer of two or more layers. In one embodiment, the hard mask material layer 12 is composed, for example, of a yttrium oxide (SiO 2 ) layer and a tantalum nitride layer (from bottom to top). The method of forming the ruthenium oxide layer and the tantalum nitride layer is, for example, a chemical vapor deposition method. The thickness of the ruthenium oxide layer is, for example, 20 angstroms to 200 angstroms. The thickness of the tantalum nitride layer is, for example, 500 angstroms to 3,000 angstroms.

接著,請參照圖2,利用微影與蝕刻製程圖案化硬罩幕材料層12並移除部分基底10,以形成鰭狀物14與硬罩幕層12a。鰭狀物14在第一方向延伸,周圍被溝渠16環繞。之後於基底10上形成絕緣材料層18。絕緣材料層18之材料例如是氧化矽,形成方法例如是化學氣相沉積法。Next, referring to FIG. 2, the hard mask material layer 12 is patterned by a lithography and etching process and a portion of the substrate 10 is removed to form the fins 14 and the hard mask layer 12a. The fins 14 extend in a first direction and are surrounded by a trench 16 . A layer 18 of insulating material is then formed on the substrate 10. The material of the insulating material layer 18 is, for example, cerium oxide, and the forming method is, for example, chemical vapor deposition.

之後,請參照圖3,先以硬罩幕層12a為停止層,進行平坦化製程,以移除硬罩幕層12a上方的絕緣材料層18。平坦化製程例如是化學機械研磨製程。之後,再移除除溝渠16中的部分絕緣材料層18,留下溝渠底部16的絕緣材料層即為隔離結構之絕緣層18a。之後,於溝渠16中的絕緣層18a上形成導體材料層20。導體材料層20的材料例如是單晶矽、未摻雜多晶矽、摻雜多晶矽、非晶矽、矽鍺材料或其組合,形成的方法例如是化學氣相沉積法,厚度例如是500埃至2000埃。Thereafter, referring to FIG. 3, a planarization process is first performed with the hard mask layer 12a as a stop layer to remove the insulating material layer 18 over the hard mask layer 12a. The planarization process is, for example, a chemical mechanical polishing process. Thereafter, a portion of the insulating material layer 18 in the trench 16 is removed, leaving the insulating material layer of the trench bottom 16 as the insulating layer 18a of the isolation structure. Thereafter, a conductor material layer 20 is formed on the insulating layer 18a in the trench 16. The material of the conductor material layer 20 is, for example, a single crystal germanium, an undoped polysilicon, a doped polysilicon, an amorphous germanium, a germanium material or a combination thereof, and the formed method is, for example, a chemical vapor deposition method, and the thickness is, for example, 500 Å to 2000. Ai.

其後,請參照圖4,以硬罩幕層12a為停止層,平坦化導體材料層20。平坦化製程例如是化學機械研磨製程。然後,於導體材料層20上形成硬罩幕材料層22。硬罩幕材料層22可以是單一材料層或是兩層以上的材料層所構成。在一實施例中,硬罩幕材料層12例如是氧化物(如氧化矽)層或氮化物(如氮化矽)層或碳化物(如碳化矽)層或碳氮化物(碳氮化矽)層或其任意組合,其形成方法例如是化學氣相沉積法,厚度例如是50埃至1000埃。Thereafter, referring to FIG. 4, the conductor layer 20 is planarized with the hard mask layer 12a as a stop layer. The planarization process is, for example, a chemical mechanical polishing process. Then, a hard mask material layer 22 is formed on the conductor material layer 20. The hard mask material layer 22 can be a single material layer or a two or more material layer. In an embodiment, the hard mask material layer 12 is, for example, an oxide (such as hafnium oxide) layer or a nitride (such as tantalum nitride) layer or a carbide (such as tantalum carbide) layer or a carbonitride (tantalum carbonitride). The layer or any combination thereof is formed, for example, by chemical vapor deposition, and has a thickness of, for example, 50 angstroms to 1000 angstroms.

之後,請參照圖5與圖5A,利用微影與蝕刻製程,圖案化硬罩幕材料層22與導體材料層20,以形成硬罩幕層22a與閘極導體層20a。閘極導體層20a在與前述第一方向實質垂直的第二方向延伸,而夾住鰭狀物14。亦即,鰭狀物14是位於閘極導體層20a的兩個部分之間。Thereafter, referring to FIG. 5 and FIG. 5A, the hard mask material layer 22 and the conductor material layer 20 are patterned by a lithography and etching process to form the hard mask layer 22a and the gate conductor layer 20a. The gate conductor layer 20a extends in a second direction substantially perpendicular to the aforementioned first direction to sandwich the fins 14. That is, the fin 14 is located between the two portions of the gate conductor layer 20a.

然後,請參照圖6與6A,以第一硬罩幕12a為罩幕,進行第一離子植入製程24,於鰭狀物14的側壁形成第一源極與汲極延伸區26。然後進行另一離子植入製程,以形成第一口袋型摻雜區27(請參照圖8-11)。第一離子植入製程24的離子植入角度θ1大於30°,例如是30°~60°。Then, referring to FIGS. 6 and 6A, the first ion implantation process 24 is performed with the first hard mask 12a as a mask, and the first source and drain extension regions 26 are formed on the sidewalls of the fin 14. Another ion implantation process is then performed to form a first pocket-type doped region 27 (see Figures 8-11). The ion implantation angle θ 1 of the first ion implantation process 24 is greater than 30°, for example, 30° to 60°.

之後,請參照圖7與7A,移除硬罩幕層12a,裸露出鰭狀物12的頂部。移除硬罩幕層12a的方法可以採用蝕刻製程,例如是乾式蝕刻製程或濕式蝕刻製程。在一實施例中,移除硬罩幕層12a包括氧化矽層與氮化矽層,在進行此移除步驟時,可以先以氧化矽層作為蝕刻終止層,先將氮化矽層移除,之後再移除氧化矽層。Thereafter, referring to Figures 7 and 7A, the hard mask layer 12a is removed to expose the top of the fin 12. The method of removing the hard mask layer 12a may employ an etching process such as a dry etching process or a wet etching process. In one embodiment, removing the hard mask layer 12a includes a tantalum oxide layer and a tantalum nitride layer. When performing the removing step, the tantalum oxide layer may be first removed as an etch stop layer. Then remove the yttrium oxide layer.

其後,進行第二離子植入製程28,於鰭狀物14的頂部形成第二源極與汲極延伸區30。然後進行另一離子植入製程,以形成第二口袋型摻雜區(未繪示)。第二離子離子植入製程28。第二離子植入製程28的離子植入角度θ2為90°。第二源極與汲極延伸區30與第一源極與汲極延伸區26具有相同導電型的摻質,但與第一袋型摻雜區以及第二口袋型摻雜區具有不同導電型的摻質。在一實施例中,第一源極與汲極延伸區26與第二源極與汲極延伸區30的摻質為p型;第一口袋型摻雜區與第二口袋型摻雜區的摻質為n型。在另一實施例中,第一源極與汲極延伸區26與第二源極與汲極延伸區30的摻質為n型;第一口袋型摻雜區與第二口袋型摻雜區的摻質為p型。P型摻質例如為硼或二氟化硼;N型摻質例如為磷或是砷。Thereafter, a second ion implantation process 28 is performed to form a second source and drain extension 30 on top of the fin 14. Another ion implantation process is then performed to form a second pocket-type doped region (not shown). The second ion implantation process 28 is performed. The ion implantation angle θ 2 of the second ion implantation process 28 is 90°. The second source and drain extension regions 30 have the same conductivity type dopant as the first source and drain extension regions 26, but have different conductivity types from the first pocket type doping region and the second pocket type doping region. Admixture. In one embodiment, the dopants of the first source and drain extension regions 26 and the second source and drain extension regions 30 are p-type; the first pocket-type doped region and the second pocket-type doped region The dopant is n-type. In another embodiment, the dopants of the first source and drain extension regions 26 and the second source and drain extension regions 30 are n-type; the first pocket-type doped region and the second pocket-type doped region The dopant is p-type. The P-type dopant is, for example, boron or boron difluoride; the N-type dopant is, for example, phosphorus or arsenic.

之後,請參照圖8於閘極導體層20a的側壁形成間隙壁32。然後,進行蝕刻製程,移除部分鰭狀物14a,以在間隙壁32兩側的基底10中形成兩個凹槽34。在一實施例中,凹槽34的深度例如是數百埃。凹槽34的形狀可以呈鑽石狀或是方形,並無特別的限制。接著,於各凹槽34中形成半導體化合物36。半導體化合物例如是IV-IV族半導體化合物。IV-IV族半導體化合物可以是由第一IV族元素以及第二IV族元素所構成。第一IV族元素例如是矽;第二IV族元素為非矽元素,例如是鍺或是碳。亦即,IV-IV族半導體化合物例如是矽化鍺(SiGe)或是碳化矽(SiC)。半導體化合物36可以具有摻質。Thereafter, a spacer 32 is formed on the sidewall of the gate conductor layer 20a with reference to FIG. Then, an etching process is performed to remove a portion of the fins 14a to form two grooves 34 in the substrate 10 on both sides of the spacer 32. In an embodiment, the depth of the groove 34 is, for example, hundreds of angstroms. The shape of the groove 34 may be diamond-shaped or square, and is not particularly limited. Next, a semiconductor compound 36 is formed in each of the grooves 34. The semiconductor compound is, for example, a group IV-IV semiconductor compound. The Group IV-IV semiconductor compound may be composed of a first Group IV element and a second Group IV element. The first Group IV element is, for example, ruthenium; the second Group IV element is a non-ruthenium element, such as ruthenium or carbon. That is, the Group IV-IV semiconductor compound is, for example, germanium telluride (SiGe) or tantalum carbide (SiC). Semiconductor compound 36 can have a dopant.

在PMOS元件中,半導體化合物層36的材料為矽化鍺,摻質為P型,例如為硼或二氟化硼;在NMOS元件中,半導體化合物層36的材料為碳化矽,摻質為N型,例如為磷或是砷。In the PMOS device, the material of the semiconductor compound layer 36 is germanium telluride, and the dopant is P-type, for example, boron or boron difluoride; in the NMOS device, the material of the semiconductor compound layer 36 is tantalum carbide, and the dopant is N-type. For example, phosphorus or arsenic.

之後,進行離子植入製程38,以將摻質植入於半導體化合物層36之中,以分別形成源極與汲極區40。源極與汲極區38與第二源極與汲極延伸區30以及第一源極與汲極延伸區26具有相同導電型的摻質。在一實施例中,源極與汲極區40的摻質為p型。在另一實施例中,源極與汲極區40的摻質為n型。P型摻質例如為硼或二氟化硼;N型摻質例如為磷或是砷。Thereafter, an ion implantation process 38 is performed to implant dopants into the semiconductor compound layer 36 to form source and drain regions 40, respectively. The source and drain regions 38 have the same conductivity type dopant as the second source and drain extension regions 30 and the first source and drain extension regions 26. In one embodiment, the dopant of the source and drain regions 40 is p-type. In another embodiment, the dopant of the source and drain regions 40 is n-type. The P-type dopant is, for example, boron or boron difluoride; the N-type dopant is, for example, phosphorus or arsenic.

繼之,請參照圖9,於基底上形成蝕刻停止層42以及介電層44。蝕刻停止層42之材料與介電層44之材料不同,可以在後續蝕刻介電層44的過程中,做為蝕刻停止層。蝕刻停止層42之材料例如是氮化矽或氮氧化矽,形成的方法例如是化學氣相沉積法,厚度例如是50至1000埃。介電層44之材質例如是氧化矽,形成的法例如是化學氣相沉積法,厚度例如是1000至5000埃。Next, referring to FIG. 9, an etch stop layer 42 and a dielectric layer 44 are formed on the substrate. The material of the etch stop layer 42 is different from the material of the dielectric layer 44, and can be used as an etch stop layer during the subsequent etching of the dielectric layer 44. The material of the etch stop layer 42 is, for example, tantalum nitride or hafnium oxynitride, and is formed by, for example, chemical vapor deposition, and has a thickness of, for example, 50 to 1000 angstroms. The material of the dielectric layer 44 is, for example, ruthenium oxide, and is formed by, for example, chemical vapor deposition, and has a thickness of, for example, 1,000 to 5,000 angstroms.

其後,請參照圖10,移除部分介電層42與蝕刻停止層44,至裸露出閘極導體層20a。例如是以閘極導體層20a為研磨停止層,利用化學機械研磨法來移除部分介電層42與蝕刻停止層44。之後,移除閘極導體層20a,以形成開口46。於開口46中依序形成介電層48、功函數金屬層50以及金屬層52。介電層48例如是K值大於4之高介電常數材料,例如是氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、鋁酸鑭(lanthanum aluminum oxide,LaAlO)、氧化鉭(tantalum oxide,Ta2O5)、氧化鋯(zirconium oxide,ZrO2)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、或鋯酸鉿(hafnium zirconium oxide,HfZrO)。功函數金屬層50例如是鈦、鉭、氮化鈦、氮化鉭、碳化鈦或鈦鋁合金,或其組合。金屬層52之材料例如是鋁、銅、鎢、鈦、鉭,或其合金,形成的方法例如是化學氣相沉積法或是濺鍍法。Thereafter, referring to FIG. 10, a portion of the dielectric layer 42 and the etch stop layer 44 are removed to expose the gate conductor layer 20a. For example, the gate conductor layer 20a is used as a polishing stop layer, and a portion of the dielectric layer 42 and the etch stop layer 44 are removed by chemical mechanical polishing. Thereafter, the gate conductor layer 20a is removed to form an opening 46. A dielectric layer 48, a work function metal layer 50, and a metal layer 52 are sequentially formed in the opening 46. The dielectric layer 48 is, for example, a high dielectric constant material having a K value of more than 4, such as hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO), niobium oxynitride (hafnium). Silicon oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), lanthanum aluminum oxide (LaAlO), tantalum oxide (Ta 2 O) 5 ), zirconium oxide (ZrO 2 ), zirconium silicon oxide (ZrSiO 4 ), or hafnium zirconium oxide (HfZrO). The work function metal layer 50 is, for example, titanium, tantalum, titanium nitride, tantalum nitride, titanium carbide or titanium aluminum alloy, or a combination thereof. The material of the metal layer 52 is, for example, aluminum, copper, tungsten, titanium, tantalum, or an alloy thereof, and is formed by, for example, chemical vapor deposition or sputtering.

之後,請參照圖11,移除部分的金屬層52、部分的功函數金屬層50以及部分的介電層48,以形成閘極金屬層52a、功函數金屬層50a以及閘介電層48a。移除的方法可以採用化學機械研磨法,或是回蝕刻法。Thereafter, referring to FIG. 11, a portion of the metal layer 52, a portion of the work function metal layer 50, and a portion of the dielectric layer 48 are removed to form a gate metal layer 52a, a work function metal layer 50a, and a gate dielectric layer 48a. The removal method may be a chemical mechanical polishing method or an etch back method.

上述製程之具有高介電常數之介電層48係在開口46形成之後形成。然而,本發明之並不以此為限。若在形成圖3之導體材料層20之前,已先在鰭狀物14上先形成具有高介電常數(k值大於4)之閘介電層,則在移除圖10的閘極導體層20a之後,毋需再形成高介電常數(k值大於4)之閘介電層48。The dielectric layer 48 having a high dielectric constant of the above process is formed after the opening 46 is formed. However, the invention is not limited thereto. If a gate dielectric layer having a high dielectric constant (k value greater than 4) is formed on the fin 14 before forming the conductor material layer 20 of FIG. 3, the gate conductor layer of FIG. 10 is removed. After 20a, it is not necessary to form a gate dielectric layer 48 having a high dielectric constant (k value greater than 4).

圖12至圖15是依照本發明另一實施例所繪示之一種金氧半導體元件的製造方法沿第一方向的側視圖。圖13A至15A是圖13至圖15之立體圖。12 to 15 are side views of a method of fabricating a MOS device in a first direction, in accordance with another embodiment of the present invention. 13A to 15A are perspective views of Figs. 13 to 15.

請參照圖1至3,依照上述圖1至圖3的方法形成鰭狀物14、硬罩幕層12a、絕緣層18a與導體材料層20。Referring to FIGS. 1 through 3, the fin 14, the hard mask layer 12a, the insulating layer 18a, and the conductive material layer 20 are formed in accordance with the methods of FIGS. 1 through 3 described above.

之後,請參照圖12,平坦化導體材料層20,使留下的導體材料層20b的表面高於硬罩幕層12a的表面。Thereafter, referring to FIG. 12, the conductor material layer 20 is planarized so that the surface of the remaining conductor material layer 20b is higher than the surface of the hard mask layer 12a.

之後,請參照圖13與13A,以微影與蝕刻製程圖案化導體材料層20b,以形成閘極導體層20c。Thereafter, referring to FIGS. 13 and 13A, the conductor material layer 20b is patterned by a lithography and etching process to form a gate conductor layer 20c.

其後,請參照圖14與14A,於閘極導體層20c之周圍形成間隙壁54。間隙壁54的形成方法例如是先沉積一層間隙壁材料層,然後,再進行非等向性蝕刻製程。間隙壁材料層之材料例如是氮化矽或是氧化矽,其形成的方法例如是熱氧化法或是化學氣相沉積法。Thereafter, referring to FIGS. 14 and 14A, a spacer 54 is formed around the gate conductor layer 20c. The spacer 54 is formed by, for example, depositing a layer of spacer material and then performing an anisotropic etching process. The material of the spacer material layer is, for example, tantalum nitride or tantalum oxide, which is formed by, for example, thermal oxidation or chemical vapor deposition.

之後,以第一硬罩幕12a以及間隙壁54為罩幕,進行第一離子植入製程24,於鰭狀物14的側壁形成第一源極與汲極延伸區56。然後進行另一離子植入製程,以形成第一口袋型摻雜區(未繪示)。第一離子植入製程24的離子植入角度大於30°,例如是30°-60°。由於間隙壁54覆蓋於閘極導體層20c之周圍,因此,此處所形成的第一源極與汲極延伸區56之間的距離(通道),略大於上一實施例所形成之第一源極與汲極延伸區26之間的距離(通道)。Thereafter, the first ion implantation process 24 is performed with the first hard mask 12a and the spacers 54 as masks, and the first source and drain extension regions 56 are formed on the sidewalls of the fins 14. Another ion implantation process is then performed to form a first pocket-type doped region (not shown). The ion implantation angle of the first ion implantation process 24 is greater than 30°, such as 30°-60°. Since the spacer 54 covers the periphery of the gate conductor layer 20c, the distance (channel) between the first source and the drain extension 56 formed here is slightly larger than the first source formed in the previous embodiment. The distance between the pole and the bungee extension 26 (channel).

之後,請參照圖7與7A,依照上述方法移除硬罩幕層12a,裸露出鰭狀物14的頂部。其後,進行第二離子植入製程28,於鰭狀物14的頂部形成第二源極與汲極延伸區58。然後進行另一離子植入製程,以形成第二口袋型摻雜區(未繪示)。第二離子植入製程28的離子植入角度為90°。由於間隙壁54附蓋於閘極導體層20c之周圍,因此,此處所形成的第二源極與汲極延伸區58之間的距離(通道),略大於上一實施例所形成之第二源極與汲極延伸區30之間的距離(通道)。Thereafter, referring to Figures 7 and 7A, the hard mask layer 12a is removed in accordance with the method described above, exposing the top of the fins 14. Thereafter, a second ion implantation process 28 is performed to form a second source and drain extension 58 on top of the fin 14. Another ion implantation process is then performed to form a second pocket-type doped region (not shown). The second ion implantation process 28 has an ion implantation angle of 90°. Since the spacer 54 is attached around the gate conductor layer 20c, the distance (channel) between the second source and the drain extension 58 formed here is slightly larger than that formed in the previous embodiment. The distance (channel) between the source and the drain extension 30.

後續之製程與上述圖8至圖11之製程相似,於此不再贅述。The subsequent process is similar to the process of FIG. 8 to FIG. 11 described above, and details are not described herein again.

本發明利用兩次的離子植入製程來形成不同面向的源極與汲極延伸區,且可更包括兩次口袋型離子植入製程以形成口袋型摻雜區。在進行第一離子植入製程以及第一口袋型離子植入製程時,鰭狀物的表面被第一硬罩幕層覆蓋,因此摻質並不會植入於鰭狀物的頂部,而僅在鰭狀物的側壁形成第一源極與汲極延伸區以及第一口袋型摻雜區。當第一離子植入製程第一口袋型離子植入製程之後,才將鰭狀物頂部所附蓋的第一硬罩幕層移除,然後才透過第二離子植入製程在鰭狀物的頂部形成第二源極與汲極延伸區並透過第二口袋型離子植入製程以形成第二口袋型摻雜區。由於第一(口袋型)離子植入製程與第二(口袋型)離子植入製程所植入的區域不同,且兩次離子植入製程的劑量可以分別控制,因此,可以形成摻雜濃度以及深度均勻的源極與汲極延伸區(以及口袋型摻雜區)。而且第一離子植入製程的角度也不會受到過大的限制。因此,可以提升製程的裕度。The present invention utilizes two ion implantation processes to form source and drain extensions of different orientations, and may further include a two-pocket ion implantation process to form a pocket-type doped region. During the first ion implantation process and the first pocket type ion implantation process, the surface of the fin is covered by the first hard mask layer, so the dopant is not implanted on the top of the fin, but only A first source and drain extension region and a first pocket-type doped region are formed on sidewalls of the fin. After the first ion implantation process first pocket type ion implantation process, the first hard mask layer attached to the top of the fin is removed, and then the second ion implantation process is performed on the fin. The top forms a second source and drain extension and passes through a second pocket type ion implantation process to form a second pocket-type doped region. Since the first (pocket type) ion implantation process is different from the area implanted in the second (pocket type) ion implantation process, and the doses of the two ion implantation processes can be separately controlled, the doping concentration can be formed as well Deeply uniform source and drain extensions (and pocket doped areas). Moreover, the angle of the first ion implantation process is not excessively limited. Therefore, the margin of the process can be improved.

綜上所述,可以製造出具有均勻摻雜特性的三維結構的金氧半導體元件(即FinFET),且製程簡單,製程裕度大,不會增加過多的製造成本。In summary, a three-dimensional structure of a MOS device (ie, a FinFET) having uniform doping characteristics can be fabricated, and the process is simple, the process margin is large, and excessive manufacturing cost is not increased.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10...基底10. . . Base

12、22...硬罩幕材料層12, 22. . . Hard mask material layer

12a、22a...圖案化硬罩幕材料層12a, 22a. . . Patterned hard mask material layer

14...鰭狀物14. . . Fin

16...溝渠16. . . ditch

18...絕緣材料層18. . . Insulating material layer

18a...絕緣層18a. . . Insulation

20、20b...導體材料層20, 20b. . . Conductor material layer

20a、20c...閘極導體層20a, 20c. . . Gate conductor layer

24...第一離子植入製程twenty four. . . First ion implantation process

26、56...第一源極與汲極延伸區26, 56. . . First source and drain extension

27...第一口袋型摻雜區27. . . First pocket doped region

28...第二離子離子植入製程28. . . Second ion implantation process

30、58...第二源極與汲極延伸區30, 58. . . Second source and drain extension

32、54...間隙壁32, 54. . . Clearance wall

34...凹槽34. . . Groove

36...半導體化合物36. . . Semiconductor compound

38...離子植入製程38. . . Ion implantation process

40...源極與汲極區40. . . Source and bungee area

42...蝕刻停止層42. . . Etch stop layer

44、48...介電層44, 48. . . Dielectric layer

46...開口46. . . Opening

48a...閘介電層48a. . . Gate dielectric layer

50、50a...功函數金屬層50, 50a. . . Work function metal layer

52...金屬層52. . . Metal layer

52a...閘極金屬層52a. . . Gate metal layer

θ1、θ2...角度θ 1 , θ 2 . . . angle

圖1至圖7是依照本發明一實施例所繪示之一種金氧半導體元件的製造方法沿第一方向的側視圖。1 to 7 are side views of a method of fabricating a MOS device in a first direction, in accordance with an embodiment of the invention.

圖8至圖11是延續圖7之金氧半導體元件的製造方法沿第二方向的流程剖面示意圖。8 to FIG. 11 are schematic cross-sectional views showing a process of manufacturing the MOS device of FIG. 7 in a second direction.

圖5A至7A是圖5至圖7之立體圖。5A to 7A are perspective views of Figs. 5 to 7.

圖12至圖15是依照本發明另一實施例所繪示之一種金氧半導體元件的製造方法沿第一方向的側視圖。12 to 15 are side views of a method of fabricating a MOS device in a first direction, in accordance with another embodiment of the present invention.

圖13A至15A是圖13至圖15之立體圖。13A to 15A are perspective views of Figs. 13 to 15.

10...基底10. . . Base

12a、22a...圖案化硬罩幕材料層12a, 22a. . . Patterned hard mask material layer

14...鰭狀物14. . . Fin

18a...絕緣層18a. . . Insulation

20a...閘極導體層20a. . . Gate conductor layer

24...第一離子植入製程twenty four. . . First ion implantation process

26...第一源極與汲極延伸區26. . . First source and drain extension

θ1...角度θ 1 . . . angle

Claims (15)

一種金氧半導體元件的製造方法,包括:在一基底上形成一第一硬罩幕材料層;圖案化該第一硬罩幕材料層並移除部分該基底,以形成被一溝渠環繞的一鰭狀物與一第一硬罩幕層,其中該鰭狀物在第一方向延伸;於該溝渠的底部形成一絕緣層;於該溝渠的該絕緣層上形成一閘極導體層,該閘極導體層在第二方向延伸,其中該閘極導體層的形成方法包括:於該溝渠的該絕緣層上形成一導體材料層;平坦化該導體材料層,留下的該導體材料層的表面高於該第一硬罩幕層的表面;以及圖案化該導體材料層,以形成該閘極導體層;以該第一硬罩幕為罩幕,進行一第一離子植入製程,於該鰭狀物的側壁形成一第一源極與汲極延伸區;移除該第一硬罩幕層,裸露出該鰭狀物的頂部;以及進行一第二離子離子植入製程,於該鰭狀物的頂部形成一第二源極與汲極延伸區。 A method of fabricating a MOS device, comprising: forming a first hard mask material layer on a substrate; patterning the first hard mask material layer and removing a portion of the substrate to form a trench surrounded by a trench a fin and a first hard mask layer, wherein the fin extends in a first direction; an insulating layer is formed at a bottom of the trench; and a gate conductor layer is formed on the insulating layer of the trench The pole conductor layer extends in the second direction, wherein the gate conductor layer is formed by: forming a conductor material layer on the insulating layer of the trench; planarizing the conductor material layer, leaving the surface of the conductor material layer a surface of the first hard mask layer; and patterning the conductive material layer to form the gate conductor layer; using the first hard mask as a mask, performing a first ion implantation process, The sidewall of the fin forms a first source and drain extension; the first hard mask layer is removed to expose the top of the fin; and a second ion implantation process is performed on the fin The top of the body forms a second source and a drain Area. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,其中該閘極導體層的形成方法包括:於該溝渠的該絕緣層上形成一導體材料層;以該第一硬罩幕層為停止層,平坦化該導體材料層;於該導體材料層上形成一第二硬罩幕材料層;以及圖案化該第二硬罩幕材料層與該導體材料層,以形成 一第二硬罩幕層與該閘極導體層。 The method for fabricating a MOS device according to claim 1, wherein the method for forming the gate conductor layer comprises: forming a layer of a conductor material on the insulating layer of the trench; and using the first hard mask The layer is a stop layer, planarizing the conductor material layer; forming a second hard mask material layer on the conductor material layer; and patterning the second hard mask material layer and the conductor material layer to form a second hard mask layer and the gate conductor layer. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,更包括:於進行該第一離子植入製程之前,於該閘極導體層之周圍形成一第一間隙壁。 The method for fabricating a MOS device according to claim 1, further comprising: forming a first spacer around the gate conductor layer before performing the first ion implantation process. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,其中該絕緣層的形成方法包括:於該基底上形成一絕緣材料層;以該第一硬罩幕層為停止層,平坦化該絕緣材料層;以及移除該溝渠中的部分該絕緣材料層,以形成該絕緣層。 The method for fabricating a MOS device according to claim 1, wherein the method for forming the insulating layer comprises: forming a layer of insulating material on the substrate; using the first hard mask layer as a stop layer, flat The insulating material layer is removed; and a portion of the insulating material layer in the trench is removed to form the insulating layer. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,其中該第一離子植入製程的離子植入角度為30°-60°。 The method of fabricating a MOS device according to claim 1, wherein the first ion implantation process has an ion implantation angle of 30°-60°. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,其中該第二離子植入製程的離子植入角度為90°。 The method of manufacturing a MOS device according to claim 1, wherein the second ion implantation process has an ion implantation angle of 90°. 如申請專利範圍第1項所述之金氧半導體元件的製造方法,更包括:於該閘極導體層的側壁形成一第二間隙壁;移除部分該鰭狀物,以於該閘極導體層的兩側分別形成一凹槽;於各該凹槽中形成一半導體化合物;以及於各該半導體化合物中形成一源極與汲極區。 The method for manufacturing a MOS device according to claim 1, further comprising: forming a second spacer on a sidewall of the gate conductor layer; removing a portion of the fin to the gate conductor Forming a recess on each side of the layer; forming a semiconductor compound in each of the recesses; and forming a source and drain regions in each of the semiconductor compounds. 如申請專利範圍第7項所述之金氧半導體元件的製 造方法,更包括:於該基底上形成一蝕刻停止層;以及於該蝕刻停止層上形成一介電層。 The system of MOS devices as described in claim 7 The method further includes: forming an etch stop layer on the substrate; and forming a dielectric layer on the etch stop layer. 如申請專利範圍第8項所述之金氧半導體元件的製造方法,更包括:移除部分該介電層與該蝕刻停止層,至裸露出該閘極導體層;移除該閘極導體層,以形成一開口;以及於該開口中形成一閘極金屬層。 The method for fabricating a MOS device according to claim 8 , further comprising: removing a portion of the dielectric layer and the etch stop layer to expose the gate conductor layer; removing the gate conductor layer Forming an opening; and forming a gate metal layer in the opening. 如申請專利範圍第9項所述之金氧半導體元件的製造方法,更包括:於該開口中形成一閘極金屬層之前,於該開口中形成一功函數金屬層。 The method for fabricating a MOS device according to claim 9, further comprising: forming a work function metal layer in the opening before forming a gate metal layer in the opening. 如申請專利範圍第9項所述之金氧半導體元件的製造方法,更包括:於該開口中形成該閘極金屬層之前,於該開口中形成一閘介電層。 The method for fabricating a MOS device according to claim 9, further comprising: forming a gate dielectric layer in the opening before forming the gate metal layer in the opening. 如申請專利範圍第11項所述之金氧半導體元件的製造方法,其中該第一閘介電層之介電常數高於4。 The method of fabricating a MOS device according to claim 11, wherein the first gate dielectric layer has a dielectric constant higher than 4. 如申請專利範圍第9項所述之金氧半導體元件的製造方法,更包括:於形成該閘極導體層之前,於該鰭狀物上形成一第一閘介電層。 The method for fabricating a MOS device according to claim 9, further comprising: forming a first thyristor layer on the fin before forming the gate conductor layer. 如申請專利範圍第13項所述之金氧半導體元件的 製造方法,其中該第一閘介電層之介電常數低於4。 As claimed in claim 13 of the MOS device The manufacturing method, wherein the first gate dielectric layer has a dielectric constant of less than 4. 如申請專利範圍第14項所述之金氧半導體元件的製造方法,更包括:在移除該閘極導體層之後移除該第一閘介電層;以及在移除該第一閘介電層之後形成一第二閘介電層,其中該第二閘介電層之介電常數高於4。 The method for fabricating a MOS device according to claim 14, further comprising: removing the first thyristor layer after removing the gate conductor layer; and removing the first thyristor dielectric A second gate dielectric layer is formed after the layer, wherein the second gate dielectric layer has a dielectric constant higher than 4.
TW101103778A 2012-02-06 2012-02-06 Method for fabricating mos device TWI521611B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101103778A TWI521611B (en) 2012-02-06 2012-02-06 Method for fabricating mos device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101103778A TWI521611B (en) 2012-02-06 2012-02-06 Method for fabricating mos device

Publications (2)

Publication Number Publication Date
TW201334081A TW201334081A (en) 2013-08-16
TWI521611B true TWI521611B (en) 2016-02-11

Family

ID=49479597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101103778A TWI521611B (en) 2012-02-06 2012-02-06 Method for fabricating mos device

Country Status (1)

Country Link
TW (1) TWI521611B (en)

Also Published As

Publication number Publication date
TW201334081A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
US9196613B2 (en) Stress inducing contact metal in FinFET CMOS
TWI711123B (en) Multi-gate device and method for fabricating the same
US10770591B2 (en) Source/drain contacts for non-planar transistors
US10020230B2 (en) FinFETs with multiple threshold voltages
TWI584478B (en) Semiconductor device and method for fabricating the same
US8609495B2 (en) Hybrid gate process for fabricating finfet device
TWI474460B (en) Contact structures for semiconductor devices, mosfets, and methods of fabricating semiconductor devices
TWI518785B (en) Double gate and tri-gate transistor formed on a bulk substrate and method for forming the transistor
US8946031B2 (en) Method for fabricating MOS device
US20150024561A1 (en) Method for fabricating a finfet in a large scale integrated circuit
TW201715732A (en) A semiconductor of tuning source/drain proximity for input/output device reliability enhancement
US8183101B2 (en) Multiple gate transistor having fins with a length defined by the gate electrode
KR101892809B1 (en) Semiconductor device and manufacturing method thereof
US11855224B2 (en) Leakage prevention structure and method
TWI667698B (en) Semiconductor device and method of forming the same
CN106935505B (en) The forming method of fin formula field effect transistor
CN110120418B (en) Vertical nanowire transistor and method of forming the same
TWI521611B (en) Method for fabricating mos device
TWI505376B (en) Method of forming a non-planar transistor
CN115376998A (en) Method for forming semiconductor structure
WO2014043947A1 (en) Semiconductor device and manufacturing method therefor
WO2014059728A1 (en) Semiconductor device and manufacturing method therefor