US887175A - Method of forming foundations. - Google Patents

Method of forming foundations. Download PDF

Info

Publication number
US887175A
US887175A US40381507A US1907403815A US887175A US 887175 A US887175 A US 887175A US 40381507 A US40381507 A US 40381507A US 1907403815 A US1907403815 A US 1907403815A US 887175 A US887175 A US 887175A
Authority
US
United States
Prior art keywords
shell
ground
forming
cavity
footing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US40381507A
Inventor
Hunley Abbott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US40381507A priority Critical patent/US887175A/en
Application granted granted Critical
Publication of US887175A publication Critical patent/US887175A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/44Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds with enlarged footing or enlargements at the bottom of the pile

Definitions

  • My invention relates to improvements in the method of forming foundations in the ground and more especially foundations of plastic material such 'as cement or concrete or of ranularmaterial such as sand, gravel .orroc and has for its object the formation of enlarged footings or pedestals for piles, columns, telegraph poles, anchorages, and the like, whereby the column, pole, ile, anchorage or other structure, is enable to sustain a greater load in soft, yielding or treacherous soil.
  • plastic material such 'as cement or concrete or of ranularmaterial such as sand, gravel .orroc and has for its object the formation of enlarged footings or pedestals for piles, columns, telegraph poles, anchorages, and the like, whereby the column, pole, ile, anchorage or other structure, is enable to sustain a greater load in soft, yielding or treacherous soil.
  • Figure 1 is a vertical sectional view of a shell and core forced into the ground.
  • Fig.- 2 is a similar view with core removed.
  • Fig. 3 is a similar sectional view with a portion of the foundation material in place and the rammer descending, the dotted line showing position of rammer and foundation material at the end of the stroke.
  • Fig. 4 is avertical sectional view through the completed pedestal.
  • Fig. 5 is a vertical sectional view through pedestal showing the modified form taken when the underlyding 1 6 is a vertical sectional view of a modificatio n showing a reciprocating shell having a movable closure at its lower end.
  • Fig. 7 is a vertical sectional view of a further modification, wherein the bottom of a closed shell has been cut off and slit to form reinforcing.
  • the dotted lines show thev original condition of the bottom of the shell.
  • the juncture C between the lower end of the shell and the core is made in such a manner as to prevent ingress of the soil but drawn leavin a cavity D below the end of the shell B.
  • a sheet of reinforcement of mesh metal or rods E may be folded into a cup sha e and placed, (closed end down), within t 1e cavity D.
  • a quantity of concrete or other foundation material approximately sufficient to fill said cavity D is placed therein.
  • the rammer F is "then inserted in the shell B and forced down into this mass of material, thereby the material 1 is pushed out in all directions and the surroundin soil is forced back and compacted. This 0 eration of placing foundation material and ramming is re eated until the rotuberance, pedestal or ooting G is of t e desired size. It will be seen that the cupped sheet of reinforcing will s read out as the ramming proceeds and wil be at thelower side of the pedestal where it will take possible tensile stresses, tie the whole mass of foundation material together and aid it to assume a regular symmetrical form.
  • This reinforcing will usually be embedded in the edestal to some extent due to, the material orcing out between the meshes. If it is desired to more deeply embed thereinforcement a quantity of material is placed and rammed in the cavity before the reinforcement is placed therein. The subsequent ramming proceeds as before stated. It will also be seen that any rock, boulder or gravel in the soil adjacent to the cavity will offer a greater resistance to the ramming and will tend to partially embed itself in the foundation material as the latter is forced out by the ramming, thereby becoming part of the pedestal andincreasing its effective size.
  • the pedestal formed will be roughly spherical as in Fi 4 and its effective bearing area may be readily estimated from the quantity of material rammed.
  • the core'A may be driven to firmer strata and a pedestal formed in the soft soil just over the firmer, The edestal will then flatten out on the lower si e Where it comes in contact with the firmer strata forming a roughly conical shape as in Fig. 5 It is not necessary for the execution of this method to use the exact form of shell and core shown.
  • the shell ma be ca ped with a detachable plu the she force into the ground and withdrawn a distance to form the cavity.
  • the plug will remain at the bottom of the cavity and become part of the edestal.
  • the bottom of the shell coul be provided with a closure H which would prevent the ingress of soil during driving but which would open up on Withdrawing the shell a distance so that by placingloose foundation material within the shell and reciprocating the latter, the foundation material would pass through the closure into the cavity upon the upward stroke of the shell and be rammed by the shell on its downward stroke as the closure would then be shut. See Fig. 6.
  • a closure H which would prevent the ingress of soil during driving but which would open up on Withdrawing the shell a distance so that by placingloose foundation material within the shell and reciprocating the latter, the foundation material would pass through the closure into the cavity upon the upward stroke of the shell and be rammed by the shell on its downward stroke as the closure would then be shut. See Fig. 6.
  • a shell B with-a closed lower end could be forced into the ground
  • the space thereabove may be filled with foundation material also reinforced or not, the shell being left in the ground or withdrawn according to the nature of the soil.
  • any suitable connection may be made between the pedestal and the load to be sustained, such as a structural column, anchor rod, post, or pole.
  • a very economical distribution of materlal is effected, consisting of a slender column or anchorage just large enough to carry the load and a footing enlarged sufficiently to distribute this load over a great area-of soil.
  • This enlarged footing gives a bearing area equal to a solid pier'of a diameter corres onding to the maximum diameter of the en arged footingwith a consequent saving of foundag, tion material.
  • this method relates to the formation of underground foundations without the necessity of excavating obviating the attendant trouble, consumption of time, dan er and expense.
  • this edestal offers great resistance to both vertica and lateral forces. It may be used as pile footing, column base, telegraph pole or fence post footing, or anchorage to reor columns built thereon may be brace sist other than vertically downward forces as in gu s for chimneys or chimney foundations, and t e like.
  • a method of forming a footing in the ground which consists of forming a cavity therein, void of any lining placing foundation material within said cavity then forcing said material outwardly against the walls of the cavity thereby forcing back and compressin the surrounding soil so that an enar ed ooting is formed, substantially as described.
  • a method of forming a pedestal, footing 'or anchorage in the ground which consists in forcing down a shell in to the ground, forming a cavity below the lower end of the shell,
  • a method of forming a pedestal, footing or anchorage in the ground which consists in forcing a form into the ground, so that an unlined cavity is formed placing foundation I material at the lower endof the cavity, ramming this material, and'repeating these placing and ramming operations, thereby forcing back the surrounding 5011, so that a mass of foundation material is formed at the lower the said form, su stantially as described.
  • a method-of forming a footing in the ground which consists of formmg a cavity therein, placing reinforcing metal in the cavity, placlng'foundation material within said- -cavity, then forcing said reinforcing and foundation materials outwardly against the walls of the cavity, thereby forcing back and compressing the surrounding soil so that an enlarged reinforced footing is formed, substantially as described.
  • a method of forming a footing in the ground which consists of forming a cavity 10.
  • a method of forming a pedestal, footing or anchorage in the ground which consists i'n forcing down a shell into the ground forming acavlty at the lower end of the shell, placing intothiscavityreinforcing metal and oundation material and ramming, repeating the placing and ramming operations thereby forming an enlarged reinforced mass of the foundation material which is the aforementioned edestal, footing, or anchorage, sub- 7 stantia y as described.
  • a method of forming a pedestal, footing or anchorage in the ground which consists in forcing down a shell into the ground
  • a method of forming a pedestal, footing or anchorage in the ground which consists in forcing down a shell into the ground, placing reinforcing metal and foundation material at the lower end of shell, ramming the material, repeating the placing and ramming operations, thereby forming an enlarged reinforced mass of the materials, substantially as described.
  • a method of forming a pedestal, footing or anchorage in the ground which consists in forcing a form into the ground, placing reinforcing metal and foundation material at the lower end of the cavity so formed, ramming these materials, and repeating these placing and ramming o erations, thereby forcing back the surrounc ing soil, so that an enlarged reinforced mass of foundation materials is formed, substantially as "described.
  • a method of forming afooting in the ground which consists in forcing into the ground a shell having at its lower end a driving point, removing said point, placing foundation material in the cavity so formed, below the lower end of'the shell forcing said material outwardly against the walls of the cavity, thereby compressing and forcing back the surrounding soil so that an enlarged footing is formed, substantially as described.
  • a method of forming a footing in the ground which consists in' forcing intothe ground a shell having at its lower end a driving point, removing said point, placing reinforcing metal and foundation material in the cavity so'formed, forcing said materials outwardly against the walls of the cavity, thereby compressing and forcing back the surrounding soil so that an enlarged reinforced footing is formed, substantially as described. 17.
  • a method of forming a footing in the ground which consists in forcing into the round a shell having at its lower end. a' driving point, removing said point, placing foundation material in the cavityv so formed, be-

Description

PATENTED MAY 12, 1908.
H. ABBOTT. METHOD OF FORMING FOUNDATIONS.
PPLIO TIO ILED NOV. 25. 190 A A N F 7 2 SHEETS-SHEET 1.
m m w@ 2 SHEETS-SHEET 2.
PATEN'I'ED MAY 12, 1908.
H. ABBOTT. METHOD OF FORMING FOUNDATIONS.
lll 5 APPLICATION FILED NOV. 25. 1907.
Fig. 6
3%? MSMUM Wcm strata is firmer than the strata above.
HUNLEY ABBOTT, OF NEW-YORK, N. Y.
METHOD OF FORMING FOUNDATIONS.
Specification of Letters Patent.
Iatented May 1.2, 19 08.
' Application filed November 25, 1907. Serial No. 403,815.
To all whom it may concern:
Be it known that I, HUNLEY ABBOTT, a citizen of the United States, residing at New York, New York county, New York, have invented a new and useful Method of Forming Foundations, of which the following is a specification, reference being had to the accompanymg drawings, in which like reference characters designate like parts.
My invention relates to improvements in the method of forming foundations in the ground and more especially foundations of plastic material such 'as cement or concrete or of ranularmaterial such as sand, gravel .orroc and has for its object the formation of enlarged footings or pedestals for piles, columns, telegraph poles, anchorages, and the like, whereby the column, pole, ile, anchorage or other structure, is enable to sustain a greater load in soft, yielding or treacherous soil.
In the accompanying drawings which are merely illustrative of ap aratus capable of executing the method. Figure 1 is a vertical sectional view of a shell and core forced into the ground. Fig.- 2 is a similar view with core removed. Fig. 3 is a similar sectional view with a portion of the foundation material in place and the rammer descending, the dotted line showing position of rammer and foundation material at the end of the stroke. Fig. 4 is avertical sectional view through the completed pedestal. Fig. 5 is a vertical sectional view through pedestal showing the modified form taken when the underlyding 1 6 is a vertical sectional view of a modificatio n showing a reciprocating shell having a movable closure at its lower end. The shell in its downward stroke is shown by full lines, and in its upward stroke, by dotted lines. Fig. 7 is a vertical sectional view of a further modification, wherein the bottom of a closed shell has been cut off and slit to form reinforcing. The dotted lines show thev original condition of the bottom of the shell.
A ointed coreA surrounded by a shell B the size of the desired pile, column, pole, etc., is forced into the ground to the desired depth, (Fi 1). The juncture C between the lower end of the shell and the core is made in such a manner as to prevent ingress of the soil but drawn leavin a cavity D below the end of the shell B. f desired a sheet of reinforcement of mesh metal or rods E may be folded into a cup sha e and placed, (closed end down), within t 1e cavity D. A quantity of concrete or other foundation material approximately sufficient to fill said cavity D is placed therein. The rammer F is "then inserted in the shell B and forced down into this mass of material, thereby the material 1 is pushed out in all directions and the surroundin soil is forced back and compacted. This 0 eration of placing foundation material and ramming is re eated until the rotuberance, pedestal or ooting G is of t e desired size. It will be seen that the cupped sheet of reinforcing will s read out as the ramming proceeds and wil be at thelower side of the pedestal where it will take possible tensile stresses, tie the whole mass of foundation material together and aid it to assume a regular symmetrical form. This reinforcing will usually be embedded in the edestal to some extent due to, the material orcing out between the meshes. If it is desired to more deeply embed thereinforcement a quantity of material is placed and rammed in the cavity before the reinforcement is placed therein. The subsequent ramming proceeds as before stated. It will also be seen that any rock, boulder or gravel in the soil adjacent to the cavity will offer a greater resistance to the ramming and will tend to partially embed itself in the foundation material as the latter is forced out by the ramming, thereby becoming part of the pedestal andincreasing its effective size.
In a soil of a uniform density the pedestal formed will be roughly spherical as in Fi 4 and its effective bearing area may be readily estimated from the quantity of material rammed. In soft soils underlaid by firmer strata the core'A may be driven to firmer strata and a pedestal formed in the soft soil just over the firmer, The edestal will then flatten out on the lower si e Where it comes in contact with the firmer strata forming a roughly conical shape as in Fig. 5 It is not necessary for the execution of this method to use the exact form of shell and core shown. In lieu of a core the shell ma be ca ped with a detachable plu the she force into the ground and withdrawn a distance to form the cavity. In this case the plug will remain at the bottom of the cavity and become part of the edestal. Or the bottom of the shell coul be provided with a closure H which would prevent the ingress of soil during driving but which would open up on Withdrawing the shell a distance so that by placingloose foundation material within the shell and reciprocating the latter, the foundation material would pass through the closure into the cavity upon the upward stroke of the shell and be rammed by the shell on its downward stroke as the closure would then be shut. See Fig. 6. Thus dispensing with a separate core and rammer. Again, a shell B with-a closed lower end could be forced into the ground,
the said lower end of shell ruptured, out off and removed or cut off and slit to form reinforcing as at E in Fig. 7 and the pedestal formed as hereinbefore described.
After the pedestal is formed the space thereabovemay be filled with foundation material also reinforced or not, the shell being left in the ground or withdrawn according to the nature of the soil. Or any suitable connection may be made between the pedestal and the load to be sustained, such as a structural column, anchor rod, post, or pole.
'- A very economical distribution of materlal is effected, consisting of a slender column or anchorage just large enough to carry the load and a footing enlarged sufficiently to distribute this load over a great area-of soil.
This enlarged footing gives a bearing area equal to a solid pier'of a diameter corres onding to the maximum diameter of the en arged footingwith a consequent saving of foundag, tion material.
It will be seen that this method relates to the formation of underground foundations without the necessity of excavating obviating the attendant trouble, consumption of time, dan er and expense.
Forme as it is by driving and compressing the'soil this edestal offers great resistance to both vertica and lateral forces. It may be used as pile footing, column base, telegraph pole or fence post footing, or anchorage to reor columns built thereon may be brace sist other than vertically downward forces as in gu s for chimneys or chimney foundations, and t e like. I
Informin these foundations a number may be deve oped adjacent to each other so as to merge one into the other so that they unite into one unitary structure and the (piles together at the top forming a system of great rigidity, offering especially high resistance to lateral forces.
I claim 1. A method of forming a footing in the ground which consists of forming a cavity therein, void of any lining placing foundation material within said cavity then forcing said material outwardly against the walls of the cavity thereby forcing back and compressin the surrounding soil so that an enar ed ooting is formed, substantially as described.
2. A method of forming a footing in the end of the oavit described.
3. A method of forming a pedestal, footing 'or anchorage in the ground which consists in forcing down a shell in to the ground, forming a cavity below the lower end of the shell,
placing into this cavity foundation material and ramming, repeating the placing and ramming opefations thereby forming an enlarged mass of the foundation material which is the aforementioned pedestal, footing or anchorage, substantially as described.
' 4. Ainethod of forming a pedestal, footing I or anchorage 1n the ground which consists in forcing down a shell into the ground, placing foundation material below the lower end of shell, ramming the material, thereby forming an enlarged mass-of the foundation material, substantiall as described.
5. A met 0d of forming a pedestal, footing, or anchorage in the ground which con 1 sists in forcing down a shell into the ground,
placing foundation material below the lower 9 end of shell, ramming the material, repeating the placmg and ramming operation, thereby material, substantially as described.
6. .Amethod of forming a pedestal, footing forcing a form into the ground, so that an e forming an enlarged mass of the foundation or anchorage 1n the ground which consists m 1 l unlined cavity is formed placing foundation material within this cavity, ramming'this material, and repeating these placing and, ramming operations, thereby forcing back the surrounding soil, so that an enlarged, mass of foundation material is formed, substantiallyas described. I
7. A method of forming a pedestal, footing or anchorage in the ground which consists in forcing a form into the ground, so that an unlined cavity is formed placing foundation I material at the lower endof the cavity, ramming this material, and'repeating these placing and ramming operations, thereby forcing back the surrounding 5011, so that a mass of foundation material is formed at the lower the said form, su stantially as described.
of greater diameter than 8. A method-of forming a footing in the ground which consists of formmg a cavity therein, placing reinforcing metal in the cavity, placlng'foundation material within said- -cavity, then forcing said reinforcing and foundation materials outwardly against the walls of the cavity, thereby forcing back and compressing the surrounding soil so that an enlarged reinforced footing is formed, substantially as described.
9. A method of forming a footing in the ground which consists of forming a cavity 10. A method of forming a pedestal, footing or anchorage in the ground which consists i'n forcing down a shell into the ground forming acavlty at the lower end of the shell, placing intothiscavityreinforcing metal and oundation material and ramming, repeating the placing and ramming operations thereby forming an enlarged reinforced mass of the foundation material which is the aforementioned edestal, footing, or anchorage, sub- 7 stantia y as described.
11.. A method of forming a pedestal, footing or anchorage in the ground which consists in forcing down a shell into the ground,
placing reinforcing metal and foundation material at the lower end of shell, ramming the material, thereby forming an enlarged reinforced mass of the materials, substantially as described.
12. A method of forming a pedestal, footing or anchorage in the ground which consists in forcing down a shell into the ground, placing reinforcing metal and foundation material at the lower end of shell, ramming the material, repeating the placing and ramming operations, thereby forming an enlarged reinforced mass of the materials, substantially as described. v
13. A method of forming a pedestal, footing or anchorage in the ground which consists in forcing a form into the ground, placing reinforcing metal and foundation material at the lower end of the cavity so formed, ramming these materials, and repeating these placing and ramming o erations, thereby forcing back the surrounc ing soil, so that an enlarged reinforced mass of foundation materials is formed, substantially as "described.
14. A method offorming a pedestal, footing, or anchorage in the ground which con sists in forcing a form into the ground, placing reinforcing metal and foundation material at the lower end of the cavity so formed,
ramming these materials, and repeating .these placing and ramming o erations, thereby forcing back the surroun 'ng soil, so that a reinforced mass of foundation materials is formed at the lower end of the cavity of greater diameter than the said form, substantially as described.
15. A method of forming afooting in the ground which consists in forcing into the ground a shell having at its lower end a driving point, removing said point, placing foundation material in the cavity so formed, below the lower end of'the shell forcing said material outwardly against the walls of the cavity, thereby compressing and forcing back the surrounding soil so that an enlarged footing is formed, substantially as described.
16. A method of forming a footing in the ground which consists in' forcing intothe ground a shell having at its lower end a driving point, removing said point, placing reinforcing metal and foundation material in the cavity so'formed, forcing said materials outwardly against the walls of the cavity, thereby compressing and forcing back the surrounding soil so that an enlarged reinforced footing is formed, substantially as described. 17. A method of forming a footing in the ground which consists in forcing into the round a shell having at its lower end. a' driving point, removing said point, placing foundation material in the cavityv so formed, be-
low the lower end of the shell forcing said material outwardly against the walls of. the cavity, thereby compressing and forcin back the surrounding soil so that an enlarge footing-is formed, then filling the hole formed by the shell with foundation material, substanoutwardly against the walls of the cavity, thereby compressing and forcing back the surrounding soil so that an enlarged reinforced footing is formed, then filling the hole formed by the shell with foundation materials, substantially as described:
' HUNLEY ABBOTT. Witnesses:
E. C. HEALD,
RICHARD L. WATMAUGH.
US40381507A 1907-11-25 1907-11-25 Method of forming foundations. Expired - Lifetime US887175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US40381507A US887175A (en) 1907-11-25 1907-11-25 Method of forming foundations.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US40381507A US887175A (en) 1907-11-25 1907-11-25 Method of forming foundations.

Publications (1)

Publication Number Publication Date
US887175A true US887175A (en) 1908-05-12

Family

ID=2955608

Family Applications (1)

Application Number Title Priority Date Filing Date
US40381507A Expired - Lifetime US887175A (en) 1907-11-25 1907-11-25 Method of forming foundations.

Country Status (1)

Country Link
US (1) US887175A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2492590A (en) * 1942-01-09 1949-12-27 United Air Lines Inc Hollow rivet with undercut head
US2492605A (en) * 1941-11-10 1949-12-27 United Air Lines Inc Hydraulically expansible hollow rivet
US2543063A (en) * 1941-04-16 1951-02-27 George D Rogers Method of hydraulically expanding hollow rivets
US2562721A (en) * 1941-08-13 1951-07-31 United Air Lines Inc Method of hydraulically expanding hollow rivets
US2576507A (en) * 1949-02-14 1951-11-27 Ben C Gerwick Inc Hollow mandrel for placement of discrete material
DE2601441A1 (en) * 1976-01-16 1977-07-28 Inst Gornowo Dela Sib Otdel Ak On site concrete pile - is made by placing concrete and rolled reinforcement into borehole subsequently expanded by pneumatic compacting tools
US4063423A (en) * 1975-05-15 1977-12-20 Konstantin Stepanovich Gurkov Method of making built-in-place reinforced concrete piles
US20130279992A1 (en) * 2010-09-13 2013-10-24 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a support pier
US9567723B2 (en) 2010-09-13 2017-02-14 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US20200115877A1 (en) * 2015-07-27 2020-04-16 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2543063A (en) * 1941-04-16 1951-02-27 George D Rogers Method of hydraulically expanding hollow rivets
US2562721A (en) * 1941-08-13 1951-07-31 United Air Lines Inc Method of hydraulically expanding hollow rivets
US2492605A (en) * 1941-11-10 1949-12-27 United Air Lines Inc Hydraulically expansible hollow rivet
US2492590A (en) * 1942-01-09 1949-12-27 United Air Lines Inc Hollow rivet with undercut head
US2576507A (en) * 1949-02-14 1951-11-27 Ben C Gerwick Inc Hollow mandrel for placement of discrete material
US4063423A (en) * 1975-05-15 1977-12-20 Konstantin Stepanovich Gurkov Method of making built-in-place reinforced concrete piles
DE2601441A1 (en) * 1976-01-16 1977-07-28 Inst Gornowo Dela Sib Otdel Ak On site concrete pile - is made by placing concrete and rolled reinforcement into borehole subsequently expanded by pneumatic compacting tools
US20130279992A1 (en) * 2010-09-13 2013-10-24 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a support pier
US9091036B2 (en) * 2010-09-13 2015-07-28 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a support pier
US9567723B2 (en) 2010-09-13 2017-02-14 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US20170159257A1 (en) * 2010-09-13 2017-06-08 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US10513831B2 (en) * 2010-09-13 2019-12-24 Geopier Foundation Company, Inc. Open-end extensible shells and related methods for constructing a support pier
US20200115877A1 (en) * 2015-07-27 2020-04-16 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier
US10858796B2 (en) * 2015-07-27 2020-12-08 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier
US11479935B2 (en) 2015-07-27 2022-10-25 Geopier Foundation Company, Inc. Extensible shells and related methods for constructing a ductile support pier

Similar Documents

Publication Publication Date Title
EP0170503B1 (en) Ground treatment
US4571124A (en) Method of forming cast-in-place concrete pile
CN101798809B (en) Non-borrow composite underreamed pile constructing method
US887175A (en) Method of forming foundations.
US4293242A (en) Piles
US3540225A (en) Construction pile and a method of producing same in situ
CN106192999A (en) The construction method of uplift pile
CN110777836A (en) Reinforced concrete plate-anchor rod composite foundation and using method thereof
CN104631432A (en) Flexible supporting system for prestress anchor supporting plate of sheet-pile retaining wall and construction method
KR101838244B1 (en) Cast-in-place reinforced top pile and construction method thereof
US2875584A (en) Method for making structural foundations
EP0519575B1 (en) Method of making a foundation pile
CN110670579A (en) Hoop pile for pile foundation engineering and foundation treatment and construction process thereof
WO1994017252A1 (en) Improvements in or relating to foundations
GB2085950A (en) Driven composite piles
US779881A (en) Forming concrete piles and preparatory piles therefor.
JPH028412A (en) Method and device for treating pile head
JP2811436B2 (en) Construction method of earth retaining or fence and concrete block used in the method
CN211200419U (en) Miniature tubular pile foundation structure of side slope foundation
EP1609914A1 (en) Method and structure for ground improvement
KR900005913B1 (en) Base stake inflated in bump state at lower end there of and its construction
JP7136425B2 (en) Ground reinforcement method
KR960003748B1 (en) Working method of concrete pile or sand pile for a soft-soil foundation
KR102535225B1 (en) Open Bottom Expandable Shells and Related Methods for Building Support Piers
CN106703024B (en) Construction process of slurry-solidified gravel composite pile