US8864751B2 - Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator - Google Patents
Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator Download PDFInfo
- Publication number
- US8864751B2 US8864751B2 US12/877,263 US87726310A US8864751B2 US 8864751 B2 US8864751 B2 US 8864751B2 US 87726310 A US87726310 A US 87726310A US 8864751 B2 US8864751 B2 US 8864751B2
- Authority
- US
- United States
- Prior art keywords
- joint
- control system
- manipulator
- slave manipulator
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000005259 measurement Methods 0.000 claims abstract description 12
- 230000000694 effects Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 26
- 230000004044 response Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 230000001133 acceleration Effects 0.000 abstract description 20
- 238000006073 displacement reaction Methods 0.000 abstract description 12
- 229920006395 saturated elastomer Polymers 0.000 abstract 1
- 230000006870 function Effects 0.000 description 26
- 230000005484 gravity Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 12
- 238000012546 transfer Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000994 depressogenic effect Effects 0.000 description 5
- 238000012978 minimally invasive surgical procedure Methods 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000881 depressing effect Effects 0.000 description 2
- 238000002405 diagnostic procedure Methods 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000010420 art technique Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000002432 robotic surgery Methods 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A61B19/22—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/32—Surgical robots operating autonomously
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/35—Surgical robots for telesurgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Leader-follower robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
- A61B34/75—Manipulators having means for prevention or compensation of hand tremors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1638—Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1641—Programme controls characterised by the control loop compensation for backlash, friction, compliance, elasticity in the joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
-
- A61B19/2203—
-
- A61B19/5212—
-
- A61B2019/2223—
-
- A61B2019/2288—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41213—Lookup table for load, motor torque as function of actual position
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/41—Servomotor, servo controller till figures
- G05B2219/41426—Feedforward of torque
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/02—Arm motion controller
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/14—Arm movement, spatial
- Y10S901/15—Jointed arm
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/27—Arm part
- Y10S901/28—Joint
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S901/00—Robots
- Y10S901/30—End effector
Definitions
- phase(.) function returning the phase of the complex number in its argument.
- the non-linear viscosity model 201 is designed to mask the velocity dependent drag force or torque that can be felt in the joint of the slave manipulator 128 when the slave manipulator 128 is manually moved around to reach its desired position at the surgical site.
- the drag force or torque exhibits different functional dependencies on the joint velocity according to the specific mechanical design of the joint.
- the actual value of the joint drag force or torque can be empirically determined at a number of joint velocities of interest for the application.
- the measurement at each one of the desired velocities can be for example carried out by driving the joint over most of its range of motion at the desired constant velocity using a servo position control system to regulate the joint velocity to closely track the desired one.
- the motor torque commanded by the servo position control system along the constant velocity part of the trajectory can be collected and averaged to produce the desired measurement of the drag force or torque at the specific desired velocity.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Robotics (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
A robotic control system is placed in clutch mode so that a slave manipulator holding a surgical instrument is temporarily disengaged from control by a master manipulator in order to allow manual positioning of the surgical instrument at a surgical site within a patient. Control systems implemented in a processor compensate for internally generated frictional and inertial resistance experienced during the positioning, thereby making movement more comfortable to the mover, and stabler from a control standpoint. Each control system drives a joint motor in the slave manipulator with a saturated torque command signal which has been generated to compensate for non-linear viscous forces, coulomb friction, cogging effects, and inertia forces subjected to the joint, using estimated joint angular velocities, accelerations and externally applied torques generated by an observer in the control system from sampled displacement measurements received from a sensor associated with the joint.
Description
This application is a continuation of U.S. application Ser. No. 11/479,144 filed Jun. 30, 2006, now U.S. Pat. No. 7,819,859, which claims priority to U.S. Provisional Application No. 60/751,916 filed Dec. 20, 2005, each of which is incorporated herein by reference.
The present invention generally relates to robotic surgical systems and in particular, to a control system used in a robotic surgical system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator.
Robotic surgical systems such as those used in performing minimally invasive surgical procedures offer many benefits over traditional open surgery techniques, including less pain, shorter hospital stays, quicker return to normal activities, minimal scarring, reduced recovery time, and less injury to tissue. Consequently, demand for minimally invasive surgery using robotic surgical systems is strong and growing.
To perform a minimally invasive surgical procedure on a patient, one or more incisions are first made in the patient and cannulae inserted therein to gain access to a surgical site within the patient. Setup arms supporting the slave manipulators (or robotic arm assemblies) are then positioned so as to allow the slave manipulators to attach to respective of the cannulae. Surgical instruments engaged on the slave manipulators are then inserted into the cannulae and properly positioned and oriented in order to perform the procedure. A surgeon may then manipulate master manipulators (or master input devices) which are coupled to the slave manipulators and their respective surgical instruments through one or more controllers to perform the surgical procedure.
The initial positioning and orientating of the surgical instrument at the surgical site is generally performed by an assistant, positioned next to the patient, manually moving a slave manipulator so as to move its surgical instrument into the proper position and orientation to and at the surgical site. Typically such positioning and orientating involves a two-step procedure in which, in a first part, the slave manipulator is attached to its assigned cannula and its surgical instrument engaged on it, and in a second part, the slave manipulator is manipulated so that its surgical instrument is properly positioned and oriented at the surgical site to perform its role in the minimally invasive surgical procedure. Although described as a two-part procedure, it is to be appreciated that the assistant may perform both parts concurrently or otherwise in an overlapping fashion, as well as sequentially so as to be performed one after the other.
To perform the first part of the initial positioning of a surgical instrument, the assistant depresses a first release button on a slave manipulator, which releases brakes holding setup joints of its corresponding setup arm in place so as to allow movement of the slave manipulator. The positioning of the slave manipulator is conventionally facilitated by the use of gravity-balanced or non-gravity loaded setup joints. After the slave manipulator is positioned so that it can be attached to its assigned cannula and is attached to it, the assistant may then stop depressing the first release button, which causes the brakes to hold their corresponding setup joints in place, thus locking the translational position of the cannula attached to the slave manipulator at this point. Additional details in performing this part of the procedure and the general construction of slave manipulators and their setup arms as pertaining to such procedure are provided in commonly owned U.S. Pat. No. 6,246,200 entitled “Manipulator Positioning Linkage for Robotic Surgery,” which is incorporated herein by this reference.
To perform the second part of the initial positioning of the surgical instrument, the assistant engages the surgical instrument onto the slave manipulator so that it is capable of inserting it into the cannula, pivoting the instrument around a pivot point located at the surgical port of the cannula, and driving an end effector at the distal end of the surgical instrument with degrees of freedom resembling wrist motion. It may be noted at this point that the surgical instrument tip is inside the cannula and thus, is no longer visible to the assistant since it is now shielded by the anatomy.
To proceed, the assistant depresses a second button on or proximate to its slave manipulator, which disengages active joints of the slave manipulator from being controlled by their associated master manipulator. This allows the assistant to freely move the slave manipulator to insert the surgical instrument into its cannula and pivot about it about the incision so as to point in the proper direction and at the proper distance into the incision. If an endoscope has been previously positioned in the patient to view the surgical site, typically this step is performed while the assistant views the image of the surgical site provided by the endoscope. After the surgical instrument is thus positioned at the surgical site, the assistant may then stop depressing the second button, which allows the surgeon to re-engage control of the active joints of the slave manipulator through the master manipulator so that the surgeon may perform the surgical procedure by manipulating the master manipulator. To facilitate the positioning tasks described above, the first and second buttons may be effective only while they are depressed (and thus work as momentary buttons) or they can remain effective after they are released until they are depressed again (and thus work as toggle buttons).
Since the first part of the positioning procedure is performed by moving the gravity-balanced setup joints or non-gravity loaded setup joints outside of the patient's body, internally generated frictional and inertial resistance against manual movement of the slave manipulator is not generally objectionable to the assistant. In the second part of the positioning procedure, however, internally generated frictional and inertial resistance against manual movement of the slave manipulator may be objectionable to the assistant, because a finer control of the instrument tip is required while it is moved inside the surgical cavity. To facilitate easy movement of the slave manipulator during the second part of the positioning procedure, the arm may be mechanically gravity balanced using, for example, counter balance weights, so as to significantly reduce gravity effects and consequently, the force necessary for a person to physically move the slave manipulator. Additionally, the slave manipulator may be designed so as to have very high mechanical efficiency so that the friction does not change much with the force applied to the manipulator, have low friction forces or torque to overcome when moving the manipulator, and have low mass or inertia so that the manipulator may be accelerated with low force or torque.
Although a slave manipulator that does not have all of these mechanical characteristics may not be easy to manually position quickly and accurately, it may be advantageous to give away some of these mechanical characteristics in exchange for other benefits such as larger workspace, smaller footprint, or lighter slave manipulator. In such a design, a control system that is capable of recovering the lighter feeling of the mechanically gravity balanced design is desirable.
Accordingly, an object of aspects of the present invention is a control system for reducing internally generated frictional and inertial resistance to manual positioning of the slave manipulator.
This and additional objects are accomplished by the various aspects of the present invention, wherein briefly stated, one aspect is a robotic surgical system comprising a slave manipulator and a controller. The slave manipulator has jointed structures for providing multiple degrees of freedom movement to a surgical instrument when the instrument is coupled to the slave manipulator, joints corresponding to the jointed structures, motors to drive movement of the joints, and sensors to measure movement of the joints. The controller is configured with at least one control system generating a signal by processing measurements received from a corresponding one of the sensors to drive a corresponding one of the motors so as to reduce internally generated frictional and inertial resistance when manually moving at least a portion of the slave manipulator in order to position and/or orientate the surgical instrument at a surgical site within a patient.
Another aspect is a method for reducing internally generated frictional and inertial resistance when manually moving a slave manipulator, comprising: receiving sampled displacement measurements corresponding to movement of a joint in the slave manipulator; generating a first signal to compensate for internally generated non-linear viscous friction when manually moving the slave manipulator; generating a second signal to compensate for internally generated Coulomb friction when manually moving the slave manipulator; generating a third signal to compensate for internally generated inertial resistance when manually moving the slave manipulator; generating a fourth signal by adding or combining at least the first, second, and third signals; and driving a motor corresponding to the joint using the fourth signal.
In still another aspect, a robotic surgical system includes a slave manipulator which is coupled to a surgical instrument. The slave manipulator is configured so as to have a plurality of joints, a plurality of motors driving the joints, and a plurality of sensors for detecting motion of the joints. Also in the robotic surgical system is a control system comprising: an observer coupled to one of the sensors and configured to estimate at least an angular or linear velocity and acceleration of the joint corresponding to the sensor; and a signal generator configured to generate a signal to drive the motor corresponding to the joint so as to reduce internally generated frictional and/or inertial resistance when manually moving at least a portion of the slave manipulator in order to position or orientate the surgical instrument.
Additional objects, features and advantages of the various aspects of the present invention will become apparent from the following description of its preferred embodiment, which description should be taken in conjunction with the accompanying drawings.
The Console includes a monitor 104 for displaying an image of a surgical site to the Surgeon, one or more manipulatable master manipulators 108 and 109 (also referred to herein as “control devices” and “input devices”), and a controller 102. The control devices 108 and 109 may include any one or more of a variety of input devices such as joysticks, gloves, trigger-guns, hand-operated controllers, or the like. The controller 102 is a personal computer that may be integrated into the Console or positioned next to it.
The Surgeon performs a minimally invasive surgical procedure by manipulating the control devices 108 and 109 so that the controller 102 causes their respectively associated slave manipulators 128 and 129 (also referred to herein as “robotic arms” and “robotic arm assemblies”) to manipulate their respective removably coupled surgical instruments 138 and 139 (also referred to herein as “tools”) accordingly, while the Surgeon views the surgical site in 3-D as it is captured by a stereoscopic endoscope 140 on the Console monitor 104.
Each of the tools 138 and 139, as well as the endoscope 140, is preferably inserted through a cannula or other tool guide (not shown) into the Patient so as to extend down to the surgical site through a corresponding minimally invasive incision such as incision 166. Each of the robotic arms is conventionally formed of linkages, such as linkage 162, which are coupled together and manipulated through motor controlled joints, such as joint 163.
The number of surgical tools used at one time and consequently, the number of robotic arms being used in the system 100 will generally depend on the diagnostic or surgical procedure and the space constraints within the operating room, among other factors. If it is necessary to change one or more of the tools being used during a procedure, the Assistant may remove the tool no longer being used from its robotic arm, and replace it with another tool 131 from a Tray (“T”) in the operating room.
Preferably, the monitor 104 is positioned near the Surgeon's hands so that it will display a projected image that is oriented so that the Surgeon feels that he or she is actually looking directly down onto the operating site. To that end, an image of the tools 138 and 139 preferably appear to be located substantially where the Surgeon's hands are located even though the observation points (i.e., the endoscope or viewing camera) may not be from the point of view of the image.
In addition, the real-time image is preferably projected into a perspective image such that the operator can manipulate the end effector of a tool through its corresponding control device as if viewing the workspace in substantially true presence. By true presence, it is meant that the presentation of an image is a true perspective image simulating the viewpoint of an operator that is physically manipulating the tools. Thus, the processor 102 transforms the coordinates of the tools to a perceived position so that the perspective image is the image that one would see if the endoscope 140 was located directly behind the tools.
The processor 102 performs various functions in the system 100. One important function that it performs is to translate and transfer the mechanical motion of control devices 108 and 109 to their respective robotic arms 128 and 129 through control signals over bus 110 so that the Surgeon can effectively manipulate their respective tools 138 and 139. Another important function is to implement various control system processes.
Although described as a processor, it is to be appreciated that the processor 102 may be implemented in practice by any combination of hardware, software and firmware. Also, its functions as described herein may be performed by one unit, or divided up among different components, each of which may be implemented in turn by any combination of hardware, software and firmware.
When it is desired to position and orientate a surgical instrument at the surgical site before starting a minimally invasive surgical procedure, the Assistant may depress a first Release Button 167 in order to move the setup arm of the slave manipulator 128 so that he or she may position the manipulator 128 so as to be attachable to a cannula extending into the incision 166. At the same time or afterwards, the Assistant may also engage the surgical instrument 138 onto the manipulator 128 and depress a second Button 168 in order to move the slave manipulator 128 so that he or she may insert the instrument 138 through the cannula to the surgical site and pivot the surgical instrument 138 into the proper position and orientation at the surgical site.
The first Release Button 167 releases brakes that hold or lock setup joints (which are generally passive joints) of the setup arms in place. There is no need to disengage control of the corresponding master manipulator at this time, if the master manipulator does not directly control the set-up joints. In such case, they are only intended to be moved manually when their breaks are released. After the surgical instrument is properly engaged on the manipulator 128 and is ready to be inserted into its assigned cannula, the setup joints and consequently, the setup arm of the slave manipulator 128, are then locked in place by the Assistant releasing the first Release Button 167. To facilitate its movement by the Assistant, a handle may be placed on the setup arm and the first Release Button 167 placed on the handle so as to be depressed by a thumb of the Assistant when gripping the handle.
The second Button 168 places the slave manipulator 128 and its associated master manipulator in a “Clutch Mode” by disengaging control of the slave manipulator 128 by the master manipulator, so that after the instrument 138 is engaged on the slave manipulator 128, the insertion axis is freed together with the Outer Yaw and Outer Pitch joints, and is under the control of the Assistant.
If an endoscope 140 has already been properly inserted into the Patient in order to generate images of the surgical site, the Assistant may perform this step by viewing the surgical site through a monitor 150 which is being fed images of the surgical site by the endoscope 140. On the other hand, if it is the endoscope 140 that is being inserted in this step, images generated by the endoscope 140 as it is being inserted, may be viewed on the monitor 150 by the Assistant.
Once inserted to the proper depth, the Assistant may then position the instrument 138 by moving the slave manipulator 128 so as to pivot the instrument 128 about a pivot point defined at the incision 166 or to insert it further along the cannula direction. After properly positioning and orientating the surgical instrument 138 at the surgical site, the Assistant may then release the second Button 168 to re-engage computer control of the slave manipulator 128 and in particular, its active joints, after the processor 102 has associated the current position of the surgical instrument 138 and its slave manipulator 128 with the locked position of its associated master manipulator. At this point, the slave manipulator will stay locked in place until the Surgeon acts to regain tele-control of it.
During manual positioning of the slave manipulator 128 by the Assistant, internally generated (i.e., within the slave manipulator 128) frictional and inertial resistance to such movement may become objectionable so as to make it difficult for the Assistant to manually position the surgical instrument 138 at the surgical site. To reduce such internally generated frictional and inertial resistance, a control system 200 is switched in to be operative during Clutch Mode.
In the present example, one or more of such control system 200 is implemented in the processor 102 for the slave manipulator 128. The number of control system 200 included or otherwise activated for the slave manipulator 128 during Clutch Mode depends upon the number of active joints of the slave manipulator 128 which could materially benefit from such control system 200 in assisting the Assistant to reduce one or more sources of frictional and/or inertial resistance when manually moving the slave manipulator 128. The joint motor 205 and sensor 206, on the other hand, are included in the slave manipulator 128 to respectively drive and measure displacement of their corresponding active joint in the slave manipulator 128.
In its basic operation, when an Assistant manually moves the slave manipulator 128, the movement causes certain of its active joints to be rotated depending upon the directional and angular movement of the slave manipulator 128. Both gravitational, as well as internally generated frictional and inertial resistance to manual movement of the slave manipulator 128, may disturb the Assistant in this case. The control system 200 is designed to counteract undesired frictional and inertial forces.
In case the slave manipulator has a gravity imbalance, a separate Gravity Compensation control system 204 including a Gravity Model of the slave manipulator 128 may be used to counteract such gravity imbalance, and its torque commands added to those generated by the control systems 200 for appropriate active joint motors.
A Gravity Model based on a rigid body model for the links of a serial manipulator is a well known model in robotics. The gravity torque on the ith joint of the manipulator grav_i is computed as a function of the n×1 vector of current joint positions pos according to the formula:
grav — i(pos)=Sum(for j from I to n)(mass— j*g·Jac — col — j)
grav — i(pos)=Sum(for j from I to n)(mass— j*g·Jac — col — j)
where mass_j is the mass of the jth link of the manipulator, g is the 3×1 vector of gravity acceleration, “·” indicates a vector scalar product, “*” indicates multiplication by scalar, and Jac_col_j is given by the following expressions:
Jac_col_j=z_j
for linear or prismatic joints, and
Jac — col — j=z — j^(P — cog — i−P — j)
Jac_col_j=z_j
for linear or prismatic joints, and
Jac — col — j=z — j^(P — cog — i−P — j)
for revolute joints, where ^ indicates the vector cross product, P_cog_i is the 3×1 vector representing the position of the center of mass of the ith link and P_j is the 3×1 vector representing a point on the axis of motion of the jth joint, and z_j represents the axis of the jth joint and more specifically, the unitary vector oriented for a prismatic or linear joint as the direction of linear motion of the joint and for a rotary joint as the axis of rotation of the joint.
A switch 210 is placed in the “A” position by the processor 102 during Clutch Mode (i.e., when the second Button 168 is depressed) in order to connect the control system 200 to its active joint motor 205. In Normal Mode (i.e., when the second Button 168 is not depressed), the switch 210 is placed in the “B” position so that a motor command signal TMMCOM from a master/slave control system (not shown) is provided to the active joint motor 205. The master/slave control system provides operative control of the slave manipulator 128 by its associated master manipulator during normal operation of the Robotic Surgical System 100. Additional details on such a master/slave control system are provided in commonly owned U.S. Pat. No. 6,424,885 entitled “Camera Referenced Control in a Minimally Invasive Surgical Apparatus,” which is incorporated herein by this reference. Note that unlike the control system 200, the Gravity Compensation control system 204 is always connected to the active joint motor 205, in both Clutch and Normal Modes.
The internally generated frictional and inertial resistance to be overcome when manually moving the slave manipulator 128 may derive at least in part from viscosity of fluid material (such as grease) disposed on moving parts of the slave manipulator 128, Coulomb friction generated by the interaction of moving parts of the slave manipulator 128, cyclical cogging effects, and inertia of the moving parts of the slave manipulator 128. Thus, a properly scaled, compensating torque command signal is generated and provided to appropriate active joint motors by control systems 200 to assist the Assistant when manually moving the slave manipulator 128.
For each active joint being controlled by a control system 200 in the slave manipulator 128, an observer 207 corresponding to that active joint receives sampled displacement measurements “X” for the joint from its displacement sensor 206 and the joint motor torque command TCOM1 of the control system 200, and generates estimates for the angular velocity “VOBS”, angular acceleration “AOBS”, and external torque bias TEXTOBS.
A non-linear viscosity model 201 generates a first signal using the estimated velocity “VOBS”, a Coulomb with hysteresis and cogging compensation model 202 generates a second signal using the sampled displacement measurements “X” for the joint along with the estimated velocity “VOBS” and acceleration “AOBS”, and an inertia model 203 generates a third signal using the estimated joint acceleration “AOBS” and optionally, also using the position, estimated velocity and estimated acceleration of other active joints of the slave manipulator 128. The first, second and third signals are then combined or added together to generate a first torque command signal “TCOM”. The external torque bias “TEXTOBS” is then scaled by a gain 208 that controls the amount of servo assist provided and is tuned experimentally to provide the desired lightness of feel to the operator moving the manipulator without inducing a feeling of activeness i.e. the feeling that the manipulator tends to move away on its own once its motion is manually initiated. The result is added to the first torque command signal “TCOM”, and the sum passed through a torque saturation unit 204 (e.g., a limiter) to generate a second torque command TCOM1. The second torque command TCOM1 is then added, during Clutch Mode, to a gravity compensating torque command generated by the Gravity Compensation control system 204, and provided to the joint motor 205 as part of a drive signal.
The observer 207 used in the control system 200 is an estimator of the current state of a dynamic system that is chosen to model the dynamic behavior of interest of the active joint being controlled. The model used in this case is referred to a “Dynamic Joint Model”.
A first Dynamic Joint Model that proves itself useful for the estimation of the joint velocity, joint acceleration and the external torque applied to the joint is a third order dynamic system representing a rigid mass or inertia feeling a viscous drag force linearly proportional to its velocity and an externally applied constant bias torque (External Torque). Choosing as system states the joint position, the joint velocity and the External Torque, and as system input the torque applied by the motor to the joint (Motor Torque), the first Dynamic Joint Model can be described in state space:
dx(t)/dt=Ax(t)+Bu(t)
y(t)=Cx(t)
dx(t)/dt=Ax(t)+Bu(t)
y(t)=Cx(t)
wherein the input u is a scalar representing the Motor torque; the output y is a 3×1 column vector with first element being the joint position, second element being the joint velocity and third element being the External Torque; the state x is a 3×1 column vector with first element being the joint position, second element being the joint velocity and third element being the External Torque; A is a 3×3 matrix (state matrix) given by:
A=[[0 1 0] [0 −b/m 1/b] [0 0 0]],
A=[[0 1 0] [0 −b/
where m is the total joint mass or inertia, and b is the total coefficient of linear viscous friction of the joint; B is a 3×1 column vector given by:
B=[0 1/m 0];
B=[0 1/m 0];
and C is a 3×3 identity matrix:
C=[1 0 0; 0 1 0; 0 0 1].
C=[1 0 0; 0 1 0; 0 0 1].
The transfer function G(s) between the joint position and the joint motor torque can be expressed using the Dynamic Joint Model presented above as:
G(s)=1/(m*s+b)*1/s
G(s)=1/(m*s+b)*1/s
where s represents the LaPlace transform variable so that the function 1/s indicates an integration process. The amplitude of the transfer function G(s) as a function of the frequency f with s=2*pi*f*j is:
|G(f)|=|1/(m*(2*pi*f*j)^2+b*2*pi*f*j)|
|G(f)|=|1/(m*(2*pi*f*j)^2+b*2*pi*f*j)|
where j is the imaginary unit and |.| is the modulus operation on complex numbers.
The phase of the transfer function G(s) as a function of the frequency f with s=2*pi*f*j is:
phase(G(f))=phase(1/(m*(2*pi*f*j)^2+b*2*pi*f*j))
phase(G(f))=phase(1/(m*(2*pi*f*j)^2+b*2*pi*f*j))
with the phase(.) function returning the phase of the complex number in its argument.
The parameter m representing the total joint mass or inertia used and the parameter b representing the total joint linear viscous drag force or torque in the joint dynamic model can be computed by fitting the average values as determined empirically. The preferred method in making such determination is a system parameter identification procedure based on collecting for several cycles the joint position trajectory Joint_position_traj (k*T) and the joint motor torque trajectory Joint_motor_torque_traj (k*T) while the joint is tracking under position servo control, a set of sinusoidal position commands of excitation frequencies f_exc in the range of interest for the application (typically 1 Hz to 200 Hz) with the manipulator in one or more reference configurations for the application. The parameter T is the sampling time used to collect the trajectory in a digital discrete signal format in computer equipment. For each excitation frequency, the amplitudes A_motor_torque(f_exc) and A_position(f_exc) and the phase Phi_motor_torque(f_exc) and Phi_position(f_exc) of the sinusoidal approximations:
Joint_motor_torque_traj(k*T)=A_motor_torque(f — exc)*sin(2*pi*f — exc*k*T+Phi_motor_torque(f — exc),
Joint_position_traj(k*T)=A_joint_position(f — exc)*sin(2*pi*f — exc*k*T+Phi_joint_position(f — exc)
Joint_motor_torque_traj(k*T)=A_motor_torque(f — exc)*sin(2*pi*f — exc*k*T+Phi_motor_torque(f — exc),
Joint_position_traj(k*T)=A_joint_position(f — exc)*sin(2*pi*f — exc*k*T+Phi_joint_position(f — exc)
of respectively the joint motor torque trajectory and the joint position trajectory are determined with a data fit based on the minimization of the sum of the square error between the collected samples Joint_motor_torque_traj (k*T) and Joint_position_traj (k*T) and the above expression. Such a minimization can be carried out with well known Least Square Error Optimization methods. An experimental measure of the joint motor torque to joint position transfer function gain |G_exp(f_exc)| is then obtained for each excitation frequency as the ratio:
|G_exp(f — exc)|=A_position(f — exc)/A_motor_torque(f — exc),
|G_exp(f — exc)|=A_position(f — exc)/A_motor_torque(f — exc),
and the joint motor torque to joint position transfer function phase phase(G(f_exc)) is then obtained for each excitation frequency as the difference:
phase(G_exp(f — exc))=Phi_position(f — exc)−Phi_motor_torque(f — exc).
phase(G_exp(f — exc))=Phi_position(f — exc)−Phi_motor_torque(f — exc).
The total joint inertia or mass parameter m and the total joint viscous drag b are then computed to minimize the square error between the experimentally determined amplitude of the transfer function |G_exp(f_exc)| and the model transfer function |G(f_exc)| over the set of frequency f_ext used to excite the system.
The observer 207 used in the control system 200 can be realized from the state space model of the Dynamic Joint Model in the general form:
x — obs(t)=(A−L*Cobs)x — obs(t)+L*y(t)+B*u(t)
x — obs(t)=(A−L*Cobs)x — obs(t)+L*y(t)+B*u(t)
where L is the 3×1 column vector of observer gains l1, l2 and l3 whose values are set as a function of the desired speed of convergence of the observer estimations to their real values and the desired level of noise-reducing averaging on the observer estimations;
L=[l1 l2 l3];
L=[l1 l2 l3];
Cobs is the 3×1 row vector:
C_obs=[1 0 0];
C_obs=[1 0 0];
x_obs(t) is the 3×1 column vector with first element being the observed joint position, second element being the observer joint velocity, and third element being the observed External Torque; and
y(t) is the joint position as measured by the joint position sensor.
Conversion to digital form using the “Z” transform can be done employing a number of state of the art techniques (see for example “Control System Design” Graham C. Goodwin, Stefan F. Graebe, Mario E. Salgado, Prentice Hall 2001) such as the Zero Holder Hold Method, the Tustin Transform Method or the Discrete Delta Transform. The Discrete Delta Transform is the preferred method as it provides a smooth transition from continuous time to discrete time at the fast sampling rates (such as around 1 KHz in the present example) available with modern computers.
The observer 207 estimates a torque “TEXTOBS” being applied against and/or commanded to drive the joint motor 205 which is stored in the integrator state 307, estimates an acceleration “AOBS” which serves as an input to integrator 309, and a velocity “VOBS” which serves as an input to integrator 311, from a model of the joint and joint motor. The observer 207 is a tunable third order system having two complex poles setting the bandwidth of the observer 207 and a real pole setting the speed of estimation of the torque being applied against and/or commanded to drive the joint motor 205. Tuning in this example may be performed by adjusting values for gains l1 304, l2 305 and l3 306 to achieve the desired placement for the observer poles according to well known formulas for pole placement (see for example “Control System Design” Graham C. Goodwin, Stefan F. Graebe, Mario E. Salgado, Prentice Hall 2001)
A second Dynamic Joint Model that proves itself useful for the estimation of the joint velocity, joint acceleration and the external torque applied to the joint in presence of significant flexibility in the link mechanical structure and drive train is a fifth order dynamic system representing two masses or inertias interconnected by a visco-elastic spring wherein the first mass has applied to it a viscous drag force linearly proportional to its velocity and the second mass has applied to it an external constant bias torque (External Torque). The first mass represents the motor inertia and the second mass represents the link inertia. The resonance frequency of the model resulting from the interplay of the two masses and the intervening spring captures the mechanical resonance of the joint. Choosing as system states the joint position of the first mass (motor mass), the joint velocity of the first mass, the joint position of the second mass (link mass), the joint velocity of the second mass, and the External Torque; and as system input, the torque applied by the joint motor to the motor mass (Motor Torque), the second Dynamic Joint Model can be described in state space as:
dx(t)/dt=Ax(t)+Bu(t)
y(t)=Cx(t)
dx(t)/dt=Ax(t)+Bu(t)
y(t)=Cx(t)
wherein the input u is a scalar representing the Motor torque; the output y is a 3×1 column vector with first element being the motor joint position, second element being the motor joint velocity, and third element being the External Torque; the state x is a 5×1 column vector with first element being the motor position, second element being the motor velocity, third element being the link position, fourth element being the link velocity and fifth element being the External Torque; A is a 5×5 matrix (state matrix) given by:
A=[0 1 0 0 0; 0 0 b1 b2 0; 0 0 0 wp 0; 0 0 −wp 2*delta*wp]
A=[0 1 0 0 0; 0 0 b1 b2 0; 0 0 0 wp 0; 0 0 −wp 2*delta*wp]
with delta being the damping coefficient of the joint mechanical resonance, wp being the natural frequency in radians of the joint mechanical resonance, wz being the natural frequency in radians of the zeros associated to the transfer function between the motor torque and motor position, and b1 and b2 determinable using the following expressions:
b1=1−wp^2/wz^2,
b2=2*delta*(wp^2/wz^2−Wp/Wz);
b1=1−wp^2/wz^2,
b2=2*delta*(wp^2/wz^2−Wp/Wz);
B is a 5×1 column vector equal to:
B=[0 1/m*wp^2/wz^2 0 wp/m]
B=[0 1/m*wp^2/wz^2 0 wp/m]
with m the total mass of the joint sum of the motor mass and the link mass; and
C is a 5×5 identity matrix equal to:
C=[1 0 0 0 0; 0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1].
C=[1 0 0 0 0; 0 1 0 0 0; 0 0 1 0 0; 0 0 0 1 0; 0 0 0 0 1].
The transfer function G(s) between the joint position and the joint motor torque can be expressed using the second Dynamic Joint Model presented above as:
G(s)=1/(m*s^2)*(Wp/Wz)^2*(s^2+2*delta*wz*s+wz^2)/(s^2+2*delta*wps+wp^2)
G(s)=1/(m*s^2)*(Wp/Wz)^2*(s^2+2*delta*wz*s+wz^2)/(s^2+2*delta*wps+wp^2)
A methodology identical to the one described above for the first Dynamic Model can be employed to obtain empirically derived values for the parameters of the second Dynamic Model and to design an observer to obtain estimates of the joint motor position, velocity, acceleration and external torque.
The non-linear viscosity model 201 is designed to mask the velocity dependent drag force or torque that can be felt in the joint of the slave manipulator 128 when the slave manipulator 128 is manually moved around to reach its desired position at the surgical site. The drag force or torque exhibits different functional dependencies on the joint velocity according to the specific mechanical design of the joint. The actual value of the joint drag force or torque can be empirically determined at a number of joint velocities of interest for the application. The measurement at each one of the desired velocities can be for example carried out by driving the joint over most of its range of motion at the desired constant velocity using a servo position control system to regulate the joint velocity to closely track the desired one. The motor torque commanded by the servo position control system along the constant velocity part of the trajectory can be collected and averaged to produce the desired measurement of the drag force or torque at the specific desired velocity.
In a first implementation of the non-linear viscosity model 201, the empirically determined values of viscous drag force or torque for each velocity of interest are compiled in a look-up table with linear or quadratic interpolation to provide an actual viscous drag force or torque output tau_viscous based on the observed velocity:
tau_viscous=lookupTable(vobs)
tau_viscous=lookupTable(vobs)
In a second implementation of the non-linear viscosity model 201, a polynomial functional relationship between joint velocity and viscous drag torque or force is assumed:
tau_viscous=c1*v — obs+c3*v — obs^3+c5*v — obs^5
tau_viscous=c1*v — obs+c3*v — obs^3+c5*v — obs^5
where the coefficients c1, c3 and c5 are determined to minimize the square error between the polynomial model and the experimentally determined values of viscous drag force or torque for each velocity of interest.
The actual output of the viscosity model 201 is meant to compensate for a desired percentage viscous_gain of the overall viscous drag forces or torque described above according to the relationship:
tau_viscous_comp=viscous_gain*tau_viscous
tau_viscous_comp=viscous_gain*tau_viscous
It will be appreciated that, by aiming only at a partial compensation of the viscous forces, the feeling experienced by the Assistant when manually positioning the slave manipulator 128 becomes lighter without incurring the risk of triggering active behaviors, i.e. the feeling that the manipulator tends to move away on its own once its motion is manually initiated, that may arise when the total viscous force in the joints are compensated for. At the same time the requirements on the accuracy of the viscosity model 301, that in practice always change with operating temperature and age of the slave manipulator 128, are also greatly relaxed.
The inertial forces arising at the joints from the rigid body mechanics of the slave manipulator 128 are a non-linear function of the positions, velocities and acceleration of all the “n” manipulator joints. The analytical equation describing such inertial forces/torque tau_inertial is (see, e.g., “Introduction to Robotics” John J. Craig, 1989 Prentice Hall):
tau_inertial=Ma(pos)*acc+Cor(pos,vel)
tau_inertial=Ma(pos)*acc+Cor(pos,vel)
where Ma(pos) is the n×n manipulator inertial matrix; Cor(pos, vel) is the n×1 vector of centripetal and Coriolis forces; pos, vel, acc are respectively the n×1 vector of manipulator joint positions, velocities and accelerations. Both Ma(pos) and Cor(pos, vel) are a nonlinear function of the manipulator link masses, baricentral inertias and center of mass locations.
The inertial model 203 in meant to compensate for a desired percentage m_gain of the overall inertial forces described above according to:
tau_inertial_comp=m_gain*tau_inertial
tau_inertial_comp=m_gain*tau_inertial
It will be appreciated that, by aiming only at a partial compensation of the inertial forces, the feeling experienced by the Assistant when manually positioning the slave manipulator 128 becomes lighter without incurring the risk of triggering unstable behaviors that may arise from attempts to mask the whole manipulator inertia. At the same time the requirements on the accuracy of the model and the inertial parameters in the inertial model 203 are also greatly relaxed.
The inertial model 203 can be further greatly simplified considering that the manual positioning of the surgical instrument 138 usually only requires slave manipulator movements at relatively slow speeds and accelerations during which the cross influence between joints, the centrifugal forces and the Coriolis forces are negligible.
Gain=m_gain*M.
The first logical block of the model 202 in the top part of FIG. 6 includes the gain block GAIN3 601 representing the inverse of the corner velocity which effectively scales the input velocity so that the corner velocity corresponds to unity; the unitary velocity saturation block 602 that limits its output to be 1 if it is larger than one, and −1 if less then −1 and otherwise produces in output a copy of its input; and the gain block GAIN4 603 that is the actual maximum value of the joint Coulomb Friction torque or force that the model 202 is compensating for whenever the joint velocity is above the corner velocity. The resulting output friction compensating torque “FCT” as a function of the input velocity VOBS is shown in FIG. 7 . It will be appreciated that the lower the corner velocity (“CV”), the faster the full Coulomb Friction torque will be delivered to the joint to cancel quickly the joint friction when the joint motion is initiated. A limit to how low the corner velocity can be practically chosen is determined experimentally to prevent self oscillations that may arise as a result of the linear part of the model 202 behaving as a positive velocity feedback gain.
The second logical block of the model 202 in the bottom part of FIG. 6 includes: a Coulomb State Gain block 604 that multiplies the observed joint acceleration AOBS, a state saturation block 605 that limits the value that can get stored in the state memory block 606 to a Coulomb_state_max value. The effect of the second part of the model is to modify the output friction compensating torque FCT as a function of the input velocity VOBS in FIG. 7 to include an hysteresis band as in FIG. 8 that makes the output friction compensating torque change around the zero input velocity more or less rapidly for rates of change of velocity respectively higher or lower. The benefit provided by the second part of the model 202 is to allow the use of lower corner velocities, i.e. higher values for the corner velocity inverse gain 601 than it would be possible using the first part of the model alone without incurring the above mentioned self oscillations. The use of lower corner velocities in turn means that a greater percentage of the Coulomb friction is compensated at low speeds and the slave manipulator joint feels lighter to the Assistant during precise manual positioning tasks that typically are carried out at low velocities.
The third logical block of the model 202 in the top-right part of FIG. 6 includes: a variable gain 603 whose value is determined by the current joint position “X” and a lookup table (“LUT”) 608. As the joint moves during manual positioning of the slave manipulator 128 by the Assistant, resistance to such movement may periodically increase as a function of the joint displacement. In case of the presence of cyclic kinematic imperfections of the drive train of the joint, the maximum value of the joint Coulomb friction can have a cyclic dependence on the joint angle. This phenomenon is commonly referred to as cogging. The cyclic lookup table 608 can be used to account for such cogging effects by providing a multiplicative gain 603 as a function of the joint position. The values for the lookup table 608 can be derived by averaging motor torque required at each joint angle to servo the joint at the slowest controllable constant velocity.
Gains GAIN3 601 for the corner velocity inverse, GAIN4 603 for the Coulomb coefficient, GAIN5 604 for the coulomb state gain, as well as values for the cyclic LUT 608 may be determined empirically as necessary, as may the corner velocity saturation 602 and state saturation 605 values.
In 901, a periodically sampled displacement measurement is received from a joint sensor corresponding to a selected active joint of the slave manipulator. In 902, joint angular or linear velocity and acceleration estimates are generated using the received joint displacement measurement, previously received joint displacement measurements, and a commanded joint motor torque. In 903, a non-linear viscosity compensating signal is generated using the velocity estimate. In 904, a coulomb friction with hysteresis and cogging compensating signal is generated using the joint displacement measurement, and velocity and acceleration estimates. In 905, an inertia compensating signal is generated using the angular acceleration estimate. In 906, a first friction and inertia compensating torque command is generated by adding the signals generated in 903, 904 and 905. In 907, an external bias motor torque command is added to the first friction and inertia compensating torque command, if available. In 908, the resulting signal in 907 is then saturation limited to generate a second friction and inertia compensating torque command. In 909, the second friction and inertia compensating torque command is then provided to the joint motor in order to assist in the manual movement of the slave manipulator so as to reduce internally generated frictional and inertial resistance to manual positioning of the slave manipulator to a comfortable and stability safe level. The method then continually repeats 901-909 to continually update the magnitude of the second friction and inertia compensating signal being provided to the joint motor, so that when movement of the slave manipulator ceases, the compensating signal being provided to the joint motor becomes zero.
Although the various aspects of the present invention have been described with respect to a preferred embodiment, it will be understood that the invention is entitled to full protection within the full scope of the appended claims.
Claims (2)
1. A method implemented in a robotic system including a slave manipulator, a master manipulator, a master/slave control system configured to control movement of the slave manipulator in response to manipulation of the master manipulator, at least one friction and inertia compensating control system configured to generate a signal by processing measurements received from a corresponding one of a plurality of sensors of the slave manipulator to drive a corresponding one of a plurality of actuators of the slave manipulator so as to reduce effects of internally generated frictional and inertial resistance when at least a portion of the slave manipulator is being manually moved, the method comprising:
engaging the master/slave control system and disengaging the at least one friction and inertia compensating control system when the robotic system is in a first selectable mode; and
disengaging the master/slave control system and engaging the at least one friction and inertia compensating control system when the robotic system is in a second selectable mode.
2. The method according to claim 1 , further comprising:
placing the robotic system in the first selectable mode when a switch is in a first state; and
placing the robotic system in the second selectable mode when the switch is in a second state.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/877,263 US8864751B2 (en) | 2005-12-20 | 2010-09-08 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US14/490,090 US9198730B2 (en) | 2005-12-20 | 2014-09-18 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US14/932,117 US9402689B2 (en) | 2005-12-20 | 2015-11-04 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US75191605P | 2005-12-20 | 2005-12-20 | |
| US11/479,144 US7819859B2 (en) | 2005-12-20 | 2006-06-30 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US12/877,263 US8864751B2 (en) | 2005-12-20 | 2010-09-08 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/479,144 Continuation US7819859B2 (en) | 2005-12-20 | 2006-06-30 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/490,090 Division US9198730B2 (en) | 2005-12-20 | 2014-09-18 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20110009880A1 US20110009880A1 (en) | 2011-01-13 |
| US8864751B2 true US8864751B2 (en) | 2014-10-21 |
Family
ID=38174688
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/479,144 Active 2029-08-26 US7819859B2 (en) | 2005-12-20 | 2006-06-30 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US12/877,263 Active 2029-03-24 US8864751B2 (en) | 2005-12-20 | 2010-09-08 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US14/490,090 Active US9198730B2 (en) | 2005-12-20 | 2014-09-18 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US14/932,117 Active US9402689B2 (en) | 2005-12-20 | 2015-11-04 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/479,144 Active 2029-08-26 US7819859B2 (en) | 2005-12-20 | 2006-06-30 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/490,090 Active US9198730B2 (en) | 2005-12-20 | 2014-09-18 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US14/932,117 Active US9402689B2 (en) | 2005-12-20 | 2015-11-04 | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
Country Status (1)
| Country | Link |
|---|---|
| US (4) | US7819859B2 (en) |
Cited By (203)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9078685B2 (en) | 2007-02-16 | 2015-07-14 | Globus Medical, Inc. | Method and system for performing invasive medical procedures using a surgical robot |
| US9198730B2 (en) | 2005-12-20 | 2015-12-01 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US9782229B2 (en) | 2007-02-16 | 2017-10-10 | Globus Medical, Inc. | Surgical robot platform |
| US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
| US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
| US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
| US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
| US10292778B2 (en) | 2014-04-24 | 2019-05-21 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
| US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
| US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
| US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US10569794B2 (en) | 2015-10-13 | 2020-02-25 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
| US10580217B2 (en) | 2015-02-03 | 2020-03-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US10646283B2 (en) | 2018-02-19 | 2020-05-12 | Globus Medical Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
| US10660712B2 (en) | 2011-04-01 | 2020-05-26 | Globus Medical Inc. | Robotic system and method for spinal and other surgeries |
| US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
| EP3684284A4 (en) * | 2017-12-11 | 2020-09-16 | Verb Surgical Inc. | Active backdriving for a robotic arm |
| US10786317B2 (en) | 2017-12-11 | 2020-09-29 | Verb Surgical Inc. | Active backdriving for a robotic arm |
| US10813704B2 (en) | 2013-10-04 | 2020-10-27 | Kb Medical, Sa | Apparatus and systems for precise guidance of surgical tools |
| US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
| US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
| US10898252B2 (en) | 2017-11-09 | 2021-01-26 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods, and related methods and devices |
| US10925681B2 (en) | 2015-07-31 | 2021-02-23 | Globus Medical Inc. | Robot arm and methods of use |
| US10939968B2 (en) | 2014-02-11 | 2021-03-09 | Globus Medical Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
| US10945742B2 (en) | 2014-07-14 | 2021-03-16 | Globus Medical Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US10973594B2 (en) | 2015-09-14 | 2021-04-13 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
| US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
| US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
| US11109922B2 (en) | 2012-06-21 | 2021-09-07 | Globus Medical, Inc. | Surgical tool systems and method |
| US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
| US20210290326A1 (en) * | 2007-06-13 | 2021-09-23 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
| US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
| US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
| US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
| US11266470B2 (en) | 2015-02-18 | 2022-03-08 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
| US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
| US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
| US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
| US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
| US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
| US11337769B2 (en) | 2015-07-31 | 2022-05-24 | Globus Medical, Inc. | Robot arm and methods of use |
| US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
| US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
| US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
| US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
| US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
| US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
| US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
| US11432890B2 (en) | 2018-01-04 | 2022-09-06 | Covidien Lp | Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough |
| US11432891B2 (en) | 2015-06-03 | 2022-09-06 | Covidien Lp | Offset instrument drive unit |
| USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
| US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
| US11446099B2 (en) | 2016-06-03 | 2022-09-20 | Covidien Lp | Control arm for robotic surgical systems |
| US11464593B2 (en) | 2016-06-03 | 2022-10-11 | Covidien Lp | Passive axis system for robotic surgical systems |
| US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
| US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
| US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
| US11523509B2 (en) | 2016-05-26 | 2022-12-06 | Covidien Lp | Instrument drive units |
| US11517183B2 (en) | 2015-10-23 | 2022-12-06 | Covidien Lp | Surgical system for detecting gradual changes in perfusion |
| US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
| US11529195B2 (en) | 2017-01-18 | 2022-12-20 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
| US11529203B2 (en) | 2015-09-25 | 2022-12-20 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
| US11547508B2 (en) | 2016-05-26 | 2023-01-10 | Covidien Lp | Robotic surgical assemblies |
| US11553974B2 (en) | 2017-05-25 | 2023-01-17 | Covidien Lp | Systems and methods for detection of objects within a field of view of an image capture device |
| US11553984B2 (en) | 2016-06-03 | 2023-01-17 | Covidien Lp | Robotic surgical system with an embedded imager |
| US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
| US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11576562B2 (en) | 2016-04-07 | 2023-02-14 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
| US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
| US11576739B2 (en) | 2018-07-03 | 2023-02-14 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
| US11583358B2 (en) | 2017-09-06 | 2023-02-21 | Covidien Lp | Boundary scaling of surgical robots |
| US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
| US11596489B2 (en) | 2015-03-10 | 2023-03-07 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
| US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
| US11612446B2 (en) | 2016-06-03 | 2023-03-28 | Covidien Lp | Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator |
| US11615884B2 (en) | 2018-03-06 | 2023-03-28 | Digital Surgery Limited | Techniques for virtualized tool interaction |
| US11618171B2 (en) | 2013-12-11 | 2023-04-04 | Covidien Lp | Wrist and jaw assemblies for robotic surgical systems |
| US11622824B2 (en) | 2015-06-16 | 2023-04-11 | Covidien Lp | Robotic surgical system torque transduction sensing |
| US11628024B2 (en) | 2018-03-08 | 2023-04-18 | Covidien Lp | Surgical robotic systems |
| US11628039B2 (en) | 2006-02-16 | 2023-04-18 | Globus Medical Inc. | Surgical tool systems and methods |
| US11628022B2 (en) | 2017-09-05 | 2023-04-18 | Covidien Lp | Collision handling algorithms for robotic surgical systems |
| US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
| US11633243B2 (en) | 2018-10-10 | 2023-04-25 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
| US11647888B2 (en) | 2018-04-20 | 2023-05-16 | Covidien Lp | Compensation for observer movement in robotic surgical systems having stereoscopic displays |
| US11666395B2 (en) | 2015-06-23 | 2023-06-06 | Covidien Lp | Robotic surgical assemblies |
| US11690691B2 (en) | 2017-02-15 | 2023-07-04 | Covidien Lp | System and apparatus for crush prevention for medical robot applications |
| US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
| US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
| US11717361B2 (en) | 2017-05-24 | 2023-08-08 | Covidien Lp | Electrosurgical robotic system having tool presence detection |
| US11737766B2 (en) | 2014-01-15 | 2023-08-29 | Globus Medical Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
| US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
| US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11751955B2 (en) | 2007-06-13 | 2023-09-12 | Intuitive Surgical Operations, Inc. | Method and system for retracting an instrument into an entry guide |
| US11779413B2 (en) | 2015-11-19 | 2023-10-10 | Covidien Lp | Optical force sensor for robotic surgical system |
| US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
| US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
| US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
| US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11806102B2 (en) | 2013-02-15 | 2023-11-07 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
| US11813030B2 (en) | 2017-03-16 | 2023-11-14 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
| US11819365B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
| US11839441B2 (en) | 2017-05-25 | 2023-12-12 | Covidien Lp | Robotic surgical system with automated guidance |
| US11850009B2 (en) | 2021-07-06 | 2023-12-26 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
| US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
| US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
| US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
| US11865729B2 (en) | 2006-06-29 | 2024-01-09 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
| US11872000B2 (en) | 2015-08-31 | 2024-01-16 | Globus Medical, Inc | Robotic surgical systems and methods |
| US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
| US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
| US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
| US11911225B2 (en) | 2012-06-21 | 2024-02-27 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
| US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
| US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
| US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
| US11925429B2 (en) | 2015-02-19 | 2024-03-12 | Covidien Lp | Repositioning method of input device for robotic surgical system |
| US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
| US11941734B2 (en) | 2009-03-31 | 2024-03-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
| US11944325B2 (en) | 2019-03-22 | 2024-04-02 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
| US11957371B2 (en) | 2014-08-13 | 2024-04-16 | Covidien Lp | Robotically controlling mechanical advantage gripping |
| US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
| US11974886B2 (en) | 2016-04-11 | 2024-05-07 | Globus Medical Inc. | Surgical tool systems and methods |
| US11986261B2 (en) | 2018-04-20 | 2024-05-21 | Covidien Lp | Systems and methods for surgical robotic cart placement |
| US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
| US11998288B2 (en) | 2018-09-17 | 2024-06-04 | Covidien Lp | Surgical robotic systems |
| US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
| US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
| US12029523B2 (en) | 2017-12-01 | 2024-07-09 | Covidien Lp | Drape management assembly for robotic surgical systems |
| US12029510B2 (en) | 2018-01-10 | 2024-07-09 | Covidien Lp | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
| US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
| US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
| US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
| US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
| US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
| US12082886B2 (en) | 2017-04-05 | 2024-09-10 | Globus Medical Inc. | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
| US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
| US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
| US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
| US12144537B2 (en) | 2017-08-16 | 2024-11-19 | Covidien Lp | End effector including wrist assembly and electrosurgical tool for robotic surgical systems |
| US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
| US12161427B2 (en) | 2022-06-08 | 2024-12-10 | Globus Medical, Inc. | Surgical navigation system with flat panel registration fixture |
| US12184636B2 (en) | 2021-10-04 | 2024-12-31 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12178523B2 (en) | 2021-04-19 | 2024-12-31 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
| US12178528B2 (en) | 2018-09-14 | 2024-12-31 | Covidien Lp | Surgical robotic systems and methods of tracking usage of surgical instruments thereof |
| US12186040B2 (en) | 2018-09-17 | 2025-01-07 | Covidien Lp | Surgical robotic systems |
| US12201375B2 (en) | 2021-09-16 | 2025-01-21 | Globus Medical Inc. | Extended reality systems for visualizing and controlling operating room equipment |
| US12207894B2 (en) | 2017-09-08 | 2025-01-28 | Covidien Lp | Energy disconnect for robotic surgical assemblies |
| US12223629B2 (en) | 2019-09-11 | 2025-02-11 | Covidien Lp | Systems and methods for smoke-reduction in images |
| US12220120B2 (en) | 2012-06-21 | 2025-02-11 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US12220176B2 (en) | 2019-12-10 | 2025-02-11 | Globus Medical, Inc. | Extended reality instrument interaction zone for navigated robotic |
| US12226169B2 (en) | 2022-07-15 | 2025-02-18 | Globus Medical, Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12238087B2 (en) | 2021-10-04 | 2025-02-25 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12232820B2 (en) | 2021-12-01 | 2025-02-25 | Globus Medical, Inc. | Extended reality systems with three-dimensional visualizations of medical image scan slices |
| US12239396B2 (en) | 2008-06-27 | 2025-03-04 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
| USD1066382S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066404S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066380S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066383S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066381S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066405S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066378S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066379S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| US12251140B2 (en) | 2012-06-21 | 2025-03-18 | Globus Medical, Inc. | Methods for performing medical procedures using a surgical robot |
| US12256890B2 (en) | 2019-12-23 | 2025-03-25 | Covidien Lp | Systems and methods for guiding surgical procedures |
| US12262863B2 (en) | 2020-05-12 | 2025-04-01 | Covidien Lp | Systems and methods for image mapping and fusion during surgical procedures |
| US12266040B2 (en) | 2009-03-31 | 2025-04-01 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
| US12262964B2 (en) | 2020-02-26 | 2025-04-01 | Covidien Lp | Robotic surgical instrument including linear encoders for measuring cable displacement |
| US12262954B2 (en) | 2012-06-21 | 2025-04-01 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12310683B2 (en) | 2012-06-21 | 2025-05-27 | Globus Medical, Inc. | Surgical tool systems and method |
| US12315109B2 (en) | 2019-09-11 | 2025-05-27 | Covidien Lp | Systems and methods for neural-network based color restoration |
| US12318150B2 (en) | 2022-10-11 | 2025-06-03 | Globus Medical Inc. | Camera tracking system for computer assisted surgery navigation |
| US12329593B2 (en) | 2012-06-21 | 2025-06-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12329391B2 (en) | 2019-09-27 | 2025-06-17 | Globus Medical, Inc. | Systems and methods for robot-assisted knee arthroplasty surgery |
| US12329475B2 (en) | 2016-03-04 | 2025-06-17 | Covidien Lp | Inverse kinematic control systems for robotic surgical system |
| US12329469B2 (en) | 2014-12-02 | 2025-06-17 | Globus Medical Inc. | Robot assisted volume removal during surgery |
| US12350828B2 (en) | 2019-12-16 | 2025-07-08 | Covidien Lp | Surgical robotic systems including surgical instruments with articulation |
| US12354263B2 (en) | 2022-07-15 | 2025-07-08 | Globus Medical Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12357400B2 (en) | 2006-06-29 | 2025-07-15 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
| US12369998B2 (en) | 2021-05-28 | 2025-07-29 | Covidien Lp | Real time monitoring of a robotic drive module |
| US12376934B2 (en) | 2019-05-22 | 2025-08-05 | Covidien Lp | Surgical robotic arm storage assemblies and methods of replacing surgical robotic arms using the storage assemblies |
| USD1087135S1 (en) | 2023-08-02 | 2025-08-05 | Covidien Lp | Surgeon display screen with a graphical user interface having spent staple icon |
| USD1087995S1 (en) | 2023-08-02 | 2025-08-12 | Covidien Lp | Surgeon display screen with a transitional graphical user interface having staple firing icon |
| US12390294B2 (en) | 2021-12-14 | 2025-08-19 | Covidien Lp | Robotic surgical assemblies including surgical instruments having articulatable wrist assemblies |
| US12394086B2 (en) | 2022-05-10 | 2025-08-19 | Globus Medical, Inc. | Accuracy check and automatic calibration of tracked instruments |
| US12396692B2 (en) | 2019-09-24 | 2025-08-26 | Globus Medical, Inc. | Compound curve cable chain |
| US12408929B2 (en) | 2019-09-27 | 2025-09-09 | Globus Medical, Inc. | Systems and methods for navigating a pin guide driver |
| US12409003B2 (en) | 2021-05-14 | 2025-09-09 | Covidien Lp | Instrument cassette assemblies for robotic surgical instruments |
| US12414752B2 (en) | 2020-02-17 | 2025-09-16 | Globus Medical, Inc. | System and method of determining optimal 3-dimensional position and orientation of imaging device for imaging patient bones |
| US12430760B2 (en) | 2021-10-20 | 2025-09-30 | Globus Medical, Inc. | Registering intra-operative images transformed from pre-operative images of different imaging-modality for computer assisted navigation during surgery |
| US12433699B2 (en) | 2022-02-10 | 2025-10-07 | Covidien Lp | Surgical robotic systems and robotic arm carts thereof |
| US12444045B2 (en) | 2022-05-12 | 2025-10-14 | Globus Medical, Inc. | Interpolation of medical images |
Families Citing this family (124)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
| US9415510B2 (en) | 1999-09-17 | 2016-08-16 | Intuitive Surgical Operations, Inc. | System and methods for positioning a manipulator arm by clutching within a null-perpendicular space concurrent with null-space movement |
| US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
| KR101477133B1 (en) * | 2006-06-13 | 2014-12-29 | 인튜어티브 서지컬 인코포레이티드 | Minimally invasive surgical system |
| US10258425B2 (en) | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
| US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
| US8814779B2 (en) | 2006-12-21 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Stereoscopic endoscope |
| US8556807B2 (en) * | 2006-12-21 | 2013-10-15 | Intuitive Surgical Operations, Inc. | Hermetically sealed distal sensor endoscope |
| US20090005907A1 (en) * | 2007-03-07 | 2009-01-01 | Orbital Robotics Ltd. | Manipulator unit |
| US8903546B2 (en) | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
| US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
| US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
| US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
| GB2451498A (en) * | 2007-07-31 | 2009-02-04 | Prosurgics Ltd | A motorised manipulator that accommodates manual movement of a surgical instrument |
| US9895813B2 (en) * | 2008-03-31 | 2018-02-20 | Intuitive Surgical Operations, Inc. | Force and torque sensing in a surgical robot setup arm |
| US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
| US8923602B2 (en) * | 2008-07-22 | 2014-12-30 | Comau, Inc. | Automated guidance and recognition system and method of the same |
| US8521312B2 (en) * | 2008-08-06 | 2013-08-27 | Honeywell International Inc. | Apparatus and method for wireless access and control of process control instruments |
| US10507071B2 (en) * | 2009-05-11 | 2019-12-17 | Carefusion 2200, Inc. | Hand actuated, articulating device having an electric force enhancement system |
| US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
| US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
| JP5750116B2 (en) * | 2009-11-16 | 2015-07-15 | コーニンクレッカ フィリップス エヌ ヴェ | Human-Robot Shared Control for Endoscope-Assisted Robot |
| US8934003B2 (en) | 2010-01-08 | 2015-01-13 | Koninklijkle Philips N.V. | Uncalibrated visual servoing using real-time velocity optimization |
| WO2012029227A1 (en) | 2010-08-31 | 2012-03-08 | パナソニック株式会社 | Controller and control method for master-slave robot, master-slave robot, control program, and integrated electronic circuit |
| US8483877B2 (en) | 2010-09-03 | 2013-07-09 | GM Global Technology Operations LLC | Workspace safe operation of a force- or impedance-controlled robot |
| JP6106594B2 (en) * | 2010-11-11 | 2017-04-05 | ザ・ジョンズ・ホプキンス・ユニバーシティ | Human-machine linkage robot system |
| US9101379B2 (en) | 2010-11-12 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Tension control in actuation of multi-joint medical instruments |
| WO2012112251A1 (en) * | 2011-02-15 | 2012-08-23 | Intuitive Surgical Operations, Inc. | Systems for indicating a clamping prediction |
| DE102011004371B4 (en) * | 2011-02-18 | 2017-11-23 | Siemens Healthcare Gmbh | Articulated arm with locking function |
| DE102011004370A1 (en) * | 2011-02-18 | 2012-08-23 | Siemens Aktiengesellschaft | Articulated arm with locking mechanism |
| US9405285B2 (en) | 2011-03-18 | 2016-08-02 | Honeywell International Inc. | Interface for local configuration and monitoring of an industrial field device with support for provisioning onto an industrial wireless network and related system and method |
| US9065813B2 (en) | 2011-03-18 | 2015-06-23 | Honeywell International Inc. | Adapter device for coupling an industrial field instrument to an industrial wireless network and related system and method |
| DE102011005917A1 (en) * | 2011-03-22 | 2012-09-27 | Kuka Laboratories Gmbh | Medical workplace |
| WO2013018908A1 (en) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | Manipulator for medical use and surgery support device |
| JP6009840B2 (en) | 2011-08-04 | 2016-10-19 | オリンパス株式会社 | Medical equipment |
| JP6021484B2 (en) | 2011-08-04 | 2016-11-09 | オリンパス株式会社 | Medical manipulator |
| JP5953058B2 (en) | 2011-08-04 | 2016-07-13 | オリンパス株式会社 | Surgery support device and method for attaching and detaching the same |
| JP5936914B2 (en) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | Operation input device and manipulator system including the same |
| JP5931497B2 (en) | 2011-08-04 | 2016-06-08 | オリンパス株式会社 | Surgery support apparatus and assembly method thereof |
| JP6005950B2 (en) | 2011-08-04 | 2016-10-12 | オリンパス株式会社 | Surgery support apparatus and control method thereof |
| JP6081061B2 (en) * | 2011-08-04 | 2017-02-15 | オリンパス株式会社 | Surgery support device |
| WO2013018861A1 (en) | 2011-08-04 | 2013-02-07 | オリンパス株式会社 | Medical manipulator and method for controlling same |
| US8818417B2 (en) | 2011-10-13 | 2014-08-26 | Honeywell International Inc. | Method for wireless device location using automatic location update via a provisioning device and related apparatus and system |
| KR20130080909A (en) * | 2012-01-06 | 2013-07-16 | 삼성전자주식회사 | Surgical robot and method for controlling the same |
| US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
| CN107198567B (en) * | 2012-08-03 | 2021-02-09 | 史赛克公司 | Systems and methods for robotic surgery |
| KR102283182B1 (en) | 2012-08-15 | 2021-07-29 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | User initiated break-away clutching of a surgical mounting platform |
| KR102184960B1 (en) | 2012-08-15 | 2020-12-01 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Movable surgical mounting platform controlled by manual motion of robotic arms |
| WO2014043702A1 (en) * | 2012-09-17 | 2014-03-20 | Rethink Robotics, Inc. | Constraining robotic manipulators with redundant degrees of freedom |
| KR102023910B1 (en) * | 2012-11-23 | 2019-09-23 | 삼성전자주식회사 | Robot and friction compensation method for the robot |
| US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
| US10292887B2 (en) * | 2012-12-31 | 2019-05-21 | Mako Surgical Corp. | Motorized joint positioner |
| JP6112300B2 (en) * | 2013-01-10 | 2017-04-12 | パナソニックIpマネジメント株式会社 | Master-slave robot control device and control method, master-slave robot, and control program |
| US9675354B2 (en) * | 2013-01-14 | 2017-06-13 | Intuitive Surgical Operations, Inc. | Torque compensation |
| EP2979615B1 (en) * | 2013-03-29 | 2019-11-27 | FUJIFILM Corporation | Device for endoscopic surgery |
| JP6093850B2 (en) * | 2013-03-29 | 2017-03-08 | 富士フイルム株式会社 | Endoscopic surgical device |
| US10420583B2 (en) | 2013-05-22 | 2019-09-24 | Covidien Lp | Methods and apparatus for controlling surgical instruments using a port assembly |
| EP3037222B1 (en) | 2013-09-24 | 2025-08-27 | Sony Olympus Medical Solutions Inc. | Medical robot arm system and program |
| US9612587B2 (en) | 2014-02-11 | 2017-04-04 | Honeywell International Inc. | Mobile extension for industrial operator consoles |
| KR102470468B1 (en) * | 2014-03-17 | 2022-11-25 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | System and method for aligning with a reference target |
| US9597153B2 (en) | 2014-03-17 | 2017-03-21 | Intuitive Surgical Operations, Inc. | Positions for multiple surgical mounting platform rotation clutch buttons |
| EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
| KR102652836B1 (en) | 2014-08-12 | 2024-04-01 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Detecting uncontrolled movement |
| WO2016051495A1 (en) * | 2014-09-30 | 2016-04-07 | リバーフィールド株式会社 | Control system, control method, and program |
| EP3200718A4 (en) | 2014-09-30 | 2018-04-25 | Auris Surgical Robotics, Inc | Configurable robotic surgical system with virtual rail and flexible endoscope |
| ES2654335T3 (en) | 2014-10-23 | 2018-02-13 | Comau S.P.A. | System to monitor and control an industrial installation |
| US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
| US20160206179A1 (en) * | 2015-01-15 | 2016-07-21 | National Taiwan University | Assistive robot endoscopic system with intuitive maneuverability for laparoscopic surgery and method thereof |
| FR3032346B1 (en) * | 2015-02-05 | 2021-10-15 | Univ Pierre Et Marie Curie Paris 6 | INSTRUMENT HANDLING ASSISTANCE PROCESS |
| EP3263291A4 (en) * | 2015-02-26 | 2018-11-21 | Olympus Corporation | Operation input device and medical manipulator system |
| WO2016161444A1 (en) * | 2015-04-03 | 2016-10-06 | Think Surgical, Inc. | Robotic system with intuitive motion control |
| WO2016187008A1 (en) | 2015-05-15 | 2016-11-24 | Intuitive Surgical Operations, Inc. | System and method for force or torque limit compensation |
| EP3307197B1 (en) | 2015-06-10 | 2024-06-26 | Intuitive Surgical Operations, Inc. | System for patient-side instrument control |
| DE102015109368A1 (en) * | 2015-06-12 | 2016-12-15 | avateramedical GmBH | Device and method for robotic surgery and positioning aid |
| WO2017033365A1 (en) * | 2015-08-25 | 2017-03-02 | 川崎重工業株式会社 | Remote control robot system |
| CN108024837B (en) * | 2015-10-01 | 2021-03-16 | 索尼公司 | Medical support arm apparatus and medical system |
| US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
| WO2017127202A1 (en) | 2016-01-20 | 2017-07-27 | Intuitive Surgical Operations, Inc. | System and method for rapid halt and recovery of motion deviations in medical device repositionable arms |
| DE102016210846B4 (en) | 2016-03-24 | 2021-12-30 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Robotic arm |
| WO2017169649A1 (en) * | 2016-03-28 | 2017-10-05 | ソニー・オリンパスメディカルソリューションズ株式会社 | Medical observation device, drive control method, medical observation system, and support arm device |
| US9931025B1 (en) * | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
| US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
| KR102643758B1 (en) | 2017-05-12 | 2024-03-08 | 아우리스 헬스, 인코포레이티드 | Biopsy devices and systems |
| US20180360456A1 (en) * | 2017-06-20 | 2018-12-20 | Ethicon Llc | Surgical instrument having controllable articulation velocity |
| US10299870B2 (en) | 2017-06-28 | 2019-05-28 | Auris Health, Inc. | Instrument insertion compensation |
| US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
| CN107283429B (en) * | 2017-08-23 | 2020-09-04 | 北京百度网讯科技有限公司 | Artificial intelligence-based control method, device, system and terminal |
| US10145747B1 (en) | 2017-10-10 | 2018-12-04 | Auris Health, Inc. | Detection of undesirable forces on a surgical robotic arm |
| EP3684282B1 (en) | 2017-12-06 | 2024-02-21 | Auris Health, Inc. | Systems to correct for uncommanded instrument roll |
| US11510736B2 (en) | 2017-12-14 | 2022-11-29 | Auris Health, Inc. | System and method for estimating instrument location |
| KR20240118200A (en) | 2018-02-13 | 2024-08-02 | 아우리스 헬스, 인코포레이티드 | System and method for driving medical instrument |
| IT201800005091A1 (en) | 2018-05-04 | 2019-11-04 | "Procedure for monitoring the operating status of a processing station, its monitoring system and IT product" | |
| US11839979B2 (en) * | 2018-06-15 | 2023-12-12 | Universal Robots A/S | Dual mode free-drive of robot arm |
| CN112804959B (en) | 2018-09-28 | 2025-01-28 | 奥瑞斯健康公司 | Robotic systems and methods for accompanying endoscopic and percutaneous medical procedures |
| KR102852843B1 (en) | 2018-09-28 | 2025-09-03 | 아우리스 헬스, 인코포레이티드 | System and method for docking medical devices |
| CA3116287A1 (en) | 2018-10-15 | 2020-04-23 | Mazor Robotics Ltd. | Versatile multi-arm robotic surgical system |
| US12044586B2 (en) | 2019-04-15 | 2024-07-23 | Covidien Lp | Method of calibrating torque sensors of instrument drive units of a surgical robot |
| DK180508B1 (en) | 2019-10-22 | 2021-06-03 | Universal Robots As | Maintaining free-drive mode of robot arm for period of time |
| EP4049104A1 (en) | 2019-10-22 | 2022-08-31 | Universal Robots A/S | Robot arm with adaptive three-dimensional boundary in free-drive |
| CN114585483A (en) | 2019-10-22 | 2022-06-03 | 优傲机器人公司 | Safely activate the free drive mode of the robot arm |
| WO2021137109A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment techniques for percutaneous access |
| EP4084721B1 (en) | 2019-12-31 | 2025-10-01 | Auris Health, Inc. | Anatomical feature identification and targeting |
| WO2021137108A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment interfaces for percutaneous access |
| US11737663B2 (en) | 2020-03-30 | 2023-08-29 | Auris Health, Inc. | Target anatomical feature localization |
| EP4171890B1 (en) | 2020-06-30 | 2025-08-13 | Mazor Robotics Ltd. | Time-spaced robotic reference frames |
| US12274525B2 (en) | 2020-09-29 | 2025-04-15 | Mazor Robotics Ltd. | Systems and methods for tracking anatomical motion |
| US12240105B2 (en) * | 2021-03-26 | 2025-03-04 | Boston Dynamics, Inc. | Dynamic mass estimation methods for an integrated mobile manipulator robot |
| US11812938B2 (en) | 2021-03-31 | 2023-11-14 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
| US12167900B2 (en) | 2021-03-31 | 2024-12-17 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
| US12178418B2 (en) | 2021-03-31 | 2024-12-31 | Moon Surgical Sas | Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments |
| WO2022208414A1 (en) | 2021-03-31 | 2022-10-06 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery |
| US11819302B2 (en) | 2021-03-31 | 2023-11-21 | Moon Surgical Sas | Co-manipulation surgical system having user guided stage control |
| US12042241B2 (en) | 2021-03-31 | 2024-07-23 | Moon Surgical Sas | Co-manipulation surgical system having automated preset robot arm configurations |
| US11832909B2 (en) | 2021-03-31 | 2023-12-05 | Moon Surgical Sas | Co-manipulation surgical system having actuatable setup joints |
| US11844583B2 (en) | 2021-03-31 | 2023-12-19 | Moon Surgical Sas | Co-manipulation surgical system having an instrument centering mode for automatic scope movements |
| US12161341B2 (en) * | 2021-09-07 | 2024-12-10 | Covidien Lp | Slow speed staple and staple relaxation for stapling optimization |
| JPWO2023074335A1 (en) * | 2021-10-29 | 2023-05-04 | ||
| GB2621587B (en) * | 2022-08-15 | 2024-12-18 | Cmr Surgical Ltd | Control of a surgical robot arm |
| US11986165B1 (en) | 2023-01-09 | 2024-05-21 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
| US11839442B1 (en) | 2023-01-09 | 2023-12-12 | Moon Surgical Sas | Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force |
| US12370001B2 (en) | 2023-01-09 | 2025-07-29 | Moon Surgical Sas | Co-manipulation surgical system having automated user override detection |
| CN116172715A (en) * | 2023-03-03 | 2023-05-30 | 杭州湖西云百生科技有限公司 | High-sensitivity surgical robot active reverse drive control method and system |
| CN116392253A (en) * | 2023-04-19 | 2023-07-07 | 上海卓昕医疗科技有限公司 | Active positioning method and system applied to surgical robot |
| CN120245007B (en) * | 2025-06-04 | 2025-08-26 | 首都医科大学附属北京积水潭医院 | Patient lateral force estimation method in surgical robot operation |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020128552A1 (en) * | 1998-11-20 | 2002-09-12 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
| US6574355B2 (en) | 1992-01-21 | 2003-06-03 | Intuitive Surigical, Inc. | Method and apparatus for transforming coordinate systems in a telemanipulation system |
| US20030191454A1 (en) | 1999-04-07 | 2003-10-09 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
| US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
| US20040164960A1 (en) | 1992-12-02 | 2004-08-26 | Jacobus Charles J. | Force feedback system and actuator power management |
| US20050093821A1 (en) | 2003-10-30 | 2005-05-05 | Sensable Technologies, Inc. | Force reflecting haptic interface |
| US20070260356A1 (en) * | 2003-05-22 | 2007-11-08 | Abb Ab | Control Method for a Robot |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7819859B2 (en) | 2005-12-20 | 2010-10-26 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
-
2006
- 2006-06-30 US US11/479,144 patent/US7819859B2/en active Active
-
2010
- 2010-09-08 US US12/877,263 patent/US8864751B2/en active Active
-
2014
- 2014-09-18 US US14/490,090 patent/US9198730B2/en active Active
-
2015
- 2015-11-04 US US14/932,117 patent/US9402689B2/en active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6574355B2 (en) | 1992-01-21 | 2003-06-03 | Intuitive Surigical, Inc. | Method and apparatus for transforming coordinate systems in a telemanipulation system |
| US20040164960A1 (en) | 1992-12-02 | 2004-08-26 | Jacobus Charles J. | Force feedback system and actuator power management |
| US20020128552A1 (en) * | 1998-11-20 | 2002-09-12 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
| US20030191454A1 (en) | 1999-04-07 | 2003-10-09 | Intuitive Surgical, Inc. | Friction compensation in a minimally invasive surgical apparatus |
| US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
| US20070260356A1 (en) * | 2003-05-22 | 2007-11-08 | Abb Ab | Control Method for a Robot |
| US20050093821A1 (en) | 2003-10-30 | 2005-05-05 | Sensable Technologies, Inc. | Force reflecting haptic interface |
Non-Patent Citations (3)
| Title |
|---|
| Bergamasco, Massimo et al., "An Arm Exoskeleton System for Teleoperation and Virtual Environments Applications," Proc. IEEE Int. Conf. on Robotics and Automation, 1994, pp. 1449-1454, vol. 2, IEEE. |
| Olsson, H. et al., "Friction Models and Friction Compensation," European Journal of Control, vol. 4, No. 3. Nov. 28, 1997, pp. 1-37. |
| Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages. |
Cited By (315)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9198730B2 (en) | 2005-12-20 | 2015-12-01 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US9402689B2 (en) | 2005-12-20 | 2016-08-02 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
| US10893912B2 (en) | 2006-02-16 | 2021-01-19 | Globus Medical Inc. | Surgical tool systems and methods |
| US11628039B2 (en) | 2006-02-16 | 2023-04-18 | Globus Medical Inc. | Surgical tool systems and methods |
| US12357400B2 (en) | 2006-06-29 | 2025-07-15 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
| US11865729B2 (en) | 2006-06-29 | 2024-01-09 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
| US9782229B2 (en) | 2007-02-16 | 2017-10-10 | Globus Medical, Inc. | Surgical robot platform |
| US9078685B2 (en) | 2007-02-16 | 2015-07-14 | Globus Medical, Inc. | Method and system for performing invasive medical procedures using a surgical robot |
| US10172678B2 (en) | 2007-02-16 | 2019-01-08 | Globus Medical, Inc. | Method and system for performing invasive medical procedures using a surgical robot |
| US12097002B2 (en) * | 2007-06-13 | 2024-09-24 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
| US12295681B2 (en) | 2007-06-13 | 2025-05-13 | Intuitive Surgical Operations, Inc. | Method and system for retracting an instrument into an entry guide |
| US20210290326A1 (en) * | 2007-06-13 | 2021-09-23 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
| US11751955B2 (en) | 2007-06-13 | 2023-09-12 | Intuitive Surgical Operations, Inc. | Method and system for retracting an instrument into an entry guide |
| US12239396B2 (en) | 2008-06-27 | 2025-03-04 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
| US11941734B2 (en) | 2009-03-31 | 2024-03-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
| US12266040B2 (en) | 2009-03-31 | 2025-04-01 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
| US12096994B2 (en) | 2011-04-01 | 2024-09-24 | KB Medical SA | Robotic system and method for spinal and other surgeries |
| US11744648B2 (en) | 2011-04-01 | 2023-09-05 | Globus Medicall, Inc. | Robotic system and method for spinal and other surgeries |
| US11202681B2 (en) | 2011-04-01 | 2021-12-21 | Globus Medical, Inc. | Robotic system and method for spinal and other surgeries |
| US10660712B2 (en) | 2011-04-01 | 2020-05-26 | Globus Medical Inc. | Robotic system and method for spinal and other surgeries |
| US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
| US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
| US12376916B2 (en) | 2012-06-21 | 2025-08-05 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
| US11744657B2 (en) | 2012-06-21 | 2023-09-05 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
| US11690687B2 (en) | 2012-06-21 | 2023-07-04 | Globus Medical Inc. | Methods for performing medical procedures using a surgical robot |
| US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
| US11684433B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical Inc. | Surgical tool systems and method |
| US10835328B2 (en) | 2012-06-21 | 2020-11-17 | Globus Medical, Inc. | Surgical robot platform |
| US10835326B2 (en) | 2012-06-21 | 2020-11-17 | Globus Medical Inc. | Surgical robot platform |
| US11684437B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
| US11684431B2 (en) | 2012-06-21 | 2023-06-27 | Globus Medical, Inc. | Surgical robot platform |
| US11819283B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical Inc. | Systems and methods related to robotic guidance in surgery |
| US12409001B2 (en) | 2012-06-21 | 2025-09-09 | Globus Medical, Inc. | Surgical robot platform |
| US11819365B2 (en) | 2012-06-21 | 2023-11-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
| US10912617B2 (en) | 2012-06-21 | 2021-02-09 | Globus Medical, Inc. | Surgical robot platform |
| US10136954B2 (en) | 2012-06-21 | 2018-11-27 | Globus Medical, Inc. | Surgical tool systems and method |
| US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
| US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
| US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US11026756B2 (en) | 2012-06-21 | 2021-06-08 | Globus Medical, Inc. | Surgical robot platform |
| US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12336775B2 (en) | 2012-06-21 | 2025-06-24 | Globus Medical Inc. | Surgical robot platform |
| US11607149B2 (en) | 2012-06-21 | 2023-03-21 | Globus Medical Inc. | Surgical tool systems and method |
| US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
| US10231791B2 (en) | 2012-06-21 | 2019-03-19 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
| US11911225B2 (en) | 2012-06-21 | 2024-02-27 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
| US11103317B2 (en) | 2012-06-21 | 2021-08-31 | Globus Medical, Inc. | Surgical robot platform |
| US11103320B2 (en) | 2012-06-21 | 2021-08-31 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
| US11109922B2 (en) | 2012-06-21 | 2021-09-07 | Globus Medical, Inc. | Surgical tool systems and method |
| US11116576B2 (en) | 2012-06-21 | 2021-09-14 | Globus Medical Inc. | Dynamic reference arrays and methods of use |
| US10639112B2 (en) | 2012-06-21 | 2020-05-05 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
| US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
| US11135022B2 (en) | 2012-06-21 | 2021-10-05 | Globus Medical, Inc. | Surgical robot platform |
| US12329593B2 (en) | 2012-06-21 | 2025-06-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12310683B2 (en) | 2012-06-21 | 2025-05-27 | Globus Medical, Inc. | Surgical tool systems and method |
| US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
| US11191598B2 (en) | 2012-06-21 | 2021-12-07 | Globus Medical, Inc. | Surgical robot platform |
| US12016645B2 (en) | 2012-06-21 | 2024-06-25 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
| US11395706B2 (en) | 2012-06-21 | 2022-07-26 | Globus Medical Inc. | Surgical robot platform |
| US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
| US12262954B2 (en) | 2012-06-21 | 2025-04-01 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
| US12070285B2 (en) | 2012-06-21 | 2024-08-27 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
| US10357184B2 (en) | 2012-06-21 | 2019-07-23 | Globus Medical, Inc. | Surgical tool systems and method |
| US12251140B2 (en) | 2012-06-21 | 2025-03-18 | Globus Medical, Inc. | Methods for performing medical procedures using a surgical robot |
| US11284949B2 (en) | 2012-06-21 | 2022-03-29 | Globus Medical, Inc. | Surgical robot platform |
| US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
| US10531927B2 (en) | 2012-06-21 | 2020-01-14 | Globus Medical, Inc. | Methods for performing invasive medical procedures using a surgical robot |
| US12220120B2 (en) | 2012-06-21 | 2025-02-11 | Globus Medical, Inc. | Surgical robotic system with retractor |
| US10485617B2 (en) | 2012-06-21 | 2019-11-26 | Globus Medical, Inc. | Surgical robot platform |
| US11331153B2 (en) | 2012-06-21 | 2022-05-17 | Globus Medical, Inc. | Surgical robot platform |
| US12178518B2 (en) | 2012-06-21 | 2024-12-31 | Globus Medical Inc. | Systems and methods related to robotic guidance in surgery |
| US11806102B2 (en) | 2013-02-15 | 2023-11-07 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
| US11896363B2 (en) | 2013-03-15 | 2024-02-13 | Globus Medical Inc. | Surgical robot platform |
| US10813704B2 (en) | 2013-10-04 | 2020-10-27 | Kb Medical, Sa | Apparatus and systems for precise guidance of surgical tools |
| US12295676B2 (en) | 2013-10-04 | 2025-05-13 | Kb Medical, Sa | Apparatus, systems, and methods for precise guidance of surgical tools |
| US11618171B2 (en) | 2013-12-11 | 2023-04-04 | Covidien Lp | Wrist and jaw assemblies for robotic surgical systems |
| US11737766B2 (en) | 2014-01-15 | 2023-08-29 | Globus Medical Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
| US10939968B2 (en) | 2014-02-11 | 2021-03-09 | Globus Medical Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
| US10828116B2 (en) | 2014-04-24 | 2020-11-10 | Kb Medical, Sa | Surgical instrument holder for use with a robotic surgical system |
| US11793583B2 (en) | 2014-04-24 | 2023-10-24 | Globus Medical Inc. | Surgical instrument holder for use with a robotic surgical system |
| US10292778B2 (en) | 2014-04-24 | 2019-05-21 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
| US10945742B2 (en) | 2014-07-14 | 2021-03-16 | Globus Medical Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
| US11957371B2 (en) | 2014-08-13 | 2024-04-16 | Covidien Lp | Robotically controlling mechanical advantage gripping |
| US12329469B2 (en) | 2014-12-02 | 2025-06-17 | Globus Medical Inc. | Robot assisted volume removal during surgery |
| US10580217B2 (en) | 2015-02-03 | 2020-03-03 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
| US11062522B2 (en) | 2015-02-03 | 2021-07-13 | Global Medical Inc | Surgeon head-mounted display apparatuses |
| US11266470B2 (en) | 2015-02-18 | 2022-03-08 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
| US12076095B2 (en) | 2015-02-18 | 2024-09-03 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
| US11925429B2 (en) | 2015-02-19 | 2024-03-12 | Covidien Lp | Repositioning method of input device for robotic surgical system |
| US11596489B2 (en) | 2015-03-10 | 2023-03-07 | Covidien Lp | Measuring health of a connector member of a robotic surgical system |
| US11432891B2 (en) | 2015-06-03 | 2022-09-06 | Covidien Lp | Offset instrument drive unit |
| US12048499B2 (en) | 2015-06-16 | 2024-07-30 | Covidien Lp | Robotic surgical system torque transduction sensing |
| US11622824B2 (en) | 2015-06-16 | 2023-04-11 | Covidien Lp | Robotic surgical system torque transduction sensing |
| US11666395B2 (en) | 2015-06-23 | 2023-06-06 | Covidien Lp | Robotic surgical assemblies |
| US12433700B2 (en) | 2015-06-23 | 2025-10-07 | Covidien Lp | Robotic surgical assemblies |
| US10925681B2 (en) | 2015-07-31 | 2021-02-23 | Globus Medical Inc. | Robot arm and methods of use |
| US11672622B2 (en) | 2015-07-31 | 2023-06-13 | Globus Medical, Inc. | Robot arm and methods of use |
| US12364562B2 (en) | 2015-07-31 | 2025-07-22 | Globus Medical, Inc. | Robot arm and methods of use |
| US11337769B2 (en) | 2015-07-31 | 2022-05-24 | Globus Medical, Inc. | Robot arm and methods of use |
| US10080615B2 (en) | 2015-08-12 | 2018-09-25 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
| US11751950B2 (en) | 2015-08-12 | 2023-09-12 | Globus Medical Inc. | Devices and methods for temporary mounting of parts to bone |
| US10786313B2 (en) | 2015-08-12 | 2020-09-29 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
| US11872000B2 (en) | 2015-08-31 | 2024-01-16 | Globus Medical, Inc | Robotic surgical systems and methods |
| US10973594B2 (en) | 2015-09-14 | 2021-04-13 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
| US12137995B2 (en) | 2015-09-25 | 2024-11-12 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
| US11529203B2 (en) | 2015-09-25 | 2022-12-20 | Covidien Lp | Robotic surgical assemblies and instrument drive connectors thereof |
| US10569794B2 (en) | 2015-10-13 | 2020-02-25 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
| US11066090B2 (en) | 2015-10-13 | 2021-07-20 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
| US11517183B2 (en) | 2015-10-23 | 2022-12-06 | Covidien Lp | Surgical system for detecting gradual changes in perfusion |
| US11779413B2 (en) | 2015-11-19 | 2023-10-10 | Covidien Lp | Optical force sensor for robotic surgical system |
| US11986333B2 (en) | 2016-02-03 | 2024-05-21 | Globus Medical Inc. | Portable medical imaging system |
| US11058378B2 (en) | 2016-02-03 | 2021-07-13 | Globus Medical, Inc. | Portable medical imaging system |
| US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
| US10687779B2 (en) | 2016-02-03 | 2020-06-23 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
| US11523784B2 (en) | 2016-02-03 | 2022-12-13 | Globus Medical, Inc. | Portable medical imaging system |
| US10448910B2 (en) | 2016-02-03 | 2019-10-22 | Globus Medical, Inc. | Portable medical imaging system |
| US12016714B2 (en) | 2016-02-03 | 2024-06-25 | Globus Medical Inc. | Portable medical imaging system |
| US10842453B2 (en) | 2016-02-03 | 2020-11-24 | Globus Medical, Inc. | Portable medical imaging system |
| US10849580B2 (en) | 2016-02-03 | 2020-12-01 | Globus Medical Inc. | Portable medical imaging system |
| US10117632B2 (en) | 2016-02-03 | 2018-11-06 | Globus Medical, Inc. | Portable medical imaging system with beam scanning collimator |
| US11801022B2 (en) | 2016-02-03 | 2023-10-31 | Globus Medical, Inc. | Portable medical imaging system |
| US12329475B2 (en) | 2016-03-04 | 2025-06-17 | Covidien Lp | Inverse kinematic control systems for robotic surgical system |
| US12044552B2 (en) | 2016-03-14 | 2024-07-23 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US10866119B2 (en) | 2016-03-14 | 2020-12-15 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US11920957B2 (en) | 2016-03-14 | 2024-03-05 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US11668588B2 (en) | 2016-03-14 | 2023-06-06 | Globus Medical Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
| US11576562B2 (en) | 2016-04-07 | 2023-02-14 | Titan Medical Inc. | Camera positioning method and apparatus for capturing images during a medical procedure |
| US11974886B2 (en) | 2016-04-11 | 2024-05-07 | Globus Medical Inc. | Surgical tool systems and methods |
| US11523509B2 (en) | 2016-05-26 | 2022-12-06 | Covidien Lp | Instrument drive units |
| US11547508B2 (en) | 2016-05-26 | 2023-01-10 | Covidien Lp | Robotic surgical assemblies |
| US11612446B2 (en) | 2016-06-03 | 2023-03-28 | Covidien Lp | Systems, methods, and computer-readable program products for controlling a robotically delivered manipulator |
| US11464593B2 (en) | 2016-06-03 | 2022-10-11 | Covidien Lp | Passive axis system for robotic surgical systems |
| US11446099B2 (en) | 2016-06-03 | 2022-09-20 | Covidien Lp | Control arm for robotic surgical systems |
| US11553984B2 (en) | 2016-06-03 | 2023-01-17 | Covidien Lp | Robotic surgical system with an embedded imager |
| US11529195B2 (en) | 2017-01-18 | 2022-12-20 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
| US11779408B2 (en) | 2017-01-18 | 2023-10-10 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
| US12186032B2 (en) | 2017-01-18 | 2025-01-07 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
| US11690691B2 (en) | 2017-02-15 | 2023-07-04 | Covidien Lp | System and apparatus for crush prevention for medical robot applications |
| US12419711B2 (en) | 2017-02-15 | 2025-09-23 | Covidien Lp | System and apparatus for crush prevention for medical robot applications |
| US11813030B2 (en) | 2017-03-16 | 2023-11-14 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
| US12082886B2 (en) | 2017-04-05 | 2024-09-10 | Globus Medical Inc. | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
| US11717361B2 (en) | 2017-05-24 | 2023-08-08 | Covidien Lp | Electrosurgical robotic system having tool presence detection |
| US11839441B2 (en) | 2017-05-25 | 2023-12-12 | Covidien Lp | Robotic surgical system with automated guidance |
| US11510747B2 (en) | 2017-05-25 | 2022-11-29 | Covidien Lp | Robotic surgical systems and drapes for covering components of robotic surgical systems |
| US11553974B2 (en) | 2017-05-25 | 2023-01-17 | Covidien Lp | Systems and methods for detection of objects within a field of view of an image capture device |
| US11135015B2 (en) | 2017-07-21 | 2021-10-05 | Globus Medical, Inc. | Robot surgical platform |
| US11253320B2 (en) | 2017-07-21 | 2022-02-22 | Globus Medical Inc. | Robot surgical platform |
| US11771499B2 (en) | 2017-07-21 | 2023-10-03 | Globus Medical Inc. | Robot surgical platform |
| US10675094B2 (en) | 2017-07-21 | 2020-06-09 | Globus Medical Inc. | Robot surgical platform |
| US12193756B2 (en) | 2017-07-21 | 2025-01-14 | Globus Medical, Inc. | Robot surgical platform |
| US12144537B2 (en) | 2017-08-16 | 2024-11-19 | Covidien Lp | End effector including wrist assembly and electrosurgical tool for robotic surgical systems |
| US11628022B2 (en) | 2017-09-05 | 2023-04-18 | Covidien Lp | Collision handling algorithms for robotic surgical systems |
| US11583358B2 (en) | 2017-09-06 | 2023-02-21 | Covidien Lp | Boundary scaling of surgical robots |
| US12207894B2 (en) | 2017-09-08 | 2025-01-28 | Covidien Lp | Energy disconnect for robotic surgical assemblies |
| US11794338B2 (en) | 2017-11-09 | 2023-10-24 | Globus Medical Inc. | Robotic rod benders and related mechanical and motor housings |
| US11357548B2 (en) | 2017-11-09 | 2022-06-14 | Globus Medical, Inc. | Robotic rod benders and related mechanical and motor housings |
| US11382666B2 (en) | 2017-11-09 | 2022-07-12 | Globus Medical Inc. | Methods providing bend plans for surgical rods and related controllers and computer program products |
| US10898252B2 (en) | 2017-11-09 | 2021-01-26 | Globus Medical, Inc. | Surgical robotic systems for bending surgical rods, and related methods and devices |
| US11786144B2 (en) | 2017-11-10 | 2023-10-17 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
| US11134862B2 (en) | 2017-11-10 | 2021-10-05 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
| US12029523B2 (en) | 2017-12-01 | 2024-07-09 | Covidien Lp | Drape management assembly for robotic surgical systems |
| US10786317B2 (en) | 2017-12-11 | 2020-09-29 | Verb Surgical Inc. | Active backdriving for a robotic arm |
| US12059225B2 (en) | 2017-12-11 | 2024-08-13 | Verb Surgical Inc. | Active backdriving for a robotic arm |
| US11141230B2 (en) | 2017-12-11 | 2021-10-12 | Verb Surgical Inc. | Active backdriving for a robotic arm |
| EP3684284A4 (en) * | 2017-12-11 | 2020-09-16 | Verb Surgical Inc. | Active backdriving for a robotic arm |
| US11678943B2 (en) | 2017-12-11 | 2023-06-20 | Verb Surgical Inc. | Active backdriving for a robotic arm |
| US11432890B2 (en) | 2018-01-04 | 2022-09-06 | Covidien Lp | Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough |
| US12011238B2 (en) | 2018-01-04 | 2024-06-18 | Covidien Lp | Systems and assemblies for mounting a surgical accessory to robotic surgical systems, and providing access therethrough |
| US12029510B2 (en) | 2018-01-10 | 2024-07-09 | Covidien Lp | Determining positions and conditions of tools of a robotic surgical system utilizing computer vision |
| US12102403B2 (en) | 2018-02-02 | 2024-10-01 | Coviden Lp | Robotic surgical systems with user engagement monitoring |
| US10646283B2 (en) | 2018-02-19 | 2020-05-12 | Globus Medical Inc. | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
| US11615884B2 (en) | 2018-03-06 | 2023-03-28 | Digital Surgery Limited | Techniques for virtualized tool interaction |
| US12380998B2 (en) | 2018-03-06 | 2025-08-05 | Digital Surgery Limited | Methods and systems for using multiple data structures to process surgical data |
| US11628024B2 (en) | 2018-03-08 | 2023-04-18 | Covidien Lp | Surgical robotic systems |
| US11694355B2 (en) | 2018-04-09 | 2023-07-04 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US10573023B2 (en) | 2018-04-09 | 2020-02-25 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US11100668B2 (en) | 2018-04-09 | 2021-08-24 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
| US11986261B2 (en) | 2018-04-20 | 2024-05-21 | Covidien Lp | Systems and methods for surgical robotic cart placement |
| US11647888B2 (en) | 2018-04-20 | 2023-05-16 | Covidien Lp | Compensation for observer movement in robotic surgical systems having stereoscopic displays |
| US11576739B2 (en) | 2018-07-03 | 2023-02-14 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
| US12029517B2 (en) | 2018-07-03 | 2024-07-09 | Covidien Lp | Systems, methods, and computer-readable media for detecting image degradation during surgical procedures |
| US12178528B2 (en) | 2018-09-14 | 2024-12-31 | Covidien Lp | Surgical robotic systems and methods of tracking usage of surgical instruments thereof |
| US12186040B2 (en) | 2018-09-17 | 2025-01-07 | Covidien Lp | Surgical robotic systems |
| US11998288B2 (en) | 2018-09-17 | 2024-06-04 | Covidien Lp | Surgical robotic systems |
| US11633243B2 (en) | 2018-10-10 | 2023-04-25 | Titan Medical Inc. | Instrument insertion system, method, and apparatus for performing medical procedures |
| US11751927B2 (en) | 2018-11-05 | 2023-09-12 | Globus Medical Inc. | Compliant orthopedic driver |
| US12121278B2 (en) | 2018-11-05 | 2024-10-22 | Globus Medical, Inc. | Compliant orthopedic driver |
| US11337742B2 (en) | 2018-11-05 | 2022-05-24 | Globus Medical Inc | Compliant orthopedic driver |
| US11832863B2 (en) | 2018-11-05 | 2023-12-05 | Globus Medical, Inc. | Compliant orthopedic driver |
| US12295677B2 (en) | 2018-11-16 | 2025-05-13 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
| US11278360B2 (en) | 2018-11-16 | 2022-03-22 | Globus Medical, Inc. | End-effectors for surgical robotic systems having sealed optical components |
| US11602402B2 (en) | 2018-12-04 | 2023-03-14 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11969224B2 (en) | 2018-12-04 | 2024-04-30 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11744655B2 (en) | 2018-12-04 | 2023-09-05 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US12329476B2 (en) | 2018-12-04 | 2025-06-17 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
| US11586106B2 (en) | 2018-12-28 | 2023-02-21 | Titan Medical Inc. | Imaging apparatus having configurable stereoscopic perspective |
| US11717355B2 (en) | 2019-01-29 | 2023-08-08 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
| US12310685B2 (en) | 2019-01-29 | 2025-05-27 | Covidien Lp | Drive mechanisms for surgical instruments such as for use in robotic surgical systems |
| US11576733B2 (en) | 2019-02-06 | 2023-02-14 | Covidien Lp | Robotic surgical assemblies including electrosurgical instruments having articulatable wrist assemblies |
| US11484372B2 (en) | 2019-02-15 | 2022-11-01 | Covidien Lp | Articulation mechanisms for surgical instruments such as for use in robotic surgical systems |
| US11918313B2 (en) | 2019-03-15 | 2024-03-05 | Globus Medical Inc. | Active end effectors for surgical robots |
| US12268506B2 (en) | 2019-03-22 | 2025-04-08 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11944325B2 (en) | 2019-03-22 | 2024-04-02 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11737696B2 (en) | 2019-03-22 | 2023-08-29 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11744598B2 (en) | 2019-03-22 | 2023-09-05 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US12268401B2 (en) | 2019-03-22 | 2025-04-08 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11850012B2 (en) | 2019-03-22 | 2023-12-26 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11317978B2 (en) | 2019-03-22 | 2022-05-03 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11806084B2 (en) | 2019-03-22 | 2023-11-07 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11419616B2 (en) | 2019-03-22 | 2022-08-23 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11571265B2 (en) | 2019-03-22 | 2023-02-07 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US12127803B2 (en) | 2019-03-22 | 2024-10-29 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
| US11382549B2 (en) | 2019-03-22 | 2022-07-12 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
| US11045179B2 (en) | 2019-05-20 | 2021-06-29 | Global Medical Inc | Robot-mounted retractor system |
| US12376934B2 (en) | 2019-05-22 | 2025-08-05 | Covidien Lp | Surgical robotic arm storage assemblies and methods of replacing surgical robotic arms using the storage assemblies |
| US12076097B2 (en) | 2019-07-10 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
| US11628023B2 (en) | 2019-07-10 | 2023-04-18 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
| US12223629B2 (en) | 2019-09-11 | 2025-02-11 | Covidien Lp | Systems and methods for smoke-reduction in images |
| US12315109B2 (en) | 2019-09-11 | 2025-05-27 | Covidien Lp | Systems and methods for neural-network based color restoration |
| US11571171B2 (en) | 2019-09-24 | 2023-02-07 | Globus Medical, Inc. | Compound curve cable chain |
| US12396692B2 (en) | 2019-09-24 | 2025-08-26 | Globus Medical, Inc. | Compound curve cable chain |
| US12329391B2 (en) | 2019-09-27 | 2025-06-17 | Globus Medical, Inc. | Systems and methods for robot-assisted knee arthroplasty surgery |
| US11864857B2 (en) | 2019-09-27 | 2024-01-09 | Globus Medical, Inc. | Surgical robot with passive end effector |
| US11426178B2 (en) | 2019-09-27 | 2022-08-30 | Globus Medical Inc. | Systems and methods for navigating a pin guide driver |
| US12408929B2 (en) | 2019-09-27 | 2025-09-09 | Globus Medical, Inc. | Systems and methods for navigating a pin guide driver |
| US11890066B2 (en) | 2019-09-30 | 2024-02-06 | Globus Medical, Inc | Surgical robot with passive end effector |
| US11510684B2 (en) | 2019-10-14 | 2022-11-29 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US11844532B2 (en) | 2019-10-14 | 2023-12-19 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US12121240B2 (en) | 2019-10-14 | 2024-10-22 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
| US12133772B2 (en) | 2019-12-10 | 2024-11-05 | Globus Medical, Inc. | Augmented reality headset for navigated robotic surgery |
| US11992373B2 (en) | 2019-12-10 | 2024-05-28 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
| US12220176B2 (en) | 2019-12-10 | 2025-02-11 | Globus Medical, Inc. | Extended reality instrument interaction zone for navigated robotic |
| US12336868B2 (en) | 2019-12-10 | 2025-06-24 | Globus Medical, Inc. | Augmented reality headset with varied opacity for navigated robotic surgery |
| US12064189B2 (en) | 2019-12-13 | 2024-08-20 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
| US12350828B2 (en) | 2019-12-16 | 2025-07-08 | Covidien Lp | Surgical robotic systems including surgical instruments with articulation |
| US12256890B2 (en) | 2019-12-23 | 2025-03-25 | Covidien Lp | Systems and methods for guiding surgical procedures |
| US11382699B2 (en) | 2020-02-10 | 2022-07-12 | Globus Medical Inc. | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
| US12414752B2 (en) | 2020-02-17 | 2025-09-16 | Globus Medical, Inc. | System and method of determining optimal 3-dimensional position and orientation of imaging device for imaging patient bones |
| US11690697B2 (en) | 2020-02-19 | 2023-07-04 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US12295798B2 (en) | 2020-02-19 | 2025-05-13 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US11207150B2 (en) | 2020-02-19 | 2021-12-28 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
| US12262964B2 (en) | 2020-02-26 | 2025-04-01 | Covidien Lp | Robotic surgical instrument including linear encoders for measuring cable displacement |
| US11253216B2 (en) | 2020-04-28 | 2022-02-22 | Globus Medical Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
| US12310776B2 (en) | 2020-04-28 | 2025-05-27 | Globus Medical, Inc. | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
| US11382700B2 (en) | 2020-05-08 | 2022-07-12 | Globus Medical Inc. | Extended reality headset tool tracking and control |
| US12115028B2 (en) | 2020-05-08 | 2024-10-15 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
| US11510750B2 (en) | 2020-05-08 | 2022-11-29 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
| US12225181B2 (en) | 2020-05-08 | 2025-02-11 | Globus Medical, Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US11153555B1 (en) | 2020-05-08 | 2021-10-19 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US11839435B2 (en) | 2020-05-08 | 2023-12-12 | Globus Medical, Inc. | Extended reality headset tool tracking and control |
| US12349987B2 (en) | 2020-05-08 | 2025-07-08 | Globus Medical, Inc. | Extended reality headset tool tracking and control |
| US11838493B2 (en) | 2020-05-08 | 2023-12-05 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
| US12262863B2 (en) | 2020-05-12 | 2025-04-01 | Covidien Lp | Systems and methods for image mapping and fusion during surgical procedures |
| US12030195B2 (en) | 2020-05-27 | 2024-07-09 | Covidien Lp | Tensioning mechanisms and methods for articulating surgical instruments such as for use in robotic surgical systems |
| US12239388B2 (en) | 2020-06-09 | 2025-03-04 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
| US12070276B2 (en) | 2020-06-09 | 2024-08-27 | Globus Medical Inc. | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
| US11317973B2 (en) | 2020-06-09 | 2022-05-03 | Globus Medical, Inc. | Camera tracking bar for computer assisted navigation during surgery |
| US11382713B2 (en) | 2020-06-16 | 2022-07-12 | Globus Medical, Inc. | Navigated surgical system with eye to XR headset display calibration |
| US11877807B2 (en) | 2020-07-10 | 2024-01-23 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
| USD1035870S1 (en) | 2020-07-10 | 2024-07-16 | Covidien Lp | Port apparatus |
| USD963851S1 (en) | 2020-07-10 | 2022-09-13 | Covidien Lp | Port apparatus |
| US11793588B2 (en) | 2020-07-23 | 2023-10-24 | Globus Medical, Inc. | Sterile draping of robotic arms |
| US12376932B2 (en) | 2020-07-23 | 2025-08-05 | Globus Medical, Inc. | Sterile draping of robotic arms |
| US11737831B2 (en) | 2020-09-02 | 2023-08-29 | Globus Medical Inc. | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
| US11890122B2 (en) | 2020-09-24 | 2024-02-06 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal c-arm movement |
| US12295765B2 (en) | 2020-09-24 | 2025-05-13 | Globus Medical Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal c-arm movement |
| US11523785B2 (en) | 2020-09-24 | 2022-12-13 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
| US11911112B2 (en) | 2020-10-27 | 2024-02-27 | Globus Medical, Inc. | Robotic navigational system |
| US12076091B2 (en) | 2020-10-27 | 2024-09-03 | Globus Medical, Inc. | Robotic navigational system |
| US11941814B2 (en) | 2020-11-04 | 2024-03-26 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
| US12299893B2 (en) | 2020-11-04 | 2025-05-13 | Globus Medical Inc. | Auto segmentation using 2-D images taken during 3-D imaging spin |
| US11717350B2 (en) | 2020-11-24 | 2023-08-08 | Globus Medical Inc. | Methods for robotic assistance and navigation in spinal surgery and related systems |
| US12070286B2 (en) | 2021-01-08 | 2024-08-27 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
| US12161433B2 (en) | 2021-01-08 | 2024-12-10 | Globus Medical, Inc. | System and method for ligament balancing with robotic assistance |
| US12150728B2 (en) | 2021-04-14 | 2024-11-26 | Globus Medical, Inc. | End effector for a surgical robot |
| US12178523B2 (en) | 2021-04-19 | 2024-12-31 | Globus Medical, Inc. | Computer assisted surgical navigation system for spine procedures |
| US12409003B2 (en) | 2021-05-14 | 2025-09-09 | Covidien Lp | Instrument cassette assemblies for robotic surgical instruments |
| US12369998B2 (en) | 2021-05-28 | 2025-07-29 | Covidien Lp | Real time monitoring of a robotic drive module |
| US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
| US11850009B2 (en) | 2021-07-06 | 2023-12-26 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US12262961B2 (en) | 2021-07-06 | 2025-04-01 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US11857273B2 (en) | 2021-07-06 | 2024-01-02 | Globus Medical, Inc. | Ultrasonic robotic surgical navigation |
| US11622794B2 (en) | 2021-07-22 | 2023-04-11 | Globus Medical, Inc. | Screw tower and rod reduction tool |
| US11439444B1 (en) | 2021-07-22 | 2022-09-13 | Globus Medical, Inc. | Screw tower and rod reduction tool |
| US12310634B2 (en) | 2021-07-22 | 2025-05-27 | Globus Medical Inc. | Screw tower and rod reduction tool |
| US12201375B2 (en) | 2021-09-16 | 2025-01-21 | Globus Medical Inc. | Extended reality systems for visualizing and controlling operating room equipment |
| US12213745B2 (en) | 2021-09-16 | 2025-02-04 | Globus Medical, Inc. | Extended reality systems for visualizing and controlling operating room equipment |
| US12238087B2 (en) | 2021-10-04 | 2025-02-25 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12184636B2 (en) | 2021-10-04 | 2024-12-31 | Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
| US12430760B2 (en) | 2021-10-20 | 2025-09-30 | Globus Medical, Inc. | Registering intra-operative images transformed from pre-operative images of different imaging-modality for computer assisted navigation during surgery |
| US12232820B2 (en) | 2021-12-01 | 2025-02-25 | Globus Medical, Inc. | Extended reality systems with three-dimensional visualizations of medical image scan slices |
| US12390294B2 (en) | 2021-12-14 | 2025-08-19 | Covidien Lp | Robotic surgical assemblies including surgical instruments having articulatable wrist assemblies |
| US12324634B2 (en) | 2021-12-20 | 2025-06-10 | Globus Medical, Inc. | Flat panel registration fixture and method of using same |
| US11918304B2 (en) | 2021-12-20 | 2024-03-05 | Globus Medical, Inc | Flat panel registration fixture and method of using same |
| US11911115B2 (en) | 2021-12-20 | 2024-02-27 | Globus Medical Inc. | Flat panel registration fixture and method of using same |
| US12295673B2 (en) | 2021-12-20 | 2025-05-13 | Globus Medical, Inc. | Robotic fluoroscopic navigation |
| US12433699B2 (en) | 2022-02-10 | 2025-10-07 | Covidien Lp | Surgical robotic systems and robotic arm carts thereof |
| US12103480B2 (en) | 2022-03-18 | 2024-10-01 | Globus Medical Inc. | Omni-wheel cable pusher |
| US12048493B2 (en) | 2022-03-31 | 2024-07-30 | Globus Medical, Inc. | Camera tracking system identifying phantom markers during computer assisted surgery navigation |
| US12394086B2 (en) | 2022-05-10 | 2025-08-19 | Globus Medical, Inc. | Accuracy check and automatic calibration of tracked instruments |
| US12444045B2 (en) | 2022-05-12 | 2025-10-14 | Globus Medical, Inc. | Interpolation of medical images |
| US12161427B2 (en) | 2022-06-08 | 2024-12-10 | Globus Medical, Inc. | Surgical navigation system with flat panel registration fixture |
| US12354263B2 (en) | 2022-07-15 | 2025-07-08 | Globus Medical Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12226169B2 (en) | 2022-07-15 | 2025-02-18 | Globus Medical, Inc. | Registration of 3D and 2D images for surgical navigation and robotic guidance without using radiopaque fiducials in the images |
| US12318150B2 (en) | 2022-10-11 | 2025-06-03 | Globus Medical Inc. | Camera tracking system for computer assisted surgery navigation |
| USD1066380S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066382S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066404S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066383S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066381S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066405S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066378S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1066379S1 (en) | 2023-01-13 | 2025-03-11 | Covidien Lp | Display screen with graphical user interface |
| USD1087995S1 (en) | 2023-08-02 | 2025-08-12 | Covidien Lp | Surgeon display screen with a transitional graphical user interface having staple firing icon |
| USD1087135S1 (en) | 2023-08-02 | 2025-08-05 | Covidien Lp | Surgeon display screen with a graphical user interface having spent staple icon |
Also Published As
| Publication number | Publication date |
|---|---|
| US9402689B2 (en) | 2016-08-02 |
| US20160051332A1 (en) | 2016-02-25 |
| US7819859B2 (en) | 2010-10-26 |
| US20150073435A1 (en) | 2015-03-12 |
| US20070142823A1 (en) | 2007-06-21 |
| US9198730B2 (en) | 2015-12-01 |
| US20110009880A1 (en) | 2011-01-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9402689B2 (en) | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator | |
| US11679499B2 (en) | Systems and methods for controlling a robotic manipulator or associated tool | |
| US20220080589A1 (en) | Systems and methods for controlling a robotic manipulator or associated tool | |
| EP3684280B1 (en) | Systems and methods for controlling a robotic manipulator or associated tool | |
| US7689320B2 (en) | Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations | |
| US7741802B2 (en) | Medical robotic system with programmably controlled constraints on error dynamics | |
| US7453227B2 (en) | Medical robotic system with sliding mode control | |
| US8395342B2 (en) | Medical robotic system adapted to inhibit motions resulting in excessive end effector forces | |
| Zemiti et al. | Mechatronic design of a new robot for force control in minimally invasive surgery | |
| US9241767B2 (en) | Method for handling an operator command exceeding a medical device state limitation in a medical robotic system | |
| US8335590B2 (en) | System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device | |
| Takhmar et al. | Cooperative teleoperation with projection-based force reflection for MIS | |
| Cortes et al. | In the context of surgery, it is very common to face challenging scenarios during the preoperative plan implementation. The surgical technique’s complexity, the human anatomical variability and the occurrence of unexpected situations generate issues for the |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
| MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |