US8715389B2 - Co-current and counter current resin-in-leach in gold leaching processes - Google Patents

Co-current and counter current resin-in-leach in gold leaching processes Download PDF

Info

Publication number
US8715389B2
US8715389B2 US13/313,594 US201113313594A US8715389B2 US 8715389 B2 US8715389 B2 US 8715389B2 US 201113313594 A US201113313594 A US 201113313594A US 8715389 B2 US8715389 B2 US 8715389B2
Authority
US
United States
Prior art keywords
gold
exchange resin
ion
current portion
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/313,594
Other versions
US20120183433A1 (en
Inventor
Yeonuk Choi
Samir Chefai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barrick Gold Corp
Original Assignee
Barrick Gold Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barrick Gold Corp filed Critical Barrick Gold Corp
Priority to US13/313,594 priority Critical patent/US8715389B2/en
Assigned to BARRICK GOLD CORPORATION reassignment BARRICK GOLD CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEFAI, SAMIR, CHOI, YEONUK
Publication of US20120183433A1 publication Critical patent/US20120183433A1/en
Priority to US13/958,683 priority patent/US9790572B2/en
Application granted granted Critical
Publication of US8715389B2 publication Critical patent/US8715389B2/en
Priority to US15/726,091 priority patent/US10415116B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0215Solid material in other stationary receptacles
    • B01D11/0253Fluidised bed of solid materials
    • B01D11/0257Fluidised bed of solid materials using mixing mechanisms, e.g. stirrers, jets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the disclosure relates generally to hydrometallurgical processes for recovering gold and/or silver and particularly to hydrometallurgical processes for recovering gold.
  • FIG. 1 a conventional gold recovery process is depicted.
  • a refractory or double refractory sulfidic gold and/or silver-containing material 100 is subjected to pressure oxidation, such as in an autoclave, in step 104 to form an oxidized output slurry 108 , that includes a gold and/or silver-containing residue.
  • the oxidized output slurry 108 is hot cured in optional step 112 to convert basic iron sulfate and free sulfuric acid to dissolved ferric sulfate and form a hot cured slurry 116 .
  • the hot cured slurry 116 is optionally subjected to liquid/solid separation, such as by a counter current decantation circuit, to form a washed slurry 124 .
  • the washed slurry 124 is subjected to neutralization in step 128 , typically by a weaker base such as alkali or alkaline earth metal oxides and carbonates, to neutralize most of the acid and acid equivalents in the washed slurry 124 and form neutralized slurry 132 .
  • a weaker base such as alkali or alkaline earth metal oxides and carbonates
  • the neutralized slurry 132 is preconditioned in step 136 by contact with sparged air and a strong base, particularly lime, to form a preconditioned slurry 140 having a pH of about pH 8 or higher.
  • step 144 the preconditioned slurry 140 is subjected to a gold and/or silver resin-in-leach process in the presence of a gold and/or silver lixiviant, such as thiosulfate, to load onto the resin the gold and/or silver in the residue.
  • a gold and/or silver lixiviant such as thiosulfate
  • the loaded resin can be stripped and the stripped gold and/or silver recovered as a gold and/or silver product 148 .
  • FIG. 2 depicts a conventional counter-current resin-in-leach (or resin-in-pulp) circuit 200 of the type used in step 144 .
  • the circuit 200 includes a plurality of first, second, third, . . . nth tanks 208 a - n .
  • the fresh resin 204 which is typically a strong-base anion exchange resin, is first contacted with the slurry 140 containing the lowest amount of dissolved gold, providing a driving force to promote the leaching of gold from the residue and adsorption of the dissolved gold.
  • the gold and/or silver loaded resin 212 is removed from the first tank 208 a , and barren tailings 216 are removed from the nth tank 208 n.
  • tetrathionate and trithionate concentrations of 420 and 350 mg/L, respectively, have been found to reduce gold loading onto a PuroliteTM A500C resin by an order of magnitude; that is, from 26 to 2 kg Au/t resin from a solution containing 0.3 mg/L Au.
  • a typical concentration of tetrathionate and other higher polythionates in a thiosulfate leach solution ranges from about 50 to about 200 mg/L and of trithionate ranges from about 275 to about 375 mg/L.
  • the present disclosure is directed generally to gold and/or silver leaching using a resin-in-leach or resin-in-pulp circuit.
  • a method includes the step of:
  • a gold and/or silver-containing material in a resin-in-leach or resin-in-pulp circuit, the circuit comprising a co-current portion where the gold and/or silver-containing material and a gold and/or silver-collecting resin flow co-currently and a counter-current portion where the gold and/or silver-containing material and gold and/or silver-collecting resin flow counter-currently.
  • a method includes the step of:
  • thiosulfate leaching by a resin-in-leach or resin-in-pulp circuit, a gold-containing material, the circuit comprising a co-current portion where the gold-containing material and an ion exchange resin flow co-currently and a counter-current portion where the gold and/or silver-containing material and ion exchange resin flow counter-currently.
  • the solutions used to strip gold from the gold-loaded resin and to convert tetrathionate and other higher polythionates to trithionate are commonly different and the operations are done in separate steps.
  • a system includes:
  • a first set of tanks configured to flow co-currently an ion exchange resin, thiosulfate, and a gold and/or silver-containing material, the first set of tanks comprising a first input for a first inputted ion exchange resin and a first output for a first gold and/or silver-loaded resin;
  • a second set of tanks for receiving the thiosulfate and gold and/or silver-containing material from the first set of tanks and being configured to flow counter-currently a second inputted ion exchange resin on the one hand and the thiosulfate and gold and/or silver-containing material on the other.
  • the second set of tanks includes a second input for a second inputted resin and a second output for a second gold and/or silver loaded resin.
  • the first and second inputted ion exchange resins are different from one another, and the first and second gold and/or silver-loaded resins are different from one another.
  • the second gold and/or silver-loaded resin is introduced into the first input as part of the first inputted ion exchange resin.
  • the co-current and counter-current portions can have many configurations.
  • the co-current and counter-current portions do not share a common resin-in-leach or resin-in-pulp tank.
  • the gold and/or silver-containing material flows first through the co-current portion and second through the counter-current portion.
  • Most (or all) of the gold and/or silver-loaded resin in the co-current portion is removed from the co-current portion and most (or all) of a gold and/or silver-loaded resin in the counter-current portion is removed from the counter-current portion.
  • the co-current and counter-current portions share a common vessel. Stated another way, most (or all) of the gold and/or silver-loaded resin in the co-current portion and most (or all) of the gold and/or silver-loaded resin in the counter-current portion are removed from a common tank.
  • a first resin concentration in a part of the co-current portion is greater than a second resin concentration in a part (or all) of the counter-current portion.
  • An average and median resin concentration in the co-current portion is typically greater than a respective average and median resin concentration in the counter-current portion. Stated another way, a maximum resin concentration in the co-current portion exceeds a maximum resin concentration in the counter-current portion, and a minimum resin concentration in the co-current portion exceeds a minimum resin concentration in the counter-current portion.
  • a first resin concentration in a part of the co-current portion is less than a second resin concentration in a part (or all) of the counter-current portion.
  • An average and median resin concentration in the co-current portion can be less than a respective average and median resin concentration in the counter-current portion.
  • a maximum resin concentration in the co-current portion does not exceed a maximum resin concentration in the counter-current portion
  • a minimum resin concentration in the co-current portion does not exceed a minimum resin concentration in the counter-current portion.
  • a first resin concentration in a first tank of the co-current portion is lower than the resin concentrations in one or more other tanks in the counter-current portion.
  • the thiosulfate is substantially or completely free of ammonia.
  • most (or all) of polythionate- and gold and/or silver-loaded resin from the counter-current portion is treated to convert most of the higher polythionates to trithionate using a first solution but most (or all) of the gold and/or silver remains loaded on the resin to form a treated gold and/or silver-loaded resin.
  • pentathionate and/or other higher polythionates sorbed on the resin are treated with sulfite, which converts tetrathionate, pentathionate and other higher polythionates into trithionate and thiosulfate.
  • Trithionate is not as strongly sorbed onto the resin as pentathionate and tetrathionate and, compared to higher polythionates, is significantly less likely to precipitate gold and/or silver from solution and inhibit gold and/or silver adsorption on the resin.
  • the treated gold and/or silver-loaded resin is introduced into the first input of the co-current portion.
  • the treated gold and/or silver-loaded resin is loaded with more gold and/or silver in the co-current portion to form further gold and/or silver-loaded resin, and the further gold and/or silver-loaded resin is removed from the co-current portion and subjected to gold and/or silver stripping using a second (stripping) solution to remove most (or all) of the gold and/or silver from the further gold and/or silver-loaded resin and form a gold and/or silver-stripped resin.
  • the gold and/or silver-stripped resin can be regenerated and reintroduced into the counter-current portion.
  • This configuration is typically employed where the adsorbed level of tetrathionate and other higher polythionates on the treated gold and/or silver-loaded resin from the counter-current portion is relatively high.
  • the configuration would be appropriate when the adsorbed polythionates are predominantly in the form of tetrathionate and other higher polythionates.
  • the gold and/or silver-loaded resins from the counter-current and co-current portions are subjected to common treatment and/or gold and/or silver-stripping stages.
  • All, some, or none of the stripped resin can be regenerated for reuse in either or both of the co-current and counter-current portions.
  • the present disclosure can provide a number of advantages depending on the particular configuration.
  • the circuit can promote fast gold and/or silver adsorption kinetics from the slurry at the front end of the circuit and prevent gold and/or silver loss by preg robbing and other gold and/or silver-recovery-reducing mechanisms.
  • By adding resin in a co-current flow to the first tank there commonly are no interfering compounds, which reduce resin loading, from subsequent leach tanks being transferred to the tanks at the beginning of the circuit.
  • the resin added to the first tank is normally retained in the second tank until the concentration builds up. Allowing the resin concentration to build in the second tank can substantially minimize the effects of changes in the composition of gold and/or silver-containing material.
  • the circuit can recover gold and/or silver effectively from gold and/or silver-bearing ores or concentrates requiring not only mild but also strong thiosulfate leaching conditions.
  • the detrimental effects of polythionate anions e.g., tetrathionate and other higher polythionates with tetrathionate being more detrimental
  • the detrimental effects of polythionate anions can be largely negated by the circuit.
  • each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
  • each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X 1 -X n , Y 1 -Y m , and Z 1 -Z o
  • the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X 1 and X 2 ) as well as a combination of elements selected from two or more classes (e.g., Y 1 and Z o ).
  • higher polythionate refers to a compound comprising S n (SO 3 ) 2 ] 2 ⁇ , where n ⁇ 4. “Higher polythionates” therefore includes tetrathionate, pentathionate, hexathionate, and so on.
  • a “polythionate” is a salt or ester of a polythionic acid.
  • preg robbing carbon refers to a carbonaceous material that preferentially absorbs, permanently or temporarily, gold and gold-thio complexes and silver and silver-thio complexes.
  • FIG. 1 is a process flow chart according to the prior art
  • FIG. 2 is a resin-in-leach circuit according to the prior art
  • FIG. 3 is a resin-in-leach circuit according to an embodiment
  • FIG. 4 is a plot of gold recovery (percent) (vertical axis) against residence time (hours) (horizontal axis);
  • FIG. 5 is a plot of gold extraction (percent) (vertical axis) against operating time (hours) (horizontal axis);
  • FIG. 6 is a plot of gold loaded on resin (kg/t) (left vertical axis) against operating time (hours) (horizontal axis) and a plot of tetrathionate loaded on resin (mol/L) against operation time (hours) and;
  • FIG. 7 is a plot of gold loaded on resin (%) (right vertical axis) against operating time (days) (horizontal axis) and a plot of tetrathionate loaded on resin (kg/t) (left vertical axis) against operation time (days).
  • FIG. 4 depicts phenomena that can occur when performing thiosulfate gold and/or silver leaching with and without an ion exchange resin.
  • the majority of gold is commonly leached from the gold-containing material quickly.
  • the gold-containing material is substantially free of preg-robbing components, the gold is commonly leached from the material quickly and almost completely. Leaching kinetics do not appear to be affected by the presence or absence of an ion exchange resin.
  • the gold-containing material contains a preg robbing component and the resin is not present during leaching, the initial leaching kinetics are commonly high but the gold recovery commonly decreases over time. The decrease in recovery is most likely due to the adsorption of the gold thiosulfate complex by the preg-robbing material. As shown in FIG. 4 , fast adsorption of gold in solution can prevent subsequent losses in recovery by preg-robbing.
  • Feed to gold recovery circuits can exhibit great variability which can also adversely affect gold recovery.
  • gold concentration, and the presence of other metals, which can complex with thiosulfate and be adsorbed by the resin can also affect leaching kinetics and recoveries.
  • Thiosulfate is partially oxidized under the conditions required for gold leaching and its oxidation products can compete with gold and/or silver thiosulfate complexes for functional group sites.
  • the oxidation products include trithionate (S 3 O 6 ), tetrathionate (S 4 O 6 ), pentathionate (S 5 O 6 ), other higher polythionates, and sulfate (SO 4 2 ⁇ ), and these oxidation products can be adsorbed by the resin.
  • the relative affinities for various compounds adsorbed by strong base anion exchange resins are:
  • Typical concentrations of polythionates in the slurry 140 range from about 0.1 to about 5 g/L and even more typically from about 0.5 to about 2 g/L.
  • the gold level on the resin 204 increases, however the level of other components, particularly trithionate, tetrathionate and/or other higher polythionates, which, as noted, have an affinity for the resin, will also increase.
  • the resin 204 may not have adequate adsorption capacity to adsorb the gold (and/or silver), thereby lowering gold recoveries.
  • FIG. 3 An embodiment of a resin-in-leach circuit according to the present disclosure is shown in FIG. 3 .
  • FIG. 3 depicts a resin-in-leach 300 (or resin-in-pulp) circuit 300 , which includes a plurality of first, second, third, . . . mth tanks 208 a - m .
  • the first, second, third, . . . mth tanks 208 a - m are typically air-agitated (e.g., Pachuca-type) vessels to maintain resin and slurry well mixed and provide air-lift for resin-slurry transfer into and out of the tanks.
  • Static sieve bend screens DSM type
  • DSM Static sieve bend screens
  • Fresh resin 204 (and/or partially gold and/or silver loaded resin 204 from one or more of tanks 208 c - m and/or stripped and/or regenerated resin from a first output 340 ), which is a strong-base anion exchange resins and more typically PuroliteTM A500C, is contacted, via a first input 330 with the slurry 140 in the first tank 208 a containing the highest amount of gold (and/or silver) (among the first, second, third, . . . mth tanks) and with the slurry 140 in the final tank 208 m containing the lowest amount of gold (and/or silver) (among the first, second, third, . . . mth tanks).
  • the resin 204 added to the first tank 208 a moves co-current with the slurry 140 , and gold (and/or silver) loaded resin 312 , typically containing most of the gold (and/or silver) in the leached gold (and/or silver)-containing material is removed, via a first output 340 , from the second tank 208 b (hereinafter “the co-current portion of the circuit”).
  • the resin 204 added, via a second input 350 , to the final tank 208 m moves counter-current to the slurry 140 and gold (and/or silver) loaded resin 316 is removed, via an output 360 , from the third tank 208 c (hereinafter “the counter-current portion of the circuit”).
  • Barren tailings 320 are removed from the nth tank 208 n , and gold and/or silver- and interferent-loaded resin 316 are removed from second output 380 .
  • the resin 204 added to the second input 350 may be gold and/or silver- and/or treated, and/or regenerated resin from the first and/or second outputs 340 and 380 and/or fresh resin.
  • the slurry 140 in one application, has a solids content ranging from about 30 to about 50 vol. %.
  • the slurry 140 is contacted with a gold (and/or silver) lixiviant, which is preferably an alkaline earth, alkali metal, or ammonium thiosulfate, dilution water, and optionally copper (typically as copper sulfate).
  • a gold (and/or silver) lixiviant which is preferably an alkaline earth, alkali metal, or ammonium thiosulfate, dilution water, and optionally copper (typically as copper sulfate).
  • the slurry 140 is contacted with sufficient thiosulfate to yield a thiosulfate concentration in the slurry 140 ranging from about 0.005 to about 2 molar.
  • copper when present, is added to the feed slurry at a concentration ranging from about 10 to about 100 ppm, more preferably from about 25 to about 100 ppm, and more preferably of about 50 ppm.
  • Copper addition may not be required when a sufficient level of copper from the gold (and/or silver)-containing material leaches into the slurry. Although the exact mechanism of how copper improves the leaching is not well understood, copper is believed to accelerate thiosulfate leaching kinetics. Preferably, there is little, or no, ammonia in the system.
  • the leaching conditions can vary.
  • the temperature of leaching ranges from about 40° C. to 80° C., more preferably from about 40 to about 60° C., with the more preferred target being about 50° C. Higher temperatures may result in excessive resin degradation.
  • pH in the leaching is maintained at about pH 7.5 to pH 10, more preferably from about pH 7.5 to about pH 9, with a more preferred target of about pH 8.0.
  • the oxidation-reduction-potential (“ORP”) (with respect to the Ag/AgCl reference electrode) in leaching is in the range of about ⁇ 100 mV to +50 mV, though this may vary depending on the type of ores being leached.
  • the slurry residence ranges from about 1 to about 5 hours/tank and more commonly from about 3 to about 4 hours/tank. The total slurry residence time for the circuit typically ranges from about 10 to about 25 hours.
  • the resin contacted with the slurry in the first tank is typically added at a rate of from about 1 to about 3 L/hr.
  • the resin is typically allowed to build up in the second and third tanks 208 b - c to a concentration ranging from about 10 to about 25 g/L and more typically from about 12.5 to about 17.5 g/L of slurry.
  • the first and second tanks 208 a - b are typically highly oxygenated while the third . . . mth tanks 208 c - m (in which the resin flows counter-currently) are typically poorly oxygenated.
  • the first and second tanks 208 a - b commonly have a dissolved molecular oxygen content of at least about 5 ppm and more commonly ranging from about 6 to about 10 ppm while the third . . . mth tanks 208 c - m have a dissolved molecular oxygen content of less than about 5 ppm and more commonly ranging from about 1 to about 4 ppm.
  • gold (and/or silver)-loaded resin from the second and third tanks 208 b and c is stripped of gold and/or silver with suitable stripping agents, including, for example, halide salts (e.g., sodium chloride, a perchlorate, and the like), polythionate, a nitrate, a thiocyanate, a thiourea, a mixture of sulfite and ammonia, thiosulfate, and mixtures thereof.
  • the gold (and/or silver)-containing stripping agent may be processed by any suitable gold (and/or silver) recovery technique, such as electrowinning or precipitation, to extract the dissolved or stripped gold (and/or silver) and form the gold (and/or silver) product. Elution is normally conducted at a pH ranging from about pH 7 to pH 9 to eliminate substantially osmotic shock on the resin.
  • gold (and/or silver)-loaded resin removed from the third tank 208 c is treated in unit operation 370 with a sulfite solution to remove most, if not all of, deleterious polythionates (particularly penta and tetrathionate) and the treated gold (and/or silver)-loaded resin 360 is added to the first tank 208 a as a partially gold (and/or silver) loaded resin.
  • Other sulfur and sulfoxy agents may be used to remove deleterious polythionates from the gold (and/or silver) and inferent-loaded resin to increase gold (and/or silver) loading without transferring penta- and tetra-thionate interferents.
  • a polysulfide other than a bisulfide, a bisulfide, a sulfide other than a bisulfide and a polysulfide, and mixtures thereof may be used to convert tetrathionate, pentathionate and other higher polythionates into thiosulfate.
  • the conditions should be carefully controlled to maximize thiosulfate formation while substantially minimizing gold (and/or silver) sulfide precipitation.
  • the sulfite, sulfur, or sulfoxy agent converts tetrathionate, pentathionate and other higher polythionates to trithionates while leaving the gold (and/or silver) adsorbed on the resin.
  • the treated gold and/or silver resin is removed from the first output 340 , stripped of gold and/or silver in unit operation 390 , and re-inputted at the second input 350 .
  • any number of tanks may, respectively, be in the co-current and counter-current portions of the circuit
  • resin concentrations are provided herein, it is to be understood that resin concentrations will vary depending upon the amount of gold (and/or silver) leached in the feed material.
  • the circuit 300 can promote fast gold adsorption kinetics from the slurry at the front end of the circuit and prevent gold loss by preg robbing or other mechanism which reduce gold (and/or silver) recovery.
  • the circuit operates by adding resin and slurry to the first tank and transferring both co-currently to the second tank, where the resin is removed and the gold (and/or silver) recovered.
  • the resin added to the first tank is retained in the second tank until the concentration builds up. Allowing the resin concentration to build to the second tank can substantially minimize the effects of changes in the ore type.
  • two tanks are shown in the co-current portion in the Figures, it is to be understood that any number of tanks may be employed. For example, a single tank would be sufficient, if short circuiting of the slurry can be avoided.
  • the current process is not limited to the reduction of gold (and/or silver) recovery due simply to the presence of a preg-robbing carbonaceous material. While not wishing to be bound by any theory, there appear to be several mechanisms at work in a standard resin-in-leach or resin-in-pulp circuit in reducing gold (and/or silver) recovery. It is often not possible to define which mechanism(s) is contributing individually or collectively to gold (and/or silver) loss.
  • the mixed flow process disclosed herein is designed to reduce the influence of tetrathionate, pentathionate, and other higher polythionate loading on the resin, on lowering gold (and/or silver) recovery, as well as on other preg robbing components, such as carbonaceous material, silica, and/or iron oxide.
  • FIG. 5 shows the gold recovery from a conventional counter current operation (such as that shown in FIG. 2 ) that was operated in steady state for a period of 150 hours.
  • the overall gold recovery as determined by the percent of the gold remaining in the tails, decreased as the operating time increased.
  • the gold recovery dropped from 44% to 27.4% or 16.8% in tank 1 , and from 84% to 66.8% or 17.2% in tank 8 . It is clear that the loss of gold recovery in tank 1 was not compensated for as the slurry passed through the subsequent tanks.
  • FIG. 6 shows the relationship between tetrathionate adsorbed by the resin and gold recovery.
  • each tank has a preferred individual residence time of about 3-4 hours each for a total preferred leaching residence time of about 10-24 hours.
  • the total number of tanks may be altered depending on the leaching kinetics.
  • the first and second tanks 208 a - b operate with the resin co-current with the movement of the gold bearing slurry.
  • the feed slurry includes about 48% solids, has a flow rate of about 985 lb/hour or 0.201 mt solid/hour, and a dissolved gold concentration of about 2.5 g/mt.
  • Other additives to the first tank include resin at a typical concentration of about 3.37 mol/L, dilution water at a typical rate of about 28 g/hr, calcium thiosulfate at a typical rate of about 5.2 g/hr, and copper sulfate at a typical rate of about 0.6 g/hr.
  • the first and second co-current tanks have a dissolved molecular oxygen level of amount 7-8 ppm while the four counter-current tanks have a dissolved molecular oxygen level of about 2-3 ppm.
  • the resin concentration in the first tank is about 3.37 mol/L and in the second tank about mol/L.
  • the resin concentration is maintained at about 15 mol/L by removing the resin from the second tank 208 b at approximately the same rate it is added to the first tank 208 a .
  • Highly loaded resin is withdrawn from the second tank at a rate of about 1.5 L/hr and contains about 705.51 g/mt gold.
  • the third through sixth tanks operate with about 5 mL/L resin moving counter-current to the movement of the gold-bearing slurry.
  • the highest level of gold loading typically occurs in the second tank.
  • the third through sixth tanks operate to scavenge the remaining gold in the gold bearing slurry.
  • FIG. 7 demonstrates resin transfer in a co-current (tanks 1 and 2 ) and counter current (tanks 3 through 6 ) portions of the circuit.
  • the co-current portion can create conditions in which gold recovery does not decrease over time.
  • the tetrathionate level in tank 1 where the majority of the gold is leached and adsorbed by the resin, is significantly lower than that observed in the third tank, which is the terminus of the counter-current resin transfer.
  • the present disclosure in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, aspects, embodiments, and configurations, after understanding the present disclosure.
  • the present disclosure in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and ⁇ or reducing cost of implementation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Paper (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

A method and system are provided in which a gold and/or silver-collecting resin-in-leach circuit comprises both co-current and counter-current sections.

Description

CROSS REFERENCE TO RELATED APPLICATION
The present application claims the benefits of U.S. Provisional Application Ser. No. 61/420,596, filed Dec. 7, 2010, entitled “Use of Co-Current and Counter Current Resin In Leach to Improve Gold Recovery in Thiosulfate Leaching”, which is incorporated herein by this reference in its entirety.
FIELD
The disclosure relates generally to hydrometallurgical processes for recovering gold and/or silver and particularly to hydrometallurgical processes for recovering gold.
BACKGROUND
Referring to FIG. 1, a conventional gold recovery process is depicted.
A refractory or double refractory sulfidic gold and/or silver-containing material 100 is subjected to pressure oxidation, such as in an autoclave, in step 104 to form an oxidized output slurry 108, that includes a gold and/or silver-containing residue.
The oxidized output slurry 108 is hot cured in optional step 112 to convert basic iron sulfate and free sulfuric acid to dissolved ferric sulfate and form a hot cured slurry 116.
In step 120, the hot cured slurry 116 is optionally subjected to liquid/solid separation, such as by a counter current decantation circuit, to form a washed slurry 124.
The washed slurry 124 is subjected to neutralization in step 128, typically by a weaker base such as alkali or alkaline earth metal oxides and carbonates, to neutralize most of the acid and acid equivalents in the washed slurry 124 and form neutralized slurry 132.
The neutralized slurry 132 is preconditioned in step 136 by contact with sparged air and a strong base, particularly lime, to form a preconditioned slurry 140 having a pH of about pH 8 or higher.
In step 144, the preconditioned slurry 140 is subjected to a gold and/or silver resin-in-leach process in the presence of a gold and/or silver lixiviant, such as thiosulfate, to load onto the resin the gold and/or silver in the residue. The loaded resin can be stripped and the stripped gold and/or silver recovered as a gold and/or silver product 148.
FIG. 2 depicts a conventional counter-current resin-in-leach (or resin-in-pulp) circuit 200 of the type used in step 144. The circuit 200 includes a plurality of first, second, third, . . . nth tanks 208 a-n. The fresh resin 204, which is typically a strong-base anion exchange resin, is first contacted with the slurry 140 containing the lowest amount of dissolved gold, providing a driving force to promote the leaching of gold from the residue and adsorption of the dissolved gold. The gold and/or silver loaded resin 212 is removed from the first tank 208 a, and barren tailings 216 are removed from the nth tank 208 n.
Although this process can be effective in recovering gold and/or silver, gold and/or silver recoveries can be problematic. Use of the resin-in-leach or resin-in-pulp method is generally limited to those gold and/or silver-bearing ores or concentrates requiring mild thiosulfate leaching conditions, since strong thiosulfate leach conditions can result in competitive adsorption on the resin by polythionate anions (e.g., tetrathionate and trithionate) produced during leaching. By way of example, tetrathionate and trithionate concentrations of 420 and 350 mg/L, respectively, have been found to reduce gold loading onto a Purolite™ A500C resin by an order of magnitude; that is, from 26 to 2 kg Au/t resin from a solution containing 0.3 mg/L Au. A typical concentration of tetrathionate and other higher polythionates in a thiosulfate leach solution ranges from about 50 to about 200 mg/L and of trithionate ranges from about 275 to about 375 mg/L.
To counter this problem, sulfite has been added to pregnant thiosulfate leach solutions in an oxygen-free atmosphere (e.g., using a nitrogen purge) to counteract the detrimental effect of polythionate concentration. Although effective, this approach can add additional expense to the process.
SUMMARY
These and other needs are addressed by the various aspects, embodiments, and configurations of the present disclosure. The present disclosure is directed generally to gold and/or silver leaching using a resin-in-leach or resin-in-pulp circuit.
In a first embodiment, a method includes the step of:
leaching, by thiosulfate, a gold and/or silver-containing material in a resin-in-leach or resin-in-pulp circuit, the circuit comprising a co-current portion where the gold and/or silver-containing material and a gold and/or silver-collecting resin flow co-currently and a counter-current portion where the gold and/or silver-containing material and gold and/or silver-collecting resin flow counter-currently.
In a second embodiment, a method includes the step of:
thiosulfate leaching, by a resin-in-leach or resin-in-pulp circuit, a gold-containing material, the circuit comprising a co-current portion where the gold-containing material and an ion exchange resin flow co-currently and a counter-current portion where the gold and/or silver-containing material and ion exchange resin flow counter-currently. The solutions used to strip gold from the gold-loaded resin and to convert tetrathionate and other higher polythionates to trithionate are commonly different and the operations are done in separate steps.
In a third embodiment, a system includes:
a first set of tanks configured to flow co-currently an ion exchange resin, thiosulfate, and a gold and/or silver-containing material, the first set of tanks comprising a first input for a first inputted ion exchange resin and a first output for a first gold and/or silver-loaded resin; and
a second set of tanks for receiving the thiosulfate and gold and/or silver-containing material from the first set of tanks and being configured to flow counter-currently a second inputted ion exchange resin on the one hand and the thiosulfate and gold and/or silver-containing material on the other. The second set of tanks includes a second input for a second inputted resin and a second output for a second gold and/or silver loaded resin. The first and second inputted ion exchange resins are different from one another, and the first and second gold and/or silver-loaded resins are different from one another. In one configuration, the second gold and/or silver-loaded resin is introduced into the first input as part of the first inputted ion exchange resin.
The co-current and counter-current portions can have many configurations. In one configuration, the co-current and counter-current portions do not share a common resin-in-leach or resin-in-pulp tank. Typically, the gold and/or silver-containing material flows first through the co-current portion and second through the counter-current portion. Most (or all) of the gold and/or silver-loaded resin in the co-current portion is removed from the co-current portion and most (or all) of a gold and/or silver-loaded resin in the counter-current portion is removed from the counter-current portion. In one configuration, the co-current and counter-current portions share a common vessel. Stated another way, most (or all) of the gold and/or silver-loaded resin in the co-current portion and most (or all) of the gold and/or silver-loaded resin in the counter-current portion are removed from a common tank.
Commonly, a first resin concentration in a part of the co-current portion is greater than a second resin concentration in a part (or all) of the counter-current portion. An average and median resin concentration in the co-current portion is typically greater than a respective average and median resin concentration in the counter-current portion. Stated another way, a maximum resin concentration in the co-current portion exceeds a maximum resin concentration in the counter-current portion, and a minimum resin concentration in the co-current portion exceeds a minimum resin concentration in the counter-current portion.
However in other applications, a first resin concentration in a part of the co-current portion is less than a second resin concentration in a part (or all) of the counter-current portion. An average and median resin concentration in the co-current portion can be less than a respective average and median resin concentration in the counter-current portion. Stated another way, a maximum resin concentration in the co-current portion does not exceed a maximum resin concentration in the counter-current portion, and a minimum resin concentration in the co-current portion does not exceed a minimum resin concentration in the counter-current portion. By way of example, a first resin concentration in a first tank of the co-current portion is lower than the resin concentrations in one or more other tanks in the counter-current portion.
In many leach circuits, the thiosulfate is substantially or completely free of ammonia.
In one configuration, most (or all) of polythionate- and gold and/or silver-loaded resin from the counter-current portion is treated to convert most of the higher polythionates to trithionate using a first solution but most (or all) of the gold and/or silver remains loaded on the resin to form a treated gold and/or silver-loaded resin. In one application, pentathionate and/or other higher polythionates sorbed on the resin are treated with sulfite, which converts tetrathionate, pentathionate and other higher polythionates into trithionate and thiosulfate. High levels of sorbed tetrathionate and other higher polythionates on the gold and/or silver-loaded resin can increase significantly tetrathionate and other higher polythionate levels in the co-current portion. Trithionate is not as strongly sorbed onto the resin as pentathionate and tetrathionate and, compared to higher polythionates, is significantly less likely to precipitate gold and/or silver from solution and inhibit gold and/or silver adsorption on the resin. The treated gold and/or silver-loaded resin is introduced into the first input of the co-current portion. The treated gold and/or silver-loaded resin is loaded with more gold and/or silver in the co-current portion to form further gold and/or silver-loaded resin, and the further gold and/or silver-loaded resin is removed from the co-current portion and subjected to gold and/or silver stripping using a second (stripping) solution to remove most (or all) of the gold and/or silver from the further gold and/or silver-loaded resin and form a gold and/or silver-stripped resin. The gold and/or silver-stripped resin can be regenerated and reintroduced into the counter-current portion. This configuration is typically employed where the adsorbed level of tetrathionate and other higher polythionates on the treated gold and/or silver-loaded resin from the counter-current portion is relatively high. For example, the configuration would be appropriate when the adsorbed polythionates are predominantly in the form of tetrathionate and other higher polythionates.
In one configuration, the gold and/or silver-loaded resin from the counter-current portion is introduced from the second output directly into the first input of the co-current portion without intermediate treatment to remove tetrathionate and other higher polythionates from the resin. This configuration is employed when the levels of adsorbed tetrathionate and other higher polythionates are relatively low. For example, the configuration would be appropriate when the adsorbed polythionates are predominantly in the form of trithionate.
In one configuration, the gold and/or silver-loaded resins from the counter-current and co-current portions are subjected to separate the resin treatment (for higher polythionate conversion) and/or gold and/or silver-stripping stages.
In one configuration, the gold and/or silver-loaded resins from the counter-current and co-current portions are subjected to common treatment and/or gold and/or silver-stripping stages.
All, some, or none of the stripped resin can be regenerated for reuse in either or both of the co-current and counter-current portions.
The present disclosure can provide a number of advantages depending on the particular configuration. The circuit can promote fast gold and/or silver adsorption kinetics from the slurry at the front end of the circuit and prevent gold and/or silver loss by preg robbing and other gold and/or silver-recovery-reducing mechanisms. By adding resin in a co-current flow to the first tank, there commonly are no interfering compounds, which reduce resin loading, from subsequent leach tanks being transferred to the tanks at the beginning of the circuit. The resin added to the first tank is normally retained in the second tank until the concentration builds up. Allowing the resin concentration to build in the second tank can substantially minimize the effects of changes in the composition of gold and/or silver-containing material. The circuit can recover gold and/or silver effectively from gold and/or silver-bearing ores or concentrates requiring not only mild but also strong thiosulfate leaching conditions. In addition, the detrimental effects of polythionate anions (e.g., tetrathionate and other higher polythionates with tetrathionate being more detrimental) on gold and/or silver recovery can be largely negated by the circuit.
These and other advantages will be apparent from the disclosure of the aspects, embodiments, and configurations contained herein.
The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. When each one of A, B, and C in the above expressions refers to an element, such as X, Y, and Z, or class of elements, such as X1-Xn, Y1-Ym, and Z1-Zo, the phrase is intended to refer to a single element selected from X, Y, and Z, a combination of elements selected from the same class (e.g., X1 and X2) as well as a combination of elements selected from two or more classes (e.g., Y1 and Zo).
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably.
The term “higher polythionate” refers to a compound comprising Sn(SO3)2]2−, where n ≧4. “Higher polythionates” therefore includes tetrathionate, pentathionate, hexathionate, and so on.
The term “ion exchange resin” or “ion-exchange polymer” is an insoluble matrix (or support structure) normally in the form of small (0.25-2 mm diameter) beads fabricated from an organic polymer substrate, such as crosslinked polystyrene or polystyrene-divinyl benzene copolymers. The material has a highly developed structure of pores or functional groups (such as amines and esters on the surface), which easily trap and release ions. The adsorption of ions takes place only with simultaneous releasing of other ions; thus the process is called ion exchange. Functional groups can be basic (anion exchangers) or acidic (cation exchangers), with strong- and weak-base resins being preferred.
The term “means” as used herein shall be given its broadest possible interpretation in accordance with 35 U.S.C., Section 112, Paragraph 6. Accordingly, a claim incorporating the term “means” shall cover all structures, materials, or acts set forth herein, and all of the equivalents thereof. Further, the structures, materials or acts and the equivalents thereof shall include all those described in the summary of the invention, brief description of the drawings, detailed description, abstract, and claims themselves.
A “polythionate” is a salt or ester of a polythionic acid.
The phrase “preg robbing carbon” refers to a carbonaceous material that preferentially absorbs, permanently or temporarily, gold and gold-thio complexes and silver and silver-thio complexes.
The preceding is a simplified summary of the disclosure to provide an understanding of some aspects of the disclosure. This summary is neither an extensive nor exhaustive overview of the disclosure and its various aspects, embodiments, and configurations. It is intended neither to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure but to present selected concepts of the disclosure in a simplified form as an introduction to the more detailed description presented below. As will be appreciated, other aspects, embodiments, and configurations of the disclosure are possible utilizing, alone or in combination, one or more of the features set forth above or described in detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings are incorporated into and form a part of the specification to illustrate several examples of the present disclosure. These drawings, together with the description, explain the principles of the disclosure. The drawings simply illustrate preferred and alternative examples of how the disclosure can be made and used and are not to be construed as limiting the disclosure to only the illustrated and described examples. Further features and advantages will become apparent from the following, more detailed, description of the various aspects, embodiments, and configurations of the disclosure, as illustrated by the drawings referenced below.
FIG. 1 is a process flow chart according to the prior art;
FIG. 2 is a resin-in-leach circuit according to the prior art;
FIG. 3 is a resin-in-leach circuit according to an embodiment;
FIG. 4 is a plot of gold recovery (percent) (vertical axis) against residence time (hours) (horizontal axis);
FIG. 5 is a plot of gold extraction (percent) (vertical axis) against operating time (hours) (horizontal axis);
FIG. 6 is a plot of gold loaded on resin (kg/t) (left vertical axis) against operating time (hours) (horizontal axis) and a plot of tetrathionate loaded on resin (mol/L) against operation time (hours) and;
FIG. 7 is a plot of gold loaded on resin (%) (right vertical axis) against operating time (days) (horizontal axis) and a plot of tetrathionate loaded on resin (kg/t) (left vertical axis) against operation time (days).
DETAILED DESCRIPTION
FIG. 4 depicts phenomena that can occur when performing thiosulfate gold and/or silver leaching with and without an ion exchange resin. First, the majority of gold is commonly leached from the gold-containing material quickly. Second when the gold-containing material is substantially free of preg-robbing components, the gold is commonly leached from the material quickly and almost completely. Leaching kinetics do not appear to be affected by the presence or absence of an ion exchange resin. Third when the gold-containing material contains a preg robbing component, the leaching kinetics are commonly slower, and the initial leaching kinetics and overall gold recovery are improved when the resin is present. Finally when the gold-containing material contains a preg robbing component and the resin is not present during leaching, the initial leaching kinetics are commonly high but the gold recovery commonly decreases over time. The decrease in recovery is most likely due to the adsorption of the gold thiosulfate complex by the preg-robbing material. As shown in FIG. 4, fast adsorption of gold in solution can prevent subsequent losses in recovery by preg-robbing.
Feed to gold recovery circuits can exhibit great variability which can also adversely affect gold recovery. In addition to the effect of preg robbing shown above, gold concentration, and the presence of other metals, which can complex with thiosulfate and be adsorbed by the resin, can also affect leaching kinetics and recoveries.
Thiosulfate is partially oxidized under the conditions required for gold leaching and its oxidation products can compete with gold and/or silver thiosulfate complexes for functional group sites. The oxidation products include trithionate (S3O6), tetrathionate (S4O6), pentathionate (S5O6), other higher polythionates, and sulfate (SO4 2−), and these oxidation products can be adsorbed by the resin. The relative affinities for various compounds adsorbed by strong base anion exchange resins are:
    • Gold>Mercury>Pentathionate>Tetrathionate>Copper>Trithionate.
Typical concentrations of polythionates in the slurry 140 range from about 0.1 to about 5 g/L and even more typically from about 0.5 to about 2 g/L.
With reference to the conventional circuit 200 of FIG. 2 as the resin 204 is transferred towards the slurry feed end of the circuit 200, the gold level on the resin 204 increases, however the level of other components, particularly trithionate, tetrathionate and/or other higher polythionates, which, as noted, have an affinity for the resin, will also increase. By the time the resin 204 reaches the first tank 208 a, which is where the majority of the gold (and/or silver) thiosulfate complex is typically formed (or the majority of gold (and/or silver) is dissolved), the resin 204 may not have adequate adsorption capacity to adsorb the gold (and/or silver), thereby lowering gold recoveries.
To minimize substantially the effects of changes in feed characteristics on gold recovery, it appears, based on the results shown in FIG. 4, to be advantageous to operate a thiosulfate resin-in-leach operation employing a high concentration of resin during the earliest stages of gold leaching. This can ensure that there is an abundance of adsorption or functional sites on the resin to adsorb the gold (and/or silver) prior to preg robbing or the occurrence of other species competing with gold (and/or silver) thiosulfate complex for resin functional groups.
An embodiment of a resin-in-leach circuit according to the present disclosure is shown in FIG. 3.
FIG. 3 depicts a resin-in-leach 300 (or resin-in-pulp) circuit 300, which includes a plurality of first, second, third, . . . mth tanks 208 a-m. The first, second, third, . . . mth tanks 208 a-m are typically air-agitated (e.g., Pachuca-type) vessels to maintain resin and slurry well mixed and provide air-lift for resin-slurry transfer into and out of the tanks. Static sieve bend screens (DSM type) are used to separate the resin from the slurry 140. Fresh resin 204 (and/or partially gold and/or silver loaded resin 204 from one or more of tanks 208 c-m and/or stripped and/or regenerated resin from a first output 340), which is a strong-base anion exchange resins and more typically Purolite™ A500C, is contacted, via a first input 330 with the slurry 140 in the first tank 208 a containing the highest amount of gold (and/or silver) (among the first, second, third, . . . mth tanks) and with the slurry 140 in the final tank 208 m containing the lowest amount of gold (and/or silver) (among the first, second, third, . . . mth tanks). The resin 204 added to the first tank 208 a moves co-current with the slurry 140, and gold (and/or silver) loaded resin 312, typically containing most of the gold (and/or silver) in the leached gold (and/or silver)-containing material is removed, via a first output 340, from the second tank 208 b (hereinafter “the co-current portion of the circuit”). The resin 204 added, via a second input 350, to the final tank 208 m moves counter-current to the slurry 140 and gold (and/or silver) loaded resin 316 is removed, via an output 360, from the third tank 208 c (hereinafter “the counter-current portion of the circuit”). Barren tailings 320 are removed from the nth tank 208 n, and gold and/or silver- and interferent-loaded resin 316 are removed from second output 380. In various configurations, the resin 204 added to the second input 350 may be gold and/or silver- and/or treated, and/or regenerated resin from the first and/or second outputs 340 and 380 and/or fresh resin.
As will be appreciated, it is not necessary to have only two tanks with resin flowing co-currently. Any number of tanks can be used. For example, it is possible to have only one tank or more than two tanks with an appropriate resin concentration. Multiple tanks are commonly employed to minimize short circuiting of the slurry.
The slurry 140, in one application, has a solids content ranging from about 30 to about 50 vol. %.
In the first tank 208 a, the slurry 140 is contacted with a gold (and/or silver) lixiviant, which is preferably an alkaline earth, alkali metal, or ammonium thiosulfate, dilution water, and optionally copper (typically as copper sulfate). In one application, the slurry 140 is contacted with sufficient thiosulfate to yield a thiosulfate concentration in the slurry 140 ranging from about 0.005 to about 2 molar. Preferably, copper, when present, is added to the feed slurry at a concentration ranging from about 10 to about 100 ppm, more preferably from about 25 to about 100 ppm, and more preferably of about 50 ppm. Copper addition may not be required when a sufficient level of copper from the gold (and/or silver)-containing material leaches into the slurry. Although the exact mechanism of how copper improves the leaching is not well understood, copper is believed to accelerate thiosulfate leaching kinetics. Preferably, there is little, or no, ammonia in the system.
The leaching conditions can vary. Preferably, the temperature of leaching ranges from about 40° C. to 80° C., more preferably from about 40 to about 60° C., with the more preferred target being about 50° C. Higher temperatures may result in excessive resin degradation. Preferably, pH in the leaching is maintained at about pH 7.5 to pH 10, more preferably from about pH 7.5 to about pH 9, with a more preferred target of about pH 8.0. Preferably, the oxidation-reduction-potential (“ORP”) (with respect to the Ag/AgCl reference electrode) in leaching is in the range of about −100 mV to +50 mV, though this may vary depending on the type of ores being leached. Commonly, the slurry residence ranges from about 1 to about 5 hours/tank and more commonly from about 3 to about 4 hours/tank. The total slurry residence time for the circuit typically ranges from about 10 to about 25 hours.
The resin contacted with the slurry in the first tank is typically added at a rate of from about 1 to about 3 L/hr. The resin is typically allowed to build up in the second and third tanks 208 b-c to a concentration ranging from about 10 to about 25 g/L and more typically from about 12.5 to about 17.5 g/L of slurry.
The first and second tanks 208 a-b are typically highly oxygenated while the third . . . mth tanks 208 c-m (in which the resin flows counter-currently) are typically poorly oxygenated. In one application, the first and second tanks 208 a-b commonly have a dissolved molecular oxygen content of at least about 5 ppm and more commonly ranging from about 6 to about 10 ppm while the third . . . mth tanks 208 c-m have a dissolved molecular oxygen content of less than about 5 ppm and more commonly ranging from about 1 to about 4 ppm.
In one configuration, gold (and/or silver)-loaded resin from the second and third tanks 208 b and c is stripped of gold and/or silver with suitable stripping agents, including, for example, halide salts (e.g., sodium chloride, a perchlorate, and the like), polythionate, a nitrate, a thiocyanate, a thiourea, a mixture of sulfite and ammonia, thiosulfate, and mixtures thereof. The gold (and/or silver)-containing stripping agent may be processed by any suitable gold (and/or silver) recovery technique, such as electrowinning or precipitation, to extract the dissolved or stripped gold (and/or silver) and form the gold (and/or silver) product. Elution is normally conducted at a pH ranging from about pH 7 to pH 9 to eliminate substantially osmotic shock on the resin.
In one process configuration, gold (and/or silver)-loaded resin removed from the third tank 208 c is treated in unit operation 370 with a sulfite solution to remove most, if not all of, deleterious polythionates (particularly penta and tetrathionate) and the treated gold (and/or silver)-loaded resin 360 is added to the first tank 208 a as a partially gold (and/or silver) loaded resin. Other sulfur and sulfoxy agents may be used to remove deleterious polythionates from the gold (and/or silver) and inferent-loaded resin to increase gold (and/or silver) loading without transferring penta- and tetra-thionate interferents. For example, a polysulfide other than a bisulfide, a bisulfide, a sulfide other than a bisulfide and a polysulfide, and mixtures thereof may be used to convert tetrathionate, pentathionate and other higher polythionates into thiosulfate. To avoid precipitation of gold (and/or silver) sulfide, however, the conditions should be carefully controlled to maximize thiosulfate formation while substantially minimizing gold (and/or silver) sulfide precipitation. The sulfite, sulfur, or sulfoxy agent converts tetrathionate, pentathionate and other higher polythionates to trithionates while leaving the gold (and/or silver) adsorbed on the resin. The treated gold and/or silver resin is removed from the first output 340, stripped of gold and/or silver in unit operation 390, and re-inputted at the second input 350.
It is to be understood that any number of tanks may, respectively, be in the co-current and counter-current portions of the circuit
Although typical resin concentrations are provided herein, it is to be understood that resin concentrations will vary depending upon the amount of gold (and/or silver) leached in the feed material.
The circuit 300 can promote fast gold adsorption kinetics from the slurry at the front end of the circuit and prevent gold loss by preg robbing or other mechanism which reduce gold (and/or silver) recovery. As noted, the circuit operates by adding resin and slurry to the first tank and transferring both co-currently to the second tank, where the resin is removed and the gold (and/or silver) recovered. By adding resin in a co-current flow to the first tank, there are no interfering compounds from subsequent leach tanks being transferred to the tanks at the beginning of the circuit. The resin added to the first tank is retained in the second tank until the concentration builds up. Allowing the resin concentration to build to the second tank can substantially minimize the effects of changes in the ore type. Although two tanks are shown in the co-current portion in the Figures, it is to be understood that any number of tanks may be employed. For example, a single tank would be sufficient, if short circuiting of the slurry can be avoided.
It is to be understood that the current process is not limited to the reduction of gold (and/or silver) recovery due simply to the presence of a preg-robbing carbonaceous material. While not wishing to be bound by any theory, there appear to be several mechanisms at work in a standard resin-in-leach or resin-in-pulp circuit in reducing gold (and/or silver) recovery. It is often not possible to define which mechanism(s) is contributing individually or collectively to gold (and/or silver) loss. The mixed flow process disclosed herein is designed to reduce the influence of tetrathionate, pentathionate, and other higher polythionate loading on the resin, on lowering gold (and/or silver) recovery, as well as on other preg robbing components, such as carbonaceous material, silica, and/or iron oxide.
EXPERIMENTAL
The following examples are provided to illustrate certain aspects, embodiments, and configurations of the disclosure and are not to be construed as limitations on the disclosure, as set forth in the appended claims. All parts and percentages are by weight unless otherwise specified.
FIG. 5 shows the gold recovery from a conventional counter current operation (such as that shown in FIG. 2) that was operated in steady state for a period of 150 hours. The overall gold recovery as determined by the percent of the gold remaining in the tails, decreased as the operating time increased. The gold recovery dropped from 44% to 27.4% or 16.8% in tank 1, and from 84% to 66.8% or 17.2% in tank 8. It is clear that the loss of gold recovery in tank 1 was not compensated for as the slurry passed through the subsequent tanks.
FIG. 6 shows the relationship between tetrathionate adsorbed by the resin and gold recovery. An analysis of the resin removed from the first tank of the counter current operation shows that as the amount of tetrathionate adsorbed to the resin increased as the amount of gold adsorbed decreased, suggesting that adsorption on the resin of non targeted compounds can reduce the recovery of gold. As the resin moves from the back end of the circuit to the front end of the circuit there is an opportunity for these compounds to be carried to the front of the circuit.
In one configuration, six resin-in-leach tanks were used in the circuit 300. Each tank has a preferred individual residence time of about 3-4 hours each for a total preferred leaching residence time of about 10-24 hours. The total number of tanks may be altered depending on the leaching kinetics.
The first and second tanks 208 a-b operate with the resin co-current with the movement of the gold bearing slurry. The feed slurry includes about 48% solids, has a flow rate of about 985 lb/hour or 0.201 mt solid/hour, and a dissolved gold concentration of about 2.5 g/mt. Other additives to the first tank include resin at a typical concentration of about 3.37 mol/L, dilution water at a typical rate of about 28 g/hr, calcium thiosulfate at a typical rate of about 5.2 g/hr, and copper sulfate at a typical rate of about 0.6 g/hr. The first and second co-current tanks have a dissolved molecular oxygen level of amount 7-8 ppm while the four counter-current tanks have a dissolved molecular oxygen level of about 2-3 ppm. The resin concentration in the first tank is about 3.37 mol/L and in the second tank about mol/L. Typically, the resin concentration is maintained at about 15 mol/L by removing the resin from the second tank 208 b at approximately the same rate it is added to the first tank 208 a. Highly loaded resin is withdrawn from the second tank at a rate of about 1.5 L/hr and contains about 705.51 g/mt gold.
The third through sixth tanks operate with about 5 mL/L resin moving counter-current to the movement of the gold-bearing slurry.
The highest level of gold loading typically occurs in the second tank.
The third through sixth tanks operate to scavenge the remaining gold in the gold bearing slurry.
FIG. 7 demonstrates resin transfer in a co-current (tanks 1 and 2) and counter current (tanks 3 through 6) portions of the circuit. The co-current portion can create conditions in which gold recovery does not decrease over time. As can be seen from the graph, the tetrathionate level in tank 1, where the majority of the gold is leached and adsorbed by the resin, is significantly lower than that observed in the third tank, which is the terminus of the counter-current resin transfer.
A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.
The present disclosure, in various aspects, embodiments, and configurations, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various aspects, embodiments, configurations, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the various aspects, aspects, embodiments, and configurations, after understanding the present disclosure. The present disclosure, in various aspects, embodiments, and configurations, includes providing devices and processes in the absence of items not depicted and/or described herein or in various aspects, embodiments, and configurations hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease and\or reducing cost of implementation.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more, aspects, embodiments, and configurations for the purpose of streamlining the disclosure. The features of the aspects, embodiments, and configurations of the disclosure may be combined in alternate aspects, embodiments, and configurations other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed aspects, embodiments, and configurations. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description of the disclosure has included description of one or more aspects, embodiments, or configurations and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative aspects, embodiments, and configurations to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.

Claims (30)

What is claimed is:
1. A method, comprising:
leaching, by thiosulfate, a gold and/or silver-containing material in at least one of an ion-exchange resin-in-leach and ion-exchange resin-in-pulp circuit, the circuit comprising a co-current portion where the gold and/or silver-containing material and a gold and/or silver-collecting ion-exchange resin flow co-currently and a counter-current portion where the gold and/or silver-containing material and gold and/or silver-collecting ion-exchange resin flow counter-currently, wherein the gold and/or silver-containing material flows first through the co-current portion arid second through the counter-current portion.
2. The method of claim 1, wherein the co-current and counter-current portions do not share a common resin-in-leach or resin-in-pulp tank.
3. The method of claim 1, wherein at least most of the gold and/or silver in the co-current portion is collected by the ion-exchange resin in the co-current portion, and wherein at least most of the gold and/or silver in the counter-current portion is collected by the ion-exchange resin in the counter-current portion.
4. The method of claim 1, wherein a first ion-exchange resin concentration in a part of the co-current portion is greater than a second ion-exchange resin concentration in a part of the counter-current portion and wherein in the counter-current portion, polythionate ions on the one hand and gold and/or silver on the other competitively collect on the ion-exchange resin.
5. The method of claim 4, wherein an average and median ion-exchange resin concentration in the co-current portion is greater than a respective average and median ion-exchange resin concentration in the counter-current portion.
6. The method of claim 4, wherein a maximum ion-exchange resin concentration in the co-current portion exceeds a maximum ion-exchange resin concentration in the counter-current portion.
7. The method of claim 4, wherein a minimum ion-exchange resin concentration in the co-current portion exceeds a minimum ion-exchange resin concentration in the counter-current portion.
8. The method of claim 1, wherein the gold and/or silver is gold, wherein the thiosulfate is substantially free of ammonia, wherein a leach solution in the counter-current portion comprises dissolved gold, thiosulfate, and polythionates, wherein the ion-exchange resin collects, from the leach solution, higher polythionates and gold, wherein the gold and/or silver loaded ion-exchange resin is removed from the co-current portion and contacted with sulfite to convert collected polythionates to trithionates to form a treated gold and/or silver-containing ion-exchange resin, wherein the treated gold and/or silver-containing ion-exchange resin is introduced into the counter-current portion to form a further loaded treated gold and/or silver-containing ion-exchange resin, wherein at least most of the gold and/or silver remains collected on the gold and/or silver-containing ion-exchange resin after sulfite contact, wherein the further loaded treated gold and/or silver-containing ion-exchange resin, after removal from the counter-current portion, is contacted with a stripping solution to remove at least most of the gold and/or silver from the treated gold and/or silver-containing ion-exchange resin, to form a stripped ion-exchange resin, wherein the stripped ion-exchange resin is introduced into the co-current portion, and wherein the gold and/or silver-containing material comprises a preg-robbing material.
9. The method of claim 3, wherein most or all of a gold and/or silver-loaded ion-exchange resin in the co-current portion is removed from a tank in the co-current portion and most or all of a gold and/or silver-loaded ion-exchange resin in the counter-current portion is removed from the counter-current portion.
10. The method of claim 1, wherein most or all of a gold and/or silver-loaded ion-exchange resin in the co-current portion and most or all of a gold and/or silver-loaded ion-exchange resin in the counter-current portion are removed from a common tank.
11. The method of claim 8, wherein the gold and/or silver is gold, wherein higher polythionate- and gold-loaded ion-exchange resin from the counter-current portion is treated to remove most or all of the higher polythionate but most or all of the gold remains loaded on the ion-exchange resin to form a treated gold-loaded ion-exchange resin and wherein the treated gold-loaded ion-exchange resin is introduced into the co-current portion.
12. The method of claim 11, wherein the treated gold-loaded ion-exchange resin is loaded with more gold in the co-current portion to form further gold-loaded ion-exchange resin, wherein the further gold-loaded ion-exchange resin is removed from the co-current portion and subjected to stripping to remove most or all of the gold from the further gold-loaded ion-exchange resin and form a gold and/or silver stripped ion-exchange resin.
13. The method of claim 12, wherein the gold and/or silver stripped ion-exchange resin is reintroduced into the counter-current portion.
14. A method, comprising:
thiosulfate leaching, by at least one of a resin-in-leach and resin-in-pulp circuit, a gold-containing material, the circuit comprising a co-current portion in which the gold-containing material and an ion exchange resin flow co-currently and a counter-current portion in which the gold-containing material and ion exchange resin flow counter-currently, the gold-containing material flowing first through the co-current portion and second through the counter-current portion, wherein a gold-loaded ion-exchange resin is stripped of gold and treated to remove a higher polythionate collected on the gold-loaded ion-exchange resin in separate steps using differing solutions.
15. The method of claim 14, wherein the co-current and counter-current portions do not share a common resin-in-leach or resin-in-pulp tank.
16. The method of claim 14, wherein, relative to the flow of the gold-containing material, the co-current portion is located upstream of the counter-current portion.
17. The method of claim 14, wherein a first ion-exchange resin concentration in a part of the co-current portion is greater than a second ion-exchange resin concentration in a part of the counter-current portion.
18. The method of claim 17, wherein an average and median ion-exchange resin concentration in the co-current portion is greater than a respective average and median ion-exchange resin concentration in the counter-current portion.
19. The method of claim 17, wherein a maximum ion-exchange resin concentration in the co-current portion exceeds a maximum ion-exchange resin concentration in the counter-current portion.
20. The method of claim 17, wherein a minimum ion-exchange resin concentration in the co-current portion exceeds a minimum ion-exchange resin concentration in the counter-current portion.
21. The method of claim 14, wherein the thiosulfate is substantially free of ammonia, wherein a leach solution in the counter-current portion comprises dissolved gold, thiosulfate, and polythionates, wherein the ion-exchange resin collects, from the leach solution, higher polythionates and gold, and wherein the gold-containing material comprises a preg-robbing carbonaceous material.
22. The method of claim 16, wherein most or all of a gold-loaded ion-exchange resin in the co-current portion is removed from the co-current portion and most or all of a gold-loaded ion-exchange resin from the counter-current portion is removed from the counter-current portion.
23. The method of claim 14, wherein most or all of a gold-loaded resin in the co-current portion and most or all of a gold-loaded ion-exchange resin in the counter-current portion are removed from a common tank.
24. The method of claim 21, wherein higher polythionate and gold-loaded ion-exchange resin from the counter-current portion is treated to remove of most or all of the higher polythionate but most or all of the gold remains loaded on the ion-exchange resin to form a treated gold-loaded ion-exchange resin and wherein the treated gold-loaded ion-exchange resin is introduced into the co-current portion.
25. The method of claim 24, wherein the treated gold-loaded ion-exchange resin is loaded with more gold in the co-current portion to form further gold-loaded ion-exchange resin, wherein the further gold-loaded ion-exchange resin is removed from the co-current portion and subjected to gold stripping to remove most or all of the gold from the further gold-loaded ion-exchange resin and form a treated gold-stripped ion-exchange resin.
26. The method of claim 25, wherein the treated gold-stripped ion-exchange resin is reintroduced into the counter-current portion.
27. The method of claim 14, wherein a thiosulfate leach solution in the counter-current portion comprises dissolved gold, thiosulfate, and polythionates, wherein the resin collects, from the leach solution, higher polythionates and gold, wherein a partially gold-loaded ion-exchange resin is removed from the co-current portion and contacted with sulfite to convert collected polytionates to trithionates to form a treated gold-containing ion-exchange resin, wherein the treated gold-containing ion-exchange resin is introduced into the counter-current portion to form the gold-loaded ion-exchange resin, wherein most or all of the gold remains collected on the partially gold-loaded ion-exchange resin after sulfite contact, wherein the gold-loaded ion-exchange resin, after removal from the counter-current portion, is contacted with a stripping solution to remove most or all of the gold from the gold-loaded ion-exchange resin, to form a stripped ion-exchange resin, and wherein the stripped ion-exchange resin is introduced into the co-current portion.
28. The method of claim 14, wherein most or all of the gold and/or silver leached from the gold and/or silver-containing material is collected by the ion exchange resin in the co-current portion.
29. The method of claim 14, wherein a dissolved molecular oxygen content of a thiosulfate-containing leach solution in the co-current portion is at least 5 ppm and a dissolved molecular oxygen content of the thiosulfate leach solution in the counter-current portion is less than 5 ppm.
30. The method of claim 14, wherein the higher polythionate is removed by contacting the higher polythionate and gold-loaded ion-exchange resin with sulfite to form the gold-loaded ion-exchange resin, wherein most or all of the collected gold remains on the gold-loaded ion-exchange resin, and wherein most or all of the gold is removed from the gold-loaded ion-exchange resin by contacting the gold-loaded ion-exchange resin with a stripping agent comprising one or more of a halide salt, polythionate, nitrate, thiocyanate, thiourea, a mixture of sulfite and ammonia, and thiosulfate.
US13/313,594 2010-12-07 2011-12-07 Co-current and counter current resin-in-leach in gold leaching processes Active 2031-12-13 US8715389B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/313,594 US8715389B2 (en) 2010-12-07 2011-12-07 Co-current and counter current resin-in-leach in gold leaching processes
US13/958,683 US9790572B2 (en) 2010-12-07 2013-08-05 Co-current and counter current resin-in-leach in gold leaching processes
US15/726,091 US10415116B2 (en) 2010-12-07 2017-10-05 Co-current and counter current resin-in-leach in gold leaching processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42059610P 2010-12-07 2010-12-07
US13/313,594 US8715389B2 (en) 2010-12-07 2011-12-07 Co-current and counter current resin-in-leach in gold leaching processes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/958,683 Division US9790572B2 (en) 2010-12-07 2013-08-05 Co-current and counter current resin-in-leach in gold leaching processes

Publications (2)

Publication Number Publication Date
US20120183433A1 US20120183433A1 (en) 2012-07-19
US8715389B2 true US8715389B2 (en) 2014-05-06

Family

ID=46206657

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/313,594 Active 2031-12-13 US8715389B2 (en) 2010-12-07 2011-12-07 Co-current and counter current resin-in-leach in gold leaching processes
US13/958,683 Active 2033-01-14 US9790572B2 (en) 2010-12-07 2013-08-05 Co-current and counter current resin-in-leach in gold leaching processes
US15/726,091 Active 2031-12-29 US10415116B2 (en) 2010-12-07 2017-10-05 Co-current and counter current resin-in-leach in gold leaching processes

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/958,683 Active 2033-01-14 US9790572B2 (en) 2010-12-07 2013-08-05 Co-current and counter current resin-in-leach in gold leaching processes
US15/726,091 Active 2031-12-29 US10415116B2 (en) 2010-12-07 2017-10-05 Co-current and counter current resin-in-leach in gold leaching processes

Country Status (20)

Country Link
US (3) US8715389B2 (en)
EP (2) EP3366792B1 (en)
AP (1) AP3623A (en)
AR (2) AR084198A1 (en)
AU (2) AU2011340196B2 (en)
BR (2) BR122014030670A2 (en)
CA (2) CA2863875C (en)
CL (1) CL2013001619A1 (en)
DO (1) DOP2013000119A (en)
EA (2) EA024636B1 (en)
ES (2) ES2927467T3 (en)
HU (2) HUE050671T2 (en)
MX (1) MX347787B (en)
NZ (2) NZ611643A (en)
PE (2) PE20131407A1 (en)
PH (1) PH12014502431A1 (en)
RS (2) RS60482B1 (en)
TR (1) TR201903166T4 (en)
WO (1) WO2012076981A1 (en)
ZA (2) ZA201304093B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180030572A1 (en) * 2013-05-29 2018-02-01 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
US10415116B2 (en) * 2010-12-07 2019-09-17 Barrick Gold Corporation Co-current and counter current resin-in-leach in gold leaching processes
US11639540B2 (en) 2019-01-21 2023-05-02 Barrick Gold Corporation Method for carbon-catalysed thiosulfate leaching of gold-bearing materials

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10398604B2 (en) * 2014-12-17 2019-09-03 Kci Licensing, Inc. Dressing with offloading capability
US11408053B2 (en) 2015-04-21 2022-08-09 Excir Works Corp. Methods for selective leaching and extraction of precious metals in organic solvents
US20200377970A1 (en) * 2019-06-03 2020-12-03 Barrick Gold Corporation Method for recovering precious metals from thiosulfate leach solutions
US11718962B2 (en) 2020-01-23 2023-08-08 Jacob Holm & Sons Ag Nonwoven web composition, method to prepare the composition and articles thereof
USD1009241S1 (en) 2021-06-21 2023-12-26 Puraclenz Llc Air purifier
USD1023269S1 (en) 2021-06-21 2024-04-16 Puraclenz Llc Vent cover for an air purifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758413A (en) * 1986-11-17 1988-07-19 The Dow Chemical Company Reactive resins useful for precious metal recovery
US5385668A (en) 1991-06-27 1995-01-31 Bateman Project Holdings Limited Apparatus for separating particulate material from a liquid medium
US20080105088A1 (en) * 2000-05-19 2008-05-08 Placer Dome Technical Services Limited Method for thiosulfate leaching of precious metal-containing materials

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US496951A (en) 1893-05-09 Henry parkes
US1627582A (en) 1922-09-07 1927-05-10 Thomas H Sherian Process for treatment of ores
GB954435A (en) 1960-08-25 1964-04-08 Nat Res Dev Anion exchange resins for the recovery of gold and silver from gold and silver bearing aqueous cyanide liquors
US3524724A (en) 1966-10-12 1970-08-18 Continental Oil Co Method for making ammonium thiosulfate and ammonium sulfate
US3454503A (en) * 1967-07-19 1969-07-08 Shell Oil Co Process for regenerating cation exchange resins
US3644087A (en) 1970-02-09 1972-02-22 Universal Oil Prod Co Process for scrubbing sulfur dioxide from a gas stream
GB1423341A (en) 1971-12-09 1976-02-04 Iws Nominee Co Ltd Polymer treatmen5 of fibrous and filamentary materials
BE792337A (en) 1971-12-13 1973-03-30 Falconbridge Nickel Mines Ltd PROCESS FOR THE RECOVERY OF PRECIOUS METALS FROM MATERIALS CONTAINING COPPER
US3833351A (en) 1973-02-15 1974-09-03 Univ Eng Inc Continuous preparation of pure metals by hydrogen reduction
GB1497534A (en) 1973-12-13 1978-01-12 Matthey Rustenburg Refines Refining of metals
US3902896A (en) 1974-05-22 1975-09-02 Int Nickel Co Cementation of metals from acid solutions
CA1073681A (en) 1976-02-20 1980-03-18 Roman M. Genik-Sas-Berezowsky Recovery of precious metals from metal sulphides
CA1106617A (en) 1978-10-30 1981-08-11 Grigori S. Victorovich Autoclave oxidation leaching of sulfide materials containing copper, nickel and/or cobalt
US4296075A (en) 1978-11-24 1981-10-20 Mobil Oil Corporation Method for protecting an ion-exchange resin from chemical poisoning
AU521933B2 (en) 1979-04-13 1982-05-06 Harold J. Heinen Leaching gold or silver ores
US4289532A (en) 1979-12-03 1981-09-15 Freeport Minerals Company Process for the recovery of gold from carbonaceous ores
US4369061A (en) 1979-12-28 1983-01-18 Kerley Jr Bernard J Recovery of precious metals from difficult ores
US4269622A (en) 1979-12-28 1981-05-26 Kerley Jr Bernard J Recovery of precious metals from difficult ores
US4411873A (en) 1980-12-31 1983-10-25 Mobil Oil Corporation In-line regeneration of polythionate poisoned ion exchange resins
US4384889A (en) 1981-04-15 1983-05-24 Freeport Research & Development Company Simultaneous leaching and cementation of precious metals
CA1198080A (en) 1981-04-15 1985-12-17 Freeport Minerals Company Simultaneous leaching and electrodeposition of precious metals
US4411612A (en) 1981-04-16 1983-10-25 Neha International Apparatus for recovering precious metals from their ores
RO81261A2 (en) 1981-12-01 1983-02-01 Institutul De Cercetari Si Proiectari Pentru Epurarea Apelor Reziduale,Ro PROCESS OF RECOVERY OF SILVER AND SUPPORT FROM WASTE OF PHOTOSENSIBLE MATERIALS
US4489984A (en) 1982-04-22 1984-12-25 Mobil Oil Corporation In-situ uranium leaching process
US4528166A (en) * 1983-05-05 1985-07-09 Sentrachem Limited Recovery of gold and/or silver from cyanide leach liquors on activated carbon
DE3424460A1 (en) 1983-07-08 1985-01-17 Guy Imre Zoltan Armidale Neusüdwales/New South Wales Kalocsai REAGENS FOR SOLVING METALLIC GOLD AND METHOD FOR EXTRACING GOLD
US4585561A (en) 1983-07-25 1986-04-29 Agfa-Gevaert Aktiengesellschaft Flotation process for the continuous recovery of silver or silver compounds from solutions or dispersions
DE3347165A1 (en) 1983-12-27 1985-07-04 Skw Trostberg Ag, 8223 Trostberg METHOD FOR EXTRACTION OF PRECIOUS METALS
US4552589A (en) 1984-01-27 1985-11-12 Getty Oil Company Process for the recovery of gold from refractory ores by pressure oxidation
ES530538A0 (en) 1984-03-13 1985-07-16 Nunez Alvarez Carlos PROCEDURE TO IMPROVE THE PERFORMANCE OF GOLD AND SILVER EXTRACTION IN THE GOSSAN MINERALS
JPS60208434A (en) 1984-04-03 1985-10-21 Nippon Mining Co Ltd Method for recovering silver from precipitate of copper electrolysis
CA1234991A (en) 1984-09-27 1988-04-12 Donald R. Weir Recovery of gold from auriferous refractory iron- containing sulphidic ore
CA1234290A (en) 1984-09-27 1988-03-22 Donald R. Weir Recovery of gold from refractory auriferous iron- containing sulphidic material
CA1229487A (en) 1984-09-27 1987-11-24 Roman M. Genik-Sas-Berezowsky Process for the recovery of silver from a residue essentially free of elemental sulphur
US4634187A (en) 1984-11-21 1987-01-06 Isl Ventures, Inc. Method of in-situ leaching of ores
ZA853701B (en) 1984-11-26 1986-05-28 Pm Mineral Leaching Tech Inc Bioleaching process
JPS61127833A (en) 1984-11-27 1986-06-16 日本鉱業株式会社 Recovery of mercury in iron sulfide concentrate
JPS61127834A (en) 1984-11-27 1986-06-16 日本鉱業株式会社 Recovery of mercury in iron sulfide concentrate
SU1284942A1 (en) 1984-12-03 1987-01-23 Предприятие П/Я М-5400 Method of producing sodium thiosulfate
US4740243A (en) 1984-12-31 1988-04-26 Ensci, Inc. Metal value recovery from metal sulfide containing ores
SU1279954A1 (en) 1985-04-08 1986-12-30 Березниковский химический завод Method of producing sodium thiosulfate
US4816234A (en) 1985-05-10 1989-03-28 Kamyr, Inc. Utilization of oxygen in leaching and/or recovery procedures employing carbon
US4654078A (en) 1985-07-12 1987-03-31 Perez Ariel E Method for recovery of precious metals from difficult ores with copper-ammonium thiosulfate
ZW18286A1 (en) 1985-09-10 1987-05-27 Butler Dean Leaching process
GB2180829B (en) 1985-09-20 1989-08-16 Aurotech N L Precious metal extraction
US4738718A (en) 1985-10-28 1988-04-19 Freeport Minerals Company Method for the recovery of gold using autoclaving
US5232490A (en) 1985-11-27 1993-08-03 Leadville Silver And Gold Oxidation/reduction process for recovery of precious metals from MnO2 ores, sulfidic ores and carbonaceous materials
US4723998A (en) 1985-11-29 1988-02-09 Freeport Minerals Co Recovery of gold from carbonaceous ores by simultaneous chlorine leach and ion exchange resin adsorption process
US4721526A (en) 1986-08-13 1988-01-26 Kamyr, Inc. Heap leaching with oxygen
US4765827A (en) 1987-01-20 1988-08-23 Ensci, Inc. Metal value recovery
US4801329A (en) 1987-03-12 1989-01-31 Ensci Incorporated Metal value recovery from carbonaceous ores
US4816235A (en) 1987-02-24 1989-03-28 Batric Pesic Silver and manganese recovery using acidified thiourea
US4778519A (en) 1987-02-24 1988-10-18 Batric Pesic Recovery of precious metals from a thiourea leach
CA1306613C (en) 1987-05-15 1992-08-25 Guy Deschenes Recovery of gold from aqueous solutions
GB8726158D0 (en) 1987-11-07 1987-12-09 British Petroleum Co Plc Separation process
US5607619A (en) 1988-03-07 1997-03-04 Great Lakes Chemical Corporation Inorganic perbromide compositions and methods of use thereof
US4923510A (en) 1988-10-31 1990-05-08 Gopalan Ramadorai Treatment of refractory carbonaceous sulfide ores for gold recovery
US4981598A (en) * 1988-10-31 1991-01-01 Newmont Gold Company Metal sorption method using interstage screening
US4902345A (en) 1989-01-12 1990-02-20 Newmont Gold Co. Treatment of refractory carbonaceous and sulfidic ores or concentrates for precious metal recovery
MY105658A (en) 1989-03-07 1994-11-30 Butler Dean R Noble metal recovery
JP2632576B2 (en) 1989-05-12 1997-07-23 日鉱金属株式会社 Desorption method of gold iodine complex from ion exchange resin
GB8914037D0 (en) 1989-06-19 1989-08-09 Univ Cardiff Dissolving values of platinum group metals from ores and concentrates
GB9002311D0 (en) 1990-02-02 1990-04-04 Rio Tinto Minerals Dev Separation process
US5071477A (en) 1990-05-03 1991-12-10 American Barrick Resources Corporation of Toronto Process for recovery of gold from refractory ores
US5244493A (en) 1990-09-21 1993-09-14 Newmont Gold Co. Biometallurgical treatment of precious metal ores having refractory carbon content
US5127942A (en) 1990-09-21 1992-07-07 Newmont Mining Corporation Microbial consortium treatment of refractory precious metal ores
US5114687A (en) 1990-12-14 1992-05-19 South Dakota School Of Mines & Technology Ammonia extraction of gold and silver from ores and other materials
US6248301B1 (en) 1991-04-12 2001-06-19 Newmont Mining Corporation And Newmont Gold Company Process for treating ore having recoverable metal values including arsenic containing components
US5147617A (en) 1991-05-21 1992-09-15 Freeport-Mcmoran Inc. Process for recovery of gold from gold ores using a complexing pretreatment and sulfurous acid leaching
US5147618A (en) * 1991-05-21 1992-09-15 Freeport-Mcmoran Inc. Process for recovery of gold from refractory gold ores using sulfurous acid as the leaching agent
US5332559A (en) 1991-07-10 1994-07-26 Newmont Gold Co. Biooxidation process for recovery of metal values from sulphur-containing ore materials
US5246486A (en) 1991-07-10 1993-09-21 Newmont Gold Co. Biooxidation process for recovery of gold from heaps of low-grade sulfidic and carbonaceous sulfidic ore materials
US5344479A (en) 1992-03-13 1994-09-06 Sherritt Gordon Limited Upgrading copper sulphide residues containing nickel and arsenic
US5340380A (en) 1992-03-18 1994-08-23 Henkel Corporation Recovery of precious metal
US5354359A (en) 1992-04-01 1994-10-11 Newmont Gold Co. Hydrometallurgical process for the recovery of precious metal values from precious metal ores with thiosulfate lixiviant
US5236492A (en) 1992-07-29 1993-08-17 Fmc Gold Company Recovery of precious metal values from refractory ores
US5364453A (en) 1992-09-22 1994-11-15 Geobiotics, Inc. Method for recovering gold and other precious metals from carbonaceous ores
US5338338A (en) 1992-09-22 1994-08-16 Geobiotics, Inc. Method for recovering gold and other precious metals from carbonaceous ores
EP0612854B1 (en) 1993-02-23 1998-12-30 Boc Gases Australia Limited Process for the production of synthetic rutile
US5308381A (en) 1993-04-15 1994-05-03 South Dakota School Of Mines & Techology Ammonia extraction of gold and silver from ores and other materials
US5484470A (en) 1994-07-28 1996-01-16 E. I. Du Pont De Nemours And Company Enhancement of gold lixiviation using nitrogen and sulfur heterocyclic aromatic compounds
US5405430A (en) 1994-04-12 1995-04-11 Groves; William D. Recovery of precious metals from evaporite sediments
US5449397A (en) 1994-06-24 1995-09-12 Hunter; Robert M. Biocatalyzed leaching of precious metal values
US5489326A (en) 1994-10-04 1996-02-06 Barrick Gold Corporation Gold recovery using controlled oxygen distribution pressure oxidation
US5536480A (en) 1994-11-29 1996-07-16 Santa Fe Pacific Gold Corporation Method for treating mineral material having organic carbon to facilitate recovery of gold and silver
US5683490A (en) 1994-12-23 1997-11-04 The United States Of America As Represented By The Secretary Of The Interior Solution mining of precious metals using aqueous, sulfur-bearing solutions at elevated temperatures
US5536297A (en) 1995-02-10 1996-07-16 Barrick Gold Corporation Gold recovery from refractory carbonaceous ores by pressure oxidation and thiosulfate leaching
US5785736A (en) 1995-02-10 1998-07-28 Barrick Gold Corporation Gold recovery from refractory carbonaceous ores by pressure oxidation, thiosulfate leaching and resin-in-pulp adsorption
US5837210A (en) 1995-04-18 1998-11-17 Newmont Gold Company Method for processing gold-bearing sulfide ores involving preparation of a sulfide concentrate
US5653945A (en) 1995-04-18 1997-08-05 Santa Fe Pacific Gold Corporation Method for processing gold-bearing sulfide ores involving preparation of a sulfide concentrate
GB2310424B (en) 1996-02-22 1999-09-29 Finch Limited Process for recovering gold from oxide-based refractory ores
US6197214B1 (en) 1996-06-26 2001-03-06 Henkel Corporation Ammonium thiosulfate complex of gold or silver and an amine
CA2256764A1 (en) 1996-06-26 1997-12-31 Henkel Corporation Process for the recovery of precious metal values from aqueous ammoniacal thiosulfate leach solutions
CA2209559C (en) 1996-07-16 2001-12-18 Barrick Gold Corporation Gold recovery from refractory carbonaceous ores by pressure oxidation, thiosulfate leaching and resin-in-leach adsorption
US5733431A (en) 1996-08-21 1998-03-31 Hw Process Technologies, Inc. Method for removing copper ions from copper ore using organic extractions
CA2193305A1 (en) 1996-12-18 1998-06-18 Jean-Marc Lalancette Process for removing and recovering copper, silver and zinc from sulfide ores
AU748320B2 (en) 1997-06-09 2002-05-30 Hw Process Technologies, Inc. Method for separating and isolating precious metals from non precious metals dissolved in solutions
US5961833A (en) 1997-06-09 1999-10-05 Hw Process Technologies, Inc. Method for separating and isolating gold from copper in a gold processing system
AUPO900097A0 (en) 1997-09-05 1997-10-02 Arton (No 001) Pty Ltd Process
CA2307500C (en) 1997-10-30 2010-01-12 Hw Process Technologies, Inc. Method for removing contaminants from process streams in metal recovery processes
US6251163B1 (en) 1998-03-04 2001-06-26 Placer Dome, Inc. Method for recovering gold from refractory carbonaceous ores
US6368381B1 (en) 1998-03-11 2002-04-09 Placer Dome Technical Services, Ltd. Autoclave using agitator and sparge tube to provide high oxygen transfer rate to metal-containing solutions
US6183706B1 (en) 1998-03-11 2001-02-06 Placer Dome, Inc. Autoclave having an agitator with an aerating impeller for high oxygen transfer rate to metal-containing slurries and method of use
WO1999058732A1 (en) 1998-05-08 1999-11-18 Shell Oil Company Process to recover molybdenum and vanadium metals from spent catalyst by alkaline leaching
CA2315480A1 (en) 1999-08-13 2001-02-13 Antonio T. Robles Process for removing metals from a sorbent
AUPQ315799A0 (en) 1999-09-29 1999-10-21 Murdoch University Improved process for the elution of gold from anion exchange resins
US6350420B1 (en) * 1999-10-15 2002-02-26 Bhp Minerals International, Inc. Resin-in-pulp method for recovery of nickel and cobalt
NL1013590C2 (en) 1999-11-17 2001-05-18 Paques Biosystems B V Method for the selective removal of metals from concentrated metallic streams.
AUPQ456299A0 (en) 1999-12-09 2000-01-13 Geo2 Limited Recovery of precious metals
US20030154822A1 (en) 1999-12-09 2003-08-21 John Hall Recovery of precious metals
US6451275B1 (en) 2000-03-10 2002-09-17 Lakefield Research Limited Methods for reducing cyanide consumption in precious metal recovery by reducing the content of intermediate sulfur oxidation products therein
US6344068B1 (en) * 2000-04-04 2002-02-05 Barrick Gold Corporation Process for recovering gold from thiosulfate leach solutions and slurries with ion exchange resin
WO2002027045A1 (en) 2000-09-29 2002-04-04 Newmont Usa Limited Method and apparatus for chemical processing
US6500231B1 (en) 2001-03-29 2002-12-31 Newmont Usa Limited Recovery of precious metals from thiosulfate solutions
AU783904B2 (en) 2001-04-10 2005-12-22 Grd Minproc Limited Improved processing of precious metal-containing materials
US6632264B2 (en) 2001-04-17 2003-10-14 The University Of British Columbia Gold recovery from thiosulfate leaching
NO316020B1 (en) 2001-10-10 2003-12-01 Elkem Materials Device for continuous slag treatment of silicon
US6641642B2 (en) 2001-12-21 2003-11-04 Newmont Usa Limited High temperature pressure oxidation of ores and ore concentrates containing silver using controlled precipitation of sulfate species
WO2003080879A1 (en) 2002-03-26 2003-10-02 Council Of Scientific And Industrial Research Process for the recovery of gold and silver from used refractory bricks
US6602319B1 (en) 2002-04-01 2003-08-05 Council Of Scientific And Industrial Research Process for the recovery of gold and silver from used refractory bricks
AUPS334402A0 (en) 2002-07-02 2002-07-25 Commonwealth Scientific And Industrial Research Organisation Process for recovering precious metals
US7722840B2 (en) 2002-11-15 2010-05-25 Placer Dome Technical Services Limited Method for thiosulfate leaching of precious metal-containing materials
CA2412352A1 (en) 2002-11-18 2004-05-18 Placer Dome Technical Services Limited Method for thiosulfate leaching of precious metal-containing materials
EP1433860A1 (en) 2002-12-23 2004-06-30 Paques B.V. Process for regenerating thiosulphate from a spent thiosulphate gold leachant
KR20060038369A (en) * 2003-05-09 2006-05-03 클린 텍 피티와이 리미티드 Method and apparatus for desorbing material
AU2003904385A0 (en) 2003-08-18 2003-08-28 Murdoch University Improved Thiosulphate Leach Process
JP3741117B2 (en) 2003-09-26 2006-02-01 住友金属鉱山株式会社 Mutual separation of platinum group elements
RU2268316C1 (en) * 2005-01-24 2006-01-20 Общество с ограниченной ответственностью "Геохим" Method of sorption leaching of metals at reduced reagent treatment
US7572317B2 (en) 2005-11-10 2009-08-11 Barrick Gold Corporation Thiosulfate generation in situ in precious metal recovery
WO2007137325A1 (en) 2006-05-25 2007-12-06 Commonwealth Scientific & Industrial Research Organisation Process for recovering metals from resins
BRPI0717426A2 (en) * 2006-09-21 2013-11-12 Clean Teq Pty Ltd ION EXCHANGE RESIN AND PROCESS FOR USE
US7901484B2 (en) * 2007-08-28 2011-03-08 Vale Inco Limited Resin-in-leach process to recover nickel and/or cobalt in ore leaching pulps
US8262770B2 (en) 2007-09-18 2012-09-11 Barrick Gold Corporation Process for controlling acid in sulfide pressure oxidation processes
MX2010007795A (en) 2008-01-17 2011-02-23 Freeport Mcmoran Corp Method and apparatus for electrowinning copper using an atmospheric leach with ferrous/ferric anode reaction electrowinning.
WO2009108993A1 (en) * 2008-03-03 2009-09-11 Fenix Hydromet Australasia Pty Ltd Process for metal seperation using resin-in-pulp or resin-in-solution processes
ES2927467T3 (en) 2010-12-07 2022-11-07 Barrick Gold Corp Cocurrent and countercurrent resin leaching in gold leaching processes
AR086933A1 (en) 2011-06-15 2014-01-29 Barrick Gold Corp METHOD FOR RECOVERING PRECIOUS METALS AND COPPER OF LIXIVIATE SOLUTIONS
US10161016B2 (en) 2013-05-29 2018-12-25 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758413A (en) * 1986-11-17 1988-07-19 The Dow Chemical Company Reactive resins useful for precious metal recovery
US5385668A (en) 1991-06-27 1995-01-31 Bateman Project Holdings Limited Apparatus for separating particulate material from a liquid medium
US20080105088A1 (en) * 2000-05-19 2008-05-08 Placer Dome Technical Services Limited Method for thiosulfate leaching of precious metal-containing materials

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Coetzee et al. "Counter-current vs co-current flow in carbon-in-pulp adsorption circuits." Minerals Engineering, Apr. 1999, vol. 12, No. 4, pp. 415-422.
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/IB2011/003096, mailed Jun. 20, 2013 5 pages.
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/IB2011/003096, mailed May 2, 2012 7 pages.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10415116B2 (en) * 2010-12-07 2019-09-17 Barrick Gold Corporation Co-current and counter current resin-in-leach in gold leaching processes
US20180030572A1 (en) * 2013-05-29 2018-02-01 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
US10161016B2 (en) 2013-05-29 2018-12-25 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
US10597752B2 (en) * 2013-05-29 2020-03-24 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
US11401580B2 (en) 2013-05-29 2022-08-02 Barrick Gold Corporation Method for pre-treatment of gold-bearing oxide ores
US11639540B2 (en) 2019-01-21 2023-05-02 Barrick Gold Corporation Method for carbon-catalysed thiosulfate leaching of gold-bearing materials
US12065714B2 (en) 2019-01-21 2024-08-20 Barrick Gold Corporation Method for carbon-catalysed thiosulfate leaching of gold-bearing materials

Also Published As

Publication number Publication date
HUE050671T2 (en) 2020-12-28
AP2013006961A0 (en) 2013-07-31
BR122014030670A2 (en) 2019-06-18
RS63545B1 (en) 2022-09-30
EP2649211A1 (en) 2013-10-16
EA024636B1 (en) 2016-10-31
EA201501143A1 (en) 2016-08-31
NZ623104A (en) 2015-10-30
HUE060079T2 (en) 2023-01-28
EP3366792B1 (en) 2022-07-27
US20140035207A1 (en) 2014-02-06
EP2649211A4 (en) 2015-09-16
ZA201408389B (en) 2021-04-28
RS60482B1 (en) 2020-08-31
AU2011340196A1 (en) 2013-07-04
AR084198A1 (en) 2013-04-24
BR112013014005A2 (en) 2016-09-13
AR099334A2 (en) 2016-07-13
EP2649211B1 (en) 2020-05-13
AU2016200323A1 (en) 2016-02-11
DOP2013000119A (en) 2013-11-30
CA2863875A1 (en) 2012-06-14
CA2863875C (en) 2019-01-08
EA032225B1 (en) 2019-04-30
MX347787B (en) 2017-05-12
AU2016200323B2 (en) 2017-08-31
EP3366792A1 (en) 2018-08-29
PE20171794A1 (en) 2017-12-28
US9790572B2 (en) 2017-10-17
US20120183433A1 (en) 2012-07-19
CA2820700C (en) 2015-11-24
AP3623A (en) 2016-03-02
ES2795401T3 (en) 2020-11-23
PH12014502431B1 (en) 2015-04-13
CL2013001619A1 (en) 2014-05-02
CA2820700A1 (en) 2012-06-14
US20180030571A1 (en) 2018-02-01
ES2927467T3 (en) 2022-11-07
ZA201304093B (en) 2021-05-26
US10415116B2 (en) 2019-09-17
PE20131407A1 (en) 2013-12-16
TR201903166T4 (en) 2019-03-21
AU2011340196B2 (en) 2015-12-10
WO2012076981A1 (en) 2012-06-14
BR112013014005B1 (en) 2020-01-28
PH12014502431A1 (en) 2015-04-13
EA201300665A1 (en) 2013-10-30
NZ611643A (en) 2014-06-27
MX2013006124A (en) 2013-07-29

Similar Documents

Publication Publication Date Title
US10415116B2 (en) Co-current and counter current resin-in-leach in gold leaching processes
US6344068B1 (en) Process for recovering gold from thiosulfate leach solutions and slurries with ion exchange resin
US20080105088A1 (en) Method for thiosulfate leaching of precious metal-containing materials
AU2001274393A1 (en) Method for thiosulfate leaching of precious metal-containing materials
AU2012271499B2 (en) Method for recovering precious metals and copper from leach solutions
US8206595B2 (en) Method of recovering silver using anion-exchange resin
EP3719150A1 (en) Process for selective recovery of chalcophile group elements
CA2386614C (en) The elution of gold from anion exchange resins
JP2010202457A (en) Method for removing chlorine in acidic liquid
US7998441B2 (en) Method for selective removal of cadmium
AU2020373621B2 (en) Method for treating ore or refining intermediate
AU2022309302A1 (en) Improved gold-copper recovery circuit and method
JPH0474416B2 (en)
JP2019116670A (en) Recover method of copper, and manufacturing method of electronic copper
AU7889500A (en) The elution of gold from anion exchange resins

Legal Events

Date Code Title Description
AS Assignment

Owner name: BARRICK GOLD CORPORATION, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOI, YEONUK;CHEFAI, SAMIR;SIGNING DATES FROM 20120116 TO 20120118;REEL/FRAME:027957/0019

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8