US8715185B2 - Methods and apparatus for ultrasound imaging - Google Patents
Methods and apparatus for ultrasound imaging Download PDFInfo
- Publication number
- US8715185B2 US8715185B2 US13/030,718 US201113030718A US8715185B2 US 8715185 B2 US8715185 B2 US 8715185B2 US 201113030718 A US201113030718 A US 201113030718A US 8715185 B2 US8715185 B2 US 8715185B2
- Authority
- US
- United States
- Prior art keywords
- biological tissue
- ultrasound
- shear waves
- sum
- displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/488—Diagnostic techniques involving Doppler signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8979—Combined Doppler and pulse-echo imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
- G01S7/52042—Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
- G01S7/52071—Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52085—Details related to the ultrasound signal acquisition, e.g. scan sequences
- G01S7/52095—Details related to the ultrasound signal acquisition, e.g. scan sequences using multiline receive beamforming
Definitions
- Systems and methods described herein generally relate to the field of ultrasound imaging. More specifically, embodiments described below relate to methods and systems for measuring shear wave velocity in tissue.
- Pathological conditions may result in soft tissue which is stiffer than would be present under physiological conditions. Physicians therefore use palpation to locate stiff tissue within a body and thereby identify pathological conditions.
- breast cancers are known to be generally harder than healthy breast tissue and may be detected as a hard lump through palpation.
- c is the propagation velocity of shear wave
- E Young's modulus
- ⁇ is the tissue density. Therefore, cancers or other pathological conditions may be detected in tissue by measuring the propagation velocity of shear waves passing through the tissue.
- a shear wave may be created within tissue by applying a strong ultrasound pulse to the tissue.
- the ultrasound pulse may exhibit a high amplitude and a long duration (e.g., on the order of 100 microseconds).
- the ultrasound pulse generates an acoustic radiation force which pushes the tissue, thereby causing layers of tissue to slide along the direction of the ultrasound pulse.
- These sliding (shear) movements of tissue may be considered shear waves, which are of low frequencies (e.g., from 10 to 500 Hz) and may propagate in a direction perpendicular to the direction of the ultrasound pulse.
- the ultrasound pulse may propagate at a speed of 1540 m/s in tissue. However, the shear wave propagates much more slowly in tissue, approximately on the order of 1-10 m/s.
- the shear waves may be detected using conventional ultrasound Doppler techniques.
- the ultrasound Doppler technique is best suited to detect velocity in the axial direction.
- shear waves may be detected by measuring a tissue displacement caused by the acoustic radiation force.
- the shear wave In order to accurately measure the propagation velocity of the shear wave, the shear wave needs to be tracked at a fast rate or a fast frame rate of several thousands frames per second.
- An image in a frame may consist of a few hundred ultrasound lines.
- a typical frame rate of regular ultrasound imaging is about 50 frames/s, which is too slow to track the shear wave propagation. Therefore, there exists a need to increase the frame rate while maintaining a good signal to noise ratio and good spatial resolution. Also, there exists a need to efficiently provide an indication of tissue stiffness.
- a method, medium and system may provide application of a first ultrasound pulse to biological tissue to create shear waves in the biological tissue, transmission of a focused ultrasound pulse into the biological tissue, reception of one or more ultrasound signals from the biological tissue generated in response to the focused ultrasound pulse, detection of the shear waves in the biological tissue based on the received one or more ultrasound signals, determination of at least one propagation property associated with the detected shear waves, and display of the at least one propagation property associated with the detected shear waves using a coding method.
- FIG. 1 A diagram of shear wave generation resulting from an acoustic radiation force.
- FIG. 2 A diagram of an ultrasound imaging system of some embodiments.
- FIG. 3 A diagram of a conventional ultrasound imaging system.
- FIG. 4 A diagram of multiple ultrasound transmitted/received beams.
- FIG. 5 A diagram of an ultrasound transmitted beam and multiple ultrasound received beams.
- FIG. 6 Color coding of shear wave propagation velocity squared.
- FIG. 7 Color coding of shear wave propagation velocity squared.
- FIG. 8 A diagram illustrating generation of shear waves by acoustic radiation forces and the propagation of shear waves.
- FIG. 9 A diagram illustrating sliding movements of shear waves.
- FIG. 10 A diagram illustrating the propagation of shear waves.
- FIG. 11 A diagram illustrating the propagation of shear waves.
- FIG. 12 An example of a color-coded image of shear wave propagation velocity squared in tissue.
- FIG. 13 A diagram to illustrate tissue displacement caused by an acoustic radiation force.
- FIG. 14 Scale of shear wave velocity squared c 2 by color coding bar composed of RGB representation.
- FIG. 15 A diagram to show the ultrasound coordinate system with respect to an ultrasound transducer.
- Acoustic radiation force is created by a strong ultrasound pulse 120 as shown in FIG. 1 .
- the ultrasound pulse 120 exhibits a high amplitude as well as a long duration, (e.g., on the order of 100 microseconds).
- the ultrasound pulse 120 is transmitted from an ultrasound transducer array 110 .
- the ultrasound pulse 120 is focused at a focal point 130 in biological tissue 160 , resulting in an acoustic radiation force which pushes the tissue 160 at the focal point 130 .
- the ultrasound pulse 120 may be transmitted multiple times and may be focused at a different focal point for each of multiple transmitted ultrasound pulses.
- the tissue 160 is pushed mostly in the axial direction of the ultrasound pulse 120 , creating shear waves 140 , 150 which may propagate in the lateral direction or directions other than the axial direction (i.e., vertical direction).
- the propagation velocity of the shear waves 140 , 150 depends on the stiffness (Young's modulus or the shear modulus) of the tissue 160 . Greater tissue stiffness results in greater shear wave propagation velocity as shown in equation 1.
- Pathological conditions such as cancer may increase tissue stiffness thus these conditions may be diagnosed by determining the propagation velocity.
- the shear wave propagation velocity may vary from 1 m/s to 10 m/s, depending on tissue conditions.
- the shear wave may be characterized by tissue movement (or motion)
- the shear wave may be detected by the ultrasound Doppler technique (e.g., see U.S. Pat. No. 4,573,477, U.S. Pat. No. 4,622,977, U.S. Pat. No. 4,641,668, U.S. Pat. No. 4,651,742, U.S. Pat. No. 4,651,745, U.S. Pat. No. 4,759,375, U.S. Pat. No. 4,766,905, U.S. Pat. No. 4,768,515, U.S. Pat. No. 4,771,789, U.S. Pat. No. 4,780,837, U.S. Pat. No.
- the ultrasound pulse is transmitted multiple times to the tissue, and the ultrasound is scattered by scatterers in tissue and received by an ultrasound transducer as received ultrasound signals.
- the received ultrasound signals from the ultrasound array transducers are filtered, amplified, digitized, apotized, and beamformed (i.e. summed) after applying delays and/or phase-rotations for focusing and steering. The order of these processing steps may be interchanged.
- Received beamformed RF ultrasound signals undergo quadrature demodulation, resulting in complex, Doppler I-Q signals.
- the ultrasound is transmitted at a pulse repetition frequency (PRF) and the velocity is detected as the shift in frequency (Doppler shift frequency) in the received ultrasound signal.
- PRF pulse repetition frequency
- Doppler shift frequency the shift in frequency
- the received ultrasound is mixed with in-phase (0 degrees) and quadrature (90 degrees) reference signals of the same frequency as the transmitted ultrasound frequency, resulting in complex I-Q Doppler signals.
- the complex I-Q signal is used to derive the Doppler shift frequency because the Doppler shift frequency and the blood velocity have the following relationship
- ⁇ f is the Doppler shift frequency
- f t is the transmitted frequency
- ⁇ is the blood velocity
- ⁇ is the angle between the ultrasound beam direction and the velocity vector
- c S is the speed of sound.
- the Doppler shift frequency is thus dependent on the angle between the velocity direction and the ultrasound beam direction and is a measurement that an ultrasound color Doppler system may obtain.
- the number of the sampled signals may be limited to several. Therefore, an auto-correlation technique is usually used to determine the phase differences between the I-Q signals and then to determine the Doppler shift frequency and the velocity as follows.
- r ⁇ z ( m ) ⁇ z ⁇ *( m ⁇ 1) (3)
- the position of complex value r in the complex coordinate may be also used to derive ⁇ in the range of ⁇ to ⁇ .
- the phase (i.e., color Doppler phase) ⁇ is then related to the Doppler shift frequency as shown in the following equation.
- Tissue movement is detected at multiple lateral points in a field of tissue region by multiple ultrasound beams (for example, 540 , 545 , 550 in FIG. 5 ) in order to monitor movement.
- This movement reflects action of the shear wave at those multiple lateral points (or multiple ultrasound beams). Consequently, the lateral propagation velocity of the shear wave may be determined from the detected tissue movement.
- the shear wave may be detected by measuring tissue displacement caused by acoustic radiation force which is in turn caused by a strong ultrasound pulse as shown in FIG. 13 .
- Tissue 1310 is positioned at a position 1320 before the acoustic radiation is applied and then is moved to a position 1330 after the acoustic radiation force was applied.
- tissue displacement caused by the strong ultrasound pulse ultrasound pulses are transmitted to tissue from an ultrasound transducer 1305 and then the ultrasound pulses are scattered from scatterers in tissue and returned to the transducer 1305 and received by the transducer 1305 as received ultrasound signals.
- the ultrasound pulses are focused at a depth in order to increase a signal-to-noise ratio of the resulting received ultrasound signals in comparison to unfocused ultrasound pulses.
- the displacement 1340 (from the position 1320 to the position 1330 ) of the tissue 1310 due to the acoustic radiation force may be obtained and the tissue 1310 may be tracked thereafter.
- the ultrasound pulses may thereby track shear waves after shear waves are created by acoustic radiation force.
- Ultrasound signals resulting from the first ultrasound pulse and received from the tissue 1310 before acoustic radiation force is applied are cross-correlated with received ultrasound signals resulting from the second ultrasound pulse after the acoustic radiation force is applied in order to find the best match between the received ultrasound signals.
- the best match may be found by finding a maximum correlation value to track the tissue and its displacement due to the acoustic radiation force. Therefore, when tissue displacement is observed or measured, a shear wave is detected.
- the displacement and tissue velocity may be related in that the displacement is a time integral
- the tissue displacement may be obtained by calculating the time integral of color Doppler velocity.
- Received ultrasound signals may be RF (Radio Frequency), IF (Intermediate Frequency) or baseband signals after demodulation. Alternately, the displacement may be further differentiated to obtain tissue strain, which may be then used to detect the shear wave propagation velocity.
- Cross correlation CC(t, ⁇ ) of signals in the previous paragraphs may be mathematically expressed as follows,
- CC ⁇ ( t , ⁇ ) ⁇ t t + W ⁇ S 1 ⁇ ( t ′ ) ⁇ S 2 ⁇ ( t ′ - ⁇ ) ⁇ ⁇ d t ′ ( 6 )
- CC(t, ⁇ ) cross correlation
- S 1 (t′) received signal from the first ultrasound transmission
- S 2 (t′ ⁇ ) received ultrasound signal from the second ultrasound transmission
- W window length
- t time
- t′ time
- ⁇ time displacement.
- Time displacement value ⁇ which makes the maximum cross correlation (or the best match), determines the tissue displacement.
- Interpolation of signals using an interpolation function e.g. cubic-spline
- the cross correlation may be replaced by the sum of absolute differences (SAD), the sum of square differences (SSD), the sum of absolute cubic differences (SCD), or the sum of absolute power differences (SPD) as follows.
- N the number of signals in the signal window.
- k window displacement by the number of signals and equivalent of ⁇ .
- l the position of the window.
- p is a real number.
- the tissue displacement is determined based on the value of k that makes the minimum (or best match) of each of the SAD, SSD, SCD and SPD.
- FIGS. 8 and 9 are used to illustrate shear wave generation and detection in detail.
- a strong ultrasound pulse 820 is applied to tissue 860 , 960 from an ultrasound transducer 810 , 910 once or more times to increase the amplitude of shear waves which are caused by acoustic radiation forces resulting from the ultrasound pulse. Shear waves attenuate very quickly in tissue and thus a greater amplitude results in a greater propagation distance.
- One or multiple ultrasound pulses may be focused at one focal point or different focal points. The ultrasound pulse creates acoustic radiation forces which push a layer of tissue, resulting in tissue movement 830 , 910 mostly in the axial (vertical) direction as illustrated in FIG. 9 .
- the tissue layer movement 910 causes adjacent tissue layer movements 920 , 925 mostly in the axial direction.
- the tissue layer movements 920 , 925 then in turn cause next tissue layer movements 930 , 935 which then cause adjacent tissue layer movements 940 , 945 .
- This succession of tissue movements represents a propagation of shear waves 840 , 850 in the lateral (horizontal) direction as shown in FIG. 8 . Since the tissue movements (or motions) caused by acoustic radiation forces are mostly in the axial direction, the motion may be detected by the color Doppler technique, which is sensitive to motions in the axial direction.
- the color Doppler technique transmits and receives several ultrasound pulses, determines phase differences between the received ultrasound signals, and calculates a velocity of tissue or blood using the autocorrelation technique as previously discussed and known in the art. Variance and power of color Doppler signals may be also calculated in addition to the velocity.
- one of these parameters may be used to display shear waves as shown in FIGS. 10 , 11 . It will be assumed that shear waves 1040 ( 1140 ), 1050 ( 1150 ) are determined in a color Doppler frame representing a certain time and shear waves 1060 ( 1160 ), 1070 ( 1170 ) are determined at a next moment or in a next frame. More image frames of shear waves may be obtained to track the shear waves and to create a movie of shear wave propagation. In alternate embodiments, tissue displacement due to acoustic radiation forces may be detected.
- FIGS. 10 and 11 depict shear wave propagation at two points in time.
- Local shear wave propagation velocities as illustrated by arrows 1080 , 1090 , may be derived by correlating two images of shear waves at two points in time. More image frames of shear waves may be used to track the propagation of shear waves in more image areas in order to present local shear wave propagation velocities or shear wave propagation velocity squared in a two-dimensional image as described below.
- Correlation coefficient (CCV) between a first frame signal S 1 and the second frame signal S 2 may be obtained as speckle tracking as follows,
- the displacement X, Z, that yields the maximum correlation coefficient determines the correct speckle tracking and the distance, and thus the velocity (i.e., the distance per time).
- the correlation coefficient may be replaced by the sum of absolute differences (SAD), the sum of square differences (SSD), the sum of absolute cubic differences (SCD) and the sum of absolute power differences (SPD) as follows.
- a shear wave equation (16) may be used to derive the shear wave propagation velocity as follows,
- the shear wave propagation velocity squared may be obtained as a ratio of the shear modulus to the density as the following equation.
- ⁇ 2 ⁇ u z ⁇ y 2 may be considered negligible compared with the other spatial derivatives, the shear wave propagation velocity squared and velocity may be obtained from the other measurement values.
- a wide, focused ultrasound pulse 520 may be transmitted and multiple ultrasound signals 540 , 545 , 550 may be simultaneously received as shown in FIG. 5 .
- the received ultrasound beams are used as described previously to detect shear waves and to derive shear wave propagation properties (i.e., velocity and velocity squared) therefrom.
- the focused transmit ultrasound beam 520 may be particularly suitable for maintaining a good signal-to-noise ratio of resulting received ultrasound beams during the detection of shear waves.
- multiple ultrasound beams (pulses) are simultaneously applied and transmitted to the tissue field and multiple ultrasound beams (pulses) per transmitted ultrasound pulse are received to increase the frame rate, as shown in FIG. 4 .
- ultrasound pulses 420 , 430 are simultaneously transmitted to biological tissue 480 from an ultrasound transducer array 410 .
- multiple ultrasound receive signals 440 , 445 , 465 , 460 , 465 , 470 are simultaneously received.
- the multiple ultrasound pulses may be transmitted simultaneously or at substantially simultaneous times.
- the multiple ultrasound pulses may be simultaneously transmitted.
- a second ultrasound pulse may be transmitted after a first ultrasound pulse is transmitted and before the first ultrasound pulse returns to the ultrasound transducer from a deepest depth of an ultrasound field. This transmission method increases the frame rate.
- FIG. 4 shows an example of two simultaneous transmitted ultrasound pulses but more than two transmitted ultrasound pulses may be also used.
- coded ultrasound waveforms may be transmitted for better separation of simultaneous multiple ultrasound signals. For example, chirp codes, Barker codes, Golay codes or Hadamard codes may be used for better separation of ultrasound pulses.
- the received signals are analyzed using the methods previously described to determine tissue movement at multiple points, and shear wave propagation properties are derived therefrom.
- An image of a shear wave can be created based on the motion (or velocity) detected at multiple points in the imaging field. Subsequent transmit/receive sequences of ultrasound may create multiple images of the shear wave at multiple points in time. Correlation between the images of the shear wave is then calculated to obtain the shear wave propagation velocity and velocity squared as previously discussed. Alternately, tissue displacement caused by acoustic radiation force is determined and the shear wave propagation velocity is calculated as the square root of the ratio between the temporal second-order derivative of the displacement and the spatial second-order derivatives of the displacement. Likewise, the shear wave propagation velocity squared is calculated as the ratio between the temporal second-order derivative of the displacement and the spatial second-order derivatives of the displacement.
- the propagation velocity of a detected shear wave (c) may be displayed.
- the propagation velocity squared (c 2 ) of the detected shear wave may be displayed.
- the propagation velocity squared (c 2 ) may be more closely related than the propagation velocity (c) to the Young's modulus or the shear modulus as shown in equation 1. Therefore the propagation velocity squared (c 2 ) may provide an efficient proxy for the actual stiffness.
- the propagation velocity squared (c 2 ) may be multiplied by three and then displayed. If tissue density is close to 1 g/cm 3 , this number (i.e., 3c 2 ) may be close to the actual Young's modulus.
- a product (bc 2 ) of any real number (b) and the propagation velocity squared (c 2 ) may be displayed. Determinations of actual stiffness are difficult and error-prone because the density of the tissue is unknown and must be estimated.
- a color coding technique, a grayscale technique, or a graphical coding technique may be employed to present a shear wave propagation property (i.e., velocity c or velocity squared c 2 ) to a user.
- a propagation velocity squared (c 2 ) of shear waves within tissue is displayed in a two-dimensional color image.
- Graphical-coding and/or two-dimensional images may also be used to represent the propagation velocity c or velocity squared c 2 in some embodiments.
- a low value of shear wave propagation velocity squared c 2 may be coded using a red color while a high value of c 2 may be coded using a blue color.
- FIG. 6 illustrates a legend indicating that a red-colored tissue area includes shear waves associated with low c 2 values (e.g., 1 m 2 /s 2 ) and that a blue-colored tissue area includes shear waves associated with high c 2 values (e.g., 100 m 2 /s 2 ).
- Embodiments are not limited to color-based coding. Images of shear wave propagation properties within tissue may be coded using grayscale or any combination of graphical patterns (e.g., vertical lines, horizontal lines, cross-hatching, dot patterns of different densities, etc.) and colors.
- c 2 may be coded linearly with respect to the color wavelength as shown in FIG. 6 . For example, if c 2 within a tissue area is determined to be 50 m 2 /s 2 , the tissue area may be displayed using a yellow color 630 .
- color-coding of the shear wave propagation velocity squared may be defined as shown in FIG. 7 .
- Tissue areas associated with low values of the shear wave propagation velocity squared may be displayed as blue 710 while areas associated with high values of the velocity squared may be displayed as red 720 .
- Different color-coding methods may be also used to represent the propagation velocity squared (c 2 ) or velocity c of shear waves.
- color coding may be based on hue, brightness, and other color characteristics.
- the color-coded scale may represent different maximums and minimums of the shear wave propagation velocity squared or velocity than shown in FIG. 6 , 7 .
- velocity squared maximum of 100 m 2 /s 2 and velocity squared minimum of 1 m 2 /s 2 in FIGS. 6 and 7 are only for the illustration purposes and do not limit the scope of the claims. Other values may represent the maximum or minimum values of the coding scale.
- Color coding based on Red, Green and Blue (RGB) values may be used to represent the propagation velocity c or velocity squared (c 2 ) of shear waves as shown in FIG. 14 .
- the propagation velocity squared (c 2 ) of a shear wave within tissue is represented according to a color coding bar 1410 which is based on RGB values 1420 , 1430 and 1440 .
- the shear wave propagation velocity squared has 256 possible values in this example, as represented 256 colors in the color coding bar 1410 .
- the smallest velocity squared c 2 (0) 1412 is represented by a color composed of a combination of R(0) 1422 , G(0) 1432 and B(0) 1442 .
- the middle velocity squared c 2 (127) 1415 is represented by a color composed of a combination of R(127) 1425 , G(127) 1435 and B(127) 1445 .
- the highest velocity squared c 2 (255) 1418 is represented by a color composed of a combination of R(255) 1428 , G(255) 1438 and B(255) 1448 .
- R(255) only indicates a Red color associated with the red index 255 and does not necessarily indicate a Red color value of 255, which is the brightest Red color.
- G(255) indicates a Green color associated with the green index 255
- B(255) indicates a Blue color associated with the blue index 255.
- Red, Green, Blue and Yellow may be used to define a color coding bar.
- a Hue-based color coding bar may be used.
- FIG. 12 represents an example of a color-coded image 1260 displaying a shear wave propagation velocity squared c 2 within human soft tissue (e.g. breast).
- a color coding scale 1250 is illustrated, in which a color code 1210 (i.e., representing a red color although displayed as white in this black/white document) represents a low shear wave propagation velocity squared value and a color code 1220 (i.e., representing a blue color although displayed as hatched in this black/white document) represents a higher shear wave propagation velocity squared value.
- a color code 1210 i.e., representing a red color although displayed as white in this black/white document
- a color code 1220 i.e., representing a blue color although displayed as hatched in this black/white document
- the color coded image 1260 includes an area 1280 of high propagation velocity squared c 2 . Since the shear wave propagation velocity squared c 2 is proportional to the Young's modulus, the tissue area corresponding to area 1280 is likely to be hard. Since a tumor is generally hard, image 1260 may indicate pathological conditions.
- the color-coding method provides efficient distinction between an area including shear waves having a high propagation velocity squared value and other areas including shear waves having a low propagation velocity squared value.
- the color coding method therefore allows efficient identification of hard tissue areas within soft tissue areas.
- An image displaying shear wave propagation velocity or velocity squared may be combined (e.g., superimposed) with a regular image of ultrasound, e.g. B-mode image, or a combined B-mode image and color Doppler image and/or spectral Doppler image.
- the shear wave propagation velocity squared or velocity may be displayed numerically.
- the shear wave propagation velocity squared may be displayed in gray scale or based on other graphic coding methods such as using patterns rather than colors.
- low values of shear wave propagation velocity or square of the shear wave propagation velocity may be displayed in black or dark gray while high values of shear wave propagation velocity or shear wave propagation velocity squared may be displayed in light gray or white using a grayscale coding method.
- FIG. 3 shows a diagram of a conventional ultrasound diagnostic imaging system with B-mode imaging, Doppler spectrum and color Doppler imaging.
- the system may include other imaging modes, e.g. elasticity imaging, 3D imaging, real-time 3D imaging, tissue Doppler imaging, tissue harmonic imaging, contrast imaging and others.
- An ultrasound signal is transmitted from an ultrasound probe 330 driven by a transmitter/transmit beamformer 310 through a transmit/receive switch 320 .
- the probe 320 may consist of an array of ultrasound transducer elements which are separately driven by the transmitter/transmit beamformer 310 with different time-delays so that a transmit ultrasound beam is focused and steered.
- a receive beamformer 340 receives the received ultrasound signals from the probe 330 through the switch 320 and processes the signals 325 .
- the receive beamformer 340 applies delays and/or phases to the signals and the resultant signals are summed for focusing and steering a received ultrasound beam.
- the receive beamformer 340 may also apply apodization, amplification and filtering.
- the processed signal 345 is coupled to a Doppler spectrum processor 350 , a color Doppler processor 360 , and a B-mode image processor 370 .
- the Doppler spectrum processor 350 includes a Doppler signal processor and a spectrum analyzer, and processes Doppler flow velocity signals and calculates and outputs a Doppler spectrum 355 .
- the color Doppler processor 360 processes the received signal 345 and calculates and outputs velocity, power and variance signals 365 .
- the B-mode image processor 370 processes the received signal 345 and calculates and outputs a B-mode image 375 or the amplitude of the signal by an amplitude detection.
- the Doppler spectrum signals 355 , color Doppler processor signals (velocity, power, and variance) 365 and B-mode processor signals 375 are coupled to a scan converter 380 that converts the signals to scan-converted signals.
- the output of scan converter 380 is coupled to a display monitor 390 for displaying ultrasound images.
- FIG. 2 shows a diagram of elements of an ultrasound imaging system including a shear wave processor 295 according to some embodiments.
- the ultrasound system in FIG. 2 transmits strong ultrasound pulses to biological tissue to create acoustic radiation forces which push the biological tissue. Shear waves are created and propagate in the tissue after the biological tissue is pushed.
- the ultrasound system then transmits and receives ultrasound pulses to track the shear waves as the shear waves propagate in the biological tissue.
- Multiple received ultrasound beams may be simultaneously formed by the receive beamformer 240 .
- multiple transmitted ultrasound beams may be simultaneously formed by the transmitter/transmit beamformer 210 .
- Received ultrasound signals from the receive beamformer 240 are processed to obtain tissue displacement, Doppler velocity, correlation, shear wave propagation velocity and/or shear wave propagation velocity squared as previously described.
- the shear wave processor 295 may perform the shear wave processing methods described previously.
- the shear wave processor 295 receives output 245 from the receive beamformer 240 .
- Output 297 comprises shear wave velocity data or other shear wave properties.
- the shear wave processor 295 outputs the propagation velocity or the square of the propagation velocity of the shear wave to a scan converter 280 and a representation of the shear wave propagation velocity or the square of the shear wave propagation velocity is output to the display monitor along with the B-mode, color Doppler or spectral Doppler images.
- the shear wave processor 295 may comprise of general purpose central processing units (CPUs), digital signal processors (DSPs), field programmable Arrays (FPGAs), graphic processing units (GPUs) and/or discreet electronics devices.
- CPUs general purpose central processing units
- DSPs digital signal processors
- FPGAs field programmable Arrays
- GPUs graphic processing units
- FIG. 2 represents a logical architecture according to some embodiments, and actual implementations may include more or different elements arranged in other manners. Other topologies may be used in conjunction with other embodiments.
- each element of the FIG. 2 system may be implemented by any number of computing devices in communication with one another via any number of other public and/or private networks. Two or more of such computing devices may be located remote from one another and may communicate with one another via any known manner of network(s) and/or a dedicated connection.
- the system may comprise any number of hardware and/or software elements suitable to provide the functions described herein as well as any other functions.
- any computing device used in an implementation of the FIG. 2 system may include a processor to execute program code such that the computing device operates as described herein.
- All systems and processes discussed herein may be embodied in program code stored on one or more non-transitory computer-readable media.
- Such media may include, for example, a floppy disk, a CD-ROM, a DVD-ROM, a Blu-ray disk, a Flash drive, magnetic tape, and solid state Random Access Memory (RAM) or Read Only Memory (ROM) storage units.
- RAM Random Access Memory
- ROM Read Only Memory
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Acoustics & Sound (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
E=3ρ·c 2 (1)
r=Σz(m)·z·*(m−1) (3)
of tissue velocity νs. Therefore, the tissue displacement may be obtained by calculating the time integral of color Doppler velocity. Received ultrasound signals may be RF (Radio Frequency), IF (Intermediate Frequency) or baseband signals after demodulation. Alternately, the displacement may be further differentiated to obtain tissue strain, which may be then used to detect the shear wave propagation velocity.
where CC(t,τ): cross correlation; S1(t′): received signal from the first ultrasound transmission; S2(t′−τ): received ultrasound signal from the second ultrasound transmission; W: window length; t: time, t′: time; τ: time displacement. Time displacement value τ, which makes the maximum cross correlation (or the best match), determines the tissue displacement. Interpolation of signals using an interpolation function (e.g. cubic-spline) may be performed before cross correlation to increase spatial resolution.
S1 is the received ultrasound signal from the first ultrasound transmission before displacement, S2 is the received ultrasound signal from the second ultrasound transmission after displacement. N: the number of signals in the signal window. k: window displacement by the number of signals and equivalent of τ. l: the position of the window. p is a real number. For SAD, SSD, SCD and SPD, the tissue displacement is determined based on the value of k that makes the minimum (or best match) of each of the SAD, SSD, SCD and SPD.
where S1 x,z is the ultrasound signal at x, z of the first frame, S2 x+x,z+z is the ultrasound signal at x+X, z+Z of the second frame,
p is a real number; m and n are integers. The 2D speckle tracking may be approximated by a 1D speckle tracking to obtain the shear wave propagation velocity and the shear wave propagation velocity squared. The mathematical expression will be similar to that used in the displacement measurement.
E=3μ (17)
Therefore, the shear wave propagation velocity squared may be obtained as a ratio of the shear modulus to the density as the following equation.
One of the displacement components uz in equation 16 may be determined by cross-correlation as previously discussed. By combining z component of equation 16 and equation 18, the shear wave propagation velocity squared and velocity are obtained as follows,
Therefore, the shear wave propagation velocity is obtained as the square root of the ratio between the temporal second-order derivative of the displacement and the spatial second-order derivatives of the displacement. Likewise, the shear wave propagation velocity squared is obtained as the ratio between the temporal second-order derivative of the displacement and the spatial second-order derivatives of the displacement. Since the spatial derivative of the displacement in elevational direction
may be considered negligible compared with the other spatial derivatives, the shear wave propagation velocity squared and velocity may be obtained from the other measurement values.
Claims (45)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/030,718 US8715185B2 (en) | 2010-04-05 | 2011-02-18 | Methods and apparatus for ultrasound imaging |
CN201180017546.2A CN103096812B (en) | 2010-04-05 | 2011-03-22 | For the method and apparatus of ultra sonic imaging |
JP2013503768A JP2013523325A (en) | 2010-04-05 | 2011-03-22 | Ultrasound imaging method and apparatus |
EP11766382.3A EP2555686A4 (en) | 2010-04-05 | 2011-03-22 | Methods and apparatus for ultrasound imaging |
PCT/US2011/029402 WO2011126729A2 (en) | 2010-04-05 | 2011-03-22 | Methods and apparatus for ultrasound imaging |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32100510P | 2010-04-05 | 2010-04-05 | |
US32134110P | 2010-04-06 | 2010-04-06 | |
US35058510P | 2010-06-02 | 2010-06-02 | |
US13/030,718 US8715185B2 (en) | 2010-04-05 | 2011-02-18 | Methods and apparatus for ultrasound imaging |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110245672A1 US20110245672A1 (en) | 2011-10-06 |
US8715185B2 true US8715185B2 (en) | 2014-05-06 |
Family
ID=44710464
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/030,718 Expired - Fee Related US8715185B2 (en) | 2010-04-05 | 2011-02-18 | Methods and apparatus for ultrasound imaging |
US13/030,831 Expired - Fee Related US9351707B2 (en) | 2010-04-05 | 2011-02-18 | Methods and apparatus to determine shear wave propagation property |
US13/030,891 Abandoned US20110245668A1 (en) | 2010-04-05 | 2011-02-18 | Methods and apparatus for ultrasound imaging |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/030,831 Expired - Fee Related US9351707B2 (en) | 2010-04-05 | 2011-02-18 | Methods and apparatus to determine shear wave propagation property |
US13/030,891 Abandoned US20110245668A1 (en) | 2010-04-05 | 2011-02-18 | Methods and apparatus for ultrasound imaging |
Country Status (5)
Country | Link |
---|---|
US (3) | US8715185B2 (en) |
EP (3) | EP2555685A4 (en) |
JP (3) | JP2013523325A (en) |
CN (3) | CN102892358B (en) |
WO (3) | WO2011126729A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110245678A1 (en) * | 2010-04-05 | 2011-10-06 | Tadashi Tamura | Methods and apparatus for ultrasound imaging |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011153268A2 (en) * | 2010-06-01 | 2011-12-08 | The Trustees Of Columbia University In The City Of New York | Devices, methods, and systems for measuring elastic properties of biological tissues |
JP5808325B2 (en) * | 2010-06-30 | 2015-11-10 | 富士フイルム株式会社 | Ultrasonic diagnostic apparatus and method of operating ultrasonic diagnostic apparatus |
JP5798117B2 (en) | 2010-06-30 | 2015-10-21 | 富士フイルム株式会社 | Ultrasonic diagnostic apparatus and method of operating ultrasonic diagnostic apparatus |
JP6067590B2 (en) * | 2011-02-25 | 2017-01-25 | メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ | Ultrasonic vibration method using unfocused ultrasonic waves |
US20120253194A1 (en) * | 2011-03-30 | 2012-10-04 | Tadashi Tamura | Methods and apparatus for ultrasound imaging |
US10338203B2 (en) * | 2011-09-09 | 2019-07-02 | Siemens Medical Solutions Usa, Inc. | Classification preprocessing in medical ultrasound shear wave imaging |
US8801614B2 (en) * | 2012-02-10 | 2014-08-12 | Siemens Medical Solutions Usa, Inc. | On-axis shear wave characterization with ultrasound |
CN104135937B (en) * | 2012-02-21 | 2017-03-29 | 毛伊图像公司 | Material stiffness is determined using porous ultrasound |
US8951198B2 (en) * | 2012-03-30 | 2015-02-10 | Hitachi Aloka Medical, Ltd. | Methods and apparatus for ultrasound imaging |
US9220479B2 (en) | 2012-03-30 | 2015-12-29 | Hitachi Aloka Medical, Ltd. | Methods and apparatus for ultrasound imaging |
US9211111B2 (en) * | 2012-04-05 | 2015-12-15 | Hitachi Aloka Medical, Ltd. | Determination of shear wave characteristics |
WO2014103642A1 (en) * | 2012-12-25 | 2014-07-03 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic device and elasticity evaluation method |
CN105188556B (en) * | 2013-02-25 | 2017-11-07 | 皇家飞利浦有限公司 | Determination to the concentration distribution of acoustics dispersed elements |
US9332962B2 (en) * | 2013-03-13 | 2016-05-10 | Siemens Medical Solutions Usa, Inc. | Ultrasound ARFI displacement imaging using an adaptive time instance |
CN107296629A (en) * | 2013-03-28 | 2017-10-27 | 佳能株式会社 | Diagnostic ultrasound equipment and ultrasonic diagnosis method |
WO2015023081A1 (en) * | 2013-08-12 | 2015-02-19 | 삼성전자 주식회사 | Method for producing elastic image and ultrasonic diagnostic apparatus |
CN103462643B (en) * | 2013-09-29 | 2015-02-11 | 深圳市开立科技有限公司 | Shear wave speed measurement method, device and system |
KR102191967B1 (en) | 2013-10-07 | 2020-12-16 | 삼성전자주식회사 | Apparatus and method for obtaining elastic feature of object |
KR20150051106A (en) * | 2013-10-30 | 2015-05-11 | 아크조노벨코팅스인터내셔널비.브이. | Powder coating composition |
KR101580584B1 (en) * | 2013-11-28 | 2015-12-28 | 삼성전자주식회사 | Method and ultrasound apparatus for marking tumor on ultrasound elastography |
JP6462340B2 (en) | 2013-12-13 | 2019-01-30 | キヤノンメディカルシステムズ株式会社 | Ultrasonic diagnostic apparatus, image processing apparatus, and image processing method |
JP5952254B2 (en) * | 2013-12-24 | 2016-07-13 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Ultrasonic diagnostic equipment |
JP2015128554A (en) * | 2014-01-09 | 2015-07-16 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic equipment |
CN110507359B (en) * | 2014-08-28 | 2022-06-07 | 深圳迈瑞生物医疗电子股份有限公司 | Shear wave imaging method and system |
US10863968B2 (en) * | 2014-09-30 | 2020-12-15 | Wisconsin Alumni Research Foundation | Ultrasonic imaging system with angularly compounded acoustic radiation force excitation |
US20160143625A1 (en) * | 2014-11-26 | 2016-05-26 | Kabushiki Kaisha Toshiba | Ultrasonic probe and ultrasonic diagnosis apparatus |
JP6307460B2 (en) * | 2015-02-27 | 2018-04-04 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Ultrasonic diagnostic apparatus and control program therefor |
CN107708575A (en) * | 2015-06-01 | 2018-02-16 | 杜克大学 | Method, system and computer program product for single tracing positional shearing wave elastogram |
US10582911B2 (en) * | 2015-08-11 | 2020-03-10 | Siemens Medical Solutions Usa, Inc. | Adaptive motion estimation in acoustic radiation force imaging |
CN106691501A (en) * | 2015-11-12 | 2017-05-24 | 朗昇科技(苏州)有限公司 | Ultrasonic remote medical system based on Android system |
JP6208781B2 (en) * | 2016-01-08 | 2017-10-04 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Ultrasonic diagnostic equipment |
CN109982643B (en) * | 2016-11-14 | 2023-07-14 | 皇家飞利浦有限公司 | Three-mode ultrasound imaging for anatomical, functional and hemodynamic imaging |
CN110809801A (en) * | 2017-05-04 | 2020-02-18 | 皇家飞利浦有限公司 | System and method for simultaneous visualization and quantification of wall shear stress in blood vessels |
JP6782747B2 (en) * | 2018-10-24 | 2020-11-11 | ゼネラル・エレクトリック・カンパニイ | Ultrasonic device and its control program |
CN110927729B (en) * | 2019-11-09 | 2022-04-01 | 天津大学 | Acoustic radiation force pulse elastography method based on displacement attenuation characteristics |
CN111388010B (en) * | 2020-03-26 | 2022-06-24 | 深圳开立生物医疗科技股份有限公司 | Ultrasonic Doppler blood flow imaging method, device, equipment and readable storage medium |
CN111449681B (en) * | 2020-04-08 | 2023-09-08 | 深圳开立生物医疗科技股份有限公司 | Shear wave imaging method, device, equipment and readable storage medium |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5606971A (en) | 1995-11-13 | 1997-03-04 | Artann Corporation, A Nj Corp. | Method and device for shear wave elasticity imaging |
US5810731A (en) | 1995-11-13 | 1998-09-22 | Artann Laboratories | Method and apparatus for elasticity imaging using remotely induced shear wave |
US6010456A (en) * | 1998-12-30 | 2000-01-04 | General Electric Company | Method and apparatus for acoustic subtraction imaging using linear and nonlinear ultrasonic images |
US6093149A (en) * | 1996-12-04 | 2000-07-25 | Acuson Corporation | Method and apparatus for setting the integration interval for time integrated surface integral in an ultrasound imaging system |
JP2001212144A (en) | 2000-01-31 | 2001-08-07 | Toshiba Corp | Ultrasonic diagnostic apparatus and ultrasonic imaging method |
US20020010398A1 (en) * | 2000-04-26 | 2002-01-24 | Odile Bonnefous | Ultrasonic method and system for shear wave parameter estimation |
JP2002315749A (en) | 2001-04-24 | 2002-10-29 | Olympus Optical Co Ltd | Ultrasonic drive circuit |
US20050165306A1 (en) | 2003-10-03 | 2005-07-28 | Yi Zheng | Detection of motion in vibro-acoustography |
US7022077B2 (en) | 2000-11-28 | 2006-04-04 | Allez Physionix Ltd. | Systems and methods for making noninvasive assessments of cardiac tissue and parameters |
US20060079773A1 (en) * | 2000-11-28 | 2006-04-13 | Allez Physionix Limited | Systems and methods for making non-invasive physiological assessments by detecting induced acoustic emissions |
US20070016083A1 (en) * | 2005-07-11 | 2007-01-18 | Motoharu Hasegawa | Arterial stiffness evaluation apparatus, and arterial stiffness index calculating program |
US7252004B2 (en) | 2002-09-02 | 2007-08-07 | Centre National De La Recherche Scientifique-Cnrs | Imaging method and device employing sherar waves |
US20070230759A1 (en) * | 2006-03-31 | 2007-10-04 | Aloka Co., Ltd. | Methods and apparatus for ultrasound imaging |
US20080249408A1 (en) | 2007-02-09 | 2008-10-09 | Palmeri Mark L | Methods, Systems and Computer Program Products for Ultrasound Shear Wave Velocity Estimation and Shear Modulus Reconstruction |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694434A (en) * | 1984-06-12 | 1987-09-15 | Von Ramm Olaf T | Three-dimensional imaging system |
JP3187148B2 (en) * | 1991-08-26 | 2001-07-11 | 株式会社東芝 | Ultrasound diagnostic equipment |
US5546807A (en) * | 1994-12-02 | 1996-08-20 | Oxaal; John T. | High speed volumetric ultrasound imaging system |
FR2791136B1 (en) | 1999-03-15 | 2001-06-08 | Mathias Fink | IMAGING METHOD AND DEVICE USING SHEAR WAVES |
US6213947B1 (en) | 1999-03-31 | 2001-04-10 | Acuson Corporation | Medical diagnostic ultrasonic imaging system using coded transmit pulses |
US6592522B2 (en) | 2001-06-12 | 2003-07-15 | Ge Medical Systems Global Technology Company, Llc | Ultrasound display of displacement |
US6764448B2 (en) * | 2002-10-07 | 2004-07-20 | Duke University | Methods, systems, and computer program products for imaging using virtual extended shear wave sources |
US7901355B2 (en) * | 2003-01-23 | 2011-03-08 | L'oreal | Skin analysis apparatus including an ultrasound probe |
US7175599B2 (en) | 2003-04-17 | 2007-02-13 | Brigham And Women's Hospital, Inc. | Shear mode diagnostic ultrasound |
CN1809399B (en) | 2003-04-17 | 2010-12-22 | 布赖汉姆妇女医院 | Shear mode therapeutic ultrasound |
US7344509B2 (en) | 2003-04-17 | 2008-03-18 | Kullervo Hynynen | Shear mode therapeutic ultrasound |
EP1633234A4 (en) | 2003-06-03 | 2009-05-13 | Physiosonics Inc | Systems and methods for determining intracranial pressure non-invasively and acoustic transducer assemblies for use in such systems |
GB2428477A (en) | 2005-07-20 | 2007-01-31 | David Richard Andrews | Inspection device for heterogeneous structures |
FR2899336B1 (en) | 2006-03-29 | 2008-07-04 | Super Sonic Imagine | METHOD AND DEVICE FOR IMAGING A VISCOELASTIC MEDIUM |
FR2902308B1 (en) | 2006-06-15 | 2009-03-06 | Echosens Sa | METHOD FOR MEASURING VISCOELASTIC PROPERTIES OF BIOLOGICAL TISSUES USING AN ULTRASONIC TRANSDUCER |
FR2913875B1 (en) | 2007-03-21 | 2009-08-07 | Echosens Sa | DEVICE FOR MEASURING VISCOELASTIC PROPERTIES OF BIOLOGICAL TISSUES AND METHOD USING THE DEVICE |
WO2008141220A1 (en) | 2007-05-09 | 2008-11-20 | University Of Rochester | Shear modulus estimation by application of spatially modulated impulse acoustic radiation force approximation |
US8187187B2 (en) | 2008-07-16 | 2012-05-29 | Siemens Medical Solutions Usa, Inc. | Shear wave imaging |
US9364194B2 (en) | 2008-09-18 | 2016-06-14 | General Electric Company | Systems and methods for detecting regions of altered stiffness |
US20100286520A1 (en) * | 2009-05-11 | 2010-11-11 | General Electric Company | Ultrasound system and method to determine mechanical properties of a target region |
JP5559788B2 (en) * | 2009-07-07 | 2014-07-23 | 株式会社日立メディコ | Ultrasonic diagnostic equipment |
US8715185B2 (en) * | 2010-04-05 | 2014-05-06 | Hitachi Aloka Medical, Ltd. | Methods and apparatus for ultrasound imaging |
US8961418B2 (en) * | 2010-10-06 | 2015-02-24 | Siemens Medical Solutions Usa, Inc. | Solving for shear wave information in medical ultrasound imaging |
US8469891B2 (en) * | 2011-02-17 | 2013-06-25 | Siemens Medical Solutions Usa, Inc. | Viscoelasticity measurement using amplitude-phase modulated ultrasound wave |
US20120253194A1 (en) * | 2011-03-30 | 2012-10-04 | Tadashi Tamura | Methods and apparatus for ultrasound imaging |
US8951198B2 (en) * | 2012-03-30 | 2015-02-10 | Hitachi Aloka Medical, Ltd. | Methods and apparatus for ultrasound imaging |
US9220479B2 (en) * | 2012-03-30 | 2015-12-29 | Hitachi Aloka Medical, Ltd. | Methods and apparatus for ultrasound imaging |
US9211111B2 (en) * | 2012-04-05 | 2015-12-15 | Hitachi Aloka Medical, Ltd. | Determination of shear wave characteristics |
-
2011
- 2011-02-18 US US13/030,718 patent/US8715185B2/en not_active Expired - Fee Related
- 2011-02-18 US US13/030,831 patent/US9351707B2/en not_active Expired - Fee Related
- 2011-02-18 US US13/030,891 patent/US20110245668A1/en not_active Abandoned
- 2011-03-22 CN CN201180017478.XA patent/CN102892358B/en not_active Expired - Fee Related
- 2011-03-22 JP JP2013503768A patent/JP2013523325A/en active Pending
- 2011-03-22 WO PCT/US2011/029402 patent/WO2011126729A2/en active Application Filing
- 2011-03-22 EP EP11766381.5A patent/EP2555685A4/en not_active Withdrawn
- 2011-03-22 EP EP11766380.7A patent/EP2555684A4/en not_active Withdrawn
- 2011-03-22 CN CN201180017483.0A patent/CN102821700B/en not_active Expired - Fee Related
- 2011-03-22 JP JP2013503767A patent/JP2013523324A/en active Pending
- 2011-03-22 EP EP11766382.3A patent/EP2555686A4/en not_active Withdrawn
- 2011-03-22 JP JP2013503766A patent/JP2013523323A/en active Pending
- 2011-03-22 WO PCT/US2011/029389 patent/WO2011126727A2/en active Application Filing
- 2011-03-22 WO PCT/US2011/029396 patent/WO2011126728A2/en active Application Filing
- 2011-03-22 CN CN201180017546.2A patent/CN103096812B/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5606971A (en) | 1995-11-13 | 1997-03-04 | Artann Corporation, A Nj Corp. | Method and device for shear wave elasticity imaging |
US5810731A (en) | 1995-11-13 | 1998-09-22 | Artann Laboratories | Method and apparatus for elasticity imaging using remotely induced shear wave |
US6093149A (en) * | 1996-12-04 | 2000-07-25 | Acuson Corporation | Method and apparatus for setting the integration interval for time integrated surface integral in an ultrasound imaging system |
US6010456A (en) * | 1998-12-30 | 2000-01-04 | General Electric Company | Method and apparatus for acoustic subtraction imaging using linear and nonlinear ultrasonic images |
JP2001212144A (en) | 2000-01-31 | 2001-08-07 | Toshiba Corp | Ultrasonic diagnostic apparatus and ultrasonic imaging method |
US20020010398A1 (en) * | 2000-04-26 | 2002-01-24 | Odile Bonnefous | Ultrasonic method and system for shear wave parameter estimation |
US20060079773A1 (en) * | 2000-11-28 | 2006-04-13 | Allez Physionix Limited | Systems and methods for making non-invasive physiological assessments by detecting induced acoustic emissions |
US7022077B2 (en) | 2000-11-28 | 2006-04-04 | Allez Physionix Ltd. | Systems and methods for making noninvasive assessments of cardiac tissue and parameters |
JP2002315749A (en) | 2001-04-24 | 2002-10-29 | Olympus Optical Co Ltd | Ultrasonic drive circuit |
US7252004B2 (en) | 2002-09-02 | 2007-08-07 | Centre National De La Recherche Scientifique-Cnrs | Imaging method and device employing sherar waves |
US20050165306A1 (en) | 2003-10-03 | 2005-07-28 | Yi Zheng | Detection of motion in vibro-acoustography |
US20070016083A1 (en) * | 2005-07-11 | 2007-01-18 | Motoharu Hasegawa | Arterial stiffness evaluation apparatus, and arterial stiffness index calculating program |
US20070230759A1 (en) * | 2006-03-31 | 2007-10-04 | Aloka Co., Ltd. | Methods and apparatus for ultrasound imaging |
US20080249408A1 (en) | 2007-02-09 | 2008-10-09 | Palmeri Mark L | Methods, Systems and Computer Program Products for Ultrasound Shear Wave Velocity Estimation and Shear Modulus Reconstruction |
Non-Patent Citations (5)
Title |
---|
"Shear Wave Elasticity Imaging", Artann Laboratories, retrieved Feb. 9, 2011, download from artannlabs.com/shear-wave-elasticity-i.., 1pg. |
David Cosgrove MA, MSc, FRCP, FRCR, "Imaging Shear Waves for Sonoelastography", The Technology Solutions Resource for Medical Imaging and Radiation Oncology Professionals, Imaging Technology News, Jun. 2009, retrieved Feb. 9, 2011, retrieved from www.itnonline.net/print/32436?t=use . . . , 3pgs. |
Jeremy Bercoff et al., "ShearWave Elastography: a new ultrasound imaging mode for assessing quantitatively soft tissue elasticity", Publications on Aixplorer ShearWave Elastography, Dec. 3, 2010, IEEE 2008, 3pgs. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Oct. 18, 2011, for International Application No. PCT/US2011/029402, 9pgs. |
Pengfei Song, "Ultrasound Transient Shear Wave Elasticity Imaging for Tendon Tissue", Biological Systems Engineering Biological Systems Engineering-Dissertations, Theses, and Student Research, Lincoln, Nebraska Jun. 2010, (cover 4pgs.+Acknowledgements+iv (1pg.)+Table of Contents v-viii (4pgs.)+pp. 1-102, total 111 pages). |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110245678A1 (en) * | 2010-04-05 | 2011-10-06 | Tadashi Tamura | Methods and apparatus for ultrasound imaging |
US9351707B2 (en) * | 2010-04-05 | 2016-05-31 | Hitachi Aloka Medical, Ltd. | Methods and apparatus to determine shear wave propagation property |
Also Published As
Publication number | Publication date |
---|---|
CN102821700B (en) | 2015-04-08 |
CN102892358A (en) | 2013-01-23 |
EP2555686A4 (en) | 2014-08-20 |
WO2011126727A3 (en) | 2011-12-29 |
US9351707B2 (en) | 2016-05-31 |
JP2013523325A (en) | 2013-06-17 |
EP2555684A2 (en) | 2013-02-13 |
EP2555685A4 (en) | 2014-08-20 |
CN103096812A (en) | 2013-05-08 |
EP2555684A4 (en) | 2014-08-20 |
WO2011126729A3 (en) | 2011-12-29 |
EP2555685A2 (en) | 2013-02-13 |
CN103096812B (en) | 2015-12-02 |
WO2011126728A2 (en) | 2011-10-13 |
WO2011126727A2 (en) | 2011-10-13 |
WO2011126728A3 (en) | 2011-12-29 |
CN102821700A (en) | 2012-12-12 |
JP2013523323A (en) | 2013-06-17 |
WO2011126729A2 (en) | 2011-10-13 |
EP2555686A2 (en) | 2013-02-13 |
CN102892358B (en) | 2014-11-26 |
US20110245678A1 (en) | 2011-10-06 |
US20110245672A1 (en) | 2011-10-06 |
US20110245668A1 (en) | 2011-10-06 |
JP2013523324A (en) | 2013-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8715185B2 (en) | Methods and apparatus for ultrasound imaging | |
JP5882447B2 (en) | Ultrasonic imaging method and ultrasonic imaging apparatus | |
US9220479B2 (en) | Methods and apparatus for ultrasound imaging | |
US9211111B2 (en) | Determination of shear wave characteristics | |
US8951198B2 (en) | Methods and apparatus for ultrasound imaging | |
US9554770B2 (en) | High pulse repetition frequency for detection of tissue mechanical property with ultrasound | |
US8882675B2 (en) | Methods and apparatus for ultrasound imaging | |
US11154277B2 (en) | Tissue viscoelastic estimation from shear velocity in ultrasound medical imaging | |
US11006928B2 (en) | Sound speed imaging using shear waves | |
US8480590B2 (en) | Methods and apparatus for ultrasound imaging | |
US9307953B2 (en) | Vector interpolation device and method for an ultrasonic wave image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALOKA CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAMURA, TADASHI;REEL/FRAME:025835/0158 Effective date: 20110218 |
|
AS | Assignment |
Owner name: HITACHI ALOKA MEDICAL, LTD., JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:ALOKA CO., LTD.;REEL/FRAME:026829/0825 Effective date: 20110401 |
|
AS | Assignment |
Owner name: HITACHI, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HITACHI ALOKA MEDICAL, LTD.;REEL/FRAME:041891/0325 Effective date: 20160401 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20180506 |