US8385451B2 - Method and apparatus for improved spatial temporal turbo channel coding (STTCC) using eigen-beamforming - Google Patents

Method and apparatus for improved spatial temporal turbo channel coding (STTCC) using eigen-beamforming Download PDF

Info

Publication number
US8385451B2
US8385451B2 US11/760,266 US76026607A US8385451B2 US 8385451 B2 US8385451 B2 US 8385451B2 US 76026607 A US76026607 A US 76026607A US 8385451 B2 US8385451 B2 US 8385451B2
Authority
US
United States
Prior art keywords
eigen
bits
spatial stream
parity bits
orthogonal spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/760,266
Other versions
US20070291868A1 (en
Inventor
Robert Lind Olesen
Sung-Hyuk Shin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to US11/760,266 priority Critical patent/US8385451B2/en
Assigned to INTERDIGITAL TECHNOLOGY CORPORATION reassignment INTERDIGITAL TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OLESEN, ROBERT LIND, SHIN, SUNG-HYUK
Publication of US20070291868A1 publication Critical patent/US20070291868A1/en
Application granted granted Critical
Publication of US8385451B2 publication Critical patent/US8385451B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0064Concatenated codes
    • H04L1/0066Parallel concatenated codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

Definitions

  • the present invention is generally related to wireless communication systems. More specifically, the present invention is a method and apparatus for improving spatial temporal turbo channel coding (STTCC) by leveraging the spatial degrees of freedom in a multiple-input multiple output (MIMO) channel provided by eigen-beamforming.
  • STTCC spatial temporal turbo channel coding
  • MIMO multiple-input multiple output
  • a transmitter device transmits a signal containing useful data to a receiver device over an air interface.
  • MIMO multiple-input multiple-output
  • a signal is transmitted over multiple parallel paths by way of multiple transmit antennas and/or multiple receive antennas.
  • a MIMO system takes advantage of the spatial diversity and/or multiplexing provided by multiple parallel antennas to improve the signal-to-noise ratio (SNR) of the combined received signal and increase data throughput without increasing bandwidth usage.
  • SNR signal-to-noise ratio
  • MIMO has many benefits including improved spectrum efficiency, improved bit rate and robustness at the cell edge, reduced inter-cell and intra-cell interference, improvement in system capacity and reduced average transmit power requirements.
  • Error correcting codes are commonly used in wireless systems to protect against bit errors in received signals caused by channel fading, interference and receiver defects.
  • an encoder adds redundancy information to user data prior to transmission, and a corresponding decoder is applied to the received signal to recover the original data.
  • Turbo codes are a particular type of high-performance error correcting code.
  • FIG. 1 shows an example of a spatial temporal turbo channel coding (STTCC) encoder 100 designed to exploit the correlation between spatial paths corresponding to different transmit antennas in a MIMO wireless communication system.
  • STTCC encoder 100 also uses time diversity by transmitting the same symbols repeatedly over time, as described below. Because STTCC encoder 100 exploits both time and space diversity, it can be described as a space-time frequency modulation encoder.
  • a vector B [b 1 , . . . b L ] of L data bits is derived from the high-speed data stream X using serial-to-parallel (S/P) converter 105 .
  • the data vector B [b 1 , . . . b L ] is processed according to 3 parallel paths to produce systematic bits comprising the useful data bits and two sets of parity bits comprising the redundant error correcting information.
  • Each path of STTCC encoder 100 is described below.
  • a modulation mapping function ⁇ [B] [s 1 , . . . , s U ], where ⁇ [.] maps the data bits onto transmitted symbols based on the modulation type.
  • QPSK quadrature phase shift keying
  • the systematic symbols are provided to circular shifted switcher 130 .
  • a recursive encoder implies that a current output is calculated based on a current input and previous encoder outputs provided by a feedback path.
  • An example of a recursive encoder is a recursive convolutional encoder.
  • modulation mapping functions include, but are not limited to, QPSK modulation, 16 quadrature amplitude modulation (16-QAM), 64 quadrature amplitude modulation (64-QAM) and higher-order modulation.
  • Interleaver 107 may, for example, arrange vector B according to odd and even bits.
  • the encoded parity bits D 2 [d 1 2 , . . .
  • the encoded symbol vector S 2 may be de-interleaved if desired by de-interleaver 115 .
  • the encoded parity symbol vectors S 1 and S 2 are selectively outputted over time by multiplexer 120 .
  • the combined symbol vector S [s 1 , . . .
  • Codeword S is provided to a circular shifted switcher 130 that provides the symbols of vector S cyclically over time to each of N transmit antennas for transmission, according to the following.
  • s′ N [s 1 , . . . , s N ] such that symbol s 1 is transmitted by antenna 1
  • the circular rotation of vector S continues accordingly for up to N symbol periods.
  • the symbols [s′ 1 , . . . , s′ N ] may undergo further processing as desired including, but not limited to, interleaving, spreading, scrambling, pulse shaping and carrier modulation (not shown).
  • the STTCC encoder 100 transmits the encoded symbols over different spatial streams provided by the multiple antennas, however, the prior art STTCC encoder does not take into account signal quality or signal power over possible spatial streams when assigning codeword symbols to spatial streams for transmission.
  • the performance of the STTCC including power efficiency can be improved by effectively exploiting the additional spatial degrees of freedom in a MIMO channel afforded by the use of eigen-beamforming techniques.
  • the present invention is a method and apparatus for improving spatial temporal turbo channel coding (STTCC) in multiple-input multiple-output (MIMO) wireless communication systems by spatially multiplexing data bits and parity bits onto orthogonal spatial streams using eigen-beamforming techniques.
  • the proposed eigen-STTCC (E-STTCC) encoder applies singular value decomposition (SVD) to a channel matrix to produce a unitary matrix comprising the orthonormal basis for orthogonal spatial streams of the channel, called the eigen streams, and a diagonal matrix comprising the singular values that are proportional to the input power of the corresponding eigen streams.
  • the turbo encoded codeword is multiplied by the unitary matrix, called the linear preceding matrix, in order to map the codeword symbols to the eigen streams for transmission.
  • data bits are transmitted over the eigen streams with the highest power (and highest singular value) and parity bits are transmitted over eigen streams with lower power (and lower singular value) in order to maximize the efficiency of the power used to transmit the user data and to prioritize systematic bits taking into account the fact that systematic bits in a turbo encoded codeword are more important than parity bits.
  • the systematic bits and parity bits are interleaved prior to eigen-beamforming in order to spatially interleave the systematic and parity bits over the orthogonal eigen streams.
  • interleaving is applied to the input data stream prior to E-STTCC encoding to reduce complexity and memory requirements.
  • FIG. 1 shows an example of a prior art spatial temporal turbo channel coding (STTCC) encoder
  • FIG. 2 shows a block diagram of an eigen-STTCC (E-STTCC) encoder that allocates the systematic bits to the eigen streams with the highest power in accordance with a first embodiment of the present invention
  • FIG. 3 shows a histogram of power levels for first and second eigen streams measured by simulation
  • FIG. 4 is a block diagram of an E-STTCC encoder that spatially interleaves systematic bits and parity bits in accordance with a second embodiment of the present invention
  • FIG. 5 is a block diagram of an E-STTCC encoder having an interleaver at the input of the encoder in accordance with an embodiment of the present invention.
  • FIG. 6 is a flow diagram for E-STTCC encoding using eigen-beamforming in accordance with the present invention.
  • the present invention is applicable to any type of wireless communication system employing spatial diversity techniques and in particular multiple-input multiple-output (MIMO) systems.
  • MIMO systems include, but are not limited to orthogonal frequency-division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) systems employing MIMO such as long term evolution (LTE) systems, high speed packet access evolution (HSPA+) systems, wireless metropolitan area networks (wirelessMANs) employing the 802.16 family of standards and wireless local area networks (wireless LANs) employing the 802.11n standard.
  • OFDM orthogonal frequency-division multiplexing
  • OFDMA orthogonal frequency division multiple access
  • LTE long term evolution
  • HSPA+ high speed packet access evolution
  • wirelessMANs wireless metropolitan area networks
  • wireless LANs wireless local area networks
  • wireless transmit/receive unit includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment.
  • base station includes but is not limited to a Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.
  • the present invention provides improvements to prior art spatial temporal turbo channel coding (STTCC) schemes for MIMO systems, and is referred to as eigen-STTCC (E-STTCC).
  • E-STTCC employs MIMO preceding, or eigen-beamforming, to selectively transmit data symbols and parity symbols over separate orthogonal spatial streams of the MIMO channel, called eigen streams, to increase data rates and reduce channel errors.
  • the present invention is preferably (but not required to be) used in a transmitter with multiple antennas and may be used in a base station or a WTRU. Preferred embodiments of the present invention are described below.
  • FIG. 2 shows a block diagram of an E-STTCC encoder 200 that allocates the systematic bits to the eigen streams with the highest power, and correspondingly the highest eigen or singular value, in accordance with a first embodiment of the present invention.
  • channel quality information (CQI) 220 and channel state information (CSI) 230 are provided to E-STTCC encoder 200 .
  • Serial-to-parallel (S/P) converter 105 , interleaver 107 , recursive encoders 110 1 , 110 2 , rate matching units 212 1 , 212 2 , modulation mapping units 214 1 , 214 2 , 214 3 and de-interleaver 115 operate as described in FIG.
  • rate matching units 212 1 , 212 2 and modulation mapping units 214 1 , 214 2 , 214 3 may adapt the coding rate or the modulation scheme, respectively, according to the channel quality provided by CQI value 220 , if desired.
  • the rate matching units 212 1 , 212 2 can apply padding to decrease the code rate and modulation mapping units 214 1 , 214 2 , 214 3 may change the modulation scheme from 16-QAM to QPSK to improve robustness of the transmitted codeword against bit errors.
  • BER bit error rate
  • other multiplexing schemes may be used.
  • the multiplexer and spatial interleaver 240 may interleave the multiplexed parity symbols in cases where the number of antennas is N>2 to produce selected parity symbol vector [s u+1 , . . . , s N ].
  • the overall codeword S [s 1 , . . . , s u , s u+1 , . . . , s N ] is provided to eigen beamform precoder 250 .
  • eigen beamform precoder 250 uses eigen-beamforming to determine a linear mapping of codeword S to output vector S′ such that each symbol s i of codeword S is transmitted via an orthogonal spatial stream or channel, referred to as an eigen stream.
  • the eigen streams are spatially separate and orthogonal paths or subchannels of the MIMO channel, such that an eigen stream does not necessarily correspond to a single transmit antenna, but is likely a weighted combination of the signals transmitted by different antennas.
  • eigen beamform precoder 250 is provided with CSI 230 in the form of a channel matrix H representing the current channel state or an estimate of the channel state.
  • SVD singular value decomposition
  • the entries along the diagonal matrix D are the singular values or eigen values of the channel matrix H, and are the scalar weights of the orthogonal eigen streams that map the input space V to the output space U.
  • the square of the eigen values equal the total power of each respective eigen stream.
  • the systematic symbols in a turbo coded codeword contain the user data and are typically the most important bits for successful decoding at a receiver.
  • FIG. 3 shows a histogram of power values of the first and second eigen streams measured by simulation of a time-varying multipath OFDM channel, where samples of the time-evolving channel matrix H were taken once every OFDM symbol.
  • Equation 2 maps the systematic symbols [s 1 , . . . , s U ] to the eigen streams with the highest power and maps the parity symbols [s U+1 , . . . , s N ] to subsequent eigen streams with lower power, thus increasing the robustness of the systematic symbols to bit errors and improving the overall performance of the turbo encoder.
  • FIG. 4 illustrates of block diagram of an E-STTCC encoder 400 that spatially interleaves systematic symbols [s 1 , . . . , s U ] and parity bits [s u+1 , . . . , s N ] in accordance with a second embodiment of the present invention.
  • the interleaver in the path of the parity bits is redundant because the parity bits are transmitted over a common eigen stream and thus experience the identical channel conditions.
  • Placing interleaver 507 at the input of E-STTCC encoder 500 reduces implementation complexity and memory requirements.
  • a multiplexer and/or interleaver as illustrated in the embodiments in FIGS. 2 and 4 may be applied to the codeword prior to eigen beamform precoder 250 , as desired.
  • FIG. 6 is a flow diagram for E-STTCC encoding using eigen-beamforming in accordance with the present invention.
  • a data vector is generated from the input data stream using serial-to-parallel conversion.
  • Systematic bits are generated by modulation mapping the data vector in step 610 .
  • first and second sets of parity bits are generated based on the data vector preferably using interleaving, recursive encoding, rate matching, modulation mapping, and de-interleaving.
  • selected parity bits are generated from the first and second sets of parity bits using at least one of multiplexing and interleaving.
  • a codeword is generated in step 625 by combining the systematic bits and selected parity bits.
  • the systematic bits are concatenated with the selected parity bits.
  • the systematic bits are spatially interleaved with the selected parity bits.
  • a channel matrix is decomposed to generate a linear precoding matrix, preferably using singular value decomposition (SVD).
  • the linear preceding matrix and codeword are multiplied to produce an output vector that maps the codeword to orthogonal eigen streams, and the output vector is provided to a plurality of transmit antennas for transmission.
  • the output vector may undergo further processing as desired including, but not limited to, interleaving, spreading, scrambling, pulse shaping and carrier modulation before being transmitted by the antennas.
  • ROM read only memory
  • RAM random access memory
  • register cache memory
  • semiconductor memory devices magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
  • Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • a processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer.
  • the WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) module.
  • modules implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker,

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Error Detection And Correction (AREA)

Abstract

The present invention is a method and apparatus for improving the performance of spatial temporal turbo channel coding (STTCC) used in multiple-input multiple-output (MIMO) wireless communication systems called eigen-STTCC (E-STTCC) that employs eigen-beamforming to make use of orthogonal eigen streams in the MIMO channel. Singular value decomposition (SVD) is applied to the channel matrix producing a linear precoding matrix containing the orthonormal basis for the eigen streams. In a first embodiment, the turbo encoded codeword containing concatenated systematic and parity bits is precoded with the linear precoding matrix such that the systematic bits are transmitted over the eigen streams with highest power. In a second embodiment, the codeword is made up of interleaved systematic bits and parity bits prior to eigen beamform preceding, effectively interleaving the systematic and data bits spatially over the eigen streams. In an alternate embodiment, the data stream is interleaved at the input to the encoder.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority from U.S. Provisional Patent Application No. 60/811,972 filed on Jun. 8, 2006 which is incorporated by reference as if fully set forth.
FIELD OF INVENTION
The present invention is generally related to wireless communication systems. More specifically, the present invention is a method and apparatus for improving spatial temporal turbo channel coding (STTCC) by leveraging the spatial degrees of freedom in a multiple-input multiple output (MIMO) channel provided by eigen-beamforming.
BACKGROUND
In the operation of a wireless communication system, a transmitter device transmits a signal containing useful data to a receiver device over an air interface. In multiple-input multiple-output (MIMO) wireless communication systems, a signal is transmitted over multiple parallel paths by way of multiple transmit antennas and/or multiple receive antennas. A MIMO system takes advantage of the spatial diversity and/or multiplexing provided by multiple parallel antennas to improve the signal-to-noise ratio (SNR) of the combined received signal and increase data throughput without increasing bandwidth usage. MIMO has many benefits including improved spectrum efficiency, improved bit rate and robustness at the cell edge, reduced inter-cell and intra-cell interference, improvement in system capacity and reduced average transmit power requirements.
Error correcting codes are commonly used in wireless systems to protect against bit errors in received signals caused by channel fading, interference and receiver defects. Typically, an encoder adds redundancy information to user data prior to transmission, and a corresponding decoder is applied to the received signal to recover the original data. Turbo codes are a particular type of high-performance error correcting code. FIG. 1 shows an example of a spatial temporal turbo channel coding (STTCC) encoder 100 designed to exploit the correlation between spatial paths corresponding to different transmit antennas in a MIMO wireless communication system. STTCC encoder 100 also uses time diversity by transmitting the same symbols repeatedly over time, as described below. Because STTCC encoder 100 exploits both time and space diversity, it can be described as a space-time frequency modulation encoder.
Referring to FIG. 1, given a desired data rate of L bits/symbol period, a vector B=[b1, . . . bL] of L data bits is derived from the high-speed data stream X using serial-to-parallel (S/P) converter 105. The data vector B=[b1, . . . bL] is processed according to 3 parallel paths to produce systematic bits comprising the useful data bits and two sets of parity bits comprising the redundant error correcting information. Each path of STTCC encoder 100 is described below.
In the first path, modulation mapping unit 114 1 provides systematic symbols [s1, . . . , sU] based on the information bit vector B according to a modulation mapping function Φ[B]=[s1, . . . , sU], where Φ[.] maps the data bits onto transmitted symbols based on the modulation type. For example, for quadrature phase shift keying (QPSK) modulation, a symbol comprises 2 bits and thus the corresponding number of systematic symbols is U=L/2 symbols. The systematic symbols are provided to circular shifted switcher 130.
In the second path, recursive encoder 110 1 is used to generate a first set of encoded parity bits D1=[d1 1, . . . , dM 1]. A recursive encoder implies that a current output is calculated based on a current input and previous encoder outputs provided by a feedback path. An example of a recursive encoder is a recursive convolutional encoder. The encoded parity bits D1=[d1 1, . . . , dM 1] are provided to a rate matching unit 112 1 that may add or delete bits from vector D1 as needed to achieve a desired data rate. These techniques are referred to as padding and puncturing, respectively. The length P of the resulting output vector C1=[c1 1, . . . , cp 1] determines the coding rate of the STTCC encoder. Modulation mapping unit 114 2 maps the vector bits C1=[c1 1, . . . , cp 1] to encoded parity symbol vector S1=[sU+1 1, . . . , sN 1] according to modulation mapping function Φ1[C]=[sU+1 1, . . . , sN 1], where N is the total number of transmit antennas. Examples of modulation mapping functions include, but are not limited to, QPSK modulation, 16 quadrature amplitude modulation (16-QAM), 64 quadrature amplitude modulation (64-QAM) and higher-order modulation.
A second set of encoded parity bits D2=[d1 2, . . . , dM 2] are generated by first interleaving the bits of data vector B=[b1, . . . bL] using interleaver 107 and providing the interleaved vector B′=[b′1, . . . b′L] to recursive encoder 110 2. Interleaver 107 may, for example, arrange vector B according to odd and even bits. The encoded parity bits D2=[d1 2, . . . , dM 2] are provided to rate matching unit 112 2 where vector D2 is padded or punctured as required to meet the desired data rate producing vector C2=[c1 2, . . . , cp 2]. Modulation mapping unit 114 2 maps vector C2=[c1 2, . . . , cp 2] to encoded parity symbol vector S2=[sU+1 2, . . . , sN 2] according to a modulation mapping function Φ2[C]=[sU+1 2, . . . , sN 2]. The encoded symbol vector S2 may be de-interleaved if desired by de-interleaver 115.
The encoded parity symbol vectors S1 and S2 are selectively outputted over time by multiplexer 120. For example, at each symbol period the encoded parity vector [sU+1, . . . , sN] output by multiplexer 125 may alternate between the first parity vector [sU+1, . . . , sN]=[sU+1 1, . . . , sN 1] and the second parity vector [sU+1, . . . , sN]=[sU+1 2, . . . , sN 2]. The combined symbol vector S=[s1, . . . , su, su+1, . . . , sN] comprising the systematic bits and the encoded parity symbols is called the codeword and has a data rate of L/L+P and a coding rate of P/L+P. Codeword S is provided to a circular shifted switcher 130 that provides the symbols of vector S cyclically over time to each of N transmit antennas for transmission, according to the following.
The output vector S′=[s′1, . . . , s′N] of circular shifted switcher 130 is mapped to the set of antennas 1, 2, . . . , N (not shown) such that symbol s′1, is transmitted by antenna 1, symbol s′2 is transmitted by antenna 2 and the remaining symbols are transmitted accordingly by respective antennas up to antenna N. The circular shifted switcher 130 maps the symbols of vector S to vector S′=[s′1, . . . , s′N] by cyclically rotating vector S at each consecutive symbol period, so that each symbol gets mapped to a different antenna over time. For example, at symbol period t1[s′1, . . . , s′N]=[s1, . . . , sN] such that symbol s1 is transmitted by antenna 1, and at symbol period t2 [s′1, . . . , s′N]=[sN, s1 . . . , sN−1] such that symbol s1 is transmitted by antenna 2. The circular rotation of vector S continues accordingly for up to N symbol periods.
Following the STTCC encoder 100, and prior to transmission over the N parallel transmit antennas, the symbols [s′1, . . . , s′N] may undergo further processing as desired including, but not limited to, interleaving, spreading, scrambling, pulse shaping and carrier modulation (not shown).
The STTCC encoder 100 transmits the encoded symbols over different spatial streams provided by the multiple antennas, however, the prior art STTCC encoder does not take into account signal quality or signal power over possible spatial streams when assigning codeword symbols to spatial streams for transmission. The performance of the STTCC including power efficiency can be improved by effectively exploiting the additional spatial degrees of freedom in a MIMO channel afforded by the use of eigen-beamforming techniques.
SUMMARY
The present invention is a method and apparatus for improving spatial temporal turbo channel coding (STTCC) in multiple-input multiple-output (MIMO) wireless communication systems by spatially multiplexing data bits and parity bits onto orthogonal spatial streams using eigen-beamforming techniques. According to the present invention, the proposed eigen-STTCC (E-STTCC) encoder applies singular value decomposition (SVD) to a channel matrix to produce a unitary matrix comprising the orthonormal basis for orthogonal spatial streams of the channel, called the eigen streams, and a diagonal matrix comprising the singular values that are proportional to the input power of the corresponding eigen streams. The turbo encoded codeword is multiplied by the unitary matrix, called the linear preceding matrix, in order to map the codeword symbols to the eigen streams for transmission.
According to a first embodiment, data bits (systematic bits) are transmitted over the eigen streams with the highest power (and highest singular value) and parity bits are transmitted over eigen streams with lower power (and lower singular value) in order to maximize the efficiency of the power used to transmit the user data and to prioritize systematic bits taking into account the fact that systematic bits in a turbo encoded codeword are more important than parity bits.
According to a second embodiment, the systematic bits and parity bits are interleaved prior to eigen-beamforming in order to spatially interleave the systematic and parity bits over the orthogonal eigen streams. In another embodiment, interleaving is applied to the input data stream prior to E-STTCC encoding to reduce complexity and memory requirements.
BRIEF DESCRIPTION OF THE DRAWINGS
A more detailed understanding of the invention may be had from the following description of a preferred embodiment, given by way of example and to be understood in conjunction with the accompanying drawings wherein:
FIG. 1 shows an example of a prior art spatial temporal turbo channel coding (STTCC) encoder;
FIG. 2 shows a block diagram of an eigen-STTCC (E-STTCC) encoder that allocates the systematic bits to the eigen streams with the highest power in accordance with a first embodiment of the present invention;
FIG. 3 shows a histogram of power levels for first and second eigen streams measured by simulation;
FIG. 4 is a block diagram of an E-STTCC encoder that spatially interleaves systematic bits and parity bits in accordance with a second embodiment of the present invention;
FIG. 5 is a block diagram of an E-STTCC encoder having an interleaver at the input of the encoder in accordance with an embodiment of the present invention; and
FIG. 6 is a flow diagram for E-STTCC encoding using eigen-beamforming in accordance with the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is applicable to any type of wireless communication system employing spatial diversity techniques and in particular multiple-input multiple-output (MIMO) systems. Examples of MIMO systems include, but are not limited to orthogonal frequency-division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA) systems employing MIMO such as long term evolution (LTE) systems, high speed packet access evolution (HSPA+) systems, wireless metropolitan area networks (wirelessMANs) employing the 802.16 family of standards and wireless local area networks (wireless LANs) employing the 802.11n standard.
When referred to hereafter, the terminology “wireless transmit/receive unit (WTRU)” includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment. When referred to hereafter, the terminology “base station” includes but is not limited to a Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.
The present invention provides improvements to prior art spatial temporal turbo channel coding (STTCC) schemes for MIMO systems, and is referred to as eigen-STTCC (E-STTCC). E-STTCC employs MIMO preceding, or eigen-beamforming, to selectively transmit data symbols and parity symbols over separate orthogonal spatial streams of the MIMO channel, called eigen streams, to increase data rates and reduce channel errors. The present invention is preferably (but not required to be) used in a transmitter with multiple antennas and may be used in a base station or a WTRU. Preferred embodiments of the present invention are described below.
FIG. 2 shows a block diagram of an E-STTCC encoder 200 that allocates the systematic bits to the eigen streams with the highest power, and correspondingly the highest eigen or singular value, in accordance with a first embodiment of the present invention. According to the present invention, channel quality information (CQI) 220 and channel state information (CSI) 230 based on channel measurements are provided to E-STTCC encoder 200. Serial-to-parallel (S/P) converter 105, interleaver 107, recursive encoders 110 1, 110 2, rate matching units 212 1, 212 2, modulation mapping units 214 1, 214 2, 214 3 and de-interleaver 115 operate as described in FIG. 1 to produce systematic symbols [s1, . . . , sU], and two sets of encoded parity symbols S1=[sU+1 1, . . . , sN 1] and S2=[sU+1 2, . . . , sN 2]. Additionally, rate matching units 212 1, 212 2 and modulation mapping units 214 1, 214 2, 214 3 may adapt the coding rate or the modulation scheme, respectively, according to the channel quality provided by CQI value 220, if desired. For example, if the CQI value 220 indicates a high bit error rate (BER), the rate matching units 212 1, 212 2 can apply padding to decrease the code rate and modulation mapping units 214 1, 214 2, 214 3 may change the modulation scheme from 16-QAM to QPSK to improve robustness of the transmitted codeword against bit errors.
The encoded parity symbols S1=[sU+1 1, . . . , sN 1] and S2=[sU+1 2, . . . , sN 2] are provided to multiplexer and spatial interleaver 240 where the parity symbols are selectively multiplexed. For example, the selected parity symbols may alternate between the parity symbols S1=[sU+1 1, . . . , sN 1] and S2=[sU+1 2, . . . , sN 2] at each symbol period. Alternatively, other multiplexing schemes may be used. The multiplexer and spatial interleaver 240 may interleave the multiplexed parity symbols in cases where the number of antennas is N>2 to produce selected parity symbol vector [su+1, . . . , sN]. The overall codeword S=[s1, . . . , su, su+1, . . . , sN] is provided to eigen beamform precoder 250.
Eigen beamform precoder 250 maps codeword S=[s1, . . . , sN] to output vector S′=[s′1, . . . , s′N] where each signal s′i is transmitted over a corresponding antenna i. Specifically, eigen beamform precoder 250 uses eigen-beamforming to determine a linear mapping of codeword S to output vector S′ such that each symbol si of codeword S is transmitted via an orthogonal spatial stream or channel, referred to as an eigen stream. The eigen streams are spatially separate and orthogonal paths or subchannels of the MIMO channel, such that an eigen stream does not necessarily correspond to a single transmit antenna, but is likely a weighted combination of the signals transmitted by different antennas.
To determine the mapping of input vector S to output vector S′, eigen beamform precoder 250 is provided with CSI 230 in the form of a channel matrix H representing the current channel state or an estimate of the channel state. Eigen beamform precoder 250 decomposes channel matrix H preferably using singular value decomposition (SVD), or an equivalent operation thereof, to produce unitary matrices U and V and diagonal matrix D
H=UDVH  Equation (1)
where VH is the Hermitian of matrix V. The columns of matrix V, an N×N matrix, form the orthonormal basis for the eigen streams entering the MIMO channel, and matrix U, an M×M matrix, is the orthonormal basis for the output of the channel, where M may be, for example, the number of receive antennas or the number of subcarriers in an OFDM channel, or a combination thereof. The entries along the diagonal matrix D are the singular values or eigen values of the channel matrix H, and are the scalar weights of the orthogonal eigen streams that map the input space V to the output space U. The square of the eigen values equal the total power of each respective eigen stream.
According to a first embodiment of the present invention, it is desirable to transmit the systematic symbols [s1, . . . , sU] over the eigen stream or streams with the largest power and accordingly the lowest bit error rate. The rationale is that the systematic symbols in a turbo coded codeword contain the user data and are typically the most important bits for successful decoding at a receiver. Hence, in order to maximize the probability of successful receiving and decoding systematic symbols at a receiver, it is desirable to transmit the systematic symbols over the eigen stream or streams with the lowest bit error rate.
It is known that as a result of SVD, the eigen values in matrix D are arranged in decreasing order, and thus the eigen streams corresponding to matrices D and V are ordered according to decreasing power level that is proportional to the eigen value. FIG. 3 shows a histogram of power values of the first and second eigen streams measured by simulation of a time-varying multipath OFDM channel, where samples of the time-evolving channel matrix H were taken once every OFDM symbol. The bits of codeword S=[s1, . . . , sN] are spatially multiplexed onto the eigen streams by multiplying codeword S with the orthonormal basis matrix V, also called the linear precoding matrix:
S′=VS.  Equation (2)
Accordingly, Equation 2 maps the systematic symbols [s1, . . . , sU] to the eigen streams with the highest power and maps the parity symbols [sU+1, . . . , sN] to subsequent eigen streams with lower power, thus increasing the robustness of the systematic symbols to bit errors and improving the overall performance of the turbo encoder.
FIG. 4 illustrates of block diagram of an E-STTCC encoder 400 that spatially interleaves systematic symbols [s1, . . . , sU] and parity bits [su+1, . . . , sN] in accordance with a second embodiment of the present invention. Specifically, the multiplexer and interleaver 240 of FIG. 2 is split into separate multiplexer 442 that multiplexes encoded parity symbols S1=[sU+1 1, . . . , sN 1] and S2=[sU+1 2, . . . , sN 2] producing parity symbol vector [sU+1, . . . , sN], and spatial interleaver 444 that interleaves the systematic symbols [s1, . . . , sU] and parity symbols [sU+1, . . . , sN] together producing interleaved codeword S″=[s″1, . . . , s″N]. Eigen beamform precoder 250 maps vector S″ to vector S′ according to S′=VS″ where V is the linear precoding matrix described above. Accordingly, by interleaving the systematic bits and parity bits prior to eigen-beamforming, the systematic bits and parity bits are spatially interleaved across the orthogonal eigen streams.
In an alternate embodiment of the present invention shown in FIG. 5, interleaver 507 is placed at the input of E-STTCC encoder 500, and the interleaver is removed from the path that calculates the second set of parity bits S2=[sU+1 2, . . . , sN 2]. The interleaver in the path of the parity bits is redundant because the parity bits are transmitted over a common eigen stream and thus experience the identical channel conditions. Placing interleaver 507 at the input of E-STTCC encoder 500 reduces implementation complexity and memory requirements. A multiplexer and/or interleaver as illustrated in the embodiments in FIGS. 2 and 4 may be applied to the codeword prior to eigen beamform precoder 250, as desired.
FIG. 6 is a flow diagram for E-STTCC encoding using eigen-beamforming in accordance with the present invention. In step 605, a data vector is generated from the input data stream using serial-to-parallel conversion. Systematic bits are generated by modulation mapping the data vector in step 610. In step 615, first and second sets of parity bits are generated based on the data vector preferably using interleaving, recursive encoding, rate matching, modulation mapping, and de-interleaving. In step 620, selected parity bits are generated from the first and second sets of parity bits using at least one of multiplexing and interleaving. A codeword is generated in step 625 by combining the systematic bits and selected parity bits.
Recall that in a first embodiment, the systematic bits are concatenated with the selected parity bits. In a second embodiment, the systematic bits are spatially interleaved with the selected parity bits. In step 630, a channel matrix is decomposed to generate a linear precoding matrix, preferably using singular value decomposition (SVD). In step 635, the linear preceding matrix and codeword are multiplied to produce an output vector that maps the codeword to orthogonal eigen streams, and the output vector is provided to a plurality of transmit antennas for transmission. Recall that following the STTCC encoding 600, the output vector may undergo further processing as desired including, but not limited to, interleaving, spreading, scrambling, pulse shaping and carrier modulation before being transmitted by the antennas.
Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the preferred embodiments or in various combinations with or without other features and elements of the present invention. The methods or flow charts provided in the present invention may be implemented in a computer program, software, or firmware tangibly embodied in a computer-readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) module.

Claims (10)

1. A method for use in wireless communication, the method comprising:
eigen spatial temporal turbo channel coding (E-STTCC) an input data stream by:
generating a data vector based on the input data stream using serial-to-parallel (S/P) conversion;
modulating the data vector to generate systematic bits;
generating a first set of parity bits based on the data vector;
generating a second set of parity bits based on the data vector;
generating selected parity bits based on the first and second sets of parity bits;
concatenating the systematic bits and the selected parity bits to generate a codeword;
decomposing a received channel matrix to generate a linear precoding matrix;
multiplying the linear precoding matrix and the codeword to produce an output vector whereby all of the systematic bits are mapped to a first orthogonal spatial stream and all of the parity bits are mapped to a second orthogonal spatial stream, the first orthogonal spatial stream having a higher power than the second orthogonal spatial stream; and
transmitting the output vector using a plurality of multiple input-multiple output (MIMO) transmit antennas such that all of the systematic bits are transmitted via the first orthogonal spatial stream and all of the selected parity bits are transmitted via the second orthogonal spatial stream, wherein the first orthogonal spatial stream includes a weighted combination of a transmission from each of a first subset of MIMO transmit antennas selected from the plurality of MIMO transmit antennas and the second orthogonal spatial stream includes a weighted combination of a transmission from each of a second subset of MIMO transmit antennas selected from the plurality of MIMO transmit antennas.
2. The method of claim 1, wherein the decomposing the channel matrix includes using a singular value decomposition (SVD).
3. The method of claim 2, wherein the linear precoding matrix is an orthonormal basis for the first orthogonal spatial stream and the second orthogonal spatial stream.
4. The method of claim 1, further comprising interleaving the systematic bits and the selected parity bits prior to the multiplying the linear precoding matrix and the codeword.
5. The method of claim 1, wherein the generating a data vector includes interleaving the input data stream.
6. A wireless transmit/receive unit (WTRU) comprising:
an eigen spatial temporal turbo channel coding (E-STTCC) encoder including:
a serial-to-parallel (S/P) converter configured to generate a data vector from an input data stream;
a first modulation mapping unit configured to modulate the data vector to generate systematic bits;
a first parity bit generator configured to generate a first plurality of parity bits based on the data vector;
a second parity bit generator configured to generate a second plurality of parity bits based on the data vector;
a parity bit selector configured to generate selected parity bits based on the first plurality of parity bits and second plurality of parity bits;
an eigen beamform precoder configured to:
generate a codeword by combining the systematic bits and selected parity bits;
decompose a received channel matrix to generate a linear precoding matrix;
multiply the linear precoding matrix and the codeword to produce an output vector whereby all of the systematic bits are mapped to a first orthogonal spatial stream and all of the parity bits are mapped to a second orthogonal spatial stream, the first orthogonal spatial stream having a higher power than the second orthogonal spatial stream; and
a plurality of multiple input-multiple output (MIMO) transmit antennas configured to transmit the output vector such that all of the systematic bits are transmitted via the first orthogonal spatial stream and all of the selected parity bits are transmitted via the second orthogonal spatial stream, wherein the first orthogonal spatial stream includes a weighted combination of a transmission from each of a first subset of MIMO transmit antennas selected from the plurality of MIMO transmit antennas and the second orthogonal spatial stream includes a weighted combination of a transmission from each of a second subset of MIMO transmit antennas selected from the plurality of MIMO transmit antennas.
7. The WTRU of claim 6, wherein the eigen beamform precoder is configured to decompose the channel matrix using a singular value decomposition (SVD).
8. The WTRU of claim 7, wherein the linear precoding matrix is an orthonormal basis for the first orthogonal spatial stream and the second orthogonal spatial stream.
9. The WTRU of claim 6, further comprising an interleaver configured to interleave the systematic bits and the selected parity bits and to output the interleaved bits to the eigen beamform precoder.
10. The WTRU of claim 6, further comprising an interleaver configured to interleave the input data stream and output the interleaved data stream to the S/P converter.
US11/760,266 2006-06-08 2007-06-08 Method and apparatus for improved spatial temporal turbo channel coding (STTCC) using eigen-beamforming Expired - Fee Related US8385451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/760,266 US8385451B2 (en) 2006-06-08 2007-06-08 Method and apparatus for improved spatial temporal turbo channel coding (STTCC) using eigen-beamforming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US81197206P 2006-06-08 2006-06-08
US11/760,266 US8385451B2 (en) 2006-06-08 2007-06-08 Method and apparatus for improved spatial temporal turbo channel coding (STTCC) using eigen-beamforming

Publications (2)

Publication Number Publication Date
US20070291868A1 US20070291868A1 (en) 2007-12-20
US8385451B2 true US8385451B2 (en) 2013-02-26

Family

ID=38861534

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/760,266 Expired - Fee Related US8385451B2 (en) 2006-06-08 2007-06-08 Method and apparatus for improved spatial temporal turbo channel coding (STTCC) using eigen-beamforming

Country Status (1)

Country Link
US (1) US8385451B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980201A (en) * 2014-04-07 2015-10-14 想象技术有限公司 Reordering Of A Beamforming Matrix
CN109412983A (en) * 2018-10-25 2019-03-01 哈尔滨工程大学 A kind of extensive mimo channel algorithm for estimating of mesh freeization based on the domain DFT

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845498B1 (en) * 2006-09-29 2008-07-10 한국전자통신연구원 Apparatus and method for precoder in multiuser MIMO system
CN101166052B (en) * 2006-10-19 2012-05-23 株式会社Ntt都科摩 Precoding method for multi-input multi-output system and apparatus using same
US20090296846A1 (en) * 2006-11-17 2009-12-03 Tsuguo Maru Mimo communication system having deterministic channels and method
US8014265B2 (en) * 2007-08-15 2011-09-06 Qualcomm Incorporated Eigen-beamforming for wireless communication systems
US8009617B2 (en) * 2007-08-15 2011-08-30 Qualcomm Incorporated Beamforming of control information in a wireless communication system
US7499515B1 (en) * 2007-08-27 2009-03-03 Harris Corporation System and method for automated link quality measurement for adaptive modulation systems using noise level estimates
KR101329012B1 (en) * 2007-10-11 2013-11-12 삼성전자주식회사 A multiple input multiple output receiver and method for detecting signal thereof
US8200733B1 (en) 2008-04-15 2012-06-12 Freescale Semiconductor, Inc. Device having interleaving capabilities and a method for applying an interleaving function
US20090323773A1 (en) * 2008-06-30 2009-12-31 Interdigital Patent Holdings, Inc. Method and apparatus for signaling precoding vectors
JP4935790B2 (en) * 2008-10-09 2012-05-23 富士通株式会社 Communications system
KR101158096B1 (en) * 2008-11-18 2012-06-22 삼성전자주식회사 Method for re-ordering multiple layers and detecting signal of which the layers having different modulation orders in multiple input multiple output antenna system and receiver using the same
KR101497156B1 (en) * 2009-02-26 2015-03-02 엘지전자 주식회사 Apparatus and method for transmitting data using precoding scheme in multiple antenna system
US9130713B2 (en) * 2009-07-02 2015-09-08 Nokia Technologie Oy Data packet communications in a multi-radio access environment
GB2475098B (en) * 2009-11-06 2012-09-05 Toshiba Res Europ Ltd Compression and decompression of channel state information in a wireless communication network
CN101815321B (en) * 2010-03-24 2014-12-10 中兴通讯股份有限公司 Data processing method and device for hybrid networking
JP5052639B2 (en) * 2010-03-31 2012-10-17 株式会社東芝 Transmitter and receiver
CN101909022B (en) * 2010-06-24 2012-12-05 北京邮电大学 Transmission method based on non-codebook precoding in time-varying channel
KR20120009649A (en) * 2010-07-20 2012-02-02 삼성전자주식회사 Apparatus and method for precoding using channel orthogonalization in multi user multi antenna system
WO2017044591A1 (en) * 2015-09-11 2017-03-16 Interdigital Patent Holdings,Inc. Multiple resource unit allocation for ofdma wlan
CN110535478B (en) * 2019-09-27 2023-02-07 电子科技大学 Dual-input Turbo-like code closed set identification method in DVB-RCS2 protocol

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030128769A1 (en) * 2002-01-07 2003-07-10 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving data according to channel condition in a CDMA mobile communication system with antenna array
US20040185909A1 (en) * 2003-03-20 2004-09-23 Angeliki Alexiou Linear transformation of symbols to at least partially compensate for correlation between antennas in space time block coded systems
US20040208145A1 (en) * 2002-06-20 2004-10-21 Lg Electronics Inc. MIMO system and method for radio communication
US20050276344A1 (en) * 2001-02-01 2005-12-15 Fuyun Ling Coding scheme for a wireless communication system
US20060056534A1 (en) * 2004-09-13 2006-03-16 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
US20060068718A1 (en) * 2004-09-28 2006-03-30 Qinghua Li Compact feedback for closed loop MIMO
US20060187876A1 (en) * 2005-02-22 2006-08-24 Schmidl Timothy M Turbo HSDPA system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050276344A1 (en) * 2001-02-01 2005-12-15 Fuyun Ling Coding scheme for a wireless communication system
US20030128769A1 (en) * 2002-01-07 2003-07-10 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving data according to channel condition in a CDMA mobile communication system with antenna array
US20040208145A1 (en) * 2002-06-20 2004-10-21 Lg Electronics Inc. MIMO system and method for radio communication
US20040185909A1 (en) * 2003-03-20 2004-09-23 Angeliki Alexiou Linear transformation of symbols to at least partially compensate for correlation between antennas in space time block coded systems
US20060056534A1 (en) * 2004-09-13 2006-03-16 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
US20060068718A1 (en) * 2004-09-28 2006-03-30 Qinghua Li Compact feedback for closed loop MIMO
US20060187876A1 (en) * 2005-02-22 2006-08-24 Schmidl Timothy M Turbo HSDPA system

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Hammerschmidt et al., Eigenbeamforming-A Novel Concept in Array Signal Processing, Retrieved from file:///C:/Documents%20and%20Settings/CDuncan/Local%20Settings/Temporary%20Internet%20Files/OLKA2olar.htm, Last Visited on (Nov. 12, 2007).
Pan et al., MIMO Schemes for Single Carrier Frequency Division Multiple Access Systems, Submitted to Globecomm (2006).
Philips, Coded MIMO-OFDM Schemes for E-UTRA, 3GPP TSG RAN WG1 Meeting #43, R1-051468, (Seoul, Korea Nov. 7-11, 2005).
Philips, Text Proposal for Spatial Temporal Turbo Channel Coding, 3GPP TSG RAN WG1 Meeting #42, R1-050723, (London, UK Aug. 29-Sep. 2, 2005).
Sampath et al. "Generalized Linear Precoder and Decoder Design for MIMO Channels using the Weighted MMSE Criterion." Dec. 2011, IEEE Transactions on Communications, vol. 49, No. 12, pp. 2200, 2201. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980201A (en) * 2014-04-07 2015-10-14 想象技术有限公司 Reordering Of A Beamforming Matrix
CN109412983A (en) * 2018-10-25 2019-03-01 哈尔滨工程大学 A kind of extensive mimo channel algorithm for estimating of mesh freeization based on the domain DFT
CN109412983B (en) * 2018-10-25 2021-03-30 哈尔滨工程大学 Non-grid large-scale MIMO channel estimation algorithm based on DFT domain

Also Published As

Publication number Publication date
US20070291868A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
US8385451B2 (en) Method and apparatus for improved spatial temporal turbo channel coding (STTCC) using eigen-beamforming
US10693539B2 (en) Layer mapping method and data transmission method for MIMO system
KR101325815B1 (en) Mimo transmitter and receiver for supporting downlink communication of single channel codewords
AU2007215314B2 (en) Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system
JP6023238B2 (en) Data and control multiplexing for uplink MIMO using carrier aggregation and clustered DFT
KR100883941B1 (en) Coding scheme for a wireless communication system
RU2407177C2 (en) Method and device for uplink transmission in frequency-division multiple access system with single carrier with multiple inputs and multiple outputs
EP2448145B1 (en) Method and apparatus for providing efficient precoding feedback in a MIMO wireless communication system
US20050058217A1 (en) Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
WO2007106366A2 (en) Method and apparatus for scaling soft bits for decoding
US20080232489A1 (en) Spatial interleaver for MIMO wireless communication systems
US20100220814A1 (en) Method and apparatus for spatial temporal turbo channel coding/decoding in wireless network
KR101346423B1 (en) Method for transmitting data in multiple antenna system
AU2013270616B2 (en) Method and apparatus for providing efficient precoding feedback in a MIMO wireless communication system

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERDIGITAL TECHNOLOGY CORPORATION, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OLESEN, ROBERT LIND;SHIN, SUNG-HYUK;REEL/FRAME:019761/0983

Effective date: 20070820

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170226