US8372365B2 - High pressure reduction-oxidation desulfurization process - Google Patents
High pressure reduction-oxidation desulfurization process Download PDFInfo
- Publication number
- US8372365B2 US8372365B2 US12/913,448 US91344810A US8372365B2 US 8372365 B2 US8372365 B2 US 8372365B2 US 91344810 A US91344810 A US 91344810A US 8372365 B2 US8372365 B2 US 8372365B2
- Authority
- US
- United States
- Prior art keywords
- oxidizer
- pressure
- stream
- absorber
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000008569 process Effects 0.000 title claims abstract description 43
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 17
- 238000006477 desulfuration reaction Methods 0.000 title description 2
- 230000023556 desulfurization Effects 0.000 title description 2
- 239000007800 oxidant agent Substances 0.000 claims abstract description 45
- 239000006096 absorbing agent Substances 0.000 claims abstract description 35
- 239000003054 catalyst Substances 0.000 claims abstract description 26
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 12
- 239000011593 sulfur Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 34
- 239000000243 solution Substances 0.000 claims description 33
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 31
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 10
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 239000003570 air Substances 0.000 description 11
- 239000013522 chelant Substances 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 230000033116 oxidation-reduction process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- 101100345345 Arabidopsis thaliana MGD1 gene Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- -1 alkali metal salts Chemical class 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000797 iron chelating agent Substances 0.000 description 1
- 229940075525 iron chelating agent Drugs 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OHOTVSOGTVKXEL-UHFFFAOYSA-K trisodium;2-[bis(carboxylatomethyl)amino]propanoate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C(C)N(CC([O-])=O)CC([O-])=O OHOTVSOGTVKXEL-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8603—Removing sulfur compounds
- B01D53/8612—Hydrogen sulfide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/11—Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/10—Oxidants
- B01D2251/102—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/30—Alkali metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/90—Chelants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/90—Chelants
- B01D2251/902—EDTA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/90—Chelants
- B01D2251/904—NTA
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/24—Hydrocarbons
- B01D2256/245—Methane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1468—Removing hydrogen sulfide
Definitions
- This invention relates to an improved reduction-oxidization (Redox) process for treatment of sour gas streams containing hydrogen sulfide.
- a high-pressure oxidizer is used in combination with a high-pressure absorber.
- Hydrogen sulfide is a major source of pollution of gas streams since it is liberated as a waste by-product in a number of chemical processes, such as sulfate or kraft paper pulp manufacture, viscose manufacture, sewage treatment, the production of organic sulfur compounds, as well as during petroleum refining and in the production of natural gas and combustible gases from coal, such as in coking operations. Hydrogen sulfide is also present in geothermal steam, which is captured for use in power generating plants.
- redox oxidation-reduction
- a hydrogen sulfide-containing gas known as “sour gas”
- a chelated metal catalyst to effect absorption.
- the catalyst solution is then regenerated for reuse by contacting it with an oxygen-containing gas to oxidize the metal back to a higher oxidation state.
- the elemental sulfur is continuously removed from the process as a solid product with high purity.
- oxygen In order to return the “spent” liquid redox catalyst solution to its original oxidation level so it can be recycled for subsequent use in the process, oxygen must be supplied to the spent redox catalyst solution. This is typically accomplished using an oxidation process where various mechanical apparatus, including well-known tank spargers, use compressed air as the source of oxygen. Typically, such oxidation processes are operated at pressures lower than the pressure of the reduction portion of the process, i.e., the absorber, more typically at about atmospheric pressure. Use of low pressure oxidizers are a result of an attempt to minimize capital costs by eliminating the need for more expensive high pressure equipment. Although initial capital cost of equipment may be lower, operating at a large pressure differential between the absorber and the oxidizer has a host of other inherent problems.
- the higher pressure redox solution exiting the absorber must be reduced in pressure before entering the oxidizer. This is typically accomplished through a flash drum or a series of flash drums. Reducing pressure of the redox solution has unfortunate consequences, such as foaming, lost of gas product, and rapid erosion of control valves due to the suspended solid sulfur particles. All of these problems reduce the overall process economics and the operability of the process.
- This invention relates to an improved reduction oxidization process for use in treating hydrogen sulfide containing gas streams.
- the improved process operates the oxidizer section of the process at a higher operating pressure than the reduction section, i.e., the absorber.
- This higher pressure differential eliminates the need for pressure reducing equipment, such as a flash drum.
- the design of the oxidizer is not critical to our process, likewise the design of the absorber is not critical, provided that both unit operations can operate at internal pressures greater than 100 psig and temperatures of approximately 125° F.
- any oxygen containing gas can be used in this invention, the most commonly known and most available, air, will be referred to below for the sake of brevity.
- Pressurized air introduced to the interior of the oxidizer maintains the operating pressure higher than the operating pressure of the absorber, which operates at pressures greater than 100 psig.
- the oxidizer is controlled to operate at pressures about 5 to about 10 psi higher than the operating pressure of the absorber to minimize compression costs.
- the higher pressure in the oxidizer is preferably maintained using high pressure air as the oxidizing gas to regenerate the metal catalyst solution, as explained below. Operating the oxidizer at pressures exceeding atmospheric results in a higher oxygen partial pressure within the oxidizer, and since the amount of oxygen required to reoxidize the catalyst is inversely proportional to the oxygen partial pressure less air is required as the oxidizer pressure is increased.
- the high pressure absorber and oxidizer combination of my invention is preferably used in processes to treat hydrocarbon gas streams to convert H 2 S to elemental sulfur utilizing an aqueous redox solution containing a chelated iron catalyst.
- the H 2 S containing gas stream (sour gas) is contacted with the aqueous redox solution where the H 2 S is absorbed and converted to elemental sulfur and where a portion of the iron is reduced from the ferric state (Fe +++ ) to the ferrous state (Fe ++ ). All or a portion of the redox solution containing the ferrous state iron is then introduced into an oxidizer where compressed air is introduced to the redox solution where it preferably contacts the redox solution as very tiny bubbles having a high surface area.
- a preferred polyvalent metal is iron.
- L represents the particular ligand chosen to formulate the metal chelate catalyst: H 2 S (gas) +H 2 O (liq.) ⁇ H 2 S (aqueous) +H 2 O (liq.) (1) H 2 S (aqueous) ⁇ H + +HS ⁇ (2) HS ⁇ +2(Fe 3+ L 2 ) ⁇ S (solid) +2(Fe 2+ L 2 )+H + (3)
- the resulting equation is: H 2 S (gas) +2(Fe 3+ L 2 ) ⁇ 2H + +2(Fe 2+ L 2 )+S (solid) (4)
- iron chelating agents capable of forming a complex in aqueous solutions with iron in the ferric valence state (Fe 3+ ) or in the ferrous valence state (Fe 2+ ) are suitable for use over the broad range of operating conditions employed for this oxidation-reduction system for the removal of hydrogen sulfide.
- iron chelate reagents which have been used in prior art processes for removing hydrogen sulfide are the aminopolycarboxylic acid-type chelating agents, such as ethylenediamine tetraacetic acid and the alkali metal salts thereof.
- one object of this invention is to eliminate the problems associated with a conventional redox process, such as foaming and loss of product gas in the flash drum(s) where the absorber is operated at high pressure and the oxidizer is operated at roughly atmospheric pressure.
- any product gas which is dissolved in the solution leaving the high pressure absorber, will remain in solution until it reenters the high pressure absorber where a small amount of product gas will flash out of solution and enter the product gas stream.
- the above-stated object is accomplished by providing an oxidizer that operates at a higher pressure than the absorber, preferably from about 5 to about 10 psi higher in pressure than the absorber.
- the absorber preferably is operated at greater than 100 psig.
- Another embodiment of our invention involves providing a system for oxidizing a liquid reduction-oxidation catalyst solution comprising a source of pressurized air; an oxidizer vessel capable of maintaining an operating pressure of P 2 , where P 2 ⁇ P 1 +5 psi and P 1 is the pressure of the absorber and is greater than 100 psig.
- the pressurized air is fed to the oxidizer to regenerate the metal catalyst solution and to maintain the pressure differential between the absorber and the oxidizer.
- Yet another embodiment of our invention relates to a process for continuously removing hydrogen sulfide from a gas where the gas feed is directed to the oxidation-reduction process where it is contacted with a chelated metal catalyst in an absorber operating at a pressure greater than 100 psig to produce a first stream of hydrogen sulfide-free product gas and a second stream comprising elemental sulfur and chelated metal catalyst solution; removing the first stream from the process; providing a high pressure oxidizer vessel operating at a pressure greater than the absorber; directing at least a portion of the second stream to the oxidizer along with a pressurized air stream to contact the second stream; and separating elemental sulfur from the chelated metal catalyst solution.
- FIG. 1 schematically illustrates one possible embodiment of the redox process of my invention.
- our invention concerns a novel high pressure oxidizer that can be used to regenerate a liquid redox catalyst solution.
- This oxidizer can be used to provide a new process flow scheme for the desulphurization of a sour gas.
- Operating temperatures for the oxidizer can range from about 25° C. to about 55° C.
- Operating pressures are preferably greater than 100 psig and more preferably greater than 5 psi higher that the absorber operating pressure from which the oxidizer is in fluid communication.
- FIGURE schematically illustrates such a desulfurization process 10 for treatment of gas streams contaminated with H 2 S.
- a waste gas stream (sour gas) is delivered via feed line 1 to an absorber 2 where it is contacted with an aqueous chelated iron catalyst solution.
- Absorber 2 is operated at a pressure greater than 100 psig.
- the catalyst solution is obtained from high pressure oxidizer 3 via fluid control valve 4 .
- the spent liquid catalyst solution is removed via line 5 and supplied via pump 6 through liquid level control valve 7 to the inlet of oxidizer 3 operating at a pressure 5 to 10 psi higher than the pressure in absorber 2 .
- the absorber 2 may be of any suitable design to meet the required amount of H 2 S removal, i.e. liquid full absorbers, static mixers, packed columns, venturis or mobile bed absorbers.
- the oxidized liquid redox solution is removed from oxidizer 3 through line 11 and introduced into absorber 2 .
- the elemental sulfur is continuously removed from the process by sending a portion of the liquid solution from oxidizer 3 via stream 12 , to a lock hopper sulfur recovery device (not shown).
- the oxidizer 3 pressure is maintained by the combination of high pressure air injection and the differential pressure controller 14 monitoring the absorber pressure and operating pressure control valve 15 on vent line 13 .
- the invention thus far has been described with particular emphasis on the use of iron as the polyvalent metal of choice; however, other polyvalent metals that form chelates with the ligands described above can also be used.
- additional polyvalent metals include copper, cobalt, vanadium, manganese, platinum, tungsten, nickel, mercury, tin and lead.
- the chelating agents are generally of the aminopolycarboxylic acid family such as EDTA, HEDTA, MGDA and NTA, or others any one of which can be used in connection with this invention.
- alkaline material In all liquid oxidation-reduction systems, some form of alkaline material must be added to the system to control the pH of the solution. Without the addition of the alkaline material, the pH of the solution will slowly decrease until absorption of H 2 S into the solution is no longer great enough to meet the required H 2 S removal efficiencies. This decrease in pH is due to the acidic nature of H 2 S. In addition, if the gas stream being processed contains other acidic species such as carbon dioxide, the pH will decrease even more quickly than with just H 2 S. Consequently, alkaline materials such as NaOH, KOH, ammonia, alkali metal carbonates, or bicarbonates are generally added to the system to neutralize the acidic components. These materials are generally added to the bulk solution contained in the oxidizer; however, they can be added anywhere in the process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Water Supply & Treatment (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Catalysts (AREA)
- Industrial Gases (AREA)
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/913,448 US8372365B2 (en) | 2010-10-27 | 2010-10-27 | High pressure reduction-oxidation desulfurization process |
PL11761195T PL2632569T3 (pl) | 2010-10-27 | 2011-09-08 | Sposób na odsiarczanie pod wysokim ciśnieniem z reakcją redukcji/oksydacji |
PCT/US2011/050898 WO2012057925A1 (en) | 2010-10-27 | 2011-09-08 | High pressure reduction-oxidation desulfurization process |
CN201510018697.XA CN104667712B (zh) | 2010-10-27 | 2011-09-08 | 高压氧化还原脱硫工艺 |
EP11761195.4A EP2632569B1 (en) | 2010-10-27 | 2011-09-08 | High pressure reduction-oxidation desulfurization process |
BR112013003959A BR112013003959B1 (pt) | 2010-10-27 | 2011-09-08 | processo de dessulfurização por redução-oxidação em pressão elevada |
JP2013536623A JP5829692B2 (ja) | 2010-10-27 | 2011-09-08 | 高圧酸化還元脱硫法 |
CN201180042300.0A CN103079675B (zh) | 2010-10-27 | 2011-09-08 | 高压氧化还原脱硫工艺 |
RU2013104511/05A RU2527991C1 (ru) | 2010-10-27 | 2011-09-08 | Способ непрерывного удаления сернистого водорода из потока газа |
TW103100079A TWI477315B (zh) | 2010-10-27 | 2011-10-03 | 高壓氧化還原脫硫方法 |
TW100135791A TWI428169B (zh) | 2010-10-27 | 2011-10-03 | 高壓氧化還原脫硫方法 |
US13/736,314 US8652435B2 (en) | 2010-10-27 | 2013-01-08 | High pressure reduction-oxidation desulfurization process |
RU2013136973/05A RU2532558C1 (ru) | 2010-10-27 | 2013-08-07 | Способ очистки от серы |
HK15107823.1A HK1207027A1 (en) | 2010-10-27 | 2013-09-29 | High pressure reduction-oxidation desulfurization process |
HK13111129.6A HK1183837A1 (en) | 2010-10-27 | 2013-09-29 | High pressure reduction-oxidation desulfurization process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/913,448 US8372365B2 (en) | 2010-10-27 | 2010-10-27 | High pressure reduction-oxidation desulfurization process |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/736,314 Continuation US8652435B2 (en) | 2010-10-27 | 2013-01-08 | High pressure reduction-oxidation desulfurization process |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120107205A1 US20120107205A1 (en) | 2012-05-03 |
US8372365B2 true US8372365B2 (en) | 2013-02-12 |
Family
ID=44678043
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/913,448 Active 2031-08-12 US8372365B2 (en) | 2010-10-27 | 2010-10-27 | High pressure reduction-oxidation desulfurization process |
US13/736,314 Active US8652435B2 (en) | 2010-10-27 | 2013-01-08 | High pressure reduction-oxidation desulfurization process |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/736,314 Active US8652435B2 (en) | 2010-10-27 | 2013-01-08 | High pressure reduction-oxidation desulfurization process |
Country Status (10)
Country | Link |
---|---|
US (2) | US8372365B2 (pt) |
EP (1) | EP2632569B1 (pt) |
JP (1) | JP5829692B2 (pt) |
CN (2) | CN103079675B (pt) |
BR (1) | BR112013003959B1 (pt) |
HK (2) | HK1183837A1 (pt) |
PL (1) | PL2632569T3 (pt) |
RU (2) | RU2527991C1 (pt) |
TW (2) | TWI428169B (pt) |
WO (1) | WO2012057925A1 (pt) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11547967B1 (en) * | 2021-06-17 | 2023-01-10 | Merichem Company | Hydrogen sulfide removal process |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103182237A (zh) * | 2012-11-26 | 2013-07-03 | 广东依科电力技术有限公司 | 一种烟气脱硫系统 |
US9657248B1 (en) * | 2014-03-14 | 2017-05-23 | Biosystems Consulting, Inc. | Systems, devices, compositions, and/or methods for de-sulphurizing acid gases |
US9504984B2 (en) | 2014-04-09 | 2016-11-29 | Exxonmobil Upstream Research Company | Generating elemental sulfur |
FR3051459B1 (fr) | 2016-05-20 | 2021-03-19 | Centre Nat Rech Scient | Installation et procede de traitement d'un flux comprenant du sulfure d'hydrogene |
EA201990898A1 (ru) * | 2016-10-14 | 2019-10-31 | Обработка сероводорода в аэробных условиях | |
WO2018166937A1 (de) * | 2017-03-14 | 2018-09-20 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zur aufbereitung eines schwefelwasserstoffhaltigen gasstromes |
CN106861401B (zh) * | 2017-03-22 | 2020-04-07 | 武汉国力通能源环保股份有限公司 | 液化石油气脱硫净化系统及净化方法 |
CN108686486B (zh) * | 2017-04-12 | 2021-01-15 | 北京华石联合能源科技发展有限公司 | 一种可再生的悬浮床湿法脱硫工艺 |
GB2561834A (en) * | 2017-04-24 | 2018-10-31 | Johnson Matthey Plc | Passive NOx adsorber |
CN108179044A (zh) * | 2017-11-22 | 2018-06-19 | 中石化石油工程技术服务有限公司 | 基于湿式氧化还原法的带压再生脱硫系统 |
US10661220B2 (en) * | 2018-02-27 | 2020-05-26 | Merichem Company | Hydrogen sulfide removal process |
CN108970380B (zh) * | 2018-09-07 | 2023-07-21 | 宜宾丝丽雅股份有限公司 | 一种以连续氧化除去废气中硫化氢的方法及装置 |
CN111514727A (zh) * | 2020-04-13 | 2020-08-11 | 江苏亿超环境科技有限公司 | 一种用于车间酸性尾气排放的回收装置及方法 |
US11826699B2 (en) | 2021-06-04 | 2023-11-28 | Saudi Arabian Oil Company | Stripping H2S off natural gas for multiple isotope analyses |
WO2024035361A1 (en) * | 2022-08-10 | 2024-02-15 | Rafine Cevre Teknolojileri Limited Sirketi | A microbubble-based hydrogen sulfide (h2s) treatment system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4622212A (en) | 1983-11-03 | 1986-11-11 | Ari Technologies Inc. | Hydrogen sulfide removal |
US4808385A (en) * | 1986-03-10 | 1989-02-28 | The Dow Chemical Company | Process for the removal of H2 S from fluid streams using a water soluble polymeric chelate of an oxidizing polyvalent metal |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5092294A (pt) * | 1973-12-18 | 1975-07-23 | ||
JPS53135897A (en) * | 1977-05-02 | 1978-11-27 | Dowa Mining Co | Method of h2s in gas |
SE430657B (sv) * | 1978-02-10 | 1983-12-05 | Vinings Chemical Co | Sett att avlegsna svaveldioxid fran svaveldioxidhaltig rokgas |
JPS5689820A (en) * | 1979-12-21 | 1981-07-21 | Tokyo Gas Co Ltd | Removing method of hydrogen sulfide |
US4579727A (en) * | 1984-12-04 | 1986-04-01 | The M. W. Kellogg Company | Oxidative removal of hydrogen sulfide from gas streams |
US4781910A (en) * | 1986-04-17 | 1988-11-01 | W. Bruce Smith And Butler & Binion | Hydrogen sulfide removal and sulfur recovery |
WO1989006675A1 (en) * | 1988-01-15 | 1989-07-27 | Chevron Research Company | Composition, method and apparatus for removal of hydrogen sulfide |
RU2070824C1 (ru) * | 1989-05-05 | 1996-12-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ удаления сероводорода из кислого газового потока |
FR2771945B1 (fr) * | 1997-12-05 | 1999-12-31 | Inst Francais Du Petrole | Procede de recuperation du soufre a haute pression |
RU2179475C2 (ru) * | 1998-02-27 | 2002-02-20 | ГУП "Всероссийский научно-исследовательский институт углеводородного сырья" | Способ очистки природного газа от сероводорода |
US7226883B1 (en) * | 2006-06-05 | 2007-06-05 | Merichem Chemicals & Refinery Services Llc | Oxidizer and oxidation process for a desulphurization process |
-
2010
- 2010-10-27 US US12/913,448 patent/US8372365B2/en active Active
-
2011
- 2011-09-08 PL PL11761195T patent/PL2632569T3/pl unknown
- 2011-09-08 RU RU2013104511/05A patent/RU2527991C1/ru active
- 2011-09-08 EP EP11761195.4A patent/EP2632569B1/en active Active
- 2011-09-08 BR BR112013003959A patent/BR112013003959B1/pt not_active IP Right Cessation
- 2011-09-08 CN CN201180042300.0A patent/CN103079675B/zh not_active Expired - Fee Related
- 2011-09-08 WO PCT/US2011/050898 patent/WO2012057925A1/en active Application Filing
- 2011-09-08 CN CN201510018697.XA patent/CN104667712B/zh not_active Expired - Fee Related
- 2011-09-08 JP JP2013536623A patent/JP5829692B2/ja not_active Expired - Fee Related
- 2011-10-03 TW TW100135791A patent/TWI428169B/zh not_active IP Right Cessation
- 2011-10-03 TW TW103100079A patent/TWI477315B/zh not_active IP Right Cessation
-
2013
- 2013-01-08 US US13/736,314 patent/US8652435B2/en active Active
- 2013-08-07 RU RU2013136973/05A patent/RU2532558C1/ru active
- 2013-09-29 HK HK13111129.6A patent/HK1183837A1/xx not_active IP Right Cessation
- 2013-09-29 HK HK15107823.1A patent/HK1207027A1/xx not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4622212A (en) | 1983-11-03 | 1986-11-11 | Ari Technologies Inc. | Hydrogen sulfide removal |
US4808385A (en) * | 1986-03-10 | 1989-02-28 | The Dow Chemical Company | Process for the removal of H2 S from fluid streams using a water soluble polymeric chelate of an oxidizing polyvalent metal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11547967B1 (en) * | 2021-06-17 | 2023-01-10 | Merichem Company | Hydrogen sulfide removal process |
Also Published As
Publication number | Publication date |
---|---|
US20130123561A1 (en) | 2013-05-16 |
JP5829692B2 (ja) | 2015-12-09 |
RU2532558C1 (ru) | 2014-11-10 |
JP2014506180A (ja) | 2014-03-13 |
US20120107205A1 (en) | 2012-05-03 |
RU2527991C1 (ru) | 2014-09-10 |
EP2632569A1 (en) | 2013-09-04 |
PL2632569T3 (pl) | 2017-08-31 |
TW201223622A (en) | 2012-06-16 |
WO2012057925A1 (en) | 2012-05-03 |
CN104667712B (zh) | 2017-04-12 |
HK1207027A1 (en) | 2016-01-22 |
CN104667712A (zh) | 2015-06-03 |
BR112013003959B1 (pt) | 2019-12-17 |
HK1183837A1 (en) | 2014-01-10 |
US8652435B2 (en) | 2014-02-18 |
CN103079675A (zh) | 2013-05-01 |
TWI477315B (zh) | 2015-03-21 |
EP2632569B1 (en) | 2017-03-01 |
TWI428169B (zh) | 2014-03-01 |
TW201417874A (zh) | 2014-05-16 |
CN103079675B (zh) | 2015-02-18 |
BR112013003959A2 (pt) | 2016-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8372365B2 (en) | High pressure reduction-oxidation desulfurization process | |
US20070248518A1 (en) | Desulfurizartion for Simultaneous Removal of Hydrogen Sulfide and Sulfur Dioxide | |
CA3059554C (en) | Systems and processes for removing hydrogen sulfide from gas streams | |
US7279148B1 (en) | Oxidizer and oxidation process for a desulphurization process | |
Spatolisano et al. | Middle scale hydrogen sulphide conversion and valorisation technologies: a review | |
WO2019191249A1 (en) | Process for hydrogen sulfide scrubbing and method for ferric ion regeneration | |
CN107569990A (zh) | 含硫气体的脱硫化氢-高效氧化再生集成化方法及系统 | |
US5705135A (en) | Composition and process for the removal of hydrogen sulfide from gaseous streams | |
EP1156867B1 (en) | Method for conversion of hydrogen sulfide to elemental sulfur | |
de Angelis et al. | New method for H2S removal in acid solutions | |
NO316938B1 (no) | Fremgangsmate og anordning for behandling av en gass inneholdende hydrogensulfid, med resirkulering av den reduserte katalytiske opplosning | |
SK2199A3 (en) | Process for the recovery of sulfur from so2 containing gases | |
US11547967B1 (en) | Hydrogen sulfide removal process | |
Wang | Investigation of hydrogen sulfide removal and sulfur recovery from low sulfur containing gases with aqueous solution of heteropoly compound | |
US7578984B2 (en) | Regeneration of caustic solutions | |
Deberry et al. | Double loop liquid-liquid H 2 S removal process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MERICHEM COMPANY, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAGL, GARY J.;REEL/FRAME:025393/0025 Effective date: 20101122 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: MERICHEM TECHNOLOGIES, LLC, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MERICHEM COMPANY;REEL/FRAME:067644/0064 Effective date: 20231205 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |