US8221797B2 - Wood preserving composition for treatment of in-service poles, posts, piling, cross-ties and other wooded structures - Google Patents
Wood preserving composition for treatment of in-service poles, posts, piling, cross-ties and other wooded structures Download PDFInfo
- Publication number
- US8221797B2 US8221797B2 US12/068,743 US6874308A US8221797B2 US 8221797 B2 US8221797 B2 US 8221797B2 US 6874308 A US6874308 A US 6874308A US 8221797 B2 US8221797 B2 US 8221797B2
- Authority
- US
- United States
- Prior art keywords
- composition
- wood preservative
- preservative composition
- wood
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K3/00—Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
- B27K3/34—Organic impregnating agents
- B27K3/50—Mixtures of different organic impregnating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K3/00—Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
- B27K3/02—Processes; Apparatus
- B27K3/12—Impregnating by coating the surface of the wood with an impregnating paste
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27K—PROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
- B27K3/00—Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
- B27K3/52—Impregnating agents containing mixtures of inorganic and organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/06—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to wood
Definitions
- This invention relates to wood preserving compositions for the supplemental or remedial treatment of wood in service, such as utility poles and railroad ties.
- Wood and/or cellulose based products exposed in an outdoor environment are biodegradable, primarily through attack by microorganisms. As a result, they will decay, weaken in strength, and discolor.
- the microorganisms causing wood deterioration include brown rots such as Postia placenta, Gloeophyllum trabeum and Coniophora souna , white rots such as Irpex lacteus and Trametes versicolor , dry rots such as Serpula lacrymans and Meruliporia incrassata and soft rots such as Cephalosporium, Acremonium , and Chaetomium .
- wood is still subject to attack by wood-inhabiting insects, such as termites, beetles, ants, bees, wasps and so on.
- Wood preservatives are well known for preserving wood and extend the service life of wood products including decking boards, fence posts, utility poles, railroad ties, permanent wood foundation, and other cellulose-based materials, such as paper, plywood, particleboard, textiles, rope, etc., against organisms responsible for the deterioration of wood.
- Utility poles and railroad cross ties are wooden structures that are traditionally pressure treated with wood preservative chemicals, such as chromated copper arsenate (CCA), pentachlorophenol, copper naphthanate or creosote.
- CCA chromated copper arsenate
- pentachlorophenol pentachlorophenol
- copper naphthanate or creosote.
- Pressure treatment with preserving chemicals can certainly prevent utility poles or railroad cross ties from fungal and termite attack and the pressure treatment can usually last for 30 to 40 years.
- the wood preserving chemicals can only penetrate through most of the sapwood portion of the wood species and rarely penetrate the heartwood portion. This will cause insufficient treatment and insufficient chemical absorption. In addition, improper treating practices may also cause poor treatment and insufficient chemical loadings.
- a direct consequence of the poor penetration and insufficient chemical loading is that, once the treated utility poles are placed in service, often times a small percentage of poles show early failure and subsequent strength loss. As a result, a supplemental or remedial treatment is needed to offer the protection for those poles that show early failures.
- the preservative chemicals in the outer sapwood zone will gradually decline due to water leaching, ultraviolet degradation, chemical alteration or physical damage. As a result, external decay or termite attack may develop on the outer surface, and therefore there is an additional need for supplemental or remedial treatments to further extend the service life of aging utility poles and other wooden structures.
- Preservative groundline treatments provide an economical extension to the useful life of utility poles.
- Groundline decay can be postponed almost indefinitely in cases where periodic inspection and maintenance programs are in effect.
- External treatments on utility poles and other wooden structures are typically applied below the ground level either as pastes or grease-type compositions that are brushed on the wood surface, and then covered with a moisture resistant barrier, or as self-contained ready-made preservative bandages.
- the goal is to supplement the original preservative treatment to prevent or arrest surface decay. Protection is dependent upon the ability of the active ingredients to penetrate and remain in the treatment zone, and is limited to the depth of penetration.
- the composition must possess satisfactory physical properties, such as viscosity, spreadability, adherence, etc.
- oilborne preservatives have been used for treating in-service utility poles and other wooden structures.
- Traditional oilborne preservatives included petroleum oils, creosote, copper naphthenate and pentachlorophenol.
- the use of oilborne supplemental preservatives is declining due to concerns of worker exposure to the organic solvents and leaching of the organic solvents into the environment.
- the organic solvents, including No. 2 fuel oil have recently experienced unprecedented price increases making them cost prohibitive for the manufacture of supplemental/remedial wood preservative compositions.
- Copper compounds such as copper sulfate, copper carbonate and copper hydroxide, are generally known to be effective biocides as wood preservatives.
- Preferred copper compounds are generally insoluble and therefore must be solubilized to be effective in supplemental wood preservative compositions. This is typically accomplished by complexing the copper compounds with ammonia, acids or amines.
- Known copper complexes used in the field of wood preservation include copper naphthenate, water-dispersible copper naphthenate, copper ethanolamine, ammoniacal copper citrate, alkaline copper quaternary and others.
- Sodium fluoride and sodium borate are the most commonly used biocides in remedial preservative compositions. The sodium salts of boron and fluoride are able to penetrate further through the wood structure due to their water solubility and mobility.
- oil or water dilutable copper complexes can readily leach from wood. Leaching of copper from wood can be further increased by the presence of oil solvents present in utility poles or cross ties from initial treatment with pentachlorophenol, creosote or copper naphthenate. Elevated moisture levels commonly found within in-service poles and ties, particularly near or below groundline, can also increase the leaching rate of water dilutable copper complexes found in current preservative paste compositions.
- the leaching of the copper component from current paste compositions is a concern from both a performance and environmental perspective. Depletion of the copper by leaching will ultimately compromise the long term bioefficacy of the supplemental or remedial formulation, and the leached copper causes concern that the environment surrounding the treated structure will be contaminated. It has been established that copper is extremely toxic to fish and other aquatic organisms at very low concentrations. Concerns over copper leaching from supplemental wood preservative compositions are such that their use is often limited or even restricted in areas of standing water or near water ways.
- the copper component of current supplemental wood preservative compositions is not protective against some species of copper-tolerant wood decay fungi, often located in the Gulf-Coast region of the U.S.
- higher loadings of copper are required in remedial compositions containing soluble forms of copper and/or a co-biocide is incorporated into the composition to afford protection against copper-tolerant decay fungi.
- Copper complexes formed with the use of amines such as monoethanolamine, ethylenediamine and the like, acids such as, for example, naphthenic or arsenic acid and ammonia can be corrosive to human eyes and skin and may be fatal if ingested.
- amines such as monoethanolamine, ethylenediamine and the like
- acids such as, for example, naphthenic or arsenic acid and ammonia
- personal protective equipment required by personnel applying current remedial compositions can be costly, cumbersome and may interfere with the correct application of the material to an in-service wooden structure.
- complexing copper to impart solubility can be expensive.
- high levels of the complexing agents are required to solubilize copper compounds.
- 2 to 4 moles of monoethanolamine are required to complex 1 mole of copper and 4 moles of ammonia are needed to complex 1 mole of copper.
- This can add considerable cost to the formulated remedial preservative compositions.
- oilborne copper naphthenate and other oil-based compositions generally require the use of No. 2 fuel oil as a carrier and are therefore extremely susceptible to large variations in cost.
- U.S. Pat. No. 5,342,438 to West discloses a non-water dilutable remedial wood preservative containing copper derived from an amine-inorganic copper complex, combined with at least one sodium salt selected from the group consisting of sodium borate and sodium fluoride in a ratio of 2 to 120 parts of the sodium salt for each part of copper in the preservative.
- U.S. Pat. No. 6,110,263 to Goettsche teaches a process for the afterprotection of wood, which comprises treating the wood with and effective wood preserving amount of a wood preservative composition comprising a copper compound, a polyamine or alkanolamine having at least two nitrogen atoms, and an inorganic fungicide, the treatment being effected by means of a bandaging process, an inoculation injection process, a borehole process or a paste process.
- U.S. Pat. No. 5,084,280 to West claims a paste composition for preserving wood which contains as its only active wood preservation ingredients a mixture of 10-90% by weight of a water-dispersible copper naphthenate and 90-10% by weight of borax.
- U.S. Pat. No. 6,352,583 to Goettsche discloses a wood preservative for the supplemental protection of wood, consisting essentially of one or more copper compounds, one or more alkanolmonoamines and one or more complexing organic carboxylic acids or ammonium or alkali metal salts of said complexing organic carboxylic acids.
- U.S. Pat. No. 6,306,202 to West teaches a water soluble fixed copper-borax wood preservative composition which comprises a fixed copper compound selected from the group consisting of copper oxides, copper hydroxide, basic copper carbonate, basic copper sulfate, and copper oxychloride combined in water with sodium tetraborate decahydrate wherein the fixed copper compound concentration ranges from 0.01 parts to 0.20 parts for each part of sodium tetraborate decahydrate.
- This invention discloses a supplemental or remedial wood preservative composition which solves the problems identified with current, known compositions and addresses the need for a more environmentally friendly technology for the afterprotection of in-service wooden structures. This need is solved by the subject matter disclosed herein.
- the present invention provides a wood preservative composition
- a wood preservative composition comprising an organic biocide, a carrier, and a thickening agent, wherein the wood preservative composition is formulated as a thixotropic paste.
- the organic biocide is a fungicide, insecticide, moldicide, bactericide, or algaecide, or combinations thereof.
- the organic biocide is a quaternary ammonium compound, a triazole compound, an imidazole compound, an isothiazolone compound, or a pyrethroid compound, or combination thereof.
- the organic biocide is imidachloprid, fipronil, cyfluthrin, bifenthrin, permethrin, cypermethrin, chlorpyrifos, iodopropynyl butylcarbamate (IPBC), chlorothalonil, 2-(thiocyanatomethylthio) benzothiazole, alkoxylated diamines or carbendazim.
- IPBC iodopropynyl butylcarbamate
- the present invention also provides a wood preservative composition comprising an organic biocide, copper-8-quinolinolate, a carrier, and a thickening agent, wherein the wood preservative composition is formulated as a thixotropic paste.
- the present invention also provides a wood preservative composition
- a wood preservative composition comprising an organic biocide, a boron-containing compound, a carrier, and a thickening agent, wherein the wood preservative composition is formulated as a thixotropic paste.
- the boron-containing compound is a boric acid, a metal borate, a sodium borate, or a potassium borate.
- the sodium borate is sodium tetraborate decahydrate, sodium tetraborate pentahydrate, or disodium octaborate tetrahydrate (DOT).
- the metal borate is calcium borate, borate silicate, aluminum silicate borate hydroxide, silicate borate hydroxide fluoride, hydroxide silicate borate, sodium silicate borate, calcium silicate borate, aluminum borate, boron oxide, magnesium borate, iron borate, copper borate or zinc borate.
- the present invention teaches a supplemental or remedial wood preserving composition which comprises copper-8-quinolinolate (oxine copper) combined with at least one boron compound or fluoride compound, or combinations thereof, which has good stability, low toxicity to animal and plant life and high biocidal activity against wood decay fungi and termites.
- the composition additionally comprises organic fungicides and/or termiticides to further enhance the bio-efficacy.
- the present invention also provides remedial paste compositions and methods for preservation of wooden poles, railroad ties and other wooden structures against both fungal and termite attack.
- the invention also discloses a method for preparing a water-dilutable supplemental or remedial wood preserving composition which comprises milling the insoluble oxine copper compound in water.
- the present invention provides a wood preservative composition
- a wood preservative composition comprising a copper-8-quinolinolate; a boron-containing compound; a carrier; and a thickening agent.
- the carrier is non-aqueous or organic.
- the carrier is aqueous.
- the composition is formulated as a paste.
- the composition is formulated as an aqueous paste.
- the paste is thixotropic.
- the wood preservative compositions of the present invention do not comprise one or more copper-solubilizing agents, such as ammonia, an ammonium salt, an amine, mono- or polyalkanolamines.
- copper-solubilizing agents such as ammonia, an ammonium salt, an amine, mono- or polyalkanolamines.
- the wood preservative compositions of the present invention comprise copper-8-quinolinolate that is substantially insoluble in the carrier.
- the copper-8-quinolinolate is about 0.001% to about 10% by weight.
- the copper-8-quinolinolate is about 0.001% to about 2% by weight.
- the copper-8-quinolinolate is about 0.001% to about 1% by weight.
- the boron-containing compound of the wood preservative compositions of the present invention are preferably boric acid, a metal borate, a sodium borate, or a potassium borate.
- the sodium borate is sodium tetraborate decahydrate, sodium tetraborate pentahydrate, or disodium octaborate tetrahydrate (DOT).
- the metal borate is preferably calcium borate, borate silicate, aluminum silicate borate hydroxide, silicate borate hydroxide fluoride, hydroxide silicate borate, sodium silicate borate, calcium silicate borate, aluminum borate, boron oxide, magnesium borate, iron borate, copper borate or zinc borate.
- the weight ratio of the boron compound to copper-8-quinolinolate is about 1:1. In a preferred embodiment, the weight ratio of the boron compound to copper-8-quinolinolate is about 10:1. In a more preferred embodiment, the weight ratio of the boron compound to copper-8-quinolinolate is about 200:1. In the most preferred embodiment, the weight ratio of the boron compound to copper-8-quinolinolate is about 1000:1.
- the wood preservative compositions of the present invention may further comprise a fluoride-containing compound.
- the fluoride compound is sodium fluoride, potassium fluoride, calcium fluoride, copper fluoride, iron fluoride, or magnesium fluoride.
- the weight ratio of the fluoride compound to copper-8-quinolinolate is about 1:1. In a preferred embodiment, the weight ratio of the fluoride compound to copper-8-quinolinolate is about 10:1. In a more preferred embodiment, the weight ratio of the fluoride compound to copper-8-quinolinolate is about 200:1. In the most preferred embodiment, the weight ratio of the fluoride compound to copper-8-quinolinolate is about 1000:1.
- the wood preservative compositions of the present invention may further comprise one or more organic biocides.
- the organic biocides suitable for use with the present invention may include a fungicide, insecticide, moldicide, bactericide, or algaecide, or combinations thereof.
- the organic biocide is a quaternary ammonium compound, a triazole compound, an imidazole compound, an isothiazolone compound, or a pyrethroid compound, or combination thereof.
- the organic biocide is imidachloprid, fipronil, cyfluthrin, bifenthrin, permethrin, cypermethrin, chlorpyrifos, iodopropynyl butylcarbamate (IPBC), chlorothalonil, 2-(thiocyanatomethylthio) benzothiazole, alkoxylated diamines or carbendazim.
- the weight ratio of the organic biocide is about from 0.001% to 10% by weight. In another embodiment, the weight ratio of the organic biocide is about from 0.005% to 5% by weight. In yet another embodiment, the weight ratio of the organic biocide is about from of 0.01% to 1% by weight.
- the wood preservative compositions of the present invention are preferably formulated as pastes using an organic thickener, an inorganic thickener or a combination of organic and inorganic thickeners.
- the organic thickener is cellulose-derived, such as a cellulose ester or a cellulose ether.
- the cellulose ester is cellulose nitrate, sulfate, cellulose phosphate, cellulose nitrite, cellulose xanthate, cellulose acetate, cellulose formate or combination thereof.
- the cellulose ether is methylcellulose, ethylcellulose, propylcellulose, benzylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxybutylcellulose, cyanoethylcellulose, or carboxyethylcellulose.
- the thickening agent is about 0.01% to 50% by weight in the composition. In another embodiment, the thickening agent is about 0.5% to 10% by weight in the composition.
- the inorganic thickener of the wood preservative compositions of the present invention is a clay.
- the clay is attapulgite, dickite, saponite, montmorillonite, nacrite, kaolinite, anorthite, halloysite, metahalloysite, chrysotile, lizardite, serpentine, antigorite, beidellite, stevensite, hectonite, smecnite, nacrite, sepiolite, montmorillonite, sauconite, stevensite, nontronite, saponite, hectorite, vermiculite, illite, sericite, glauconite-montmorillonite, roselite-montmorillonite, bentonite, chlorite-vermiculite, illite-montmorillonite, halloysite-montmorillonite, or kaolinitemontmorillonite.
- the clay is attapulgite, hectorite, bentonite, montmorillonite, sauconite, smecnite, stevensite, beidellite, nontronite, saponite, hectorite, vermiculite, nacrite, or sepiolite.
- the inorganic thickener is about 0.5% to about 30% by weight.
- the wood preservative compositions of the present invention may also further comprise a drying retardant or a hemictant, or both.
- the wood preservative composition of the present invention may be packaged in containers, wraps, bandages and the like.
- the container is a can, a bucket or a bag.
- the compositions of the present invention packaged in a container have a viscosity between 175 and 375 tenths of a millimeter (tmm). In a preferred embodiment, the viscosity is between 200 and 300 tmm. In a more preferred embodiment, the viscosity is between 210 and 250 tmm.
- the present invention also provides a method for remedial treatment of wood, comprising the step of applying the composition of the present invention to wood.
- the wood is an in-service wood product, such as a utility pole, a railroad tie or wooden bridge.
- the compositions of the present invention are applied by brush or spray.
- the composition is applied to wood to a thickness of between 1/32 and 3 ⁇ 4 inches. In a more preferred embodiment, the composition is applied to wood to a thickness of between 1/16 and 1 ⁇ 2 inches. In a most preferred embodiment, the composition is applied to wood to a thickness of between 1/16 and 1 ⁇ 4 inches.
- the present invention also provides a method for preparing the wood preservative composition of the present invention comprising the step of maintaining the viscosity of the wood preservative composition between 275 and 425 tenths of a millimeter (tmm).
- tmm millimeter
- the viscosity is maintained between 300 and 400 tmm.
- the viscosity is maintained between 320 and 340 tmm.
- micronized means a particle size in the range of 0.001 to 25 microns.
- particle size means the largest axis of the particle, and in the case of a generally spherical particle, the largest axis is the diameter.
- micronized particles can also be formed by other mechanical, chemical or physical methods, such as, for example, formation in solution, with or without a seeding agent, grinding or impinging jet.
- the micronized copper particles disclosed in U.S. Publication No. 20050118280 are hereby specifically incorporated by reference, in their entirety.
- Copper-solubilizing agents mean any agent that promotes the solubility of copper metal or a copper compound in an aqueous carrier. Copper-solubilizing agents include, but are not limited to ammonia and ammonium salts, amines, and alkanolmonoamines having between 2 to 18 carbon atoms, such as monoalkanolmonoamines, dialkanolmonoamines, and trialkanolmonoamines, and mixtures thereof.
- Examples include monoethanolamine, diethanolamine, triethanolamine, 3-aminopropanol, monoisopropanolamine, 4-aminobutanol, monomethylethanolamine, dimethylethanolamine, triethylethanolamine, monoethylethanolamine, N-methyldiethanolamine and mixtures thereof.
- “remedial treatment” means the treatment of wood previously treated with one or more wood preservatives.
- a supplemental/remedial composition for wood and a method for use thereof in treatment of in-service wooden products, more particularly utility poles, railroad ties, wooden bridges.
- the composition comprises oxine copper with a boron compound or fluoride compound.
- the composition imparts to the treated wood resistance to both fungi and insects.
- the composition can additionally comprise an organic fungicide/termiticide.
- compositions of the present invention have a broad spectrum of bio-efficacy against wood decay fungi, including, brown rot fungi, white rot fungi, and soft rot fungi.
- brown rot fungi include: Coniophora souna, Serpula lacrymans, Antrodia vaillantii, Gloeophyllum trabeum, Gleoeophyllum sepiarium, Lentinum lepideus, Oligoporus placenta, Meruliporia incrassate, Daedalea quercina, Postia placenta .
- Non-limiting examples of white rot fungi include: Trametes versicolor, Phanerochaete chrysosporium, Pleurotus ostreatus, Schizophyllum commune, Irpex lacteus .
- Some non-limited examples of white rot fungi are Chaetomium globosum, Lecythophora hoffmannii, Monodictys putredinis, Humicola alopallonella, Cephalosporium, Acremonium , and Chaetomium.
- compositions of the present invention are also effective against a broad range of insects and marine borer, including termites, beetles, and wood-boring insects.
- termites include drywood termites such as Cryptotermes and Kaloterms , and dampwood termites such as Zootermopsis , subterranean termites such as Coptotermes, Mastotermes, Reticulitermes, Schedorhinotermes, Microcerotermes, Microtermes , and Nasutitermes .
- Non-limiting examples of beetles include those in families such as, for example, Anoniidae, Bostrychidae, Cerambycidae, Scolytidae, Curculionidae, Lymexylonidae , and Buprestidae.
- compositions of the present invention can be formulated into a waterborne paste- or grease-type of formulation, if desired, such that the formulation has an adhesive nature and is easy to apply to a desired location.
- the present invention includes oxine copper.
- the preferred form of oxine copper in the present invention is a fine particulate, such that is found in dispersions through the milling process.
- Methods for preparing milled substantially insoluble biocidal particulates that can effectively penetrate and preserve wood may be found in U.S. Pat. App. No.'s 20040258767, 20050118280 and 20060288904 to Leach and Zhang.
- the current composition can also be formulated into an oil-borne paste- or grease-like formulation where the oxine copper is solubilized with an organic solvent.
- the weight ratio of oxine copper in the composition varies from about 0.001% to about 10% by weight.
- the preferred range of weight ratio of oxine copper in the composition varies from about 0.01% to about 1% by weight.
- the present invention also comprises a boron compound, a fluoride compound or both.
- the boron compound can be either water soluble or water insoluble.
- water soluble boron compounds include boric acid, sodium borates, such as sodium tetraborate decahydrate, sodium tetraborate pentahydrate, and disodium octaborate tetrahydrate (DOT) and potassium borates.
- Non-limiting examples of water insoluble boron compounds include metal borate compounds such as calcium borate, borate silicate, aluminum silicate borate hydroxide, silicate borate hydroxide fluoride, hydroxide silicate borate, sodium silicate borate, calcium silicate borate, aluminum borate, boron oxide, magnesium borate, iron borate, copper borate and zinc borate.
- metal borate compounds such as calcium borate, borate silicate, aluminum silicate borate hydroxide, silicate borate hydroxide fluoride, hydroxide silicate borate, sodium silicate borate, calcium silicate borate, aluminum borate, boron oxide, magnesium borate, iron borate, copper borate and zinc borate.
- Preferred boron compounds are water soluble boron compounds, such as boric acid and sodium tetraborate decahydrate, sodium tetraborate pentahydrate and disodium octaborate tetrahydrate (DOT).
- water soluble boron compounds such as boric acid and sodium tetraborate decahydrate, sodium tetraborate pentahydrate and disodium octaborate tetrahydrate (DOT).
- the weight ratio of boron compound to oxine copper can be in the range of from about 1:1 to about 1000:1, the preferred weight ratio range is about 10:1 to about 200:1.
- the present invention can also include a fluoride compound.
- fluoride compounds include sodium fluoride, potassium fluoride, calcium fluoride, copper fluoride, iron fluoride, magnesium fluoride, and other metal compounds of fluoride.
- the preferred fluorides are sodium fluoride and potassium fluoride.
- the weight ratio of fluoride compound to oxine copper can be in the range of from about 1:1 to about 1000:1, the preferred weight ratio range is about 10:1 to about 200:1.
- the present composition optionally comprises one or more combinations of a organic biocides, such as quaternary ammonium compounds, triazole or imidazole compounds, isothiazolone compounds, pyrethroid compounds and other biocides such as imidachloprid; fipronil; cyfluthrin; bifenthrin; permethrin; cypermethrin; and chlorpyrifos, iodopropynyl butylcarbamate (IPBC); chlorothalonil; 2-(thiocyanatomethylthio) benzothiazole; alkoxylated diamines and carbendazim.
- a organic biocides such as quaternary ammonium compounds, triazole or imidazole compounds, isothiazolone compounds, pyrethroid compounds and other biocides such as imidachloprid; fipronil; cyfluthrin; bifenthrin; permethrin; cypermethrin
- the weight ratio of the organic biocide in the composition is generally in the range of from 0.001% to 10% by weight, with a preferred range of 0.005% to 5% by weight and a more preferred range of 0.01% to 1%.
- Non-limiting examples of quaternary ammonium compounds are: didecyldimethylammonium chloride; didecyldimethylammonium carbonate/bicarbonate; alkyldimethylbenzylammonium chloride; alkyldimethylbenzylammonium carbonate/bicarbonate; didodecyldimethylammonium chloride; didodecyldimethylammonium carbonate/bicarbonate; didodecyldimethylammonium propionate; N,N-didecyl-N-methyl-poly(oxyethyl)ammonium propionate.
- Non-limiting examples of triazole or imidazole compounds are: 14[242,4-dichlorophenyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole (azaconazole), 1 R2RS,4RS:2RS,4SR)-4-bromo-2-(2,4-dichlorophenyptetrahydrofurfuryl]-1H-1,2,4-triazole (bromuconazole), (2RS,3RS;2RS,3SR)-2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol (Cyproconazole), (2RS,3RS)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol (diclobutrazol), cis-trans-3-chlor
- azole compounds include: amisulbrom, bitertanol, fluotrimazole, triazbutil, climbazole, clotrimazole, imazalil, oxpoconazole, prochloraz, triflumizole, azaconazole, simeconazole, and hexaconazole.
- Non-limiting examples of isothiazolone compounds are: methylisothiazolinone; 5-chloro-2-methyl-4-isothiazoline-3-one, 2-methyl-4-isothiazoline-3-one, 2-n-octyl-4-isothiazoline-3-one, 4,5-dichloro-2-n-octyl-4-isothiazoline-3-one, 2-ethyl-4-isothiazoline-3-one, 4,5-dichloro-2-cyclohexyl-4-isothiazoline-3-one, 5-chloro-2-ethyl-4-isothiazoline-3-one, 2-octyl-3-isothiazolone, 5-chloro-2-t-octyl-4-isothiazoline-3-one, 1,2-benzisothiazoline-3-one, preferably 5-chloro-2-methyl-4-isothiazoline-3-one, 2-methyl-4-isothiazoline-3-one, 2-n-oct
- Non-limiting examples of pyrethroid compounds include acrinathrin, allethrin, bioallethrin, barthrin, bifenthrin, bioethanomethrin, cyclethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cypermethrin, alpha-cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin, deltamethrin, dimefluthrin, dimethrin, empenthrin, fenfluthrin, fenpirithrin, fenpropathrin, fenvalerate, esfenvalerate, flucythrinate,
- Preferred organic biocides are tebuconazole and bifenthrin.
- the present invention also optionally comprises an aqueous type thickening agent.
- Aqueous organic polymer, aqueous emulsion, clay minerals, phosphate and the like are the aqueous type of thickening agents.
- Typical examples of aqueous organic polymers are cellulose derivatives including cellulose esters and ethers. Examples of cellulose esters are cellulose nitrate, sulfate, cellulose phosphate, cellulose nitrite, cellulose xanthate, cellulose acetate, cellulose formate, and cellulose esters with other organic acids.
- cellulose ethers are methylcellulose, ethylcellulose, propylcellulose, benzylcellulose, carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxybutylcellulose, cyanoethylcellulose, and carboxyethylcellulose.
- the preferred cellulose derivatives are cellulose ethers such as hydroxyethylcellulose, hydroxypropylcellulose, carboxymethylcellulose and carboxyethylcellulose.
- the weight percentage of the cellulose derivative in the paste formulation is generally in the range of from about 0.01% to 50% with a preferred weight percentage of 0.1 to 20% and a more preferred weight percentage of 0.5 to 10%.
- the present invention also optionally comprises about 0.5% to about 30% of an inorganic clay thickening agent, or a mixture of such thickening agents.
- the inorganic clay thickening agents include a fibrous structure type such as attapulgite clay and sepiolite clay, a non-crystal structure type such as allophone, and mixed layer structure type such as montmorillonite and kaolinte and the above layer structure types.
- inorganic clay minerals examples include attapulgite, dickite, saponite, montmorillonite, nacrite, kaolinite, anorthite, halloysite, metahalloysite, chrysotile, lizardite, serpentine, antigorite, beidellite, stevensite, hectonite, smecnite, nacrite and sepiolite, montmorillonite, sauconite, stevensite, nontronite, saponite, hectorite, vermiculite, smecnite, sepiolite, nacrite, illite, sericite, glauconite-montmorillonite, roselite-montmorillonite, Bentone 38 (hectorite) and Bentone 34 (bentonite), chlorite-vermiculite, illite-montmorillonite, halloysite-montmorillonite, kaolinitemontmorillonite.
- Attapulgite, hectorite, bentonite, montmorillonite, sauconite, smecnite, stevensite, beidellite, nontronite, saponite, hectorite, vermiculite, nacrite, and sepiolite are particularly preferable for the present invention.
- these inorganic clay minerals show a good thickening effect and thixotopic property in comparison with other aqueous thickening agents. Therefore, they show a little sagging and also they are very easy to be rinsed out by water in comparison with organic thickening agents.
- thickening agents other than described herein can be used.
- the present invention also includes chemical additives that retard the drying of the paste composition.
- chemical additives that retard the drying of the paste composition.
- These are usually a blend of several glycols, such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol and their derivatives. By evaporating far more slowly than water, glycols or their derivatives can slow down the drying process of the paste composition.
- Humectants such as glycerin and glycerol that absorb or hold water can also be added to retard or slow drying.
- the preservative paste compositions of this invention can be applied by various processes of supplemental or remedial treatment or protection of in-service wooden structures.
- the compositions of this invention are suitable for incorporation into wraps or ready-to-use bandages, injection into voids or cavities by pressure or by gravity and solid rods or cartridges.
- the paste compositions of this invention can be easily incorporated into a suitable support material to form a ready-to-use bandage or wrap that can applied to in-service utility poles and other wooden structures.
- Numerous support materials have been identified in literature and may include polymer films, fabrics, fiberglass, polyester fiber, polypropylene, porous polymer compositions and others that allow for the transfer or diffusion of preservative chemical from the bandage to the wood substrate.
- the paste composition may be applied to the support material by toweling, rolling, brushing and the like.
- the paste composition can be directly applied to the support material or may require the use of a binder or resin such as for example acrylate resins or PVC with plasticizers.
- the combination may be air-dried or dried in an oven at elevated temperatures.
- the paste compositions of this invention may also be formed into solid rods by extrusion, rolling or pressing. Once sufficiently dried, the rods can be cut to length and inserted into predrilled holes in in-service utility poles or other wooden structures. As with the bandages or wraps, resins or binders may be added to improve the dimensional stability of the rods.
- the paste compositions of this invention may be injected into internal voids or cavities through predrilled holes into in-service poles, posts, piling, cross-ties and other wooden structures by pressure processes or by gravity feed.
- Penetrometers are generally used for consistency tests on a wide range of food products, cosmetics, greases, pastes and other solid to semisolid products. Penetrometers utilize a standard cone or needle that is released from the Penetrometer and allowed to drop feely into the sample for 5 seconds at constant temperature. The depth of penetration of the cone into the sample is measured in tenths of a millimeter (tmm) by the Penetrometer.
- compositions of this invention range from about 125 to 425 tmm when using a standard Penetrometer quipped with a 102.5 gram brass cone with a stainless steel tip.
- a more preferable range of consistency for the present invention is about 175 to 375 tmm and a consistency or shear stability of about 200 to 300 tmm is particularly preferable for the present invention.
- the preferred viscosities of the thixotropic compositions of the present invention, during manufacture, is between 275 and 425 tenths of a millimeter (tmm) viscosity as measured using a penetrometer. More preferably the viscosities of the compositions of the present invention is between 300 and 400 tmm. Most preferably the viscosities of the compositions of the present invention is between 320 and 340 tmm.
- the preferred viscosities of the thixotropic compositions of the present invention is between 175 and 375 tenths of a millimeter (tmm) viscosity as measured using a penetrometer. More preferably the viscosities of the compositions of the present invention is between 200 and 300 tmm. Most preferably the viscosities of the compositions of the present invention is between 210 and 250 tmm.
- tmm millimeter
- compositions of the present invention can be rolled, troweled or brushed on wooden objects or more preferably to in-service utility poles, cross-ties or other wooden structures.
- Desirable compositions of the present invention should be self-supporting, have good spreadability such that the composition can be easily applied with a roller, trowel or brush without running or slumping off the wooden substrate or application tool and will easily adhere to a wooden substrate.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 44.92 parts water, 0.88 parts of a fine oxine copper dispersion comprised of 34.18% oxine copper, 2.00 parts of a commercially available cellulose ether thickener, 43.7 parts sodium tetraborate decahydrate, 1.0 part calcium sulfate filler and 7.5 parts attapulgite clay thickener.
- This remedial preservative paste contained 0.30 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 145.67 parts boron compound to 1.00 part oxine copper.
- the supplemental/remedial preservative paste composition formulated according to the above example was applied to a wooden substrate using a trowel and was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 34.74 parts water, 0.10 antifoam, 1.46 parts of a fine oxine copper dispersion comprised of 34.18% oxine copper, 10.00 parts glycerin, 2.00 parts of a commercially available cellulose ether thickener, 43.70 parts sodium tetraborate decahydrate, 1.00 part calcium sulfate filler and 7.0 parts attapulgite clay thickener.
- This remedial preservative paste contained 0.50 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 87.40 parts boron compound to 1.00 part oxine copper.
- the supplemental/remedial preservative paste composition formulated according to the above example was applied to a wooden substrate using a trowel and was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 30.24 parts water, 0.10 antifoam, 4.00 parts wax emulsion, 1.46 parts of a fine oxine copper dispersion comprised of 34.18% oxine copper, 10.00 parts glycerin, 3.00 parts of a commercially available cellulose ether thickener, 43.70 parts sodium tetraborate decahydrate, 1.50 part calcium sulfate filler and 6.0 parts attapulgite clay thickener.
- This remedial preservative paste contained 0.50 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 87.40 parts boron compound to 1.00 part oxine copper.
- the supplemental/remedial preservative paste composition formulated according to the above example was applied to a wooden substrate using a trowel and was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
- a supplemental/remedial preservative paste composition is prepared by blending together in the order listed; 30.22 parts water, 0.10 antifoam, 0.02 parts bifenthrin, 4.00 parts wax emulsion, 1.46 parts of a fine oxine copper dispersion comprised of 34.18% oxine copper, 10.00 parts propylene glycol, 3.00 parts of a commercially available cellulose ether thickener, 43.70 parts sodium tetraborate decahydrate, 1.50 part calcium sulfate filler and 6.0 parts attapulgite clay thickener.
- This remedial preservative paste contains 0.50 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 87.40 parts boron compound to 1.00 part oxine copper.
- a supplemental/remedial preservative paste composition is prepared by blending together in the order listed; 29.41 parts water, 0.10 antifoam, 0.10 parts tebuconazole, 4.00 parts wax emulsion, 2.19 parts of a fine oxine copper dispersion comprised of 34.18% oxine copper, 10.00 parts glycerin, 3.00 parts of a commercially available cellulose ether thickener, 21.85 parts sodium tetraborate decahydrate, 21.85 parts boric acid, 1.50 part calcium sulfate filler and 6.0 parts attapulgite clay thickener.
- This remedial preservative paste contains 0.75 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 58.27 parts boron compound to 1.00 part oxine copper.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 34.30 parts water, 10.00 parts glycerin, 2.00 parts of a commercially available cellulose ether thickener, 0.88 parts of a fine oxine copper dispersion comprised of 35.80% oxine copper, 0.02 parts bifenthrin, 2.00 parts wax emulsion, 0.10 parts tebuconazole, 43.70 parts sodium tetraborate decahydrate, 5.5 parts attapulgite clay thickener and 1.5 parts calcium sulfate filler.
- This remedial preservative paste contained 0.32 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 136.56 parts boron compound to 1.00 part oxine copper.
- the supplemental/remedial preservative paste composition formulated according to the above example was applied to a wooden substrate using a trowel and was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
- the paste formed was applied to the surface of southern pine dimensional lumber that had previously been vacuum-pressure impregnated with water.
- the lumber was saturated with water to simulate moisture regimes that are typically present within the ground-line region of in-service utility poles and other wooden structures and that is required to provide mobility of the preservative paste into the wood substrate.
- the paste was applied at a thickness of a sixteenth of an inch and sealed to the lumber with a water impermeable wrap such that is used in commercial practice.
- small incremental wafers were taken from the treated sections of the lumber. It was determined by analytical testing that oxine copper had penetrated, or diffused through the wood at fungitoxic levels up to a i/2 inch from the surface of application. It was further determined that fungitoxic levels of boron had penetrated the wood up to 1-V2 inches from the treated surface.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 31.90 parts water, 0.10 parts antifoam, 0.20 parts tebuconazole, 0.04 parts bifenthrin, 4.00 parts wax emulsion, 0.84 parts of a fine oxine copper dispersion comprised of 35.80% oxine copper, 10.00 parts glycerin, 2.00 parts of a commercially available cellulose ether thickener, 43.70 parts sodium tetraborate decahydrate, 1.22 parts calcium sulfate filler and 6.00 parts attapulgite clay thickener.
- This remedial preservative paste contained 0.30 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 145.67 parts boron compound to 1.00 part oxine copper.
- Penetration testing performed on the paste composition formulated according to the example above showed a penetration of 291 tmm. Further, the paste composition formulated according to the above example was brushed to 18 inches of the below ground section of an in-service utility pole by an experienced preservative chemical applicator. This paste was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 31.17 parts water, 0.10 parts antifoam, 0.20 parts tebuconazole, 0.04 parts bifenthrin, 3.98 parts wax emulsion, 1.39 parts of a fine oxine copper dispersion comprised of 35.80% oxine copper, 9.94 parts glycerin, 1.99 parts of a commercially available cellulose ether thickener, 43.46 parts sodium tetraborate decahydrate, 1.21 parts calcium sulfate filler and 6.52 parts attapulgite clay thickener.
- This remedial preservative paste contained 0.50 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 86.92 parts boron compound to 1.00 part oxine copper.
- Penetration testing performed on the paste composition formulated according to the example above showed a penetration of 239 tmm. Further, the paste composition formulated according to the above example was brushed to 18 inches of the below ground section of an in-service utility pole by an experienced preservative chemical applicator. This paste was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 31.40 parts water, 0.10 parts antifoam, 0.20 parts tebuconazole, 0.04 parts bifenthrin, 4.00 parts wax emulsion, 0.84 parts of a fine oxine copper dispersion comprised of 35.80% oxine copper, 10.00 parts glycerin, 2.00 parts of a commercially available cellulose ether thickener, 43.70 parts sodium tetraborate decahydrate, 1.22 parts calcium sulfate filler and 6.50 parts attapulgite clay thickener.
- This remedial preservative paste contained 0.30 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 145.67 parts boron compound to 1.00 part oxine copper.
- Penetration testing performed on the paste composition formulated according to the example above showed a penetration of 232 tmm. Further, the paste composition formulated according to the above example was brushed to 18 inches of the below ground section of an in-service utility pole by an experienced preservative chemical applicator. This paste was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
- a supplemental/remedial preservative paste composition is prepared by blending together in the order listed; 31.90 parts water, 0.10 parts antifoam, 0.20 parts tebuconazole, 0.04 parts bifenthrin, 4.00 parts wax emulsion, 0.84 parts of a fine oxine copper dispersion comprised of 35.80% oxine copper, 10.00 parts glycerin, 2.00 parts of a commercially available cellulose ether thickener, 21.85 parts sodium tetraborate decahydrate, 21.85 parts sodium fluoride, 1.22 parts calcium sulfate filler and 6.00 parts attapulgite clay thickener.
- This remedial preservative paste contains 0.30 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 72.83 parts boron compound to 1.00 part oxine copper and 72.83 parts fluoride compound to 1.00 part oxine copper.
- a supplemental/remedial preservative paste composition is prepared by blending together in the order listed; 31.90 parts water, 0.10 parts antifoam, 0.20 parts tebuconazole, 0.04 parts bifenthrin, 4.00 parts wax emulsion, 0.84 parts of a fine oxine copper dispersion comprised of 35.80% oxine copper, 10.00 parts glycerin, 2.00 parts of a commercially available cellulose ether thickener, 43.70 parts sodium fluoride, 1.22 parts calcium sulfate filler and 6.00 parts attapulgite clay thickener.
- This remedial preservative paste contains 0.30 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 145.67 parts fluoride compound to 1.00 part oxine copper.
- a supplemental/remedial preservative paste composition is prepared by blending together in the order listed; 31.64 parts water, 0.10 parts antifoam, 4.00 parts wax emulsion, 0.84 parts of a fine oxine copper dispersion comprised of 35.80% oxine copper, 10.00 parts glycerin, 2.00 parts of a commercially available cellulose ether thickener, 43.70 parts boric acid, 1.22 parts calcium sulfate filler and 6.50 parts attapulgite clay thickener.
- This remedial preservative paste contains 0.30 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 145.67 parts boron compound to 1.00 part oxine copper.
- a supplemental/remedial preservative paste composition is prepared by blending together in the order listed; 41.79 parts water, 10.00 parts propylene glycol, 0.88 parts of a fine oxine copper dispersion comprised of 34.18% oxine copper, 0.33 parts didecyldimethylammonium carbonate/bicarbonate, 2.00 parts of a commercially available cellulose ether thickener, 36.0 parts disodium octaborate tetrahydrate, 2.0 part calcium sulfate filler and 7.0 parts attapulgite clay thickener.
- This remedial preservative paste contains 0.30 parts oxine copper as derived from the fine oxine copper dispersion for a weight ratio of 120.00 parts boron compound to 1.00 part oxine copper.
- the supplemental/remedial preservative paste composition of Example 7 was continuously extruded through a 3 ⁇ 8 inch diameter aperture and subsequently cut into 3 inch lengths. The rods were then dried at 90° F. for 24 hours. The resulting preservative rods were found to be structurally sound, uniformly shaped and preferable for insertion into predrilled holes such that are drilled into in-service utility poles, piling, cross-ties and other wooden structures for the afterprotection against wood destroying decay fungi. Further, the rods were placed on a wet sponge partially submerged in a water bath to allow continual wicking of water from the bath to the rod. After six weeks it was determined through analysis that the water bath contained appreciable levels of oxine copper and boron. Consequently, a preservative rod composition was achieved.
- the supplemental/remedial preservative paste composition of Example 7 was injected into 3 ⁇ 8 inch holes drilled into an in-service utility pole containing a large decay void.
- the preservative paste formulation was found to be easily pumped or transferred with standard pneumatic pumping equipment or by gravity feed.
- the pole section containing the void was subsequently dissected and the paste composition was found to have completely filled the void and achieved intimate contact with the surfaces of the wood such that would provide adequate diffusion of biocide to the wood substrate in the presence of moisture or liquid water. Consequently, a preservative internal treatment composition was achieved.
- the supplemental/remedial preservative paste composition of Example 7 was rolled onto a polyethylene sheet to a uniform thickness of 0.0625 inches.
- the subsequent paste/support system was cut to 21 inches in length and applied to the below ground portion of an in-service utility pole such that the entire circumference of the pole was incased to 18 inches below ground.
- the paste/support system was handled and transported the paste did not slump, run or drip off of the supporting material. Removal of the paste/support system from the pole shortly after application found that the paste composition adhered and maintained intimate contact with to the pole surface such that would provide adequate diffusion of the biocide to the wood substrate in the presence of moisture or liquid water. Consequently, a preservative wrap or bandage composition was achieved.
- a supplemental/remedial preservative paste composition was prepared by blending together in the order listed; 38.75 parts No. 2 fuel oil, 1.25 parts oxine copper, 46.00 parts sodium fluoride, 10.00 part calcium sulfate filler, 3.00 parts bentonite clay thickener, 0.95 parts ethanol and 0.05 parts water.
- This remedial preservative paste contained 1.25 parts oxine copper for a weight ratio of 36.80 parts fluoride compound to 1.00 part oxine copper.
- the paste composition formulated according to the example above showed a penetration of 242 mm. Further, the paste composition formulated according to the above example was applied to a wooden substrate using a trowel and was found to have desirable physical properties including viscosity, spreadability and adherence for application to in-service utility poles, cross-ties and other wooden structures. Consequently, a preservative paste composition was obtained.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
Abstract
Description
The present invention also provides a wood preservative composition comprising an organic biocide, copper-8-quinolinolate, a carrier, and a thickening agent, wherein the wood preservative composition is formulated as a thixotropic paste.
The present invention also provides a wood preservative composition comprising an organic biocide, a boron-containing compound, a carrier, and a thickening agent, wherein the wood preservative composition is formulated as a thixotropic paste. In a preferred embodiment, the boron-containing compound is a boric acid, a metal borate, a sodium borate, or a potassium borate. In one embodiment, the sodium borate is sodium tetraborate decahydrate, sodium tetraborate pentahydrate, or disodium octaborate tetrahydrate (DOT). In another embodiment, the metal borate is calcium borate, borate silicate, aluminum silicate borate hydroxide, silicate borate hydroxide fluoride, hydroxide silicate borate, sodium silicate borate, calcium silicate borate, aluminum borate, boron oxide, magnesium borate, iron borate, copper borate or zinc borate.
Claims (53)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/068,743 US8221797B2 (en) | 2007-02-09 | 2008-02-11 | Wood preserving composition for treatment of in-service poles, posts, piling, cross-ties and other wooded structures |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88915307P | 2007-02-09 | 2007-02-09 | |
US12/068,743 US8221797B2 (en) | 2007-02-09 | 2008-02-11 | Wood preserving composition for treatment of in-service poles, posts, piling, cross-ties and other wooded structures |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080193640A1 US20080193640A1 (en) | 2008-08-14 |
US8221797B2 true US8221797B2 (en) | 2012-07-17 |
Family
ID=39686056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/068,743 Active 2029-03-04 US8221797B2 (en) | 2007-02-09 | 2008-02-11 | Wood preserving composition for treatment of in-service poles, posts, piling, cross-ties and other wooded structures |
Country Status (1)
Country | Link |
---|---|
US (1) | US8221797B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140261047A1 (en) * | 2013-03-14 | 2014-09-18 | Karen M. Slimak | Railyway sleepers |
CN104756996A (en) * | 2015-04-17 | 2015-07-08 | 浙江海正化工股份有限公司 | Sterilization composition containing quinolone copper and ipconazole |
US9303169B2 (en) | 2014-06-16 | 2016-04-05 | Osmose Utilities Services, Inc. | Controlled release, wood preserving composition with low-volatile organic content for treatment in-service utility poles, posts, pilings, cross-ties and other wooden structures |
US10315330B2 (en) * | 2014-12-23 | 2019-06-11 | Dow Global Technologies Llc | Treated porous material |
FR3130509A1 (en) * | 2021-12-22 | 2023-06-23 | Berkem Developpement | composition comprising at least one isoalkane, at least one cellulose ether, at least one plant extract and a mixture of alkoxysilane and disiloxane |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666254B1 (en) * | 2006-08-18 | 2010-02-23 | Osmose, Inc. | Borate compositions for wood preservation |
CN201712857U (en) | 2010-05-10 | 2011-01-19 | S.C.约翰逊父子公司 | Diffusing device used for volatile material and casing and diffusing piece thereof |
GB201010439D0 (en) | 2010-06-21 | 2010-08-04 | Arch Timber Protection Ltd | A method |
WO2012134735A1 (en) * | 2011-03-25 | 2012-10-04 | Huntsman Advanced Materials Americas Llc | Peroxide-free methacrylate structural adhesives |
GB201119139D0 (en) | 2011-11-04 | 2011-12-21 | Arch Timber Protection Ltd | Additives for use in wood preservation |
US9278151B2 (en) | 2012-11-27 | 2016-03-08 | S.C. Johnson & Son, Inc. | Volatile material dispenser |
US9205163B2 (en) | 2012-11-27 | 2015-12-08 | S.C. Johnson & Son, Inc. | Volatile material dispenser |
NZ772669A (en) | 2014-05-02 | 2023-12-22 | Arch Wood Protection Inc | Wood preservative composition |
CN105801479B (en) * | 2016-04-29 | 2018-02-02 | 安徽大学 | Two-photon viscosity fluorescent probe and preparation method and application thereof |
JP7227584B2 (en) * | 2017-03-08 | 2023-02-22 | 株式会社コシイプレザービング | Method for producing wood with excellent moisture retention |
CN117460607A (en) * | 2021-03-19 | 2024-01-26 | 阿萨达有限责任公司 | Enhanced wood preservative containing zinc and boron |
CN113352417B (en) * | 2021-07-08 | 2022-03-08 | 浙江省林业科学研究院 | Inorganic mildew-proof preparation and method for preparing mildew-proof bamboo wood by using same |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075121A (en) * | 1975-03-03 | 1978-02-21 | Mitsubishi Petrochemical Company Limited | Wood preservatives and method for wood preservation treatment |
US4656060A (en) * | 1982-09-28 | 1987-04-07 | John Krzyzewski | Arsenical creosote wood preservatives |
US5084280A (en) | 1988-12-15 | 1992-01-28 | Chapman Chemical Company | Wood preservation composition and method |
US5342438A (en) | 1993-02-04 | 1994-08-30 | West Michael H | Remedial wood preservative |
US5977168A (en) * | 1994-04-15 | 1999-11-02 | Sankyo Company, Limited | Wood preservative compositions containing dimethylfurancarboxyanilide derivatives |
US6110263A (en) | 1996-03-05 | 2000-08-29 | Dr. Wolman Gmbh | Timber preserving agent for maintenance purposes |
US6306202B1 (en) | 2000-06-30 | 2001-10-23 | Michael Howard West | Water soluble fixed copper-borax wood preservative composition |
US6352583B1 (en) | 1997-03-05 | 2002-03-05 | Dr. Wolman Gmbh | Wood preservative for subsequent application |
WO2003103392A1 (en) | 2002-06-06 | 2003-12-18 | Itn Nanovation Gmbh | Antimicrobial polymeric coating composition |
US20040258768A1 (en) * | 2003-06-17 | 2004-12-23 | Richardson H. Wayne | Particulate wood preservative and method for producing same |
US20040258767A1 (en) | 2003-04-09 | 2004-12-23 | Leach Robert M. | Micronized wood preservative formulations |
US20050118280A1 (en) | 2003-04-09 | 2005-06-02 | Leach Robert M. | Micronized wood preservative formulations |
US20050252408A1 (en) * | 2004-05-17 | 2005-11-17 | Richardson H W | Particulate wood preservative and method for producing same |
US20050255251A1 (en) * | 2004-05-17 | 2005-11-17 | Hodge Robert L | Composition, method of making, and treatment of wood with an injectable wood preservative slurry having biocidal particles |
US20060009535A1 (en) * | 2002-10-09 | 2006-01-12 | Steven Wantling | Wax emulsion preservative compositions and method of manufacture |
US20060062926A1 (en) * | 2004-05-17 | 2006-03-23 | Richardson H W | Use of sub-micron copper salt particles in wood preservation |
US20060075923A1 (en) | 2004-10-12 | 2006-04-13 | Richardson H W | Method of manufacture and treatment of wood with injectable particulate iron oxide |
US20060086841A1 (en) | 2004-10-08 | 2006-04-27 | Richardson H W | Milled submicron organic biocides with narrow particle size distribution, and uses thereof |
US20060276468A1 (en) * | 2005-05-12 | 2006-12-07 | Blow Derek P | Wood preservative formulations comprising Imazalil |
US20060288904A1 (en) | 2005-06-21 | 2006-12-28 | Leach Robert M | Micronized wood preservative compositions |
US20070021385A1 (en) * | 2005-07-21 | 2007-01-25 | Jun Zhang | Compositions and methods for wood preservation |
US7238654B2 (en) | 2004-05-17 | 2007-07-03 | Phibro-Tech, Inc. | Compatibilizing surfactant useful with slurries of copper particles |
US7252706B2 (en) | 2003-06-17 | 2007-08-07 | Phibro-Tech, Inc. | Inhibition of calcium and magnesium precipitation from wood preservatives |
US7316738B2 (en) | 2004-10-08 | 2008-01-08 | Phibro-Tech, Inc. | Milled submicron chlorothalonil with narrow particle size distribution, and uses thereof |
US20090004497A1 (en) * | 2006-01-27 | 2009-01-01 | Derek Philip Blow | Wood Preservative Formulations Comprising Rh-287 |
-
2008
- 2008-02-11 US US12/068,743 patent/US8221797B2/en active Active
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075121A (en) * | 1975-03-03 | 1978-02-21 | Mitsubishi Petrochemical Company Limited | Wood preservatives and method for wood preservation treatment |
US4656060A (en) * | 1982-09-28 | 1987-04-07 | John Krzyzewski | Arsenical creosote wood preservatives |
US5084280A (en) | 1988-12-15 | 1992-01-28 | Chapman Chemical Company | Wood preservation composition and method |
US5342438A (en) | 1993-02-04 | 1994-08-30 | West Michael H | Remedial wood preservative |
US5977168A (en) * | 1994-04-15 | 1999-11-02 | Sankyo Company, Limited | Wood preservative compositions containing dimethylfurancarboxyanilide derivatives |
US6110263A (en) | 1996-03-05 | 2000-08-29 | Dr. Wolman Gmbh | Timber preserving agent for maintenance purposes |
US6352583B1 (en) | 1997-03-05 | 2002-03-05 | Dr. Wolman Gmbh | Wood preservative for subsequent application |
US6306202B1 (en) | 2000-06-30 | 2001-10-23 | Michael Howard West | Water soluble fixed copper-borax wood preservative composition |
WO2003103392A1 (en) | 2002-06-06 | 2003-12-18 | Itn Nanovation Gmbh | Antimicrobial polymeric coating composition |
US20060009535A1 (en) * | 2002-10-09 | 2006-01-12 | Steven Wantling | Wax emulsion preservative compositions and method of manufacture |
US20040258767A1 (en) | 2003-04-09 | 2004-12-23 | Leach Robert M. | Micronized wood preservative formulations |
US20050118280A1 (en) | 2003-04-09 | 2005-06-02 | Leach Robert M. | Micronized wood preservative formulations |
US7252706B2 (en) | 2003-06-17 | 2007-08-07 | Phibro-Tech, Inc. | Inhibition of calcium and magnesium precipitation from wood preservatives |
US20040258768A1 (en) * | 2003-06-17 | 2004-12-23 | Richardson H. Wayne | Particulate wood preservative and method for producing same |
US20090280185A1 (en) * | 2003-06-17 | 2009-11-12 | Phibrowood, Llc | Particulate wood preservative and method for producing the same |
US20050252408A1 (en) * | 2004-05-17 | 2005-11-17 | Richardson H W | Particulate wood preservative and method for producing same |
US20060062926A1 (en) * | 2004-05-17 | 2006-03-23 | Richardson H W | Use of sub-micron copper salt particles in wood preservation |
US20050255251A1 (en) * | 2004-05-17 | 2005-11-17 | Hodge Robert L | Composition, method of making, and treatment of wood with an injectable wood preservative slurry having biocidal particles |
US20090223408A1 (en) * | 2004-05-17 | 2009-09-10 | Phibrowood, Llc | Use of Sub-Micron Copper Salt Particles in Wood Preservation |
US7238654B2 (en) | 2004-05-17 | 2007-07-03 | Phibro-Tech, Inc. | Compatibilizing surfactant useful with slurries of copper particles |
US20060086841A1 (en) | 2004-10-08 | 2006-04-27 | Richardson H W | Milled submicron organic biocides with narrow particle size distribution, and uses thereof |
US7316738B2 (en) | 2004-10-08 | 2008-01-08 | Phibro-Tech, Inc. | Milled submicron chlorothalonil with narrow particle size distribution, and uses thereof |
US20060075923A1 (en) | 2004-10-12 | 2006-04-13 | Richardson H W | Method of manufacture and treatment of wood with injectable particulate iron oxide |
US20060276468A1 (en) * | 2005-05-12 | 2006-12-07 | Blow Derek P | Wood preservative formulations comprising Imazalil |
US20060288904A1 (en) | 2005-06-21 | 2006-12-28 | Leach Robert M | Micronized wood preservative compositions |
US20070021385A1 (en) * | 2005-07-21 | 2007-01-25 | Jun Zhang | Compositions and methods for wood preservation |
US20100068545A1 (en) * | 2005-07-21 | 2010-03-18 | Jun Zhang | Compositions and methods for wood preservation |
US20090004497A1 (en) * | 2006-01-27 | 2009-01-01 | Derek Philip Blow | Wood Preservative Formulations Comprising Rh-287 |
Non-Patent Citations (11)
Title |
---|
American Wood-preservers' Association Standard A3-05 (2005). |
American Wood-preservers' Association Standard C1-03 (2003). |
Hawley's Condensed Chemical Dictionary, 14th edition, John Wiley & Sons, Inc. 2001, p. 86. |
Lide, "Characteristics of particles and particle dispersoids" handbook of chemistry and physics, 75th edition, 1994, Florida, CRC press, p. 15-38. |
Liu Y, "Use of polymer nanopartcles as carriers for the controlled release of biocides in solid wood" Ph.D. dissertation of Yong Liu, Michigan Technological University, Houghton, MI. 1999. |
Liu, Y. et al. "Use of nanoparticles for controlled release of biocides in solid wood" jourmal of applied polymer science, vol. 79, 2001, pp. 458-465. |
Liu, Y. et al. "Use of Nanoparticles for the Controlled Release of Biocides in Pressure-treated Solid Wood" poltymer preprints 38(2), 1997, pp. 624-625. |
Liu, Y. et al., Michigan Technical Univ. Dept. Chemistry, Houghton, MI, "Use of Polymeric Nanoparticles for controlled release of biocides in solid wood" Materials research society symposium proceedings series, 1998, vol. 550, abstract GG3.4. |
Shaw, www.fad.gov/ohrms/dockets/ac/01/slides/3763s2-09-shaw.ppt; 2001. |
Superior Court of New Jersey Chancery Division, Final Judgment, Phibrotech, Inc. v. Osmose Holdings, Inc. Osmose, Inc. Aug. 14, 2007. |
Superior Court of New Jersey, Decision after trial, Phibrotech Inc. v. Osmose Holdings, Inc. Jun. 25, 2007. |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140261047A1 (en) * | 2013-03-14 | 2014-09-18 | Karen M. Slimak | Railyway sleepers |
US9303169B2 (en) | 2014-06-16 | 2016-04-05 | Osmose Utilities Services, Inc. | Controlled release, wood preserving composition with low-volatile organic content for treatment in-service utility poles, posts, pilings, cross-ties and other wooden structures |
US9464196B2 (en) | 2014-06-16 | 2016-10-11 | Osmose Utilities Services, Inc. | Controlled release, wood preserving composition with low-volatile organic content for treating in-service utility poles, posts, pilings, cross-ties and other wooden structures |
US9593245B2 (en) | 2014-06-16 | 2017-03-14 | Osmose Utilities Services, Inc. | Controlled release, wood preserving composition with low-volatile organic content for treating in-service utility poles, posts, pilings, cross-ties and other wooden structures |
US9808015B2 (en) | 2014-06-16 | 2017-11-07 | Osmose Utilities Services, Inc. | Controlled release, wood preserving composition for treating in-service utility poles, posts, pilings, cross-ties and other wooden structures |
EP3155053A4 (en) * | 2014-06-16 | 2018-02-14 | Osmose Utility Services, Inc. | Controlled release, wood preserving composition with low-volatile organic content for wooden structures |
US10085453B2 (en) | 2014-06-16 | 2018-10-02 | Osmose Utilities Services, Inc. | Controlled release, wood preserving composition with low-volatile organic content for treating in-service utility poles, posts, pilings, cross-ties and other wooden structures |
US10315330B2 (en) * | 2014-12-23 | 2019-06-11 | Dow Global Technologies Llc | Treated porous material |
CN104756996A (en) * | 2015-04-17 | 2015-07-08 | 浙江海正化工股份有限公司 | Sterilization composition containing quinolone copper and ipconazole |
CN104756996B (en) * | 2015-04-17 | 2017-01-11 | 浙江海正化工股份有限公司 | Sterilization composition containing quinolone copper and ipconazole |
FR3130509A1 (en) * | 2021-12-22 | 2023-06-23 | Berkem Developpement | composition comprising at least one isoalkane, at least one cellulose ether, at least one plant extract and a mixture of alkoxysilane and disiloxane |
WO2023118742A1 (en) * | 2021-12-22 | 2023-06-29 | Berkem Developpement | Composition comprising at least one iso-alkane, at least one cellulose ether, at least one plant extract and a mixture of alkoxysilane and disiloxane |
Also Published As
Publication number | Publication date |
---|---|
US20080193640A1 (en) | 2008-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8221797B2 (en) | Wood preserving composition for treatment of in-service poles, posts, piling, cross-ties and other wooded structures | |
AU2020200371B2 (en) | Controlled release, wood preserving composition with low-volatile organic content for wooden structures | |
US20070021385A1 (en) | Compositions and methods for wood preservation | |
US20130022829A1 (en) | Oil borne wood preserving composition for treatment of poles, posts, piling, crossties and other wooded structures | |
AU2016225952A1 (en) | A wood preservative | |
AU2016202069A1 (en) | Wood preservative formulation | |
EP4291376A1 (en) | Zinc and boron containing enhanced wood preservative | |
NZ727992B2 (en) | Controlled release, wood preserving composition with low-volatile organic content for treating in-service utility poles, posts, pilings, cross-ties and other wooden structures | |
AU2015202448B2 (en) | Oil borne wood preserving composition for treatment of poles, posts, piling, cross-ties and other wooded structures | |
WO2025090255A1 (en) | Emulsion concentrates, wood preservative compositions formed therefrom, methods of manufacture thereof, and methods of use thereof | |
US20240206473A1 (en) | Zinc and Boron Containing Enhanced Wood Preservative | |
JP2006076222A (en) | Method for preserving wood | |
NZ724922A (en) | A wood preservative | |
NZ724922B2 (en) | A wood preservative | |
NZ718663A (en) | A copper-azole wood preservative formulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OSMOSE, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, JUN;HERDMAN, DOUGLAS J.;ZIOBRO, RICHARD J.;REEL/FRAME:020764/0295;SIGNING DATES FROM 20030228 TO 20080303 Owner name: OSMOSE, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, JUN;HERDMAN, DOUGLAS J.;ZIOBRO, RICHARD J.;SIGNING DATES FROM 20030228 TO 20080303;REEL/FRAME:020764/0295 |
|
AS | Assignment |
Owner name: OSMOSE, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, JUN;HARDMAN, DOUGLAS J.;ZIOBORO, RIHARD J.;REEL/FRAME:020692/0649;SIGNING DATES FROM 20030228 TO 20080303 Owner name: OSMOSE, INC., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, JUN;HARDMAN, DOUGLAS J.;ZIOBORO, RIHARD J.;SIGNING DATES FROM 20030228 TO 20080303;REEL/FRAME:020692/0649 |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:OSMOSE, INC. (FORMERLY OSMOSE WOOD PRESERVING, INC.);REEL/FRAME:028158/0611 Effective date: 20120504 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNOR:OSMOSE, INC.;REEL/FRAME:029351/0791 Effective date: 20121126 |
|
AS | Assignment |
Owner name: OSMOSE UTILITIES SERVICES, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OSMOSE, INC.;REEL/FRAME:033220/0944 Effective date: 20140627 |
|
AS | Assignment |
Owner name: OSMOSE, INC., NEW YORK Free format text: RELEASE OF SECURITY INTERST IN INTELLECTUAL PROPERTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:033645/0778 Effective date: 20140815 Owner name: OSMOSE, INC. (FORMERLY OSMOSE WOOD PRESERVING, INC Free format text: RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAND ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:033645/0796 Effective date: 20140815 |
|
AS | Assignment |
Owner name: KOPPERS PERFORMANCE CHEMICALS INC, PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:OSMOSE, INC.;REEL/FRAME:034036/0363 Effective date: 20140915 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: ROYAL BANK OF CANADA, AS COLLATERAL AGENT, CANADA Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:OSMOSE UTILITIES SERVICES, INC.;REEL/FRAME:036463/0234 Effective date: 20150821 Owner name: ROYAL BANK OF CANADA, AS COLLATERAL AGENT, CANADA Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:OSMOSE UTILITIES SERVICES, INC.;REEL/FRAME:036463/0220 Effective date: 20150821 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: OSMOSE UTILITIES SERVICES, INC,, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:048122/0163 Effective date: 20190123 Owner name: OSMOSE UTILITIES SERVICES, INC,, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:048122/0249 Effective date: 20190123 Owner name: GOLDMAN SACHS LENDING PARTNERS LLC, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:OSMOSE UTILITIES SERVICES, INC,;REEL/FRAME:048122/0662 Effective date: 20190123 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SOCIETE GENERALE, AS COLLATERAL AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT (FIRST LIEN);ASSIGNOR:OSMOSE UTILITIES SERVICES, INC.;REEL/FRAME:056651/0573 Effective date: 20210623 |
|
AS | Assignment |
Owner name: OSMOSE UTILITIES SERVICES, INC., GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SOCIETE GENERALE;REEL/FRAME:056650/0111 Effective date: 20210623 Owner name: ARES CAPITAL CORPORATION, AS COLLATERAL AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT (SECOND LIEN);ASSIGNOR:OSMOSE UTILITIES SERVICES, INC.;REEL/FRAME:056673/0518 Effective date: 20210623 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1556); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |