US8078312B2 - Methods for inserting a part into a storage section of a storage container and insertion tool arrangement - Google Patents
Methods for inserting a part into a storage section of a storage container and insertion tool arrangement Download PDFInfo
- Publication number
- US8078312B2 US8078312B2 US12/261,769 US26176908A US8078312B2 US 8078312 B2 US8078312 B2 US 8078312B2 US 26176908 A US26176908 A US 26176908A US 8078312 B2 US8078312 B2 US 8078312B2
- Authority
- US
- United States
- Prior art keywords
- storage section
- insertion tool
- holder means
- container
- bearing surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1687—Assembly, peg and hole, palletising, straight line, weaving pattern movement
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37571—Camera detecting reflected light from laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45045—Maintenance, automatic storage and retrieval system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45234—Thin flat workpiece, sheet metal machining
Definitions
- the present invention refers to a method for automatically inserting at least one part of a given shape into a storage section of a storage container, wherein the storage section comprises a plurality of holder means adapted for holding one of the at least one part, wherein the part is inserted by means of an insertion tool, and wherein the method comprises the step of detecting the position of the holder means by means of at least one optical sensor.
- the object of the present invention is to provide a method for automatically inserting a part into a storage section of a container, wherein collisions of parts with each other and collisions of a part with a storage section are avoided.
- this object is achieved by a method of the above-mentioned kind that is characterized in that the method further comprises the steps of
- the step of verifying ensures that those storage sections are selected that are appropriate to insert the part.
- storage sections into which the inserting of the part would result in a collision are skipped by the method according to the present invention.
- the insertion path is determined depending on the position and the orientation of the holder means the movement performed by the insertion tool during the inserting is adapted to variances of the shape of the holder means resulting from the deformation of the holder means or other parts of the container after multiple uses of the container.
- the method according to the invention avoids collisions by skipping inappropriate storage sections and by adapting the insertion path to the actual shape of the holder means.
- the holder means comprise at least one bearing surface adapted to face the inserted part and the method comprises scanning at least one region of at least one bearing surface by means of the at least one optical sensor, wherein said detecting of the position, said verifying and/or said detecting the orientation is based on said scanning.
- verifying whether the holder means are available comprises checking whether the storage section is occupied by an already inserted part, whether the storage section is blocked by a foreign body, and/or whether the holder means are damaged.
- the holder means could be damaged by deformation of at least a part of the holder means to, such a large extent that it would not be possible to insert the part into the corresponding storage section anymore.
- the holder means are damaged if a part of the holder means is broken away so that the holder means are not able to hold the part within the storage section anymore.
- the scanning comprises computing at least one characteristic point, wherein the characteristic point characterizes a shape of the scanned region of the bearing surface.
- the characteristic point characterizes a shape of the scanned region of the bearing surface.
- multiple characteristic points are calculated and the position, the orientation and/or the shape of the holder means is detected depending on an absolute position of the points and the relative arrangement of the points to each other.
- the storage section of the container has usually multiple holder means located at different positions within the storage section.
- each holder means has at least one bearing surface adapted to face the inserted part.
- the insertion tool comprises multiple optical sensors and that multiple regions of different bearing surfaces are scanned, wherein the regions of different bearing surfaces are scanned by different sensors.
- At least one sensor is a portable sensor. It is preferred that at least one sensor is arranged stationary with respect to the insertion tool and that the scanning comprises moving the insertion tool to at least one scanning position such that the sensor is located next to the region of the bearing surface to be scanned. In other words, at least one sensor is attached to the insertion tool close to the bearing surface or to the region of the bearing surface to be scanned by the sensor. This allows for optimally positioning the sensor to the region to be scanned without the need for a separate actuator for moving the sensor. It is suggested to use a common actuator for both the insertion tool and the sensor mounted on the insertion tool.
- the scanning comprises moving the insertion tool successively to multiple difference scanning positions. In each scanning position a different set of regions of the bearing surfaces can be scanned. Thus, a large amount of information corresponding to the position and the orientation of holder means can be acquired. As a consequence, the position as well as the orientation of the holder means can be determined quite precisely.
- the container comprises multiple store sections arranged side by side and that the inserting of the part and the scanning are performed simultaneously, wherein the storage section into which a part is inserted and the storage section the region of the bearing surface of which is scanned differ from each other and are, preferably, directly adjacent.
- the method comprises the step of determining a location—or at least an approximate location—of the container by locating a predetermined portion the container, preferably an outer corner of the container.
- the sensor that is used to determine the position and the orientation of the holder means can be applied.
- the location of the container is determined before the position and the orientation of the holder means of a certain storage section is determined. This allows to initially determine at least an approximate position of a first storage section into which a first part shall be inserted. In this way the method according to the invention can be started quickly and reliably.
- the object of the present invention is also solved by an insertion tool arrangement for automatically inserting at least one part of a given shape into a storage section of a storage container
- the storage section comprises a plurality of holder means adapted for holding one of the at least one part
- the insertion tool arrangement comprises an insertion tool for inserting the part
- the insertion tool arrangement preferably the insertion tool, comprises at least one optical sensor for detecting the position of the holder means that is characterized in that the insertion tool arrangement comprises control means configured to automatically operate the insertion tool according to the method according to the present invention.
- the insertion tool according to the present invention has all advantages of the above described method according to the invention.
- the insertion tool arrangement comprises at least one optical sensor to scan the region of the bearing surface, wherein the sensor comprises a laser to light the region and a camera for acquisition of an image of the region. It is preferred to arrange the sensor directly on the insertion tool. To this end, a compact, robust and portable sensor can be applied. Such a sensor is described in the patent application US 2004/01792601 A1, the entire disclosure of which is hereby incorporated by reference. For determining the position and orientation of the holder means this kind of sensor suitable methods of image processing can be applied. For instance, laser triangulation, photogrammetric methods, or methods with structured light can be applied. When using a sensor with multiple cameras then stereo image processing can be used too.
- the part is essentially flat and the storage section corresponds to an essentially flat portion of the container bounded by at least one slot of the holder means located at an edge of the storage section and forming the bearing surface, and the insertion tool is moveable to at least one scanning position such that the optical sensor is located next to the slot in order to scan at least one region of the bearing surface formed by a slot.
- the insertion tool is provided which allows inserting flat parts of a car body such as a hood into the container.
- the insertion tool according to the invention can also be applied to insert different kinds of parts into the container.
- the holder means comprise multiple slots and the insertion tool comprises multiple sensors, where in each sensor is arrange stationary with aspect to the insertion tool such that each sensor is located next to a different slot if the insertion tool is located at the scanning position.
- FIG. 1 shows a sectional front few of a container according to a preferred embodiment of the present invention with a part inserted into a storage section of the container;
- FIG. 2 shows a sectional top few of the container shown in FIG. 1 ;
- FIG. 3 shows a sectional side view of the storage section of the container shown in FIG. 1 and FIG. 2 and the part inserted in the storage section;
- FIG. 4 shows a sectional side few of an insertion tool according to a preferred embodiment of the present invention
- FIG. 5 shows a flow chart of a method according the preferred embodiment of the present invention
- FIG. 6 shows a camera image generated by an optical sensor of the insertion tool shown in FIG. 4 ;
- FIG. 7 shows a flow chart of simultaneously executed tasks of the method shown in FIG. 5 ;
- FIG. 8 shows a schematic view of an insertion tool arrangement according to the preferred embodiment.
- FIGS. 1 to 3 show a container 11 for storage and transport of multiple parts 13 of a given shape.
- the part 13 is a hood for a motor vehicle.
- the present invention can also be applied in connection with different kinds of parts such as arbitrary parts of a motor vehicle, in particular a part of a car body, and the like.
- the present invention is not limited to applications of the automotive industry.
- the present invention is particularly well suited to be applied in connection with high value and easily damageable parts which can not be treated as bulk goods and must be handled individually.
- the container 11 comprises multiple storage sections 15 each adapted to hold a single part 13 by means of holder means. As shown in FIG. 1 , each storage section 15 has a first holder means 17 a located at the top of the storage section 15 , second holder means 17 b located next to first holder means 17 a , third holder means 17 c located below the second holder means 17 b , and forth holder means located below the third holder means 17 c.
- the first holder means 17 a of the storage sections 15 are formed in a first rail 21 located at the top of the container 11 and fixed to top lateral rods 23 of a frame 25 of the container 11 (cf. FIG. 2 ).
- the second holder means 17 b of all storage sections 15 are formed into a second rail 27 and the third holder means 17 c are formed into a third rail 29 . Both the second rail 27 as well as the third rail 29 and are mounted at rear vertical rods 31 of the frame 25 of the container 11 .
- the first rail 21 , the second rail 27 , and the third rail 29 are parallel each other.
- the forth holder means 17 d are formed by forth rails 33 which are arranged in parallel to each other and orthogonal to the first rail 21 , the second rail 27 , and the third rail 29 . As shown in FIG. 1 and FIG. 3 the forth rails 33 are mounted on top of a base plate 35 of the container 11 .
- the first holder means 17 a , the second holder means 17 b , the third holder means 17 c and the forth holder means 17 d comprise a first bearing surface 37 a , a second bearing surface 37 b , a third bearing surface 37 c and a forth bearing surface 37 d respectively.
- Each bearing surface 37 ad faces the part 13 inserted into the storage section 15 .
- the first bearing surface 37 a , the second bearing surface 37 b , and the third bearing surface 37 c are formed by curved cavities 39 of the corresponding rails 21 , 27 , 29 .
- the forth bearing surface 37 d is bounded by side surfaces 41 of two adjacent forth rails 33 and by a portion of an upper side 43 of the base plate 35 located between these two adjacent forth rails 33 .
- the bearing surfaces 37 a - d form slots into which the part 13 can be inserted. If the part 13 is inserted into these slots then the bearing surfaces 37 engage with certain portions of an outer border the part 13 . In this manner an undesired movement of the part 13 within the container 11 during storage or transport is avoided.
- the parts are inserted successively along an insertion path (arrow 47 ), which is approximately in parallel to the holder means 17 a - d , i.e., in parallel to the side surfaces 41 of the forth rails 33 .
- FIG. 4 shows an insertion tool 49 for automatically inserting one part 13 or multiple parts 13 into the storage sections 15 of the container 11 .
- the insertion tool 49 comprises four optical sensors 51 a - d .
- the sensors 51 a - d are arranged stationary which respect to a body 57 of the insertion tool by means of appropriately formed mounting rods 53 .
- the sensors 51 a - d are attached to the mounting rods 53 by means of a hinge 55 for fine adjustment of the location of the sensors 51 a - d with respect to the body 57 of the insertion tool 49 .
- Each sensor 51 a - d comprises a transmission unit 59 such as a laser to light one or more regions of the bearing surface 37 a - d .
- each optical sensor 51 a - d comprises a receiver unit 61 such as a video camera to capture an image of the regions of the bearing surfaces 37 a - d lit by the transmission unit 59 .
- Three optical sensors, namely the first optical sensor 51 a , the second optical sensor 51 b , and the third optical sensor 51 c comprise a carrier element 63 to ensure a precise location of the receiver unit 61 with respect to the transmission unit 59 .
- the transmission unit 59 and the receiving unit 61 of the forth optical sensor 51 d are mounted separately to the body 57 .
- Optical sensors 51 a - d suitable for application in connection with the present invention are described in more detail in the published patent application US 2004/0179206 A1.
- the insertion tool 49 comprises four controllable suction cups 65 fixed by means of the mounting rods 53 to the body 57 of the insertion tool 49 .
- the suction cups 65 can be connected via an electrometrically controllable valve to a vacuum air system.
- the insertion tool 49 can grip the part 13 by moving the suction cups 65 to a surface of the part 13 and activating the suction cups 65 by connecting them to the vacuum air system by means of the valve.
- the contour of the part 13 griped by the insertion tool 49 is shown in FIG. 4 by a dashed line.
- the insertion tool 49 is flat, i.e., the maximum dimension of the insertion tool 49 in a direction that is orthogonal to the plane of FIG. 4 is in the order of a width w of a storage section 15 .
- the thickness of the insertion tool 49 can be in the range between half the width w of a storage section 15 up to approximately twice the width w of the storage section 15 .
- the body 57 is attached to an appropriate actuator means such as an arm of an industrial robot.
- a location of the container 11 is determined in step 73 .
- a predetermined portion of the container 11 such as an outer corner 75 of the container 11 (cf. FIG. 1 ) can be localized by means of a sensor.
- the sensor to be used to localize the outer corner 75 can be one of the sensors 51 a - d or an additional sensor.
- the insertion tool 47 is moved to a scanning position (step 77 ).
- the insertion tool 49 is in the scanning position if it is inserted into the container 11 between two adjacent storage sections 15 such that the first sensor 51 a is located next to the first bearing surface 37 a , the second sensor 51 b is located next to the second bearing surface 37 b , the third sensor 51 c is located next to the third bearing surface 37 c , and the forth sensor 51 d is located next to the forth bearing surface 37 d.
- the transmitter unit 59 of the first sensor 51 a lights a first linear region 79 a of the first bearing surface 37 a .
- the transmitter unit 59 of the second sensor 51 b lights a second linear region 79 b of the second bearing surface 37 b .
- the transmitter unit 59 of the third sensor 51 c lights a third linear region 49 c of the third bearing surface 37 c .
- the transmitter unit 59 of the forth sensor 51 d lights multiple linear forth regions 79 d of the forth bearing surface 37 d .
- the first region 79 a , the second region 79 b and the third region 79 c are essentially in parallel to the first rail 21 , the second rail 27 , and the third rail 29 respectively.
- the linear forth regions 79 d are orthogonal to the side surfaces 41 of the forth rails 33 and extend partly on the upper side the base plate 35 and partly on the forth rails 33 .
- the receiving units 61 i.e., the cameras, capture images of the regions 79 a - d lit by the transmitter units 59 .
- the image 83 shows a line 85 the shape of which characterizes the shape of the first region 79 a.
- the analyzing step 87 comprises calculating characteristic points 89 of the line 85 that characterize the shape of the first region 79 a.
- the characteristic points 89 are located near to the boundaries of the storage section. In another embodiment they are located exactly on the boundaries of the storage section 15 . As shown in FIG. 6 , an additional characterizing point 91 can be calculated. In an embodiment of the present invention this point can be located in the middle of the storage section 15 , as shown in FIG. 6 .
- a position of the holder means 17 a - d is determined based on the scanning 81 and/or the analysing 87 .
- the verifying 95 may comprise checking whether the storage section is occupied by an already inserted part 13 , whether the storage section 15 is blocked by an foreign body 97 (see FIG. 2 ), and/or whether the holder means are damaged, e.g., deformed. If the storage section is not available (N) then a different storage section 15 is selected in a step 96 . After step 96 has been completed the method jumps back to step 77 .
- step 99 the orientation of the holder means 17 a - d and therefore the orientation of the storage section 15 , is determined in a step 99 .
- step 100 is performed to determine an optimal insertion path 47 to quickly insert the part 13 into the storage section 15 without collisions. Both the position as well as the orientation of the holder means 17 a - d is used to determine the insertion path 47 along which the part 13 is to be inserted into the storage section.
- the method 69 comprises an image acquisition and processing section A, which comprises the steps 77 , 81 , 87 , 93 , 95 , 96 , 99 , and 100 .
- the part 13 can be griped by means of the suction cups 65 of the insertion tool 49 (step 101 ) and be inserted into the storage section 15 by moving the part 13 into the storage section 15 along the determined insertion path 47 (step 103 ).
- the insertion tool 49 can insert a part 13 into one storage section 15 and perform image acquisition and processing steps (A) simultaneously. That is the step 103 of inserting and the image acquisition and the processing section A can be executed at the same time as shown in FIG. 7 .
- the step 103 depicted on the left hand side of FIG. 7 inserts the part 13 into the rightmost storage section 15 of the container 11 (cf. FIG. 1 and FIG. 2 ).
- the image acquisition and processing section A (cf. function 105 at the right hand side of FIG. 7 ) calculates the position and the orientation of the storage section 15 next to the rightmost storage section 15 so that a second part can be griped and inserted into the next storage section 15 (cf.
- steps 101 and 103 at the right hand side of FIG. 7 without the need of an additional movement of the insertion tool 49 for the execution of the image acquisition and processing steps (A).
- the steps 105 , 101 , and 103 can be repeated as often as needed in order to insert the needed number of parts 13 into the container 11 .
- the method is completed. A different container can be provided and the method can be started again.
- the insertion tool 49 is part of an insertion tool arrangement 111 .
- the insertion tool arrangement 111 comprises control means 113 and actuator means 115 for moving the insertion tool 49 .
- the vacuum air system 119 and the electromagnetically controllable valve 121 are also depicted in FIG. 6 .
- Both the insertion tool 49 as well as the actuator means 115 is controlled by the control means 113 .
- a digital computer 117 of the control means 113 is programmed to execute the method 69 . In the embodiment shown in FIG.
- the insertion tool 49 is initially moved to a first scanning position p 1 and then to a second scanning position p 2 , wherein the second scanning position p 2 corresponds to an end position where the control means 113 close the valve 121 in order to disconnect the suction cups 65 from the vacuum air system 119 and to release the part 13 .
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Container Filling Or Packaging Operations (AREA)
- Supplying Of Containers To The Packaging Station (AREA)
- Automatic Assembly (AREA)
Abstract
Description
-
- verifying by means of the at least one optical sensor whether the holder means of a certain storage section are available for insertion of the part;
- detection the orientation of the holder means of an available storage section by means of the at least one optical sensor;
- determining an insertion path along which a part is inserted into the available storage section by means of the insertion tool, the insertion path depending on the shape of the part, the detected position and the orientation of the holder means; and
- inserting the part into the available storage section along the determined insertion path.
Claims (16)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08016689A EP2165807B1 (en) | 2008-09-23 | 2008-09-23 | Method for inserting a part into a storage section of a storage container and insertion tool arrangement |
EP08016689.5 | 2008-09-23 | ||
EP08016689 | 2008-09-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100076592A1 US20100076592A1 (en) | 2010-03-25 |
US8078312B2 true US8078312B2 (en) | 2011-12-13 |
Family
ID=40474931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/261,769 Expired - Fee Related US8078312B2 (en) | 2008-09-23 | 2008-10-30 | Methods for inserting a part into a storage section of a storage container and insertion tool arrangement |
Country Status (7)
Country | Link |
---|---|
US (1) | US8078312B2 (en) |
EP (1) | EP2165807B1 (en) |
AT (1) | ATE514532T1 (en) |
ES (1) | ES2367206T3 (en) |
PL (1) | PL2165807T3 (en) |
PT (1) | PT2165807E (en) |
SI (1) | SI2165807T1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4685095A (en) | 1984-07-11 | 1987-08-04 | Filenet Corporation | Optical storage and retrieval device |
FR2643732A1 (en) | 1989-02-27 | 1990-08-31 | Manutention Gle Stockage Autom | Corrector device for precisely positioning a moving part in a vertical plane, the moving part moving concomitantly in a horizontal direction and a vertical direction |
JPH07254197A (en) | 1994-03-12 | 1995-10-03 | Nippon T M I:Kk | Automatic carrier reproducing device for recording medium |
US5790338A (en) | 1993-10-06 | 1998-08-04 | Hitachi, Ltd. | Library apparatus that corrects relative position displacement between a carry robot and a storing rack |
US6005734A (en) | 1996-01-19 | 1999-12-21 | Fujitsu Limited | Library unit for calculating inclination of an accessor to correct positioning information of the accessor |
US6672574B2 (en) | 2001-10-18 | 2004-01-06 | Tokai Rubber Industries, Ltd. | Fluid-filled cylindrical vibration damping device |
EP1504857A2 (en) | 2003-08-05 | 2005-02-09 | Fanuc Ltd | Work mounting device |
US20100121480A1 (en) * | 2008-09-05 | 2010-05-13 | Knapp Systemintegration Gmbh | Method and apparatus for visual support of commission acts |
US20110060449A1 (en) * | 2006-06-19 | 2011-03-10 | Kiva Systems, Inc. | System and Method for Transporting Inventory Items |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004093265A (en) * | 2002-08-30 | 2004-03-25 | Fujitsu Ltd | Position detection device and library device |
DE10311247B8 (en) | 2003-03-14 | 2008-05-08 | Inos Automationssoftware Gmbh | Portable device for detecting a position and dimensions of an object |
-
2008
- 2008-09-23 SI SI200830301T patent/SI2165807T1/en unknown
- 2008-09-23 PT PT08016689T patent/PT2165807E/en unknown
- 2008-09-23 EP EP08016689A patent/EP2165807B1/en not_active Not-in-force
- 2008-09-23 AT AT08016689T patent/ATE514532T1/en not_active IP Right Cessation
- 2008-09-23 ES ES08016689T patent/ES2367206T3/en active Active
- 2008-09-23 PL PL08016689T patent/PL2165807T3/en unknown
- 2008-10-30 US US12/261,769 patent/US8078312B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4685095A (en) | 1984-07-11 | 1987-08-04 | Filenet Corporation | Optical storage and retrieval device |
FR2643732A1 (en) | 1989-02-27 | 1990-08-31 | Manutention Gle Stockage Autom | Corrector device for precisely positioning a moving part in a vertical plane, the moving part moving concomitantly in a horizontal direction and a vertical direction |
US5790338A (en) | 1993-10-06 | 1998-08-04 | Hitachi, Ltd. | Library apparatus that corrects relative position displacement between a carry robot and a storing rack |
JPH07254197A (en) | 1994-03-12 | 1995-10-03 | Nippon T M I:Kk | Automatic carrier reproducing device for recording medium |
US6005734A (en) | 1996-01-19 | 1999-12-21 | Fujitsu Limited | Library unit for calculating inclination of an accessor to correct positioning information of the accessor |
US6672574B2 (en) | 2001-10-18 | 2004-01-06 | Tokai Rubber Industries, Ltd. | Fluid-filled cylindrical vibration damping device |
EP1504857A2 (en) | 2003-08-05 | 2005-02-09 | Fanuc Ltd | Work mounting device |
US20110060449A1 (en) * | 2006-06-19 | 2011-03-10 | Kiva Systems, Inc. | System and Method for Transporting Inventory Items |
US20100121480A1 (en) * | 2008-09-05 | 2010-05-13 | Knapp Systemintegration Gmbh | Method and apparatus for visual support of commission acts |
Also Published As
Publication number | Publication date |
---|---|
EP2165807B1 (en) | 2011-06-29 |
SI2165807T1 (en) | 2011-11-30 |
PL2165807T3 (en) | 2011-11-30 |
ES2367206T3 (en) | 2011-10-31 |
PT2165807E (en) | 2011-07-29 |
ATE514532T1 (en) | 2011-07-15 |
EP2165807A1 (en) | 2010-03-24 |
US20100076592A1 (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4565023B2 (en) | Article take-out device | |
US8504191B2 (en) | Method for picking up work pieces | |
US9132553B2 (en) | Robot system and method for producing a to-be-processed material | |
JP4226623B2 (en) | Work picking device | |
CN102735166B (en) | Spatial digitizer and robot system | |
US9089966B2 (en) | Workpiece pick-up apparatus | |
JP5582126B2 (en) | Work take-out system, robot apparatus, and workpiece manufacturing method | |
JP5893695B1 (en) | Article transport system | |
EP2708333A2 (en) | Robot apparatus for transferring to-be processed objects | |
JP4911341B2 (en) | Article transfer device | |
KR102114718B1 (en) | Electronic part mounting apparatus and mounted part inspection method | |
JP5544320B2 (en) | Stereoscopic robot picking device | |
US10046378B2 (en) | Bending robot and method for detecting workpiece | |
US9713870B2 (en) | System and method for locating vehicle components relative to each other | |
JP7252581B2 (en) | Article detection device, article detection method, and industrial vehicle | |
CN110621447B (en) | Robot conveyor calibration method, robot system and control system | |
WO2018139026A1 (en) | Workpiece detection device and method | |
EP2570242A2 (en) | Robot system | |
EP1820020B1 (en) | Apparatus and method for detecting objects | |
JP6424560B2 (en) | Abnormality cause estimation device, picking device, and abnormality cause estimation method in picking device | |
JP4331054B2 (en) | Adsorption state inspection device, surface mounter, and component testing device | |
US8078312B2 (en) | Methods for inserting a part into a storage section of a storage container and insertion tool arrangement | |
JP2019016294A (en) | Information processor, information processing method, information processing program, and system | |
JP7549121B2 (en) | Robot system and control device | |
EP4238718A1 (en) | Soldering device, soldering system, and processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INOS AUTOMATIONSSOFTWARE GMBH,GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TASSAKOS, CHARALAMBOS, DR.;REEL/FRAME:022140/0478 Effective date: 20090108 Owner name: INOS AUTOMATIONSSOFTWARE GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TASSAKOS, CHARALAMBOS, DR.;REEL/FRAME:022140/0478 Effective date: 20090108 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20191213 |