US8078312B2 - Methods for inserting a part into a storage section of a storage container and insertion tool arrangement - Google Patents

Methods for inserting a part into a storage section of a storage container and insertion tool arrangement Download PDF

Info

Publication number
US8078312B2
US8078312B2 US12/261,769 US26176908A US8078312B2 US 8078312 B2 US8078312 B2 US 8078312B2 US 26176908 A US26176908 A US 26176908A US 8078312 B2 US8078312 B2 US 8078312B2
Authority
US
United States
Prior art keywords
storage section
insertion tool
holder means
container
bearing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US12/261,769
Other versions
US20100076592A1 (en
Inventor
Charalambos Tassakos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INOS Automationssoftware GmbH
Original Assignee
INOS Automationssoftware GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INOS Automationssoftware GmbH filed Critical INOS Automationssoftware GmbH
Assigned to INOS AUTOMATIONSSOFTWARE GMBH reassignment INOS AUTOMATIONSSOFTWARE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TASSAKOS, CHARALAMBOS, DR.
Publication of US20100076592A1 publication Critical patent/US20100076592A1/en
Application granted granted Critical
Publication of US8078312B2 publication Critical patent/US8078312B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1687Assembly, peg and hole, palletising, straight line, weaving pattern movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37571Camera detecting reflected light from laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45045Maintenance, automatic storage and retrieval system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45234Thin flat workpiece, sheet metal machining

Definitions

  • the present invention refers to a method for automatically inserting at least one part of a given shape into a storage section of a storage container, wherein the storage section comprises a plurality of holder means adapted for holding one of the at least one part, wherein the part is inserted by means of an insertion tool, and wherein the method comprises the step of detecting the position of the holder means by means of at least one optical sensor.
  • the object of the present invention is to provide a method for automatically inserting a part into a storage section of a container, wherein collisions of parts with each other and collisions of a part with a storage section are avoided.
  • this object is achieved by a method of the above-mentioned kind that is characterized in that the method further comprises the steps of
  • the step of verifying ensures that those storage sections are selected that are appropriate to insert the part.
  • storage sections into which the inserting of the part would result in a collision are skipped by the method according to the present invention.
  • the insertion path is determined depending on the position and the orientation of the holder means the movement performed by the insertion tool during the inserting is adapted to variances of the shape of the holder means resulting from the deformation of the holder means or other parts of the container after multiple uses of the container.
  • the method according to the invention avoids collisions by skipping inappropriate storage sections and by adapting the insertion path to the actual shape of the holder means.
  • the holder means comprise at least one bearing surface adapted to face the inserted part and the method comprises scanning at least one region of at least one bearing surface by means of the at least one optical sensor, wherein said detecting of the position, said verifying and/or said detecting the orientation is based on said scanning.
  • verifying whether the holder means are available comprises checking whether the storage section is occupied by an already inserted part, whether the storage section is blocked by a foreign body, and/or whether the holder means are damaged.
  • the holder means could be damaged by deformation of at least a part of the holder means to, such a large extent that it would not be possible to insert the part into the corresponding storage section anymore.
  • the holder means are damaged if a part of the holder means is broken away so that the holder means are not able to hold the part within the storage section anymore.
  • the scanning comprises computing at least one characteristic point, wherein the characteristic point characterizes a shape of the scanned region of the bearing surface.
  • the characteristic point characterizes a shape of the scanned region of the bearing surface.
  • multiple characteristic points are calculated and the position, the orientation and/or the shape of the holder means is detected depending on an absolute position of the points and the relative arrangement of the points to each other.
  • the storage section of the container has usually multiple holder means located at different positions within the storage section.
  • each holder means has at least one bearing surface adapted to face the inserted part.
  • the insertion tool comprises multiple optical sensors and that multiple regions of different bearing surfaces are scanned, wherein the regions of different bearing surfaces are scanned by different sensors.
  • At least one sensor is a portable sensor. It is preferred that at least one sensor is arranged stationary with respect to the insertion tool and that the scanning comprises moving the insertion tool to at least one scanning position such that the sensor is located next to the region of the bearing surface to be scanned. In other words, at least one sensor is attached to the insertion tool close to the bearing surface or to the region of the bearing surface to be scanned by the sensor. This allows for optimally positioning the sensor to the region to be scanned without the need for a separate actuator for moving the sensor. It is suggested to use a common actuator for both the insertion tool and the sensor mounted on the insertion tool.
  • the scanning comprises moving the insertion tool successively to multiple difference scanning positions. In each scanning position a different set of regions of the bearing surfaces can be scanned. Thus, a large amount of information corresponding to the position and the orientation of holder means can be acquired. As a consequence, the position as well as the orientation of the holder means can be determined quite precisely.
  • the container comprises multiple store sections arranged side by side and that the inserting of the part and the scanning are performed simultaneously, wherein the storage section into which a part is inserted and the storage section the region of the bearing surface of which is scanned differ from each other and are, preferably, directly adjacent.
  • the method comprises the step of determining a location—or at least an approximate location—of the container by locating a predetermined portion the container, preferably an outer corner of the container.
  • the sensor that is used to determine the position and the orientation of the holder means can be applied.
  • the location of the container is determined before the position and the orientation of the holder means of a certain storage section is determined. This allows to initially determine at least an approximate position of a first storage section into which a first part shall be inserted. In this way the method according to the invention can be started quickly and reliably.
  • the object of the present invention is also solved by an insertion tool arrangement for automatically inserting at least one part of a given shape into a storage section of a storage container
  • the storage section comprises a plurality of holder means adapted for holding one of the at least one part
  • the insertion tool arrangement comprises an insertion tool for inserting the part
  • the insertion tool arrangement preferably the insertion tool, comprises at least one optical sensor for detecting the position of the holder means that is characterized in that the insertion tool arrangement comprises control means configured to automatically operate the insertion tool according to the method according to the present invention.
  • the insertion tool according to the present invention has all advantages of the above described method according to the invention.
  • the insertion tool arrangement comprises at least one optical sensor to scan the region of the bearing surface, wherein the sensor comprises a laser to light the region and a camera for acquisition of an image of the region. It is preferred to arrange the sensor directly on the insertion tool. To this end, a compact, robust and portable sensor can be applied. Such a sensor is described in the patent application US 2004/01792601 A1, the entire disclosure of which is hereby incorporated by reference. For determining the position and orientation of the holder means this kind of sensor suitable methods of image processing can be applied. For instance, laser triangulation, photogrammetric methods, or methods with structured light can be applied. When using a sensor with multiple cameras then stereo image processing can be used too.
  • the part is essentially flat and the storage section corresponds to an essentially flat portion of the container bounded by at least one slot of the holder means located at an edge of the storage section and forming the bearing surface, and the insertion tool is moveable to at least one scanning position such that the optical sensor is located next to the slot in order to scan at least one region of the bearing surface formed by a slot.
  • the insertion tool is provided which allows inserting flat parts of a car body such as a hood into the container.
  • the insertion tool according to the invention can also be applied to insert different kinds of parts into the container.
  • the holder means comprise multiple slots and the insertion tool comprises multiple sensors, where in each sensor is arrange stationary with aspect to the insertion tool such that each sensor is located next to a different slot if the insertion tool is located at the scanning position.
  • FIG. 1 shows a sectional front few of a container according to a preferred embodiment of the present invention with a part inserted into a storage section of the container;
  • FIG. 2 shows a sectional top few of the container shown in FIG. 1 ;
  • FIG. 3 shows a sectional side view of the storage section of the container shown in FIG. 1 and FIG. 2 and the part inserted in the storage section;
  • FIG. 4 shows a sectional side few of an insertion tool according to a preferred embodiment of the present invention
  • FIG. 5 shows a flow chart of a method according the preferred embodiment of the present invention
  • FIG. 6 shows a camera image generated by an optical sensor of the insertion tool shown in FIG. 4 ;
  • FIG. 7 shows a flow chart of simultaneously executed tasks of the method shown in FIG. 5 ;
  • FIG. 8 shows a schematic view of an insertion tool arrangement according to the preferred embodiment.
  • FIGS. 1 to 3 show a container 11 for storage and transport of multiple parts 13 of a given shape.
  • the part 13 is a hood for a motor vehicle.
  • the present invention can also be applied in connection with different kinds of parts such as arbitrary parts of a motor vehicle, in particular a part of a car body, and the like.
  • the present invention is not limited to applications of the automotive industry.
  • the present invention is particularly well suited to be applied in connection with high value and easily damageable parts which can not be treated as bulk goods and must be handled individually.
  • the container 11 comprises multiple storage sections 15 each adapted to hold a single part 13 by means of holder means. As shown in FIG. 1 , each storage section 15 has a first holder means 17 a located at the top of the storage section 15 , second holder means 17 b located next to first holder means 17 a , third holder means 17 c located below the second holder means 17 b , and forth holder means located below the third holder means 17 c.
  • the first holder means 17 a of the storage sections 15 are formed in a first rail 21 located at the top of the container 11 and fixed to top lateral rods 23 of a frame 25 of the container 11 (cf. FIG. 2 ).
  • the second holder means 17 b of all storage sections 15 are formed into a second rail 27 and the third holder means 17 c are formed into a third rail 29 . Both the second rail 27 as well as the third rail 29 and are mounted at rear vertical rods 31 of the frame 25 of the container 11 .
  • the first rail 21 , the second rail 27 , and the third rail 29 are parallel each other.
  • the forth holder means 17 d are formed by forth rails 33 which are arranged in parallel to each other and orthogonal to the first rail 21 , the second rail 27 , and the third rail 29 . As shown in FIG. 1 and FIG. 3 the forth rails 33 are mounted on top of a base plate 35 of the container 11 .
  • the first holder means 17 a , the second holder means 17 b , the third holder means 17 c and the forth holder means 17 d comprise a first bearing surface 37 a , a second bearing surface 37 b , a third bearing surface 37 c and a forth bearing surface 37 d respectively.
  • Each bearing surface 37 ad faces the part 13 inserted into the storage section 15 .
  • the first bearing surface 37 a , the second bearing surface 37 b , and the third bearing surface 37 c are formed by curved cavities 39 of the corresponding rails 21 , 27 , 29 .
  • the forth bearing surface 37 d is bounded by side surfaces 41 of two adjacent forth rails 33 and by a portion of an upper side 43 of the base plate 35 located between these two adjacent forth rails 33 .
  • the bearing surfaces 37 a - d form slots into which the part 13 can be inserted. If the part 13 is inserted into these slots then the bearing surfaces 37 engage with certain portions of an outer border the part 13 . In this manner an undesired movement of the part 13 within the container 11 during storage or transport is avoided.
  • the parts are inserted successively along an insertion path (arrow 47 ), which is approximately in parallel to the holder means 17 a - d , i.e., in parallel to the side surfaces 41 of the forth rails 33 .
  • FIG. 4 shows an insertion tool 49 for automatically inserting one part 13 or multiple parts 13 into the storage sections 15 of the container 11 .
  • the insertion tool 49 comprises four optical sensors 51 a - d .
  • the sensors 51 a - d are arranged stationary which respect to a body 57 of the insertion tool by means of appropriately formed mounting rods 53 .
  • the sensors 51 a - d are attached to the mounting rods 53 by means of a hinge 55 for fine adjustment of the location of the sensors 51 a - d with respect to the body 57 of the insertion tool 49 .
  • Each sensor 51 a - d comprises a transmission unit 59 such as a laser to light one or more regions of the bearing surface 37 a - d .
  • each optical sensor 51 a - d comprises a receiver unit 61 such as a video camera to capture an image of the regions of the bearing surfaces 37 a - d lit by the transmission unit 59 .
  • Three optical sensors, namely the first optical sensor 51 a , the second optical sensor 51 b , and the third optical sensor 51 c comprise a carrier element 63 to ensure a precise location of the receiver unit 61 with respect to the transmission unit 59 .
  • the transmission unit 59 and the receiving unit 61 of the forth optical sensor 51 d are mounted separately to the body 57 .
  • Optical sensors 51 a - d suitable for application in connection with the present invention are described in more detail in the published patent application US 2004/0179206 A1.
  • the insertion tool 49 comprises four controllable suction cups 65 fixed by means of the mounting rods 53 to the body 57 of the insertion tool 49 .
  • the suction cups 65 can be connected via an electrometrically controllable valve to a vacuum air system.
  • the insertion tool 49 can grip the part 13 by moving the suction cups 65 to a surface of the part 13 and activating the suction cups 65 by connecting them to the vacuum air system by means of the valve.
  • the contour of the part 13 griped by the insertion tool 49 is shown in FIG. 4 by a dashed line.
  • the insertion tool 49 is flat, i.e., the maximum dimension of the insertion tool 49 in a direction that is orthogonal to the plane of FIG. 4 is in the order of a width w of a storage section 15 .
  • the thickness of the insertion tool 49 can be in the range between half the width w of a storage section 15 up to approximately twice the width w of the storage section 15 .
  • the body 57 is attached to an appropriate actuator means such as an arm of an industrial robot.
  • a location of the container 11 is determined in step 73 .
  • a predetermined portion of the container 11 such as an outer corner 75 of the container 11 (cf. FIG. 1 ) can be localized by means of a sensor.
  • the sensor to be used to localize the outer corner 75 can be one of the sensors 51 a - d or an additional sensor.
  • the insertion tool 47 is moved to a scanning position (step 77 ).
  • the insertion tool 49 is in the scanning position if it is inserted into the container 11 between two adjacent storage sections 15 such that the first sensor 51 a is located next to the first bearing surface 37 a , the second sensor 51 b is located next to the second bearing surface 37 b , the third sensor 51 c is located next to the third bearing surface 37 c , and the forth sensor 51 d is located next to the forth bearing surface 37 d.
  • the transmitter unit 59 of the first sensor 51 a lights a first linear region 79 a of the first bearing surface 37 a .
  • the transmitter unit 59 of the second sensor 51 b lights a second linear region 79 b of the second bearing surface 37 b .
  • the transmitter unit 59 of the third sensor 51 c lights a third linear region 49 c of the third bearing surface 37 c .
  • the transmitter unit 59 of the forth sensor 51 d lights multiple linear forth regions 79 d of the forth bearing surface 37 d .
  • the first region 79 a , the second region 79 b and the third region 79 c are essentially in parallel to the first rail 21 , the second rail 27 , and the third rail 29 respectively.
  • the linear forth regions 79 d are orthogonal to the side surfaces 41 of the forth rails 33 and extend partly on the upper side the base plate 35 and partly on the forth rails 33 .
  • the receiving units 61 i.e., the cameras, capture images of the regions 79 a - d lit by the transmitter units 59 .
  • the image 83 shows a line 85 the shape of which characterizes the shape of the first region 79 a.
  • the analyzing step 87 comprises calculating characteristic points 89 of the line 85 that characterize the shape of the first region 79 a.
  • the characteristic points 89 are located near to the boundaries of the storage section. In another embodiment they are located exactly on the boundaries of the storage section 15 . As shown in FIG. 6 , an additional characterizing point 91 can be calculated. In an embodiment of the present invention this point can be located in the middle of the storage section 15 , as shown in FIG. 6 .
  • a position of the holder means 17 a - d is determined based on the scanning 81 and/or the analysing 87 .
  • the verifying 95 may comprise checking whether the storage section is occupied by an already inserted part 13 , whether the storage section 15 is blocked by an foreign body 97 (see FIG. 2 ), and/or whether the holder means are damaged, e.g., deformed. If the storage section is not available (N) then a different storage section 15 is selected in a step 96 . After step 96 has been completed the method jumps back to step 77 .
  • step 99 the orientation of the holder means 17 a - d and therefore the orientation of the storage section 15 , is determined in a step 99 .
  • step 100 is performed to determine an optimal insertion path 47 to quickly insert the part 13 into the storage section 15 without collisions. Both the position as well as the orientation of the holder means 17 a - d is used to determine the insertion path 47 along which the part 13 is to be inserted into the storage section.
  • the method 69 comprises an image acquisition and processing section A, which comprises the steps 77 , 81 , 87 , 93 , 95 , 96 , 99 , and 100 .
  • the part 13 can be griped by means of the suction cups 65 of the insertion tool 49 (step 101 ) and be inserted into the storage section 15 by moving the part 13 into the storage section 15 along the determined insertion path 47 (step 103 ).
  • the insertion tool 49 can insert a part 13 into one storage section 15 and perform image acquisition and processing steps (A) simultaneously. That is the step 103 of inserting and the image acquisition and the processing section A can be executed at the same time as shown in FIG. 7 .
  • the step 103 depicted on the left hand side of FIG. 7 inserts the part 13 into the rightmost storage section 15 of the container 11 (cf. FIG. 1 and FIG. 2 ).
  • the image acquisition and processing section A (cf. function 105 at the right hand side of FIG. 7 ) calculates the position and the orientation of the storage section 15 next to the rightmost storage section 15 so that a second part can be griped and inserted into the next storage section 15 (cf.
  • steps 101 and 103 at the right hand side of FIG. 7 without the need of an additional movement of the insertion tool 49 for the execution of the image acquisition and processing steps (A).
  • the steps 105 , 101 , and 103 can be repeated as often as needed in order to insert the needed number of parts 13 into the container 11 .
  • the method is completed. A different container can be provided and the method can be started again.
  • the insertion tool 49 is part of an insertion tool arrangement 111 .
  • the insertion tool arrangement 111 comprises control means 113 and actuator means 115 for moving the insertion tool 49 .
  • the vacuum air system 119 and the electromagnetically controllable valve 121 are also depicted in FIG. 6 .
  • Both the insertion tool 49 as well as the actuator means 115 is controlled by the control means 113 .
  • a digital computer 117 of the control means 113 is programmed to execute the method 69 . In the embodiment shown in FIG.
  • the insertion tool 49 is initially moved to a first scanning position p 1 and then to a second scanning position p 2 , wherein the second scanning position p 2 corresponds to an end position where the control means 113 close the valve 121 in order to disconnect the suction cups 65 from the vacuum air system 119 and to release the part 13 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)
  • Container Filling Or Packaging Operations (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Automatic Assembly (AREA)

Abstract

The invention refers to a Method (69) for automatically inserting at least one part (13) into a storage section (15) of a container (11), wherein the storage section (15) comprises a plurality of holder means (17 a-d), wherein the part (13) is inserted (103) by means of an insertion tool (49), and wherein the method (69) comprises the step of detecting (93) the position of the holder means (17 a-d) by means of at least one optical sensor (51 a-d). In order to provide a method for automatically inserting a part into a storage section (15), wherein collisions are avoided it is suggested that the method (69) further comprises the steps of verifying (95) whether the holder means (17 a-d) of a certain storage section (15) are available for insertion of the part (13); detecting (99) the orientation of the holder means (17 a-d); determining (100) an insertion path (47) along which the part is inserted; and inserting (103) the part (13) into the available storage section (15) along the determined insertion path (47).

Description

CROSS-REFERENCE TO RELATED DOCUMENTS
The present application claims priority to EPO patent application serial number EP08016689.5, which was filed on Sep. 23, 2007, which is incorporated herein in its entirety, at least by reference.
The present invention refers to a method for automatically inserting at least one part of a given shape into a storage section of a storage container, wherein the storage section comprises a plurality of holder means adapted for holding one of the at least one part, wherein the part is inserted by means of an insertion tool, and wherein the method comprises the step of detecting the position of the holder means by means of at least one optical sensor.
In order to store and transport high-value goods such as expensive parts of a motor vehicle usually special containers are applied which comprises multiple storage sections each of them adapted to hold a single high-value part. Storage of the parts in individual storage sections serves to prevent the parts from being damaged or deformed during storage or transport within the container.
When applying flow production in order to produce the part then the part has to be removed rather quickly from the end of an assembly line in order to avoid a bottleneck slowing down the production process. To this end, it is known in the art to apply industrial robots to automatically remove the part from the end of the assembly line and to insert the part in the container. Known methods use optical sensors to locate a special optical mark placed at a known position within the container and calculate based on the location of the mark the position of the individual storage sections.
The published patent application US 2004/0179206 A1 discloses an optical sensor in the form of a portable device for measuring the position shape, and/or size of an object.
However, when using the known methods disruptions of the production process occur relatively frequently. For instance, if a container which is not completely empty is placed at the end of the assembly line to be automatically filled then it will eventually come to a collision between a part picked up from the end of the assembly line by the robot and a part that was already residing within the container before the container has been placed at the end of the assembly line. Furthermore, the containers are generally used multiple times so that the storage sections are subjected to wear and tear and will become deformed in the course of time. If the robot tries to insert a part into a deformed storage section then the part will collide with it. Both kinds of collisions—collisions of parts with each others and collisions of a part with a deformed storage section—result in a disruption of the production process in most cases. Moreover, the parts involved in the collision may be damaged.
Each time a disruption occurs a work-intensive and time-consuming and therefore expensive manual intervention is needed in order to resume the production process. Therefore, it is desirable to apply a method for inserting the paths in the container that leads to a lower rate of disruptions.
The object of the present invention is to provide a method for automatically inserting a part into a storage section of a container, wherein collisions of parts with each other and collisions of a part with a storage section are avoided.
According to the present invention, this object is achieved by a method of the above-mentioned kind that is characterized in that the method further comprises the steps of
    • verifying by means of the at least one optical sensor whether the holder means of a certain storage section are available for insertion of the part;
    • detection the orientation of the holder means of an available storage section by means of the at least one optical sensor;
    • determining an insertion path along which a part is inserted into the available storage section by means of the insertion tool, the insertion path depending on the shape of the part, the detected position and the orientation of the holder means; and
    • inserting the part into the available storage section along the determined insertion path.
The step of verifying ensures that those storage sections are selected that are appropriate to insert the part. Thus, storage sections into which the inserting of the part would result in a collision are skipped by the method according to the present invention. Because the insertion path is determined depending on the position and the orientation of the holder means the movement performed by the insertion tool during the inserting is adapted to variances of the shape of the holder means resulting from the deformation of the holder means or other parts of the container after multiple uses of the container. Hence, the method according to the invention avoids collisions by skipping inappropriate storage sections and by adapting the insertion path to the actual shape of the holder means.
According to a preferred embodiment of the present invention the holder means comprise at least one bearing surface adapted to face the inserted part and the method comprises scanning at least one region of at least one bearing surface by means of the at least one optical sensor, wherein said detecting of the position, said verifying and/or said detecting the orientation is based on said scanning. By scanning the bearing surface directly instead of locating a mark placed on the container both the position and the orientation of the holder means can be detected particularly reliably and with a high accuracy. This leads to a highly reliable method which is robust against unexpected variations of the shape of the holder means.
It is preferred that verifying whether the holder means are available comprises checking whether the storage section is occupied by an already inserted part, whether the storage section is blocked by a foreign body, and/or whether the holder means are damaged. The holder means could be damaged by deformation of at least a part of the holder means to, such a large extent that it would not be possible to insert the part into the corresponding storage section anymore. In addition, the holder means are damaged if a part of the holder means is broken away so that the holder means are not able to hold the part within the storage section anymore. When performing said checking, the probability that an occupied, blocked or damaged storage section is selected to insert the part or the probability that a good storage section is erroneously skipped is comparatively low.
In order to provide a method with a rather low computational complexity that still works reliably it is suggested that the scanning comprises computing at least one characteristic point, wherein the characteristic point characterizes a shape of the scanned region of the bearing surface. Preferably, multiple characteristic points are calculated and the position, the orientation and/or the shape of the holder means is detected depending on an absolute position of the points and the relative arrangement of the points to each other. The storage section of the container has usually multiple holder means located at different positions within the storage section. Typically, each holder means has at least one bearing surface adapted to face the inserted part.
In order to allow for scanning the bearing surfaces of the different holder means simultaneously it is suggested that the insertion tool comprises multiple optical sensors and that multiple regions of different bearing surfaces are scanned, wherein the regions of different bearing surfaces are scanned by different sensors.
In order to acquire more precise information about the structure of the bearing surface and therefore the position and the orientation of the corresponding holder means it is preferred that multiple regions of a single bearing surface are scanned by a single sensor.
According to a preferred embodiment of the present invention at least one sensor is a portable sensor. It is preferred that at least one sensor is arranged stationary with respect to the insertion tool and that the scanning comprises moving the insertion tool to at least one scanning position such that the sensor is located next to the region of the bearing surface to be scanned. In other words, at least one sensor is attached to the insertion tool close to the bearing surface or to the region of the bearing surface to be scanned by the sensor. This allows for optimally positioning the sensor to the region to be scanned without the need for a separate actuator for moving the sensor. It is suggested to use a common actuator for both the insertion tool and the sensor mounted on the insertion tool.
It is preferred that the scanning comprises moving the insertion tool successively to multiple difference scanning positions. In each scanning position a different set of regions of the bearing surfaces can be scanned. Thus, a large amount of information corresponding to the position and the orientation of holder means can be acquired. As a consequence, the position as well as the orientation of the holder means can be determined quite precisely.
Furthermore, it is suggested that the container comprises multiple store sections arranged side by side and that the inserting of the part and the scanning are performed simultaneously, wherein the storage section into which a part is inserted and the storage section the region of the bearing surface of which is scanned differ from each other and are, preferably, directly adjacent. By inserting the part into a storage section and simultaneously determining the position and orientation of a different storage section the time needed to fill the container with multiple parts is considerably reduced because determining the position and the orientation of the holder means does not require an additional time interval. Therefore, the method can be executed rather quickly.
According to an embodiment of the present invention it is suggested that the method comprises the step of determining a location—or at least an approximate location—of the container by locating a predetermined portion the container, preferably an outer corner of the container. In order to determine the location of the container the sensor that is used to determine the position and the orientation of the holder means can be applied. However, it is also possible to apply a different sensor dedicated to determine the location of the container. Preferably, the location of the container is determined before the position and the orientation of the holder means of a certain storage section is determined. This allows to initially determine at least an approximate position of a first storage section into which a first part shall be inserted. In this way the method according to the invention can be started quickly and reliably.
The object of the present invention is also solved by an insertion tool arrangement for automatically inserting at least one part of a given shape into a storage section of a storage container wherein the storage section comprises a plurality of holder means adapted for holding one of the at least one part, the insertion tool arrangement comprises an insertion tool for inserting the part and wherein the insertion tool arrangement, preferably the insertion tool, comprises at least one optical sensor for detecting the position of the holder means that is characterized in that the insertion tool arrangement comprises control means configured to automatically operate the insertion tool according to the method according to the present invention. The insertion tool according to the present invention has all advantages of the above described method according to the invention.
It is suggested that the insertion tool arrangement comprises at least one optical sensor to scan the region of the bearing surface, wherein the sensor comprises a laser to light the region and a camera for acquisition of an image of the region. It is preferred to arrange the sensor directly on the insertion tool. To this end, a compact, robust and portable sensor can be applied. Such a sensor is described in the patent application US 2004/01792601 A1, the entire disclosure of which is hereby incorporated by reference. For determining the position and orientation of the holder means this kind of sensor suitable methods of image processing can be applied. For instance, laser triangulation, photogrammetric methods, or methods with structured light can be applied. When using a sensor with multiple cameras then stereo image processing can be used too.
In a preferred embodiment of the present invention the part is essentially flat and the storage section corresponds to an essentially flat portion of the container bounded by at least one slot of the holder means located at an edge of the storage section and forming the bearing surface, and the insertion tool is moveable to at least one scanning position such that the optical sensor is located next to the slot in order to scan at least one region of the bearing surface formed by a slot. In this manner an insertion tool is provided which allows inserting flat parts of a car body such as a hood into the container. However, the insertion tool according to the invention can also be applied to insert different kinds of parts into the container.
In order to allow for determining the position and the orientation of a storage a section and simultaneously inserting the part into a different storage section it is suggested that the holder means comprise multiple slots and the insertion tool comprises multiple sensors, where in each sensor is arrange stationary with aspect to the insertion tool such that each sensor is located next to a different slot if the insertion tool is located at the scanning position.
Preferred embodiments and further advantages of the present invention are shown in the figures and described in detail hereinafter.
FIG. 1 shows a sectional front few of a container according to a preferred embodiment of the present invention with a part inserted into a storage section of the container;
FIG. 2 shows a sectional top few of the container shown in FIG. 1;
FIG. 3 shows a sectional side view of the storage section of the container shown in FIG. 1 and FIG. 2 and the part inserted in the storage section;
FIG. 4 shows a sectional side few of an insertion tool according to a preferred embodiment of the present invention;
FIG. 5 shows a flow chart of a method according the preferred embodiment of the present invention;
FIG. 6 shows a camera image generated by an optical sensor of the insertion tool shown in FIG. 4;
FIG. 7 shows a flow chart of simultaneously executed tasks of the method shown in FIG. 5; and
FIG. 8 shows a schematic view of an insertion tool arrangement according to the preferred embodiment.
The FIGS. 1 to 3 show a container 11 for storage and transport of multiple parts 13 of a given shape. According to the preferred embodiment described herein the part 13 is a hood for a motor vehicle. However, the present invention can also be applied in connection with different kinds of parts such as arbitrary parts of a motor vehicle, in particular a part of a car body, and the like. The present invention is not limited to applications of the automotive industry. The present invention is particularly well suited to be applied in connection with high value and easily damageable parts which can not be treated as bulk goods and must be handled individually.
The container 11 comprises multiple storage sections 15 each adapted to hold a single part 13 by means of holder means. As shown in FIG. 1, each storage section 15 has a first holder means 17 a located at the top of the storage section 15, second holder means 17 b located next to first holder means 17 a, third holder means 17 c located below the second holder means 17 b, and forth holder means located below the third holder means 17 c.
The first holder means 17 a of the storage sections 15 are formed in a first rail 21 located at the top of the container 11 and fixed to top lateral rods 23 of a frame 25 of the container 11 (cf. FIG. 2).
The second holder means 17 b of all storage sections 15 are formed into a second rail 27 and the third holder means 17 c are formed into a third rail 29. Both the second rail 27 as well as the third rail 29 and are mounted at rear vertical rods 31 of the frame 25 of the container 11. The first rail 21, the second rail 27, and the third rail 29 are parallel each other.
The forth holder means 17 d are formed by forth rails 33 which are arranged in parallel to each other and orthogonal to the first rail 21, the second rail 27, and the third rail 29. As shown in FIG. 1 and FIG. 3 the forth rails 33 are mounted on top of a base plate 35 of the container 11.
The first holder means 17 a, the second holder means 17 b, the third holder means 17 c and the forth holder means 17 d comprise a first bearing surface 37 a, a second bearing surface 37 b, a third bearing surface 37 c and a forth bearing surface 37 d respectively. Each bearing surface 37 ad faces the part 13 inserted into the storage section 15. The first bearing surface 37 a, the second bearing surface 37 b, and the third bearing surface 37 c are formed by curved cavities 39 of the corresponding rails 21, 27, 29. The forth bearing surface 37 d is bounded by side surfaces 41 of two adjacent forth rails 33 and by a portion of an upper side 43 of the base plate 35 located between these two adjacent forth rails 33.
The bearing surfaces 37 a-d form slots into which the part 13 can be inserted. If the part 13 is inserted into these slots then the bearing surfaces 37 engage with certain portions of an outer border the part 13. In this manner an undesired movement of the part 13 within the container 11 during storage or transport is avoided.
In order to charge the container 11 with multiple parts 13 the parts are inserted successively along an insertion path (arrow 47), which is approximately in parallel to the holder means 17 a-d, i.e., in parallel to the side surfaces 41 of the forth rails 33.
FIG. 4 shows an insertion tool 49 for automatically inserting one part 13 or multiple parts 13 into the storage sections 15 of the container 11. The insertion tool 49 comprises four optical sensors 51 a-d. The sensors 51 a-d are arranged stationary which respect to a body 57 of the insertion tool by means of appropriately formed mounting rods 53. The sensors 51 a-d are attached to the mounting rods 53 by means of a hinge 55 for fine adjustment of the location of the sensors 51 a-d with respect to the body 57 of the insertion tool 49.
Each sensor 51 a-d comprises a transmission unit 59 such as a laser to light one or more regions of the bearing surface 37 a-d. In addition each optical sensor 51 a-d comprises a receiver unit 61 such as a video camera to capture an image of the regions of the bearing surfaces 37 a-d lit by the transmission unit 59. Three optical sensors, namely the first optical sensor 51 a, the second optical sensor 51 b, and the third optical sensor 51 c, comprise a carrier element 63 to ensure a precise location of the receiver unit 61 with respect to the transmission unit 59. The transmission unit 59 and the receiving unit 61 of the forth optical sensor 51 d are mounted separately to the body 57. Optical sensors 51 a-d suitable for application in connection with the present invention are described in more detail in the published patent application US 2004/0179206 A1.
Furthermore, the insertion tool 49 comprises four controllable suction cups 65 fixed by means of the mounting rods 53 to the body 57 of the insertion tool 49. The suction cups 65 can be connected via an electrometrically controllable valve to a vacuum air system. The insertion tool 49 can grip the part 13 by moving the suction cups 65 to a surface of the part 13 and activating the suction cups 65 by connecting them to the vacuum air system by means of the valve. The contour of the part 13 griped by the insertion tool 49 is shown in FIG. 4 by a dashed line.
The insertion tool 49 is flat, i.e., the maximum dimension of the insertion tool 49 in a direction that is orthogonal to the plane of FIG. 4 is in the order of a width w of a storage section 15. In general, the thickness of the insertion tool 49 can be in the range between half the width w of a storage section 15 up to approximately twice the width w of the storage section 15.
In order to automatically perform movements of the insertion tool 49, e.g., the movement along the insertion path 47 the body 57 is attached to an appropriate actuator means such as an arm of an industrial robot.
In the following an exemplary method for automatically inserting one or multiple parts 13 into one or multiple storage sections 15 is described in more detail. As shown in FIG. 5, after a start 71 of the method, a location of the container 11 is determined in step 73. To this end, a predetermined portion of the container 11 such as an outer corner 75 of the container 11 (cf. FIG. 1) can be localized by means of a sensor. The sensor to be used to localize the outer corner 75 can be one of the sensors 51 a-d or an additional sensor.
Then the insertion tool 47 is moved to a scanning position (step 77). The insertion tool 49 is in the scanning position if it is inserted into the container 11 between two adjacent storage sections 15 such that the first sensor 51 a is located next to the first bearing surface 37 a, the second sensor 51 b is located next to the second bearing surface 37 b, the third sensor 51 c is located next to the third bearing surface 37 c, and the forth sensor 51 d is located next to the forth bearing surface 37 d.
After the insertion tool 49 has been moved to the scanning position regions 79 a-d of the bearing surfaces 37 a-d are scanned by the sensors 51 a-d in a step 81. In particular, the transmitter unit 59 of the first sensor 51 a lights a first linear region 79 a of the first bearing surface 37 a. The transmitter unit 59 of the second sensor 51 b lights a second linear region 79 b of the second bearing surface 37 b. The transmitter unit 59 of the third sensor 51 c lights a third linear region 49 c of the third bearing surface 37 c. In contrast to the other sensors 51 a-c lighting a single region 79 a-c only, the transmitter unit 59 of the forth sensor 51 d lights multiple linear forth regions 79 d of the forth bearing surface 37 d. The first region 79 a, the second region 79 b and the third region 79 c are essentially in parallel to the first rail 21, the second rail 27, and the third rail 29 respectively. The linear forth regions 79 d are orthogonal to the side surfaces 41 of the forth rails 33 and extend partly on the upper side the base plate 35 and partly on the forth rails 33.
During the scanning 81 the receiving units 61, i.e., the cameras, capture images of the regions 79 a-d lit by the transmitter units 59. An exemplary image 83 of the first region 79 a in depicted FIG. 6. The image 83 shows a line 85 the shape of which characterizes the shape of the first region 79 a.
After the scanning 81 an analyzing step 87 is performed. The analyzing step 87 comprises calculating characteristic points 89 of the line 85 that characterize the shape of the first region 79 a.
The characteristic points 89 are located near to the boundaries of the storage section. In another embodiment they are located exactly on the boundaries of the storage section 15. As shown in FIG. 6, an additional characterizing point 91 can be calculated. In an embodiment of the present invention this point can be located in the middle of the storage section 15, as shown in FIG. 6.
In a following step 93 a position of the holder means 17 a-d is determined based on the scanning 81 and/or the analysing 87. Then in a step 95 it is verified by means of the sensors 51 a-d, the scanning 81, and/or the analysing 87 whether the holder means 15 are available for insertion of the part 13. To this end the verifying 95 may comprise checking whether the storage section is occupied by an already inserted part 13, whether the storage section 15 is blocked by an foreign body 97 (see FIG. 2), and/or whether the holder means are damaged, e.g., deformed. If the storage section is not available (N) then a different storage section 15 is selected in a step 96. After step 96 has been completed the method jumps back to step 77.
If the storage section 15 is available (Y) then a step 99 is executed. In step 99, the orientation of the holder means 17 a-d and therefore the orientation of the storage section 15, is determined in a step 99.
After step 99 has been completed a step 100 is performed to determine an optimal insertion path 47 to quickly insert the part 13 into the storage section 15 without collisions. Both the position as well as the orientation of the holder means 17 a-d is used to determine the insertion path 47 along which the part 13 is to be inserted into the storage section.
As shown in FIG. 5, the method 69 comprises an image acquisition and processing section A, which comprises the steps 77, 81, 87, 93, 95, 96, 99, and 100.
Finally, the part 13 can be griped by means of the suction cups 65 of the insertion tool 49 (step 101) and be inserted into the storage section 15 by moving the part 13 into the storage section 15 along the determined insertion path 47 (step 103).
The insertion tool 49 can insert a part 13 into one storage section 15 and perform image acquisition and processing steps (A) simultaneously. That is the step 103 of inserting and the image acquisition and the processing section A can be executed at the same time as shown in FIG. 7. The step 103 depicted on the left hand side of FIG. 7 inserts the part 13 into the rightmost storage section 15 of the container 11 (cf. FIG. 1 and FIG. 2). While inserting the part 13 into the rightmost storage section 15 the image acquisition and processing section A (cf. function 105 at the right hand side of FIG. 7) calculates the position and the orientation of the storage section 15 next to the rightmost storage section 15 so that a second part can be griped and inserted into the next storage section 15 (cf. steps 101 and 103 at the right hand side of FIG. 7) without the need of an additional movement of the insertion tool 49 for the execution of the image acquisition and processing steps (A). The steps 105, 101, and 103 can be repeated as often as needed in order to insert the needed number of parts 13 into the container 11. After the container 11 has been completely filled with parts 13 or if a predetermined number of parts 13 has been inserted into the container 11 then the method is completed. A different container can be provided and the method can be started again.
As schematically depicted in FIG. 8, the insertion tool 49 is part of an insertion tool arrangement 111. The insertion tool arrangement 111 comprises control means 113 and actuator means 115 for moving the insertion tool 49. For the sake of completeness the vacuum air system 119 and the electromagnetically controllable valve 121 are also depicted in FIG. 6. Both the insertion tool 49 as well as the actuator means 115 is controlled by the control means 113. A digital computer 117 of the control means 113 is programmed to execute the method 69. In the embodiment shown in FIG. 6, the insertion tool 49 is initially moved to a first scanning position p1 and then to a second scanning position p2, wherein the second scanning position p2 corresponds to an end position where the control means 113 close the valve 121 in order to disconnect the suction cups 65 from the vacuum air system 119 and to release the part 13.

Claims (16)

1. Method for automatically inserting at least one part of a given shape into a storage section of a container, wherein the storage section comprises a plurality of holder means adapted for holding one of the at least one part, wherein the part is inserted by means of an insertion tool, and wherein the method comprises the steps of:
detecting the position of the holder means by means of at least one optical sensor,
wherein the method further comprises the steps of:
verifying by means of the at least one optical sensor whether the holder means of a certain storage section are available for insertion of the part;
detecting the orientation of the holder means of an available storage section by means of the at least one optical sensor;
determining an insertion path along which the part is inserted into the available storage section by means of the insertion tool, the insertion path depending on the shape of the part, the detected position and the orientation of the holder means; and
inserting the part into the available storage section along the determined insertion path.
2. Method according to claim 1, wherein the holder means comprises at least one bearing surface adapted to face the inserted part, and wherein the method comprises scanning at least one region of at least one bearing surface by means of the at least one optical sensor, wherein said detecting the position, said verifying, and/or said detecting the orientation is based on said scanning.
3. Method according to claim 2, wherein, the verifying whether the holder means are available comprises checking whether the storage section is occupied by an already inserted part, whether the storage section is blocked by a foreign body, and/or whether the holder means are damaged.
4. Method according to claim 2, wherein the container comprises multiple storage sections arranged side by side and wherein the inserting of the part and the scanning are performed simultaneously, wherein the storage section into which the part is inserted and the storage section the region of the bearing surface of which is scanned differ from each other and are preferably directly adjacent.
5. Method according to claim 1, wherein, the verifying whether the holder means are available comprises checking whether the storage section is occupied by an already inserted part, whether the storage section is blocked by a foreign body, and/or whether the holder means are damaged.
6. Method according to claim 1, wherein the scanning comprises computing at least one characteristic point, wherein the characteristic point characterizes a shape of the scanned region of the bearing surface.
7. Method according to claim 1, wherein the insertion tool comprises multiple optical sensors and in that multiple regions of different bearing surfaces are scanned, wherein the regions of different bearing surfaces are scanned by different sensors.
8. Method according to claim 1, wherein multiple regions of a single bearing surface are scanned by a single sensor.
9. Method according to claim 1 wherein at least one sensor is arranged stationary with respect to the insertion tool and in that the scanning comprises moving the insertion tool to at least one scanning position (p1, p2) such that the sensor is located next to the region of the bearing surface to be scanned.
10. Method according to claim 9, wherein the scanning comprises moving the insertion tool successively to multiple different scanning positions (p1, p2).
11. Method according to claim 10, wherein the method comprises a step of determining the location of the container by locating a predetermined portion of the container, preferably an outer corner of the container.
12. Method according to claim 1, wherein the method comprises a step of determining the location of the container by locating a predetermined portion of the container, preferably an outer corner of the container.
13. Insertion tool arrangement for automatically inserting at least one part of a given shape into a storage section of a storage container, wherein the storage section comprises a plurality of holder means adapted for holding one of the at least one part, the insertion tool arrangement comprises an insertion tool for inserting the part and wherein the insertion tool arrangement comprises at least one optical sensor for detecting the position of the holder means, and wherein the insertion tool arrangement comprises control means configured to perform a method comprising the steps of:
verifying by means of the at least one optical sensor whether the holder means of a certain storage section are available for insertion of the part;
detecting the orientation of the holder means of an available storage section by means of the at least one optical sensor;
determining an insertion path along which the part is inserted into the available storage section by means of the insertion tool, the insertion path depending on the shape of the part, the detected position and the orientation of the holder means; and
inserting the part into the available storage section along the determined insertion path.
14. Insertion tool arrangement according to claim 13, wherein the insertion tool arrangement comprises at least one optical sensor to scan the region of the bearing surface, wherein the sensor comprises a laser to light the region and a camera for acquisition of an image of the region.
15. Insertion tool arrangement according to claim 14, wherein the part is essentially flat and the storage section corresponds to an essentially flat portion of the container bounded by at least one slot of the holder means located at an edge of the storage section and forming the bearing surface, and in that the insertion tool is movable to at least one scanning position (p1, p2) such that the optical sensor is located next to the slot in order to scan at least one region of the bearing surface.
16. Insertion tool arrangement according to claim 15, wherein the holder means comprise multiple slots and the insertion tool comprises multiple sensors, wherein each sensor is arranged stationary with respect to the insertion tool such that each sensor is located next to a different slot if the insertion tool is located at the scanning position (p1, p2).
US12/261,769 2008-09-23 2008-10-30 Methods for inserting a part into a storage section of a storage container and insertion tool arrangement Expired - Fee Related US8078312B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08016689A EP2165807B1 (en) 2008-09-23 2008-09-23 Method for inserting a part into a storage section of a storage container and insertion tool arrangement
EP08016689.5 2008-09-23
EP08016689 2008-09-23

Publications (2)

Publication Number Publication Date
US20100076592A1 US20100076592A1 (en) 2010-03-25
US8078312B2 true US8078312B2 (en) 2011-12-13

Family

ID=40474931

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/261,769 Expired - Fee Related US8078312B2 (en) 2008-09-23 2008-10-30 Methods for inserting a part into a storage section of a storage container and insertion tool arrangement

Country Status (7)

Country Link
US (1) US8078312B2 (en)
EP (1) EP2165807B1 (en)
AT (1) ATE514532T1 (en)
ES (1) ES2367206T3 (en)
PL (1) PL2165807T3 (en)
PT (1) PT2165807E (en)
SI (1) SI2165807T1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685095A (en) 1984-07-11 1987-08-04 Filenet Corporation Optical storage and retrieval device
FR2643732A1 (en) 1989-02-27 1990-08-31 Manutention Gle Stockage Autom Corrector device for precisely positioning a moving part in a vertical plane, the moving part moving concomitantly in a horizontal direction and a vertical direction
JPH07254197A (en) 1994-03-12 1995-10-03 Nippon T M I:Kk Automatic carrier reproducing device for recording medium
US5790338A (en) 1993-10-06 1998-08-04 Hitachi, Ltd. Library apparatus that corrects relative position displacement between a carry robot and a storing rack
US6005734A (en) 1996-01-19 1999-12-21 Fujitsu Limited Library unit for calculating inclination of an accessor to correct positioning information of the accessor
US6672574B2 (en) 2001-10-18 2004-01-06 Tokai Rubber Industries, Ltd. Fluid-filled cylindrical vibration damping device
EP1504857A2 (en) 2003-08-05 2005-02-09 Fanuc Ltd Work mounting device
US20100121480A1 (en) * 2008-09-05 2010-05-13 Knapp Systemintegration Gmbh Method and apparatus for visual support of commission acts
US20110060449A1 (en) * 2006-06-19 2011-03-10 Kiva Systems, Inc. System and Method for Transporting Inventory Items

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093265A (en) * 2002-08-30 2004-03-25 Fujitsu Ltd Position detection device and library device
DE10311247B8 (en) 2003-03-14 2008-05-08 Inos Automationssoftware Gmbh Portable device for detecting a position and dimensions of an object

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685095A (en) 1984-07-11 1987-08-04 Filenet Corporation Optical storage and retrieval device
FR2643732A1 (en) 1989-02-27 1990-08-31 Manutention Gle Stockage Autom Corrector device for precisely positioning a moving part in a vertical plane, the moving part moving concomitantly in a horizontal direction and a vertical direction
US5790338A (en) 1993-10-06 1998-08-04 Hitachi, Ltd. Library apparatus that corrects relative position displacement between a carry robot and a storing rack
JPH07254197A (en) 1994-03-12 1995-10-03 Nippon T M I:Kk Automatic carrier reproducing device for recording medium
US6005734A (en) 1996-01-19 1999-12-21 Fujitsu Limited Library unit for calculating inclination of an accessor to correct positioning information of the accessor
US6672574B2 (en) 2001-10-18 2004-01-06 Tokai Rubber Industries, Ltd. Fluid-filled cylindrical vibration damping device
EP1504857A2 (en) 2003-08-05 2005-02-09 Fanuc Ltd Work mounting device
US20110060449A1 (en) * 2006-06-19 2011-03-10 Kiva Systems, Inc. System and Method for Transporting Inventory Items
US20100121480A1 (en) * 2008-09-05 2010-05-13 Knapp Systemintegration Gmbh Method and apparatus for visual support of commission acts

Also Published As

Publication number Publication date
EP2165807B1 (en) 2011-06-29
SI2165807T1 (en) 2011-11-30
PL2165807T3 (en) 2011-11-30
ES2367206T3 (en) 2011-10-31
PT2165807E (en) 2011-07-29
ATE514532T1 (en) 2011-07-15
EP2165807A1 (en) 2010-03-24
US20100076592A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP4565023B2 (en) Article take-out device
US8504191B2 (en) Method for picking up work pieces
US9132553B2 (en) Robot system and method for producing a to-be-processed material
JP4226623B2 (en) Work picking device
CN102735166B (en) Spatial digitizer and robot system
US9089966B2 (en) Workpiece pick-up apparatus
JP5582126B2 (en) Work take-out system, robot apparatus, and workpiece manufacturing method
JP5893695B1 (en) Article transport system
EP2708333A2 (en) Robot apparatus for transferring to-be processed objects
JP4911341B2 (en) Article transfer device
KR102114718B1 (en) Electronic part mounting apparatus and mounted part inspection method
JP5544320B2 (en) Stereoscopic robot picking device
US10046378B2 (en) Bending robot and method for detecting workpiece
US9713870B2 (en) System and method for locating vehicle components relative to each other
JP7252581B2 (en) Article detection device, article detection method, and industrial vehicle
CN110621447B (en) Robot conveyor calibration method, robot system and control system
WO2018139026A1 (en) Workpiece detection device and method
EP2570242A2 (en) Robot system
EP1820020B1 (en) Apparatus and method for detecting objects
JP6424560B2 (en) Abnormality cause estimation device, picking device, and abnormality cause estimation method in picking device
JP4331054B2 (en) Adsorption state inspection device, surface mounter, and component testing device
US8078312B2 (en) Methods for inserting a part into a storage section of a storage container and insertion tool arrangement
JP2019016294A (en) Information processor, information processing method, information processing program, and system
JP7549121B2 (en) Robot system and control device
EP4238718A1 (en) Soldering device, soldering system, and processing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INOS AUTOMATIONSSOFTWARE GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TASSAKOS, CHARALAMBOS, DR.;REEL/FRAME:022140/0478

Effective date: 20090108

Owner name: INOS AUTOMATIONSSOFTWARE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TASSAKOS, CHARALAMBOS, DR.;REEL/FRAME:022140/0478

Effective date: 20090108

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20191213