US7916797B2 - Residual frequency, phase, timing offset and signal amplitude variation tracking apparatus and methods for OFDM systems - Google Patents
Residual frequency, phase, timing offset and signal amplitude variation tracking apparatus and methods for OFDM systems Download PDFInfo
- Publication number
- US7916797B2 US7916797B2 US11/286,996 US28699605A US7916797B2 US 7916797 B2 US7916797 B2 US 7916797B2 US 28699605 A US28699605 A US 28699605A US 7916797 B2 US7916797 B2 US 7916797B2
- Authority
- US
- United States
- Prior art keywords
- error
- tracking
- estimating
- carrier
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2657—Carrier synchronisation
- H04L27/266—Fine or fractional frequency offset determination and synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2657—Carrier synchronisation
- H04L27/2659—Coarse or integer frequency offset determination and synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2662—Symbol synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2673—Details of algorithms characterised by synchronisation parameters
- H04L27/2675—Pilot or known symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2681—Details of algorithms characterised by constraints
- H04L27/2682—Precision
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2668—Details of algorithms
- H04L27/2681—Details of algorithms characterised by constraints
- H04L27/2685—Speed of convergence
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2689—Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
- H04L27/2695—Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with channel estimation, e.g. determination of delay spread, derivative or peak tracking
Definitions
- the present invention relates to a residual frequency error, phase error, timing error, and signal amplitude variation tracking apparatus and method. More particularly, the present invention relates to a residual frequency error, phase error, timing error, and signal amplitude variation tracking apparatus and method for enhancing a phase and time offset tracking performance and a tracking speed in orthogonal frequency division multiplexing (OFDM) systems.
- OFDM orthogonal frequency division multiplexing
- an initial preamble is used to synchronize frequency and time.
- it is necessary to provide various synchronization tracking algorithms so as to overcome a lowering of system performance which is caused by a residual frequency error, a sampling frequency error, a frequency shift, or the like, due to an estimating error of an initial frequency error and a signal amplitude variation in one frame.
- the carrier frequency error causes a predetermined phase shift for all subcarriers and an inter carrier interference (ICI) therebetween.
- ICI inter carrier interference
- Equation 1 N indicates a point number of a fast Fourier transform (FFT), that is, the total number of subcarriers.
- FFT fast Fourier transform
- I k is an ICI and is given as Equation 2.
- the time offset causes a phase error to be increased in proportion to an index of the OFDM subcarrier and the time offset is in proportion to a slope of the phase error to the index of the subcarrier.
- Equation 3 it is given as
- time offset - N 2 , ... ⁇ , 0 , ... ⁇ , N 2 - 1. Accordingly, although the time offset is the same, the time offset less affects low-frequency elements which are in the vicinity of DC and more affects high-frequency elements.
- the pilot symbol has been used to estimate a phase in a conventional feedback scheme where the mean value and the slope of the estimated phase are passed through a loop filter and then the pilot symbol is corrected.
- the feedback scheme can obtain a desired system performance assuming the residual carrier error is very small and the time offset variation is very small.
- a receive port estimates a frequency error based on a pilot signal, detects a subsymbol including the pilot signal, obtains a phase difference between the detected pilot signal and an adjacent pilot signal and obtains a sampling frequency error based on the above information, in order that a transmit port estimates and tracks a difference between a clock frequency of the receive port and a frequency of the receive port using signal information on a subchannel in which a pilot exists and an adjacent channel.
- Carrier Frequency Acquisition and Tracking for OFDM Systems discloses a method for tracking a frequency error by detecting a phase difference between a demodulation symbol of subcarriers and a received symbol.
- Timing recovery for OFDM transmission IEEE Journal on Selected Areas in Communications, vol. 18, no. 11, pp. 2278-2291, November 2000 (Baoguo Yang) discloses a method for tracking a symbol timing variation due to a clock frequency error using a delay-locked loop (DLL) to synchronize a frequency of a sampling clock.
- DLL delay-locked loop
- the OFDM packet communication system acquires a synchronization using a channel estimating value and a frequency error estimating value obtained from a preamble which is placed at the beginning part of one frame.
- a frequency error estimating value obtained from a preamble which is placed at the beginning part of one frame.
- the time offset which is regularly increased or decreased according to the time and is caused by the fixed frequency error and the sampling frequency error, must be estimated and then corrected using a pilot symbol of a frequency domain.
- Equation 1 and Equation 2 a small amount of the frequency error appears as a predetermined phase error and the time offset appears as a phase error having a slope.
- the prior art can be applied when the error is small enough to be corrected by the feedback scheme without lowering the system performance.
- a frequency shift and a phase shift may abruptly occur due to a radio frequency (RF) circuit and an analogue circuit as well as such error, and also, a signal amplitude variation may occur due to a phenomenon where the signal amplitude is gradually increased when a transceiver amplifier turns on. Accordingly, the prior art still has a problem of lowered performance of the OFDM system.
- RF radio frequency
- the present invention has been made in an effort to provide a residual frequency error, phase error, timing error, and signal amplitude variation tracking apparatus and method having advantages of enhancing a phase and time offset tracking performance and a tracking speed in orthogonal frequency division multiplexing (OFDM) systems.
- OFDM orthogonal frequency division multiplexing
- An exemplary residual frequency error, phase error, timing error, and signal amplitude variation tracking apparatus includes: a frequency error corrector for correcting a frequency at a time domain by adding a tracking carrier error estimating value to an initial carrier frequency error estimating value; a signal amplitude tracking corrector for controlling a signal amplitude by multiplying an input signal converted by a fast Fourier transform (FFT) by an output value corresponding to a calculated power of a receive pilot; a channel corrector for outputting a channel correcting signal by multiplying the receive pilot signal by a complex conjugate of a frequency channel response of the receive pilot signal; a carrier frequency error estimator for estimating a carrier frequency error parameter using the channel-corrected pilot and providing the tracking carrier frequency error estimating value; a time offset estimator for estimating a time offset parameter using the channel-corrected pilot; and a carrier phase error estimator for estimating a carrier phase error parameter using the channel-corrected pilot.
- FFT fast Fourier transform
- An exemplary residual frequency error, phase error, timing error, and signal amplitude variation tracking method in an orthogonal frequency division multiplexing (OFDM) system includes:
- FIG. 1 is a block diagram showing a frame structure of IEEE 802.11a according to an exemplary embodiment of the present invention.
- FIG. 2 is a block diagram showing an OFDM subcarrier of IEEE 802.11a according to the exemplary embodiment of the present invention.
- FIG. 3 is a block diagram for estimating variation of a carrier phase using a pilot subcarrier according to the exemplary embodiment of the present invention.
- FIG. 4 is a block diagram for estimating a time offset using a pilot subcarrier according to the exemplary embodiment of the present invention.
- FIG. 5 is a block diagram for estimating a carrier frequency error using a pilot subcarrier according to the exemplary embodiment of the present invention.
- FIG. 6 is a block diagram for calculating a signal amplitude correcting gain using a pilot subcarrier according to the exemplary embodiment of the present invention.
- FIG. 7 is a flowchart showing a configuration of a loop filter through which an estimating value is passed before being corrected according to the exemplary embodiment of the present invention.
- FIG. 8 is a block diagram of an apparatus for estimating a residual frequency error, a phase error, a time offset, and a signal amplitude variation for an OFDM system according to the exemplary embodiment of the present invention.
- FIG. 9 is a BPSK constellation plot before tracking for showing a tracking performance according to the exemplary embodiment of the present invention.
- FIG. 10 is a BPSK constellation plot after tracking for showing a tracking performance according to the exemplary embodiment of the present invention.
- an apparatus and method for entirely tracking a synchronization and amplitude by correcting frequency and phase shift errors and a signal amplitude variation in a packet, as well as correcting a residual carrier frequency error as the prior art, is disclosed.
- the apparatus and method is similar to that used in a conventional IEEE 802.11a single-antenna OFDM scheme.
- the apparatus and method are spread to a multiple-antenna system so that a frequency error, a phase error, and a time offset are tracked for the respective antennas, the respective parameters are estimated using pilot subcarriers allocated for the respective OFDM symbols and the frequency error, phase error, and time offset are passed through a loop filter and are corrected in the next OFDM symbol.
- the apparatus and method have enhanced tracking performance and speed in comparison with the conventional scheme by employing a feedforward scheme as well as a feedback scheme, since the system performance with the conventional scheme may be lowered due to a time offset of estimating and correcting parameters.
- a discrete Fourier transform may be used to extract only a pilot subcarrier, the pilot subcarrier may be used to estimate a tracking parameter, and the tracking parameter may directly be used with a data subcarrier of the corresponding OFDM symbol.
- the apparatus and method have enhanced system performance by having functions for estimating a frequency shift, correcting the frequency shift, and tracking a signal amplitude variation of a received signal, which is caused by a characteristic of a power amplifier, so as to cope with the frequency shift due to an RF analogue circuit.
- FIG. 1 is a block diagram showing a frame structure of IEEE 802.11a according to an exemplary embodiment of the present invention
- FIG. 2 is a block diagram showing an OFDM subcarrier of IEEE 802.11a according to the exemplary embodiment of the present invention.
- IEEE 802.11a it is assumed that a frame according to the exemplary embodiment of the present invention has the same configuration as FIG. 1 and subcarriers of an OFDM symbol are arranged as in FIG. 2 .
- the frame of IEEE 802.11a includes a section for detecting a signal and selecting an AGC and diversity, a section for measuring a coarse frequency offset and synchronizing timing, and a section for measuring a channel offset and a fine frequency offset. Also, the frame may include guard intervals.
- the frame has a short preamble and a long preamble which estimate an initial frequency error so that the frame is entirely corrected by using the estimated initial frequency error. Also, the long preamble estimates a channel including the initial time offset and the respective OFDM symbol is corrected by using the estimated channel.
- a residual error may occur due to an initial estimating error and a time offset may occur due to a different variation.
- fixed pilot symbols are inserted into fixed subcarriers in the OFDM symbol.
- the fixed pilot symbols are inserted into the ⁇ 21, ⁇ 7, 7, and 21 subcarriers, as shown in FIG. 2 .
- FIG. 3 is a block diagram for estimating a variation of a carrier phase using a pilot subcarrier according to the exemplary embodiment of the present invention.
- the carrier frequency error may be estimated using the sum of phases of a receive pilot in Equation 4.
- ⁇ k angle ⁇ [ ⁇ i ⁇ P ⁇ ⁇ R i , k ⁇ S i * ] ( Equation ⁇ ⁇ 4 )
- Equation 4 ⁇ k is given as a phase estimating value for the k-th OFDM symbol, and R i,k is given as the receive pilot symbol for the k-th OFDM symbol. Also, S i is a transmit pilot symbol for an i-th subcarrier. In this case, P is given as a group index for the entire pilot symbols.
- a complex conjugate calculator 310 converts a transmit pilot S i , a multiplier 320 multiplies the converted transmit pilot S i by a receive pilot R i,k an adder 330 adds the multiplied value to an amount delayed by a delayer 340 , and a phase extractor 350 extracts a phase.
- a carrier phase error estimating value is output. That is, the carrier frequency error is estimated using the sum of the phases R i,k of the receive pilot.
- FIG. 4 is a block diagram for estimating a time offset using a pilot subcarrier according to an exemplary embodiment of the present invention.
- a time offset estimator is formed as Equation 5 such that a slope of the phases is estimated.
- a time offset ⁇ k of a k-th OFDM symbol is given as a quotient in which a phase difference between a first and third pilot and between a second and forth pilot is divided by 28, which is an index difference between the first and third pilot and between the second and forth pilot.
- ⁇ k angle ⁇ [ R 7 , k ⁇ S 7 * ⁇ R - 21 , k * ⁇ S - 21 + R 21 , k ⁇ S 21 * ⁇ R - 7 , k * ⁇ S - 7 ] 28 ( Equation ⁇ ⁇ 5 )
- first receive and transmit pilots are respectively given as R ⁇ 21,k and S ⁇ 21
- second receive and transmit pilots are respectively given as R ⁇ 7,k and S ⁇ 7
- third receive and transmit pilots are respectively given as R 21,k and S 21
- fourth receive and transmit pilots are respectively given as R 7,k and S 7
- the time offset ⁇ k of the k-th OFDM symbol is given as the quotient in which a phase difference between a first and third pilot and between a second and forth pilot is divided by 28, which is an index difference between the first and third pilot and between the second and forth pilot.
- reference numbers 411 , 413 , 421 , and 423 indicate complex conjugate calculators
- reference numbers 412 , 414 , 415 , 422 , 424 , and 425 indicate multipliers (not explained)
- reference number 430 indicates an adder
- reference number 440 indicates a phase extractor
- reference number 450 indicates a scaling unit for dividing the time offset by the index difference 28.
- a frequency error estimating unit using a pilot symbol is provided to estimate the residual frequency error and to correct the residual frequency error at a time domain before the FFT.
- the frame has a large frequency error, performance deterioration occurs since ICI is caused between subcarriers by correcting only a phase in the frequency domain after the FFT.
- the frequency error may be estimated using a pilot and then the estimated frequency error may be corrected, as well as the initial carrier frequency error being corrected.
- FIG. 5 is a block diagram for estimating a carrier frequency error using a pilot subcarrier according to the exemplary embodiment of the present invention.
- the frequency error estimating method includes estimating a phase difference between the present OFDM symbol and the previous OFDM symbol and dividing the phase difference by 80 (from the IEEE 802.11a standard), which is a sample interval of the OFDM symbol, as in Equation 6.
- Equation 6 ⁇ indicates an estimated frequency error.
- a first delay unit 510 , a complex conjugate calculator 520 , and a multiplier 530 receive a receive pilot R i,K , an adder 540 adds a delay value, which is received from a second delay unit 550 , to the receive pilot R i,K , and then a phase extractor 560 extracts a phase and a scaling unit 570 divides the phase by 80, which is the sample interval of the OFDM symbol, and outputs the carrier frequency error estimating value.
- FIG. 6 is a block diagram for calculating a signal amplitude correcting gain using a pilot subcarrier according to the exemplary embodiment of the present invention.
- a signal amplitude (p_pwrk) is calculated using the pilots of the respective OFDM symbol, as in Equation 7.
- a reference power calculator 620 determines a reference signal amplitude (ref_pwr).
- the signal amplitude is determined using 4 symbols corresponding to pilot-positions in a long preamble as Equation 7.
- an error calculator 630 calculates a signal amplitude error, that is, a power difference between the reference and a receive pilot (ref_pwr ⁇ p_pwr), and a signal amplitude correcting gain calculator 640 calculates the signal amplitude correcting gain value (comp_gain) using a ratio of the signal amplitude error and the reference power and uses the signal amplitude correcting gain value (comp_gain) as a loop input.
- FIG. 7 is a flowchart showing a configuration of a loop filter through which an estimating value is passed before being corrected according to the exemplary embodiment of the present invention.
- a configuration of a loop filter through which an estimating value is passed before being corrected according to the exemplary embodiment of the present invention is well known and has two loop coefficients, a first loop coefficient (called “a proportional gain”) and a second loop coefficient (called “an integral gain”).
- a first multiplier 710 multiplies the first loop coefficient by an input loop and a second multiplier 720 multiplies the second loop coefficient by the input loop.
- a first delayer 740 and a first adder 730 add the multiplied values
- a second adder 750 adds the output of the first multiplier 710 and the first adder 730
- a third adder 760 adds the output of the second adder 750 to a delayed value of a second delayer 770 and outputs the loop.
- FIG. 8 is a block diagram of a residual frequency error, phase error, time offset, and signal amplitude variation estimating apparatus for an OFDM system according to the exemplary embodiment of the present invention.
- a residual frequency error, phase error, time offset, and signal amplitude variation tracking apparatuses for an OFDM system entirely includes the respective blocks as respectively shown in FIG. 3 to FIG. 7 .
- an adder 803 adds an initial carrier frequency error estimating value 802 to a tracking carrier error tracking value, and a frequency error corrector 801 corrects a carrier error in the received signal using the sum of the initial carrier frequency error estimating value and the tracking carrier error tracking value. That is, the frequency error corrector 801 corrects the received signal in a time domain by adding the tracking carrier frequency error tracking value to the initial carrier frequency error estimating value.
- an FFT unit 804 converts the received signal from the time domain to the frequency domain. That is, the frequency error corrector 801 and the FFT unit 804 form a receive block of an OFDM signal.
- the amplitude tracking corrector 805 controls the signal amplitude by multiplying the input signal by the outputs which a pilot power calculator 807 outputs and a loop filter 808 filters.
- a pilot subcarrier extractor 806 and a data subcarrier extractor 809 receive the amplitude-corrected signal.
- the pilot data extractor 806 selects a pilot subcarrier among the entire subcarriers and outputs the selected pilot subcarrier.
- the data subcarrier extractor 809 selects a data subcarrier among the entire subcarriers and outputs the selected data subcarrier.
- a channel corrector 812 multiplies a received pilot signal (R i,k ) with a complex conjugate (H i *) for a frequency channel response of the pilot signal and outputs the multiplied values, as Equation 9.
- R i,k ⁇ H i *,i ⁇ 21, ⁇ 7,7,21 ⁇ (Equation 9)
- a carrier frequency error estimator 825 , a carrier phase error estimator 814 , and a time offset estimator 815 respectively receive the channel-corrected pilot and respectively estimate the respective parameters.
- the carrier phase error estimator 814 and the time offset estimator 815 transmit the respective parameters to the loop filters 816 and 818 .
- the carrier frequency error estimator 825 outputs the respective parameter, a multiplier 827 multiplies the output parameter by the carrier frequency loop gain 826 , and an adder 828 adds the multiplied values to a delay unit 829 .
- the frequency error corrector 801 corrects the received signal by adding the tracking carrier error tracking value to the initial carrier frequency error estimating value.
- a multiplier 820 multiplies the pilot subcarrier by a time error depending on a characteristic thereof, an adder 821 adds the multiplied values to the filtered parameters, and a phase corrector 813 finally corrects the received signal.
- an adder 817 adds the present phase estimating value obtained from the carrier phase error estimator 814 to the output of the loop filter 816 , and transmits the sum thereof to a phase corrector 810 so that the phase corrector 810 corrects the carrier phase error. That is, when the carrier phase is tracked and corrected, the pilot subcarrier is corrected by only the output of the loop filter and the data subcarrier is corrected by adding the present estimating value to the output of the loop filter.
- the present symbol is tracked and the carrier phase error is directly corrected at the present symbol. That is, it has a feedforward characteristic.
- the frequency, phase, time, and amplitude errors may be sequentially tracked.
- FIG. 9 is a BPSK constellation plot before tracking for showing a tracking performance according to an exemplary embodiment of the present invention
- FIG. 10 is a BPSK constellation plot after tracking for showing a tracking performance according to an exemplary embodiment of the present invention.
- the present invention can be applied to multi-antenna system.
- BPSK constellation plots have a distortion phenomenon when the initial synchronization is used without the above tracking process.
- the BPSK constellation plots can be normally recovered as shown in FIG. 10 .
- system performance can be enhanced by tracking an initial synchronization error, various other synchronization errors, and a signal amplitude variation which a radio frequency or analogue circuit may cause in an OFDM system, such as a wireless packet communication.
- cost for realizing the system can be reduced since the performance can be enhanced even though the relatively inexpensive radio frequency and analogue elements have relatively low performance.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
Y k,τ =Y k e j2πτk/N (Equation 3)
Accordingly, although the time offset is the same, the time offset less affects low-frequency elements which are in the vicinity of DC and more affects high-frequency elements.
error=ref_pwr−p_pwr
comp_gain=error/ref_pwr (Equation 8)
Ri,k·Hi *,i∈{−21,−7,7,21} (Equation 9)
Claims (9)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20040104641 | 2004-12-11 | ||
KR10-2004-0104641 | 2004-12-11 | ||
KR1020050036018A KR100633743B1 (en) | 2004-12-11 | 2005-04-29 | Methods for tracking Residual frequency, phase, timing offset and signal amplitude variation in OFDM systems, and methods thereof |
KR10-2005-0036018 | 2005-04-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060133527A1 US20060133527A1 (en) | 2006-06-22 |
US7916797B2 true US7916797B2 (en) | 2011-03-29 |
Family
ID=36595738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/286,996 Expired - Fee Related US7916797B2 (en) | 2004-12-11 | 2005-11-22 | Residual frequency, phase, timing offset and signal amplitude variation tracking apparatus and methods for OFDM systems |
Country Status (1)
Country | Link |
---|---|
US (1) | US7916797B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100091916A1 (en) * | 2007-11-02 | 2010-04-15 | Nokia Corporation | Orthogonal frequency division multiplexing synchronization |
US20100322326A1 (en) * | 2009-06-23 | 2010-12-23 | Bernard Arambepola | Efficient tuning and demodulation techniques |
US9313055B2 (en) * | 2013-11-22 | 2016-04-12 | Sequans Communications Limited | Transmitter linearization |
US11621898B2 (en) | 2020-09-11 | 2023-04-04 | Nxp Usa, Inc. | Methods and apparatus for estimating a time-of-arrival or a distance between two device |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070076808A1 (en) * | 2004-08-12 | 2007-04-05 | Manish Bhardwaj | Method and apparatus to track gain variation in orthogonal frequency division multiplexing (OFDM) systems |
US7746963B2 (en) * | 2006-01-06 | 2010-06-29 | Qualcomm Incorporated | Methods and apparatus for frequency tracking of a received signal |
US7809083B1 (en) | 2006-01-23 | 2010-10-05 | Marvell International Ltd. | Differential receiver with frequency offset compensation |
US7675846B2 (en) * | 2006-06-23 | 2010-03-09 | Telefonaktiebolaget L M Ericsson (Publ) | Method and system for using the synchronization channel to obtain measurements in a cellular communications system |
TWI378692B (en) * | 2007-07-06 | 2012-12-01 | Princeton Technology Corp | Device for determining pn code automatically and related method |
KR100884385B1 (en) * | 2007-08-31 | 2009-02-17 | 한국전자통신연구원 | Signal transmitting apparatus and method thereof, inverse fast fourier transform of signal trasmitting apparatus |
CN101771650B (en) * | 2009-01-07 | 2013-08-21 | 北京泰美世纪科技有限公司 | Channel estimation device and method for OFDM system |
KR101313271B1 (en) * | 2009-12-18 | 2013-09-30 | 한국전자통신연구원 | Method and apparatus for measuring neighbor cell |
EP2429101A1 (en) * | 2010-09-08 | 2012-03-14 | University College Cork-National University of Ireland, Cork | Multi-carrier system and method for use in an optical network |
CN102546484B (en) * | 2010-12-17 | 2014-09-10 | 上海明波通信技术有限公司 | Signal channel training method and signal channel training receiver device based on beacon frame |
US8611407B2 (en) * | 2011-11-01 | 2013-12-17 | Intel Corporation | Phase detection in digital communication receivers |
US9106497B2 (en) * | 2012-08-28 | 2015-08-11 | Intel Corporation | Apparatus and method for improving OFDM receiver performance in the presence of narrowband interferers |
US9693240B2 (en) * | 2015-05-29 | 2017-06-27 | Interdigital Technology Corporation | Methods and apparatuses for advanced receiver design |
CN107925533B (en) * | 2015-09-24 | 2022-06-17 | 苹果公司 | V2X performance enhancement in high speed environments |
CN106453187B (en) * | 2016-09-26 | 2019-06-11 | 珠海全志科技股份有限公司 | A kind of ofdm system method for synchronized and device |
US10135660B1 (en) | 2018-06-12 | 2018-11-20 | Hong Kong Applied Science and Technology Research Institute Company Limited | Sampling frequency offset tracking based on decision feedback channel estimation |
US11792833B2 (en) * | 2019-05-14 | 2023-10-17 | Qualcomm Incorporated | Analog phased-array repeaters with digitally-assisted frequency translation and phase adjustment |
CN111884958B (en) * | 2020-07-15 | 2023-05-12 | 芯象半导体科技(北京)有限公司 | Timing error compensation method, apparatus, device and computer readable storage medium |
CN114615122B (en) * | 2022-01-30 | 2023-11-03 | 北京邮电大学 | Method and device for determining frequency offset of communication signal |
CN114726696B (en) * | 2022-03-09 | 2024-04-12 | 芯翼信息科技(上海)有限公司 | Frequency offset estimation method, terminal and storage medium based on narrowband system |
CN115460047B (en) * | 2022-08-02 | 2024-06-11 | 北京睿信丰科技有限公司 | Method and device for quickly tracking frequency offset and distance under complex channel and electronic equipment |
CN116319211B (en) * | 2023-05-12 | 2023-08-11 | 长沙先度科技有限公司 | Multi-order Kalman carrier tracking method, tracking loop and signal receiver for QAM signals |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6112246A (en) | 1998-10-22 | 2000-08-29 | Horbal; Mark T. | System and method for accessing information from a remote device and providing the information to a client workstation |
US6249554B1 (en) * | 1997-07-15 | 2001-06-19 | Agere Systems Guardian Corp. | Power based digital automatic gain control circuit |
US20020186796A1 (en) * | 2001-04-11 | 2002-12-12 | Mcfarland Wlliam | Method and apparatus for maximizing receiver performance utilizing mid-packet gain changes |
US20030058951A1 (en) * | 2001-09-24 | 2003-03-27 | John Thomson | Efficient pilot tracking method for OFDM receivers |
US20030179776A1 (en) * | 2001-06-29 | 2003-09-25 | Atsushi Sumasu | Multicarrier transmitter, multicarrier receiver, and multicarrier wireless communication method |
KR20040050814A (en) | 2002-12-09 | 2004-06-17 | 한국전자통신연구원 | Method and apparatus for carrier frequency offset and sampling clock frequency offset tracking in orthogonal frequency division multiplexing wireless communication systems |
US20050058193A1 (en) * | 2003-09-12 | 2005-03-17 | Icefyre Semiconductor Corporation | Frequency domain equalizer for wireless communications system |
US20050107969A1 (en) * | 2002-11-28 | 2005-05-19 | Fujitsu Limited | Delay profile estimation apparatus and a correlating unit |
US20060140308A1 (en) * | 2003-02-21 | 2006-06-29 | Macfarlane Shearer Daniel D Ii | Carrier tracking circuit and method including dual numerically controlled oscillators and feedforward phase correction coefficient |
US7292527B2 (en) * | 2003-12-05 | 2007-11-06 | Advanced Micro Devices, Inc. | Residual frequency error estimation in an OFDM receiver |
-
2005
- 2005-11-22 US US11/286,996 patent/US7916797B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6249554B1 (en) * | 1997-07-15 | 2001-06-19 | Agere Systems Guardian Corp. | Power based digital automatic gain control circuit |
US6112246A (en) | 1998-10-22 | 2000-08-29 | Horbal; Mark T. | System and method for accessing information from a remote device and providing the information to a client workstation |
US20020186796A1 (en) * | 2001-04-11 | 2002-12-12 | Mcfarland Wlliam | Method and apparatus for maximizing receiver performance utilizing mid-packet gain changes |
US20030179776A1 (en) * | 2001-06-29 | 2003-09-25 | Atsushi Sumasu | Multicarrier transmitter, multicarrier receiver, and multicarrier wireless communication method |
US20030058951A1 (en) * | 2001-09-24 | 2003-03-27 | John Thomson | Efficient pilot tracking method for OFDM receivers |
US20050107969A1 (en) * | 2002-11-28 | 2005-05-19 | Fujitsu Limited | Delay profile estimation apparatus and a correlating unit |
KR20040050814A (en) | 2002-12-09 | 2004-06-17 | 한국전자통신연구원 | Method and apparatus for carrier frequency offset and sampling clock frequency offset tracking in orthogonal frequency division multiplexing wireless communication systems |
US20060140308A1 (en) * | 2003-02-21 | 2006-06-29 | Macfarlane Shearer Daniel D Ii | Carrier tracking circuit and method including dual numerically controlled oscillators and feedforward phase correction coefficient |
US20050058193A1 (en) * | 2003-09-12 | 2005-03-17 | Icefyre Semiconductor Corporation | Frequency domain equalizer for wireless communications system |
US7292527B2 (en) * | 2003-12-05 | 2007-11-06 | Advanced Micro Devices, Inc. | Residual frequency error estimation in an OFDM receiver |
Non-Patent Citations (4)
Title |
---|
B. Yang, et al, Timing Recovery for OFDM Transmission, IEEE Journal on Selective Areas in Communications, vol. 8, No. 11, pp. 2278-2291, Nov. 2000. |
M. Luise, et al, Carrier Frequency Acquisition and Tracking for OFDM Systems, IEEE Transactions on Communications, vol. 44, No. 11, pp. 1590-1598, Nov. 1996. |
Sampling rate conversion and symbol timing for OFDM software receiver Minjian Zhao; Peiliang Qiu; Jinhua Tang; Communications, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference on vol. 1, Jun. 29-Jul. 1, 2002 pp. 114-118 vol. 1. * |
Zhao, "Sampling Rate Conversion and Symbol Timing for OFDM Software Receiver" Jul. 2002, pp. 114-118. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100091916A1 (en) * | 2007-11-02 | 2010-04-15 | Nokia Corporation | Orthogonal frequency division multiplexing synchronization |
US8130631B2 (en) * | 2007-11-02 | 2012-03-06 | Nokia Corporation | Orthogonal frequency division multiplexing synchronization |
US20100322326A1 (en) * | 2009-06-23 | 2010-12-23 | Bernard Arambepola | Efficient tuning and demodulation techniques |
US8743977B2 (en) * | 2009-06-23 | 2014-06-03 | Intel Corporation | Efficient tuning and demodulation techniques |
US9313055B2 (en) * | 2013-11-22 | 2016-04-12 | Sequans Communications Limited | Transmitter linearization |
US11621898B2 (en) | 2020-09-11 | 2023-04-04 | Nxp Usa, Inc. | Methods and apparatus for estimating a time-of-arrival or a distance between two device |
Also Published As
Publication number | Publication date |
---|---|
US20060133527A1 (en) | 2006-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7916797B2 (en) | Residual frequency, phase, timing offset and signal amplitude variation tracking apparatus and methods for OFDM systems | |
CN1881970B (en) | Method and apparatus for compensating sampling frequency offset and carrier frequency offset in OFDM system | |
US7609789B2 (en) | Phase noise compensation for MIMO WLAN systems | |
US7643566B2 (en) | Apparatus and method for estimating frequency offset in orthogonal frequency division multiplexing system | |
US20210194743A1 (en) | Anti-interference signal detection and synchronization method for wireless broadband communication system | |
US7590193B2 (en) | Frequency recovery apparatus and mobile broadcast receiver using the frequency recovery apparatus | |
US20040109508A1 (en) | Method and device for tracking carrier frequency offset and sampling frequency offset in orthogonal frequency division multiplexing wireless communication system | |
US7457366B2 (en) | System and method for adaptive phase compensation of OFDM signals | |
US7885360B2 (en) | Wireless communication apparatus and receiving method | |
US8224273B2 (en) | Demodulator, diversity receiver, and demodulation method | |
KR100457987B1 (en) | Transmission system and receiver with improved symbol processing | |
US7133479B2 (en) | Frequency synchronization apparatus and method for OFDM systems | |
EP1349337B1 (en) | Multicarrier reception with interference detection | |
US7272175B2 (en) | Digital phase locked loop | |
CN101299737B (en) | Synchronous estimation method and system for orthogonal frequency division multiplexing technique | |
US20050213689A1 (en) | Demodulator circuit, radio communication system and communication semiconductor integrated circuit | |
EP2289216B1 (en) | Methods for estimating a residual frequency error in a communications system | |
US7639750B2 (en) | Phase tracking method and device thereof | |
US8355468B2 (en) | Carrier frequency estimation method and apparatus in wireless communication system | |
US9118514B2 (en) | Receiver and signal processing method | |
US7412014B2 (en) | Timing-adjusting method and apparatus, and diversity receiving method and apparatus | |
CN105122752A (en) | Device for estimating frequency offset in OFDM and method thereof | |
US9413579B2 (en) | Determining frequency errors in a multi-carrier receiver | |
US8059736B2 (en) | Orthogonal frequency division multiplexing receiver | |
US8019009B2 (en) | Equalizer circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTIT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YU, HEEJUNG;JEON, TAEHYUN;KIM, MYUNG-SOON;AND OTHERS;REEL/FRAME:017604/0554 Effective date: 20060102 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20230329 |