CN101299737B - Synchronous estimation method and system for orthogonal frequency division multiplexing technique - Google Patents
Synchronous estimation method and system for orthogonal frequency division multiplexing technique Download PDFInfo
- Publication number
- CN101299737B CN101299737B CN2007101071606A CN200710107160A CN101299737B CN 101299737 B CN101299737 B CN 101299737B CN 2007101071606 A CN2007101071606 A CN 2007101071606A CN 200710107160 A CN200710107160 A CN 200710107160A CN 101299737 B CN101299737 B CN 101299737B
- Authority
- CN
- China
- Prior art keywords
- data
- signal
- ofdm symbol
- channel
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
本发明提供了一种正交频分复用(OFDM)技术的同步估计方法和系统,其中,方法包括:获取当前OFDM符号中满足设定传输质量要求的子信道;计算当前OFDM符号中获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据之间的相位差;利用所计算出的相位差,估计所述当前OFDM符号的剩余载波频率偏移和采样时钟偏移。该方法和系统通过利用获取的满足传输质量要求的子信道上的互相关数据,对剩余载波频率偏移和采样时钟偏移进行估计,克服了传输质量差的子信道中产生误码的影响,很大程度上提高了同步估计的精度。
The present invention provides a method and system for synchronous estimation of Orthogonal Frequency Division Multiplexing (OFDM) technology, wherein the method includes: obtaining sub-channels in the current OFDM symbol that meet the set transmission quality requirements; calculating the sub-channels obtained in the current OFDM symbol The phase difference between the data on the subchannel and the data on the subchannel at the same position in its adjacent OFDM symbol; using the calculated phase difference, estimate the remaining carrier frequency offset and sampling clock offset of the current OFDM symbol. The method and system estimate the remaining carrier frequency offset and sampling clock offset by using the obtained cross-correlation data on sub-channels that meet the transmission quality requirements, and overcome the influence of bit errors in sub-channels with poor transmission quality, The accuracy of synchronization estimation is greatly improved.
Description
技术领域 technical field
本发明涉及正交频分复用(OFDM)技术,特别涉及一种OFDM技术的同步估计方法和系统。The present invention relates to Orthogonal Frequency Division Multiplexing (OFDM) technology, in particular to a synchronization estimation method and system of OFDM technology.
背景技术 Background technique
OFDM是一种具有传输高速率数据业务能力的频分复用技术,其频带利用率高,抗多径干扰能力强,因此,OFDM受到越来越广泛的关注和重视,并被认为是未来无线多媒体移动通信的首选技术之一,并已在无线局域网的物理层系列标准、欧洲的数字音频广播标准(DAB)和数字时频标准(DVB)中应用。OFDM is a frequency division multiplexing technology capable of transmitting high-speed data services. It has high frequency band utilization and strong anti-multipath interference ability. Therefore, OFDM has received more and more attention and attention, and is considered to be the future wireless It is one of the preferred technologies for multimedia mobile communication, and has been applied in the physical layer series standards of wireless local area network, European digital audio broadcasting standard (DAB) and digital time-frequency standard (DVB).
虽然目前对于OFDM传输技术已经制定了多个技术标准,但OFDM技术中仍存在着许多难题。同步是OFDM传输标准制定中存在的技术难题之一,OFDM系统对同步误差非常敏感,非常小的同步误差都可能引起系统性能的严重下降。在OFDM系统中,同步一般包括两个过程:第一步为同步捕获,即在数据传输开始建立的同步;第二步为剩余同步偏移的估计。Although a number of technical standards have been formulated for the OFDM transmission technology at present, there are still many difficult problems in the OFDM technology. Synchronization is one of the technical problems in the formulation of OFDM transmission standards. OFDM systems are very sensitive to synchronization errors, and very small synchronization errors may cause serious degradation of system performance. In an OFDM system, synchronization generally includes two processes: the first step is synchronization acquisition, that is, the synchronization established at the beginning of data transmission; the second step is the estimation of the remaining synchronization offset.
其中,在数据传输过程中,由于多普勒频移的影响,收发双方的载波频率稳定度受限,以及收发双方采样时钟振荡器的不稳定性,造成了剩余载波频率偏移和采样时钟偏移的存在,虽然这些同步误差的数值较小,但会导致子信道上的信号幅度降低,破坏子信道间的正交性,并引入载波间干扰(ICI,Inter-Carrier Interference),使系统误码率增大。针对数据传输期间的同步问题,目前已有两种OFDM系统的同步估计方法,第一种是导频辅助(PTA,PilotTone-Aided)的同步估计方法,第二种是非导频辅助的同步估计方法。Among them, in the process of data transmission, due to the influence of Doppler frequency shift, the stability of the carrier frequency of both parties is limited, and the instability of the sampling clock oscillator of both parties causes the remaining carrier frequency deviation and sampling clock deviation. Although the value of these synchronization errors is small, it will cause the signal amplitude on the sub-channel to decrease, destroy the orthogonality between sub-channels, and introduce Inter-Carrier Interference (ICI, Inter-Carrier Interference), which will cause system errors. The code rate increases. For the synchronization problem during data transmission, there are currently two synchronization estimation methods for OFDM systems. The first is the synchronization estimation method of pilot-assisted (PTA, PilotTone-Aided), and the second is the non-pilot-assisted synchronization estimation method. .
在介绍现有技术的两种方法之前,有必要对OFDM符号的结构以及OFDM系统的同步信号模型进行简要说明。首先对OFDM符号的结构进行说明,OFDM符号中包括循环前缀部分和数据部分,其中,数据部分包括:导频数据和信号数据,如图1所示,cm(k)表示第m个OFDM符号的第k个信号数据,pm(k)表示第m个OFDM符号的第k个导频数据。m和m+1表示第m和m+1个OFDM符号,pm(k)和pm+1(k)分别是两个OFDM符号中的导频数据,导频数据一般用来提取信道信息和进行信道估计。一个OFDM符号中包括Ng个循环前缀,N个子信道分为导频子信道和信号子信道,导频子信道上承载导频数据,信号子信道上承载信号数据。Before introducing the two methods in the prior art, it is necessary to briefly describe the structure of the OFDM symbol and the synchronization signal model of the OFDM system. First, the structure of the OFDM symbol is described. The OFDM symbol includes a cyclic prefix part and a data part, wherein the data part includes: pilot data and signal data, as shown in Figure 1, c m (k) represents the mth OFDM symbol The k-th signal data of , p m (k) represents the k-th pilot data of the m-th OFDM symbol. m and m+1 represent the m and m+1 OFDM symbols, p m (k) and p m+1 (k) are the pilot data in the two OFDM symbols respectively, and the pilot data is generally used to extract channel information and perform channel estimation. An OFDM symbol includes N g cyclic prefixes, and the N subchannels are divided into pilot subchannels and signal subchannels, the pilot subchannels carry pilot data, and the signal subchannels carry signal data.
下面对OFDM系统的同步信号模型进行说明。在OFDM传输系统中,若OFDM系统调制采用N点离散傅立叶逆变换(IDFT,Inverse DiscreteFourier Transform),即一个OFDM符号中包含N个数据;OFDM系统采用K+1个子信道传输信息,其中,K<N;OFDM系统采样时钟周期为T;一个OFDM符号在时域上包括两个部分:数据部分和循环前缀部分,其中循环前缀的时间为NgT,用以克服由多径引起的信号之间的干扰;一个OFDM符号包含Ns个采样点,Ns=N+Ng。The synchronous signal model of the OFDM system will be described below. In the OFDM transmission system, if the OFDM system modulation uses N-point Inverse Discrete Fourier Transform (IDFT, Inverse DiscreteFourier Transform), that is, one OFDM symbol contains N data; the OFDM system uses K+1 sub-channels to transmit information, where K<N; the OFDM system sampling clock period is T; an OFDM symbol includes two parts in the time domain: the data part and the cyclic prefix part, where the time of the cyclic prefix is N g T to overcome the signal gap caused by multipath interference; one OFDM symbol includes N s sampling points, N s =N+N g .
此时,发送端发送的第m个OFDM符号的复基带信号xm(t)可表示为:At this time, the complex baseband signal x m (t) of the mth OFDM symbol sent by the transmitter can be expressed as:
(1)式中的cm,k是发送端的第m个OFDM符号第k个子信道上的调制复数据。c m, k in formula (1) is the modulated complex data on the kth subchannel of the mth OFDM symbol at the transmitting end.
在OFDM传输系统中,第m个OFDM符号的传输信道的离散时间冲激响应hm(k)可表示为:In an OFDM transmission system, the discrete-time impulse response h m (k) of the transmission channel of the mth OFDM symbol can be expressed as:
(2)式中δ(k)表示冲激函数,{hm,k,k=0,...,S-1}是在第m个OFDM符号期间的第k个路径复增益,{τk}是第k个路径的路径时延,通常取为采样时间的整数倍,S为无线信道中的路径总数。(2) where δ(k) represents the impulse function, {h m, k , k=0,..., S-1} is the k-th path complex gain during the m-th OFDM symbol, {τ k } is the path delay of the kth path, usually taken as an integer multiple of the sampling time, and S is the total number of paths in the wireless channel.
假定信号的定时已经达到同步,以及在初始同步捕获阶段的载波频率偏移估计与补偿已经完成,下面将进行数据传输过程中的同步估计。在此过程中,需要进行OFDM同步阶段的剩余载波频率偏移和采样时钟偏移估计。Assuming that the timing of the signal has reached synchronization, and the carrier frequency offset estimation and compensation in the initial synchronization acquisition stage have been completed, the synchronization estimation during the data transmission process will be performed below. During this process, it is necessary to estimate the remaining carrier frequency offset and sampling clock offset in the OFDM synchronization phase.
设发送端的复基带信号经过该传输信道传输后,在接收端的载波频率为f′,采样时钟周期为T′,并假设在m=0时,系统是严格同步的,此时,剩余同步误差可分别为:Assuming that the complex baseband signal at the transmitting end is transmitted through the transmission channel, the carrier frequency at the receiving end is f', and the sampling clock period is T', and it is assumed that the system is strictly synchronous when m=0. At this time, the remaining synchronization error can be They are:
剩余载波频率误差Δf为:Δf=f-f′;The remaining carrier frequency error Δf is: Δf=f-f';
采样时钟误差β为:β=(T-T′)/T。 (3)The sampling clock error β is: β=(T-T′)/T. (3)
在接收端,采用时钟周期为T′的采样时钟进行采样和去循环前缀后,第m个OFDM符号的复基带信号采样可以表示为:At the receiving end, after sampling and removing the cyclic prefix using a sampling clock with a clock period of T′, the complex baseband signal sampling of the mth OFDM symbol can be expressed as:
rm,n=r(tn),0≤n≤N-1,tn=(mNs+Ng)T′+nT′; (4)r m, n = r(t n ), 0≤n≤N-1, t n =(mN s +N g )T'+nT'; (4)
第m个符号的N个采样数据通过傅立叶变换解调后,各个子信道上的数据可以表示为:After the N sampling data of the m-th symbol are demodulated by Fourier transform, the data on each sub-channel can be expressed as:
(5)式中其中,Tu=NT,nm(k)是第m个OFDM符号期间在第k个子信道上的高斯噪声,Im(k)是子信道间的干扰信号,由于剩余同步误差比较小,子信道间的干扰信号通常等效为高斯白噪声,αm,k是同步误差引起的第k个子信道上信号的衰减系数,由于剩余同步误差较小,因而αm,k趋进于1。(5) where Among them, T u =NT, n m (k) is the Gaussian noise on the kth sub-channel during the mth OFDM symbol, I m (k) is the interference signal between sub-channels, since the remaining synchronization error is relatively small, the sub-channel The interference signal between channels is usually equivalent to Gaussian white noise. α m,k is the attenuation coefficient of the signal on the kth sub-channel caused by the synchronization error. Since the remaining synchronization error is small, α m,k tends to be 1.
下面介绍现有技术的第一种方法:PTA同步估计方法。该方法是在接收端对信号进行傅立叶变换后,提取OFDM符号中所有导频子信道上的导频数据,计算所提取导频数据的相位;根据所述导频数据的相位对相邻OFDM符号进行互相关计算,即计算相邻OFDM符号的同一导频位置上的数据的相位差;利用该互相关计算所得到的相位差估计剩余载波频率偏移和采样时钟偏移。The first method in the prior art is introduced below: the PTA synchronization estimation method. The method is to extract the pilot data on all pilot sub-channels in the OFDM symbol after performing Fourier transform on the signal at the receiving end, and calculate the phase of the extracted pilot data; Carry out cross-correlation calculation, that is, calculate the phase difference of the data at the same pilot position of adjacent OFDM symbols; use the phase difference obtained by the cross-correlation calculation to estimate the remaining carrier frequency offset and sampling clock offset.
PTA同步估计方法简单易于实现,但是该方法中,OFDM符号中导频的数目Np和导频子信道的传输质量直接影响系统中剩余载波频率偏移和采样时钟估计的精度,而在现有的OFDM传输技术中,导频的数据较少,并且,无线信道自身传输质量的影响,限制了PTA同步估计方法的精度。The PTA synchronization estimation method is simple and easy to implement, but in this method, the number N p of pilots in OFDM symbols and the transmission quality of pilot sub-channels directly affect the accuracy of residual carrier frequency offset and sampling clock estimation in the system, while in the existing In the traditional OFDM transmission technology, the pilot data is less, and the influence of the transmission quality of the wireless channel itself limits the accuracy of the PTA synchronization estimation method.
下面介绍现有技术的第二种方法:数据导向(DD,Dicision-directed)同步估计方法。该方法主要包括:利用已知的信道估计参数对接收端OFDM符号的数据进行补偿;对所述补偿之后的OFDM符号中的数据进行硬判决;对经过硬判决的数据进行补偿后,对补偿后的相邻OFDM符号中的数据进行互相关计算;根据互相关计算后的结果估计剩余载波频率偏移和采样时钟偏移。The second method in the prior art is introduced below: a data-oriented (DD, Dicision-directed) synchronization estimation method. The method mainly includes: using known channel estimation parameters to compensate the data of the OFDM symbol at the receiving end; performing hard judgment on the data in the OFDM symbol after the compensation; Perform cross-correlation calculations on the data in adjacent OFDM symbols; estimate the remaining carrier frequency offset and sampling clock offset according to the results of the cross-correlation calculations.
该方法无须提取导频,但是,信道传输质量差的子信道会在硬判决中产生误码,产生的误码会在同步估计中引入干扰,影响同步估计方法的精度。This method does not need to extract the pilot frequency, but the sub-channel with poor channel transmission quality will generate bit errors in the hard decision, and the generated bit errors will introduce interference in the synchronization estimation and affect the accuracy of the synchronization estimation method.
由以上描述可以看出,现有技术中的同步估计方法均会受到传输质量差的子信道的影响,降低同步估计的精度。It can be seen from the above description that the synchronization estimation methods in the prior art are all affected by sub-channels with poor transmission quality, which reduces the accuracy of synchronization estimation.
发明内容 Contents of the invention
有鉴于此,本发明实施例提供了一种OFDM系统的同步估计方法和系统,以便于提高同步估计的精度。In view of this, an embodiment of the present invention provides a synchronization estimation method and system for an OFDM system, so as to improve the accuracy of synchronization estimation.
本发明实施例提供了一种OFDM系统的同步估计方法,该方法包括:An embodiment of the present invention provides a method for synchronous estimation of an OFDM system, the method comprising:
获取当前OFDM符号中满足设定传输质量要求的子信道;计算当前OFDM符号中获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据之间的相位差;利用所计算出的相位差,估计所述当前OFDM符号的剩余载波频率偏移和采样时钟偏移。Obtain the sub-channel that meets the set transmission quality requirements in the current OFDM symbol; calculate the phase difference between the data on the sub-channel obtained in the current OFDM symbol and the data on the sub-channel at the same position in the adjacent OFDM symbol; use the calculated and estimate the remaining carrier frequency offset and sampling clock offset of the current OFDM symbol.
本发明实施例还提供了一种OFDM系统的同步估计系统,该系统包括:信道选择单元、相位差计算单元、以及估计单元;The embodiment of the present invention also provides a synchronization estimation system of an OFDM system, the system includes: a channel selection unit, a phase difference calculation unit, and an estimation unit;
信道选择单元,用于获取当前OFDM符号中满足设定传输质量要求的子信道;A channel selection unit, configured to obtain subchannels that meet the set transmission quality requirements in the current OFDM symbol;
相位差计算单元,用于计算当前OFDM符号中获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据之间的相位差,并将计算出的相位差提供给估计单元;A phase difference calculation unit, used to calculate the phase difference between the data on the subchannel obtained in the current OFDM symbol and the data on the subchannel at the same position in its adjacent OFDM symbol, and provide the calculated phase difference to the estimation unit;
估计单元,用于利用相位差计算单元提供的相位差,估计所述当前OFDM符号的剩余载波频率偏移和采样时钟偏移。An estimating unit, configured to use the phase difference provided by the phase difference calculating unit to estimate the remaining carrier frequency offset and sampling clock offset of the current OFDM symbol.
由以上可以看出,本发明实施例提供的OFDM技术的同步估计方法和系统,通过利用获取的满足设定传输质量要求的子信道上的互相关数据,对剩余载波频率偏移和采样时钟偏移进行估计,避免了传输质量差的子信道中产生误码的影响,很大程度上提高了同步估计的精度。It can be seen from the above that the OFDM synchronization estimation method and system provided by the embodiments of the present invention use the cross-correlation data on the sub-channels that meet the set transmission quality requirements to calculate the remaining carrier frequency offset and sampling clock offset. It avoids the impact of bit errors in sub-channels with poor transmission quality, and improves the accuracy of synchronization estimation to a large extent.
附图说明 Description of drawings
图1为OFDM符号的结构示意图;FIG. 1 is a schematic structural diagram of an OFDM symbol;
图2为本发明实施例提供的OFDM系统的同步估计方法的流程图;FIG. 2 is a flowchart of a synchronization estimation method for an OFDM system provided by an embodiment of the present invention;
图3为本发明实施例提供的OFDM系统的同步估计方法的另一流程图;Fig. 3 is another flow chart of the synchronization estimation method of the OFDM system provided by the embodiment of the present invention;
图4.a为本发明实施例提供的同步估计系统的结构图;Figure 4.a is a structural diagram of the synchronization estimation system provided by the embodiment of the present invention;
图4.b为本发明实施例提供的信道选择单元的结构图;Figure 4.b is a structural diagram of a channel selection unit provided by an embodiment of the present invention;
图4.c为本发明实施例提供的相位差计算单元的第一种组成结构图;Figure 4.c is the first composition structure diagram of the phase difference calculation unit provided by the embodiment of the present invention;
图4.d为本发明实施例提供的相位差计算单元的第二种组成结构图;Figure 4.d is a second composition structure diagram of the phase difference calculation unit provided by the embodiment of the present invention;
图5为采用不同门限时,本发明实施例提供的方法和PTA方法的剩余频率偏移(RCFO)的均方误差(MSE)曲线图;FIG. 5 is a curve diagram of the mean square error (MSE) of the residual frequency offset (RCFO) of the method provided by the embodiment of the present invention and the PTA method when different thresholds are used;
图6为采用不同门限时,本发明实施例提供的方法和PTA方法的采样时钟偏移(SFO)的均方误差MSE曲线图;FIG. 6 is a curve diagram of the mean square error (MSE) of the sampling clock offset (SFO) of the method provided by the embodiment of the present invention and the PTA method when different thresholds are used;
图7为在相同采样时钟偏移归一化值和不同剩余载波频率偏移归一化值下,本发明方法和PTA方法的估计性能曲线;Figure 7 is the estimated performance curves of the method of the present invention and the PTA method under the same sampling clock offset normalization value and different residual carrier frequency offset normalization values;
图8为在相同剩余载波频率偏移归一化值和不同采样时钟偏移归一化值下,本发明方法和PTA方法的估计性能曲线;Figure 8 is the estimated performance curves of the method of the present invention and the PTA method under the same residual carrier frequency offset normalization value and different sampling clock offset normalization values;
图9为在相同条件下本发明方法和PTA方法的剩余载波频率偏移跟踪曲线;Fig. 9 is the residual carrier frequency offset tracking curve of the inventive method and the PTA method under the same conditions;
图10为在相同条件下本发明方法和PTA方法的采样时钟偏移跟踪曲线。Fig. 10 is the sampling clock offset tracking curves of the method of the present invention and the PTA method under the same conditions.
具体实施方式 Detailed ways
为了使上述技术方案、目的和优点更加的清楚,下面结合具体实施例对本发明进行详细地描述。In order to make the above technical solutions, objectives and advantages clearer, the present invention will be described in detail below in conjunction with specific embodiments.
本发明实施例提供的OFDM系统的同步估计方法主要包括:获取当前OFDM符号中满足设定传输质量要求的子信道;计算当前OFDM符号中获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据之间的相位差;利用所计算出的相位差,估计所述当前OFDM符号的剩余载波频率偏移和采样时钟偏移。The synchronization estimation method of the OFDM system provided by the embodiment of the present invention mainly includes: acquiring the subchannel meeting the set transmission quality requirements in the current OFDM symbol; The phase difference between the data on the sub-channel; using the calculated phase difference, estimate the remaining carrier frequency offset and sampling clock offset of the current OFDM symbol.
在此,将进行信道估计时使用的OFDM符号作为当前OFDM符号。Here, the OFDM symbol used for channel estimation is taken as the current OFDM symbol.
其中,所述获取的OFDM符号中满足设定传输质量要求的子信道可以全部是满足设定传输质量要求的信号子信道;也可以包括满足设定传输质量要求的导频数据的子信道和满足设定传输质量要求的信号子信道。Wherein, the subchannels meeting the set transmission quality requirements in the obtained OFDM symbols may all be signal subchannels meeting the set transmission quality requirements; may also include subchannels meeting the set transmission quality requirements and pilot data subchannels meeting the set transmission quality requirements. Set the signal sub-channel for transmission quality requirements.
当获取的OFDM符号中满足设定传输质量要求的子信道全部是满足设定传输质量要求的信号子信道时,该方法还可以包括:挑选出OFDM符号中的导频子信道。When the obtained subchannels meeting the set transmission quality requirements in the OFDM symbols are all signal subchannels meeting the set transmission quality requirements, the method may further include: selecting pilot subchannels in the OFDM symbols.
其中,计算当前OFDM符号中获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据之间的相位差可以有以下两种方式:Wherein, calculating the phase difference between the data on the subchannel obtained in the current OFDM symbol and the data on the subchannel at the same position in its adjacent OFDM symbol can have the following two ways:
第一种方式:当前OFDM符号中获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据进行互相关计算后得到互相关数据,对获取的子信道上的信号互相关数据进行硬判决,并根据硬判决得到的判决数据计算相邻OFDM符号中获取的子信道数据的相位差。The first method: the data on the sub-channel obtained in the current OFDM symbol and the data on the sub-channel at the same position in the adjacent OFDM symbol are cross-correlation calculated to obtain the cross-correlation data, and the signal cross-correlation data on the obtained sub-channel A hard decision is made, and a phase difference between subchannel data acquired in adjacent OFDM symbols is calculated according to the decision data obtained by the hard decision.
第二种方式:首先对获取的子信道上的数据进行硬判决,然后,根据硬判决的结果,当前OFDM符号中获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据进行互相关计算,得出相邻OFDM符号中获取的子信道数据的相位差。The second method: first make a hard decision on the data on the obtained sub-channel, and then, according to the result of the hard decision, the data on the sub-channel obtained in the current OFDM symbol and the data on the sub-channel at the same position in the adjacent OFDM symbol The cross-correlation calculation is performed to obtain the phase difference of the sub-channel data acquired in adjacent OFDM symbols.
下面以第一种方式为例,对OFDM系统的同步估计进行详细地说明。图2为本发明实施例提供的OFDM系统的同步估计方法的流程图,如图2所示,该方法主要包括以下步骤:Taking the first way as an example, the synchronization estimation of the OFDM system will be described in detail below. Fig. 2 is the flowchart of the synchronous estimation method of OFDM system that the embodiment of the present invention provides, as shown in Fig. 2, this method mainly comprises the following steps:
步骤201:在当前OFDM符号中,挑选出满足设定传输质量要求的信号子信道,并挑选出所有的导频子信道。Step 201: In the current OFDM symbol, select signal subchannels that meet the set transmission quality requirements, and select all pilot subchannels.
除了这种方式外,本步骤还可以有另外的方式,即挑选出满足设定传输质量要求的信号子信道,并挑选出导频子信道中满足设定传输质量要求的子信道。In addition to this method, there may be another method in this step, that is, selecting signal subchannels that meet the set transmission quality requirements, and selecting subchannels that meet the set transmission quality requirements from the pilot subchannels.
挑选OFDM符号中满足设定传输质量要求的信号子信道可以为:挑选出OFDM符号中传输质量高于质量门限的信号子信道。Selecting signal subchannels in OFDM symbols that meet the set transmission quality requirements may be: selecting signal subchannels in OFDM symbols with transmission quality higher than a quality threshold.
因为信道的传输质量与信噪比存在对应关系,所以可以采用基于子信道信噪比的选择方法,选择传输质量高的子信道。此时,所述质量门限为信噪比门限。该选择可以表示为:Because there is a corresponding relationship between channel transmission quality and signal-to-noise ratio, a selection method based on sub-channel signal-to-noise ratio can be used to select a sub-channel with high transmission quality. In this case, the quality threshold is a signal-to-noise ratio threshold. This choice can be expressed as:
ζ={l|SNRm(l)≥SNRth} (6)ζ={l|SNR m (l)≥SNR th } (6)
(6)式中:SNRm(l)为第m个符号的第l个子信道上的信噪比,SNRth为信噪比选择门限,ζ为获取的子信道系数的集合。(6) where: SNR m (l) is the signal-to-noise ratio on the l-th sub-channel of the m-th symbol, SNR th is the SNR selection threshold, and ζ is the set of acquired sub-channel coefficients.
在选择信噪比门限时,如果选择的信噪比门限太低,获取的子信道数据较多,但在信噪比较低时,选出的子信道上的数据质量会较低,这些子信道上的数据会产生误码,影响同步估计的精度;如果选择的信噪比门限太高,就会减少所选择的子信道的数目,也会影响同步估计的精度。选择信噪比门限可以采用在理论函数基础上利用仿真的方法确定。When selecting the SNR threshold, if the selected SNR threshold is too low, more sub-channel data will be obtained, but when the SNR is low, the data quality on the selected sub-channel will be low. The data on the channel will generate bit errors, which will affect the accuracy of synchronization estimation; if the selected SNR threshold is too high, the number of selected sub-channels will be reduced, and the accuracy of synchronization estimation will also be affected. The selection of the SNR threshold can be determined by using a simulation method based on a theoretical function.
另外,本步骤也可以采用子信道的信噪比排序的选择方法。按照各个子信道上的信噪比值的大小进行排序,最后根据系统初始设定的高质量子信道的数目,按照从大到小的顺序从中挑选出设定数目的子信道。In addition, this step may also adopt a selection method of sorting the signal-to-noise ratio of the sub-channels. Sorting is performed according to the SNR value of each sub-channel, and finally, according to the number of high-quality sub-channels initially set by the system, a set number of sub-channels is selected in descending order.
另外,本步骤也可以采用基于最小判决距离的选择方法。分别计算各子信道中数据与星座图中各对应数据之间的距离,选出距离满足距离门限条件的子信道,该选择方法可以表示为:In addition, this step may also adopt a selection method based on the minimum decision distance. Calculate the distance between the data in each sub-channel and the corresponding data in the constellation diagram respectively, and select the sub-channel whose distance satisfies the distance threshold condition. The selection method can be expressed as:
ζ={l|dm(l)≤dth}ζ={l|d m (l)≤d th }
其中,dm(l)为第m个子信道中数据与星座图中对应数据之间的距离,dth为设定的距离门限。Wherein, d m (l) is the distance between the data in the mth sub-channel and the corresponding data in the constellation diagram, and d th is the set distance threshold.
另外,本步骤还可以采用基于最小相位的选择方法。分别计算各子信道中数据与星座图中各对应数据之间的相位偏移值,选出相位偏移值满足相位偏移门限条件的子信道,该选择方法可以表示为:In addition, this step may also adopt a selection method based on the minimum phase. Calculate the phase offset value between the data in each subchannel and the corresponding data in the constellation diagram respectively, and select the subchannel whose phase offset value satisfies the phase offset threshold condition. The selection method can be expressed as:
ζ={l|ρm(l)≤ρth}ζ={l|ρ m (l)≤ρ th }
其中,ρm(l)为第m个子信道中数据与星座图中对应数据之间的相位偏移值,ρth为设定的相位偏移门限。Wherein, ρ m (l) is the phase offset value between the data in the mth subchannel and the corresponding data in the constellation diagram, and ρ th is the set phase offset threshold.
步骤202:对当前OFDM符号由步骤201所选出的信号子信道上的信号数据和导频子信道上的导频数据与其相邻OFDM符号间相同位置上的信号数据和导频数据,分别进行互相关计算。Step 202: For the current OFDM symbol, the signal data on the signal subchannel selected in step 201 and the pilot data on the pilot subchannel and the signal data and pilot data at the same position between its adjacent OFDM symbols are respectively carried out Cross-correlation calculations.
本步骤中对当前OFDM符号中获取的信号子信道上的信号数据与其相邻的下一个OFDM符号中相同位置的信号子信道上的信号数据进行互相关计算,是将下一个OFDM符号的某一选出的子信道位置上的信号数据乘以前一个OFDM符号的同一子信道位置上的信号数据的共轭。同样也可以采用其它互相关计算的方式。In this step, the cross-correlation calculation is performed on the signal data on the signal sub-channel acquired in the current OFDM symbol and the signal data on the signal sub-channel at the same position in the next OFDM symbol adjacent to it. The signal data at the selected sub-channel position is multiplied by the conjugate of the signal data at the same sub-channel position of the previous OFDM symbol. Similarly, other cross-correlation calculation methods may also be used.
另外,本发明中的实施例采用的与当前OFDM符号相邻的OFDM符号是其相邻的下一个OFDM符号,另外,当信道静止或变化缓慢时,也可以采用与其相邻的上一个OFDM符号。In addition, the OFDM symbol adjacent to the current OFDM symbol used in the embodiments of the present invention is the next OFDM symbol adjacent to it. In addition, when the channel is static or changes slowly, the previous OFDM symbol adjacent to it can also be used .
本步骤中对当前OFDM符号中获取的导频子信道上的导频数据与其相邻下一个OFDM符号中相同位置的导频子信道上的导频数据进行互相关计算,是将后一个OFDM符号的某一导频位置上的导频数据乘以前一个OFDM符号的同一导频位置上的导频数据的共轭。In this step, the cross-correlation calculation is performed on the pilot data on the pilot sub-channel obtained in the current OFDM symbol and the pilot data on the pilot sub-channel at the same position in the next adjacent OFDM symbol, which is to calculate the cross-correlation of the next OFDM symbol The pilot data at a certain pilot position is multiplied by the conjugate of the pilot data at the same pilot position of the previous OFDM symbol.
对相邻OFDM符号间子信道的数据进行互相关计算,反映在相位上就是相邻OFDM符号中子信道的数据的相位差。The cross-correlation calculation is performed on the data of the sub-channels between adjacent OFDM symbols, which is reflected in the phase as the phase difference of the data of the sub-channels in adjacent OFDM symbols.
在本步骤中采用相邻OFDM符号间的互相关计算,是因为剩余载波频率偏移和采样时钟偏移引起的相位偏移会随着OFDM符号的增加而增加,最后导致OFDM符号中的数据从一个象限偏移到另一个象限,这样多个OFDM符号的累积使得在下面步骤中采用简单硬判决无法得到正确判决结果。In this step, the cross-correlation calculation between adjacent OFDM symbols is used because the phase offset caused by the remaining carrier frequency offset and sampling clock offset will increase with the increase of OFDM symbols, and finally the data in OFDM symbols will change from One quadrant is shifted to another quadrant, so the accumulation of multiple OFDM symbols makes it impossible to obtain a correct decision result by simple hard decision in the following steps.
因为通常假定信道的衰落是缓慢变化的,即在第m个OFDM符号和第M+1个OFDM符号期间可以认为子信道上信道系数是相同的,即:Hm(k)≈Hm+1(k),由同步信号模型中的(5)式可以得到:Because it is usually assumed that the fading of the channel changes slowly, that is, the channel coefficients on the sub-channels can be considered to be the same during the m-th OFDM symbol and the M+1-th OFDM symbol, that is: H m (k)≈H m+1 (k), from formula (5) in the synchronous signal model can be obtained:
接收端,第m和m+1个OFDM符号的第k个子信道的数据分别为:At the receiving end, the data of the kth subchannel of the mth and m+1 OFDM symbols are respectively:
其中,
ε为剩余载波频偏归一化值,ε=ΔfNT。ε is the normalized value of the remaining carrier frequency offset, ε=ΔfNT.
由(7)式、(8)式可以得到,第m和第m+1个OFDM符号的第l个信号子信道上的互相关数据Rm(l)为:From formulas (7) and (8), it can be obtained that the cross-correlation data R m (l) on the lth signal subchannel of the mth and m+1th OFDM symbols is:
其中,ζ为所选出的满足设定传输质量要求的信号子信道对应的子信道系数的集合。Wherein, ζ is a set of subchannel coefficients corresponding to the selected signal subchannels that meet the set transmission quality requirements.
同样,由(7)式、(8)式可以得到,第m和第m+1个OFDM符号的第l个导频子信道上的互相关数据Qm(l)为:Similarly, from equations (7) and (8), it can be obtained that the cross-correlation data Q m (l) on the lth pilot subchannel of the mth and m+1th OFDM symbols is:
其中,γ为导频子信道对应的子信道系数的集合。Wherein, γ is a set of subchannel coefficients corresponding to the pilot subchannel.
步骤203:对选出的满足设定传输质量要求的信号子信道上的互相关数据进行硬判决。Step 203: Perform a hard decision on the cross-correlation data on the selected signal sub-channels that meet the set transmission quality requirements.
本步骤对满足设定传输质量要求的信号子信道上的互相关数据进行硬判决是为了获得发送端发送的数据对互相关数据的影响,根据硬判决结果可以消除发送端数据对于接收端进行剩余同步估计的误差影响。In this step, the purpose of making a hard decision on the cross-correlation data on the signal sub-channels that meet the set transmission quality requirements is to obtain the influence of the data sent by the sender on the cross-correlation data. The error impact of the synchrony estimate.
所述进行硬判决是:根据所选出的信号子信道上的互相关数据到目标集合中各互相关数据点的距离,将距离所述选出的信号子信道上的互相关数据最近的目标集合中的互相关数据点作为所述互相关数据,即硬判决数据。该硬判决结果可以表示为:The hard decision is: according to the distance from the cross-correlation data on the selected signal sub-channel to each cross-correlation data point in the target set, the target closest to the cross-correlation data on the selected signal sub-channel is selected The cross-correlation data points in the set are used as the cross-correlation data, that is, hard decision data. the hard verdict It can be expressed as:
其中,
步骤204:利用硬判决结果对满足设定传输质量要求的信号子信道的互相关数据进行补偿;并利用已知的发送端导频互相关数据对步骤203计算的导频互相关数据进行补偿。Step 204: use the hard decision result to compensate the cross-correlation data of the signal sub-channels that meet the set transmission quality requirements; and use the known pilot cross-correlation data at the sending end to compensate the pilot cross-correlation data calculated in step 203.
该步骤通过补偿得到接收端子信道上携带相位偏移的互相关数据。在接收端,携带相位偏移的互相关数据是通过将接收端数据的互相关数据的影响而得到的。所述补偿包括:在满足设定传输质量要求的信号子信道上,用判决结果代替发送端已知数据的互相关数据;在导频子信道上,用已知的发端导频互相关数据消除自身对接收端互相关数据的影响。In this step, the cross-correlation data carrying the phase offset on the receiving sub-channel is obtained through compensation. At the receiving end, the cross-correlation data carrying the phase offset is obtained by combining the cross-correlation data of the receiving end data. The compensation includes: on the signal sub-channel that meets the set transmission quality requirements, using the judgment result to replace the cross-correlation data of the known data at the sending end; on the pilot sub-channel, using the known cross-correlation data of the sending end pilot The influence of itself on the cross-correlation data at the receiving end.
利用(12)式对(10)式进行补偿可以得到,第m个OFDM符号的第l个信号子信道上携带相位偏移的互相关函数Xm(l)为:Using formula (12) to compensate formula (10), it can be obtained that the cross-correlation function X m (l) carrying the phase offset on the l-th signal sub-channel of the m-th OFDM symbol is:
由于已知的发送端的导频互相关函数Dm(l)为:Since the known pilot cross-correlation function D m (l) of the transmitting end is:
利用(14)式对(11)式进行补偿可以得到,第m个OFDM符号的第l个导频子信道上携带相位偏移的互相关函数Xm(l)为:Using formula (14) to compensate formula (11), it can be obtained that the cross-correlation function X m (l) carrying the phase offset on the l-th pilot sub-channel of the m-th OFDM symbol is:
因此,第m个OFDM符号中用于剩余载波频率偏移和采样时钟偏移估计的子信道上互相关数据为:Therefore, the cross-correlation data on sub-channels used for estimation of residual carrier frequency offset and sampling clock offset in the mth OFDM symbol is:
步骤205:利用补偿后的互相关数据计算当前OFDM符号与其相邻OFDM符号间获取的子信道数据的相位差。Step 205: Using the compensated cross-correlation data, calculate the phase difference between the current OFDM symbol and the sub-channel data acquired between its adjacent OFDM symbols.
在本步骤中,可以分别计算利用补偿后的互相关数据计算出相邻OFDM符号中获取的信号子信道上信号数据的相位差,以及获取的导频子信道上导频数据的相位差;也可以将获取的信号子信道与导频子信道构成的集合平均分成两个子集合,然后将两个子集合的互相关数据的相位相减得到获取的子信道数据的相位差。In this step, the phase difference of the signal data on the signal sub-channel obtained in adjacent OFDM symbols and the phase difference of the pilot data on the obtained pilot sub-channel can be calculated by using the compensated cross-correlation data respectively; The acquired set of signal subchannels and pilot subchannels may be equally divided into two subsets, and then the phase difference of the acquired subchannel data is obtained by subtracting the phases of the cross-correlation data of the two subsets.
(16)式中补偿后所选子信道上数据的相位φl为:In formula (16), the phase φ l of the data on the selected sub-channel after compensation is:
φl≈2π(1+Ng/N)(ε+l·β),l∈χ (17)φ l ≈ 2π(1+N g /N)(ε+l·β), l∈χ (17)
其中,χ是导频子信道和高质量子信道对应的子信道系数的集合,即:χ=ζ+γ。Wherein, χ is a set of sub-channel coefficients corresponding to the pilot sub-channel and the high-quality sub-channel, that is: χ=ζ+γ.
本步骤中可以首先将集合χ中的所有子信道系数按照从小到大的顺序排序,然后将集合χ分为子信道个数相等的两个子集合χ1和χ2。子集合χ1和χ2中对应的两个子信道上的互相关数据的相位分别为φl′和φl″:In this step, all sub-channel coefficients in the set χ can be sorted in ascending order, and then the set χ is divided into two sub-sets χ 1 and χ 2 with equal numbers of sub-channels. The phases of the cross-correlation data on the corresponding two sub-channels in the subsets χ 1 and χ 2 are φ l′ and φ l″ respectively:
φl′≈2π(1+Ng/N)(ε+l′·β),l′∈χ1 (18)φ l′ ≈2π(1+N g /N)(ε+l′·β), l′∈χ 1 (18)
φl″≈2π(1+Ng/N)(ε+l″·β),l″∈χ2 (19)φ l″ ≈ 2π(1+N g /N)(ε+l″·β), l″∈χ 2 (19)
然后,将两个集合中对应的子信道系数相差较大的互相关数据相位相减,这样可以抵消掉剩余载波频率偏移造成的相位偏移。相减后得到的相位差φv为:Then, the phases of the cross-correlation data whose corresponding sub-channel coefficients in the two sets differ greatly are subtracted, so that the phase offset caused by the remaining carrier frequency offset can be canceled out. The phase difference φ v obtained after subtraction is:
φv=φl′-φl″≈2π(1+Ng/N)(v·β),v∈χ3 (20)φ v =φ l′ -φ l″ ≈2π(1+N g /N)(v·β), v∈χ 3 (20)
其中,集合χ3表示集合χ1和χ2中对应的子信道上数据的相位差构成的集合。Wherein, the set χ 3 represents a set formed by the phase differences of the data on the corresponding sub-channels in the sets χ 1 and χ 2 .
这种将集合χ分为子信道个数相等的两个子集合χ1和χ2进行求相位差的方式,可以使得两个集合中对应的子信道系数相差大,更能提高估计的性能。This method of dividing the set χ into two sub-sets χ1 and χ2 with the same number of sub-channels to calculate the phase difference can make the corresponding sub-channel coefficients in the two sets have a large difference, and can improve the estimation performance.
另外,当所挑选的质量高的子信道全部是信号子信道时,也可以采用上述方法进行相位差的计算,即将所挑选的质量高的子信道构成的集合平均分成相隔子集合,然后将两个子集合中子信道上数据的相位相减,得到所求的相位差。In addition, when the selected high-quality sub-channels are all signal sub-channels, the above method can also be used to calculate the phase difference, that is, the set composed of the selected high-quality sub-channels is equally divided into separated sub-sets, and then the two sub-channels The phases of the data on the sub-channels in the set are subtracted to obtain the desired phase difference.
步骤206:利用计算出的相位差,估计剩余载波频率偏移和采样时钟偏移。Step 206: Using the calculated phase difference, estimate the remaining carrier frequency offset and sampling clock offset.
该步骤中采样时钟偏移可以通过利用相位差进行加权平均的方法进行估计,可以得出采样时钟偏移为:In this step, the sampling clock offset can be estimated by using the weighted average method of the phase difference, and the sampling clock offset can be obtained for:
其中,L表示同步估计采用的OFDM符号的个数。Wherein, L represents the number of OFDM symbols used for synchronization estimation.
估计剩余载波频率偏移可以为:将求得的采样时钟偏移代入补偿后所选子信道上数据的相位φl,即将(21)代入(17)式,得到的剩余载波频率偏移为:Estimating the remaining carrier frequency offset can be as follows: substituting the obtained sampling clock offset into the phase φ l of the data on the selected sub-channel after compensation, that is, substituting (21) into (17), and obtaining the remaining carrier frequency offset for:
其中,Nc表示集合χ中满足设定传输质量要求的子信道和导频子信道的总个数。Among them, N c represents the total number of sub-channels and pilot sub-channels in the set χ that meet the set transmission quality requirements.
步骤207:利用估计出的剩余频率载波偏移和采样时钟偏移补偿下一个待估计的OFDM符号上的数据。重复执行上述步骤,直到将待估计的OFDM符号估计完毕。Step 207: Use the estimated remaining frequency carrier offset and sampling clock offset to compensate data on the next OFDM symbol to be estimated. The above steps are repeated until the OFDM symbols to be estimated are estimated.
另外,本步骤也可以采用闭环反馈补偿的方式。首先对估计出的剩余频率偏移和采样时钟偏移进行一阶闭环反馈滤波器的处理,得到处理后的结果为:In addition, this step may also adopt a closed-loop feedback compensation method. Firstly, the estimated residual frequency offset and sampling clock offset are processed by a first-order closed-loop feedback filter, and the processed result is:
其中,γε和γβ是闭环反馈滤波器的控制参数。Among them, γ ε and γ β are the control parameters of the closed-loop feedback filter.
然后将处理后的估计值分别在时域和频域对剩余载波频率和采样频率进行补偿,再对下一个OFDM符号的数据进行估计。Then, the processed estimated value is compensated for the remaining carrier frequency and sampling frequency in the time domain and the frequency domain, respectively, and then the data of the next OFDM symbol is estimated.
上述是第一种方式的详细过程,在使用第二种方式时,其过程如图3所示,主要包括以下步骤:The above is the detailed process of the first method. When using the second method, the process is shown in Figure 3, which mainly includes the following steps:
步骤301:在当前OFDM符号中,获取满足设定传输质量要求的信号子信道,并获取导频子信道。Step 301: In the current OFDM symbol, obtain signal subchannels that meet the set transmission quality requirements, and obtain pilot subchannels.
同样,在本步骤中获取的满足设定传输质量要求的子信道全部为信号子信道。除了这种方式外,还可以获取导频子信道中的满足设定传输质量要求的子信道。Likewise, the subchannels obtained in this step that meet the set transmission quality requirements are all signal subchannels. In addition to this method, sub-channels that meet the set transmission quality requirements among the pilot sub-channels can also be obtained.
步骤302:对获取的满足设定传输质量要求的信号子信道上的信号数据进行硬判决。Step 302: Perform a hard decision on the acquired signal data on the signal sub-channel meeting the set transmission quality requirement.
本步骤中,对满足设定传输质量要求的信号子信道上的信号数据进行硬判决是:根据所选出的信号子信道上的信号数据到星座图中各坐标点数据的距离,将距离所述选出的信号子信道上的信号数据最近的坐标点数据作为所述判决数据。In this step, the hard decision on the signal data on the signal sub-channel that meets the set transmission quality requirements is: according to the distance from the signal data on the selected signal sub-channel to the data of each coordinate point in the constellation diagram, the distance The nearest coordinate point data of the signal data on the selected signal sub-channel is used as the decision data.
步骤303:根据硬判决结果对满足设定传输质量要求的信号子信道上的信号数据进行补偿,并利用已知的导频数据偏移对导频子信道上的导频数据进行补偿。Step 303: Compensate the signal data on the signal sub-channels that meet the set transmission quality requirements according to the hard decision result, and compensate the pilot data on the pilot sub-channels by using the known pilot data offset.
步骤304:对当前OFDM符号中获取的信号子信道上的补偿后的信号数据与其相邻下一个OFDM符号中相同位置的信号子信道上的补偿后的信号数据进行互相关计算,并对获取的导频子信道的补偿后的导频数据进行互相关计算。Step 304: Perform cross-correlation calculation on the compensated signal data on the signal sub-channel acquired in the current OFDM symbol and the compensated signal data on the signal sub-channel at the same position in the next adjacent OFDM symbol, and calculate the obtained The compensated pilot data of the pilot sub-channel is subjected to cross-correlation calculation.
本步骤中对当前OFDM符号中获取的信号子信道上的补偿后的信号数据与其相邻下一个OFDM符号中相同位置的信号子信道上的补偿后的信号数据进行互相关计算,是将后一个OFDM符号的某一选出的子信道位置上的补偿后的信号数据乘以前一个OFDM符号的同一子信道位置上的补偿后的信号数据的共轭。In this step, the cross-correlation calculation is performed on the compensated signal data on the signal sub-channel obtained in the current OFDM symbol and the compensated signal data on the signal sub-channel at the same position in the next OFDM symbol, which is the latter The conjugate of the compensated signal data at a selected sub-channel position of the OFDM symbol multiplied by the compensated signal data at the same sub-channel position of the previous OFDM symbol.
本步骤中对相邻OFDM符号中所选出的导频子信道上的导频数据进行相关计算,是将后一个OFDM符号的某一导频位置上的导频数据乘以前一个OFDM符号的同一导频位置上的导频数据的共轭。In this step, the correlation calculation is performed on the pilot data on the pilot subchannel selected in the adjacent OFDM symbol, which is to multiply the pilot data on a certain pilot position of the latter OFDM symbol by the same value of the previous OFDM symbol. The conjugate of the pilot data at the pilot position.
步骤305:根据步骤304中互相关计算的结果得到计算当前OFDM符号与其相邻OFDM符号中获取的子信道数据的相位差。Step 305: According to the result of cross-correlation calculation in step 304, calculate the phase difference between the current OFDM symbol and the sub-channel data obtained in its adjacent OFDM symbols.
步骤306:利用计算出的相位差,估计剩余载波频率偏移和采样时钟偏移。Step 306: Using the calculated phase difference, estimate the remaining carrier frequency offset and sampling clock offset.
步骤307:利用估计出的剩余频率载波偏移和采样时钟偏移补偿下一个待估计的OFDM符号上的数据。重复执行上述步骤,直到将待估计的OFDM符号估计完毕。Step 307: Use the estimated remaining frequency carrier offset and sampling clock offset to compensate the data on the next OFDM symbol to be estimated. The above steps are repeated until the OFDM symbols to be estimated are estimated.
下面对OFDM技术的同步估计系统进行详细地描述。图4.a为本发明实施例提供的同步估计系统的结构图,如图4.a所示,该系统主要包括:信道选择单元400、相位差计算单元410、以及估计单元420。The synchronization estimation system of the OFDM technology is described in detail below. Fig. 4.a is a structural diagram of a synchronization estimation system provided by an embodiment of the present invention. As shown in Fig. 4.a, the system mainly includes: a channel selection unit 400, a phase difference calculation unit 410, and an estimation unit 420.
信道选择单元400,用于获取当前OFDM符号中满足设定传输质量要求的子信道;A channel selection unit 400, configured to obtain subchannels in the current OFDM symbol that meet the set transmission quality requirements;
相位差计算单元410,用于计算当前OFDM符号中由信道选择单元400获取的子信道上的数据与其相邻OFDM符号中相同位置的子信道上数据之间的相位差,并将计算出的相位差提供给估计单元420;Phase difference calculation unit 410, used to calculate the phase difference between the data on the sub-channel obtained by the channel selection unit 400 in the current OFDM symbol and the data on the sub-channel at the same position in its adjacent OFDM symbol, and calculate the phase difference The difference is provided to the estimation unit 420;
估计单元420,用于利用相位差计算单元410提供的相位差,估计当前OFDM符号的剩余载波频率偏移和采样时钟偏移。The estimation unit 420 is configured to use the phase difference provided by the phase difference calculation unit 410 to estimate the remaining carrier frequency offset and sampling clock offset of the current OFDM symbol.
所述估计单元420可以采用图2中步骤206中所述的方法,进行对所述OFDM符号的剩余载波频率偏移和采样时钟偏移的估计。The estimating unit 420 may use the method described in step 206 in FIG. 2 to estimate the remaining carrier frequency offset and sampling clock offset of the OFDM symbol.
其中,所述信道选择单元400的结构如图4.b所示,信道选择单元400可以包括:质量检测模块401、以及信号子信道选择模块402;Wherein, the structure of the channel selection unit 400 is shown in Figure 4.b, the channel selection unit 400 may include: a
质量检测模块401,用于检测当前OFDM符号中各子信道的传输质量,并将检测结果发送给信号子信道选择模块402;A
所述质量检测模块401可以通过对各子信道的信噪比进行质量检测;也可以通过分别计算OFDM符号中各子信道数据与星座图中对应数据之间的距离来进行质量检测;还可以通过分别计算OFDM符号中各子信道数据与星座图中对应数据之间的相位偏移值进行检测。The
信号子信道选择模块402,用于根据质量检测模块401发送的检测结果,选择该OFDM符号中满足设定传输质量要求的信号子信道。The signal
当质量检测模块401通过对各子信道的信噪比进行质量检测时,信号子信道选择模块402可以通过设定信噪比门限,选择信噪比高于信噪比门限的子信道;也可以通过对子信道按照信噪比进行排序,根据从大到校的顺序从中挑选出设定数据的子信道。当质量检测模块401通过分别计算OFDM符号中各子信道数据与星座图中对应数据之间的距离来进行质量检测时,信道选择模块402可以通过设定距离门限,选择所述距离满足距离门限条件的子信道。当质量检测模块401通过分别计算OFDM符号中各子信道数据与星座图中对应数据之间的相位偏移值进行检测时,信道选择模块402可以通过设定相位偏移门限,选择所述相位偏移满足相位偏移门限条件的子信道。When the
另外,该信道选择单元400还可以包括:导频子信道选择模块403,用于选择该OFDM符号中的所有导频子信道,或者,根据质量检测模块401发送的检测结果,选择该OFDM符号中满足设定传输质量要求的导频子信道;In addition, the channel selection unit 400 may also include: a pilot
所述质量检测模块401,还用于检测当前OFDM符号中导频子信道的传输质量,并发送检测结果给导频子信道选择模块403。The
相位差计算单元410可以有两种组成结构,分别对应方法中的方式一和方式二。图4.c为相位差计算单元的第一种组成结构图,如图4.c所示,该相位差计算单元主要包括:第一互相关计算模块411、硬判决模块412、第一补偿模块413以及相位差计算模块414。The phase difference calculation unit 410 may have two structures, which respectively correspond to
第一互相关计算模块411,对当前OFDM符号中信道子信道选择模块402获取的信号子信道上的信号数据与其相邻的下一个OFDM符号中相同位置的信号子信道上的信号数据进行互相关计算,并将得到的互相关数据提供给硬判决模块412和第一补偿模块413。The first
硬判决模块412,用于对接收到的互相关数据进行硬判决,并将硬判决后得到的判决数据提供给第一补偿模块413。The
所述硬判决模块412可以采用图2中步骤203中所述的方法进行硬判决。The
第一补偿模块413,用于接收硬判决模块412发送的判决数据和第一互相关计算模块411发送的互相关数据,并利用所述判决数据对所述互相关数据进行补偿,并将补偿后的互相关数据发送给相位差计算模块414。The
所述第一补偿模块413可以采用图2中步骤204中所述的方法进行补偿。The
相位差计算模块414,用于接收第一补偿模块413发送的补偿后的互相关数据,计算补偿后的互相关数据的相位,得到当前OFDM符号中获取的信号子信道上的信号数据与其相邻下一个OFDM符号中相同位置的信号子信道上的信号数据之间的相位差。The phase
所述相位差计算模块414可以采用图2中步骤205中所述的方法进行相位差的计算。The phase
更进一步地,针对信道选择单元400中可以包含的导频子信道选择模块,所述相位差计算单元410还可以包括:第二互相关计算模块415、以及第二补偿模块416。Furthermore, for the pilot subchannel selection module that may be included in the channel selection unit 400 , the phase difference calculation unit 410 may further include: a second
第二互相关计算模块415,用于对当前OFDM符号中信道选择模块400获取的导频子信道上的导频数据与其相邻下一个OFDM符号中相同位置的导频子信道上的导频数据进行互相关计算,并将得到的互相关数据提供给第二补偿模块416。The second
第二补偿模块416,用于利用已知的发送端导频互相关数据,对第二互相关计算模块415发送的互相关数据进行补偿,并将补偿后得到的互相关数据提供给相位差计算模块414。The
所述相位差计算模块414,还用于接收第二补偿模块416发送的补偿后的互相关数据,计算补偿后的互相关数据的相位,得到当前OFDM符号中获取的导频子信道上的导频数据与其相邻下一个OFDM符号中相同位置的导频子信道上的导频数据之间的相位差。The phase
其中,所述第一互相关计算模块411和第二互相关计算模块415也可以设置在一个设备中;所述第一补偿模块413和第二补偿模块416也可以设置在一个设备中。Wherein, the first
图4.d为相位差计算单元的第二种组成结构图,如图4.c所示,该相位差计算单元主要包括:硬判决模块417、补偿模块418、第一互相关计算模块419、以及相位差计算模块420。Figure 4.d is a second composition structure diagram of the phase difference calculation unit, as shown in Figure 4.c, the phase difference calculation unit mainly includes: a
硬判决模块417,用于对信道选择单元400获取的满足设定传输质量要求的信号子信道上的信号数据进行硬判决,并将硬判决后得到的判决数据提供给补偿模块418。The
所述硬判决模块417可以采用图3中所述的步骤302进行硬判决的方法。The
补偿模块418,用于接收硬判决模块417提供的判决数据,并利用所述判决数据,对获取的满足设定传输质量要求的信号子信道上的信号数据进行补偿,并将补偿后的信号数据发送给第一互相关计算模块419。The
所述补偿模块418可以采用图3中所述的步骤303进行补偿的方法。The
第一互相关计算模块419,用于对当前OFDM符号中获取的信号子信道上的补偿后的信号数据与其相邻下一个OFDM符号中相同位置的信号子信道上的补偿后的信号数据进行互相关计算,并将得到的信号互相关数据提供给相位差计算模块420。The first
所述第一互相关计算模块419可以采用图3中所述的步骤304进行互相关计算的方法。The first
相位差计算模块4110,接收第一互相关计算模块419提供的信号互相关数据,计算所述信号互相关数据的相位,得到当前OFDM符号中获取的信号子信道上的信号数据与其相邻下一个OFDM符号中相同位置的信号子信道上的信号数据之间的相位差。The phase
更进一步地,针对信道选择单元400中可以包含的导频子信道选择模块,所述相位差计算单元410还可以包括:第二互相关计算模块4111。Furthermore, for the pilot subchannel selection module that may be included in the channel selection unit 400 , the phase difference calculation unit 410 may further include: a second
第二互相关计算模块4111,用于对当前OFDM符号中信道选择单元400获取的导频子信道上的导频数据与其相邻下一个OFDM符号中相同位置的导频子信道上的导频数据进行互相关计算,并将得到的导频互相关数据提供给相位差计算模块4110。The second
相位差计算模块4110,还用于接收第二互相关计算模块4111提供的导频互相关数据,计算所述导频互相关数据的相位,得到当前OFDM符号中获取的导频子信道上的导频数据与其相邻下一个OFDM符号中相同位置的导频子信道上的导频数据之间的相位差。The phase
为了验证本发明实施例提供的同步估计方法的性能,下面利用仿真结果进行说明。以下进行仿真的条件为:OFDM系统的采样频率为20MHZ;子信道个数N=256,即采用256点的IFFT,其中,循环前缀CP=64,有用子信道数为200,导频信道包含在200个子信道中,导频信道的数目为8个,分别位于[13 38 63 88 113 138 163 188]的子信道位置上;系统存在的最大多普勒频移为50HZ。In order to verify the performance of the synchronization estimation method provided by the embodiment of the present invention, the simulation results are used for description below. The following conditions for simulation are: the sampling frequency of the OFDM system is 20MHZ; the number of sub-channels N=256, that is, the IFFT of 256 points is adopted, wherein the cyclic prefix CP=64, the number of useful sub-channels is 200, and the pilot channel is included in Among the 200 sub-channels, the number of pilot channels is 8, which are respectively located at the sub-channel positions of [13 38 63 88 113 138 163 188]; the maximum Doppler frequency shift of the system is 50HZ.
图5为采用不同门限时,本发明实施例提供的方法和PTA方法的剩余频率偏移(RCFO)的均方误差(MSE)曲线图。MSE能够反映估计的频率偏移的误差精度。该图中所示的仿真是在剩余载波频率偏移归一化值为0.04和采样时钟偏移归一化值为0.00002的条件下做出的。图中三个门限值按照从小到大的顺序分别为:门限一、门限二、门限三。由图5中可见,本发明提供的方法中当门限选择较高时,如门限三,其频偏估计性能与PTA方法性能基本一致,这主要是因为高的门限值使得选出的满足条件的子信道的数据很少。当门限选择较低时,如门限一,满足的条件的子信道的数据多,但是在门限值较低时,所选子信道的传输质量低,容易出现误码,也会影响系统的性能。三个门限值相比较,门限二对于剩余频率偏移估计而言是最佳门限。Fig. 5 is a curve diagram of mean square error (MSE) of the residual frequency offset (RCFO) of the method provided by the embodiment of the present invention and the PTA method when different thresholds are used. The MSE can reflect the error accuracy of the estimated frequency offset. The simulation shown in this figure was done with a residual carrier frequency offset normalized to 0.04 and a sample clock offset normalized to 0.00002. The three thresholds in the figure are in descending order: threshold one, threshold two, and threshold three. It can be seen from Fig. 5 that when the threshold is selected higher in the method provided by the present invention, such as threshold three, its frequency offset estimation performance is basically consistent with the performance of the PTA method, mainly because the high threshold makes the selection satisfy the condition The subchannels have very little data. When the threshold is selected to be low, such as
图6为采用不同门限时,本发明实施例提供的方法和PTA方法的采样时钟偏移(SFO)的均方误差MSE曲线图。MSE能够反映估计的采样时钟偏移的误差精度。该图中所示的仿真是在剩余载波频率偏移归一化值为0.04和采样时钟偏移归一化值为0.00002的条件下做出的。图中三个门限值按照从小到大的顺序分别为:门限一、门限二、门限三。由图6中可见,门限越小,采样时钟偏移的估计性能越高,这是由于在采样时钟估计中采用对子信道之间相位变化规律进行加权估计,对各个信道的误码不敏感。FIG. 6 is a curve diagram of the mean square error (MSE) of the sampling clock offset (SFO) of the method provided by the embodiment of the present invention and the PTA method when different thresholds are used. The MSE can reflect the error accuracy of the estimated sampling clock offset. The simulation shown in this figure was done with a residual carrier frequency offset normalized to 0.04 and a sample clock offset normalized to 0.00002. The three thresholds in the figure are in descending order: threshold one, threshold two, and threshold three. It can be seen from Figure 6 that the smaller the threshold, the higher the estimation performance of the sampling clock offset. This is because the weighted estimation of the phase variation between sub-channels is used in the sampling clock estimation, which is not sensitive to the bit error of each channel.
图7为在相同采样时钟偏移归一化值和不同剩余载波频率偏移归一化值下,本发明方法和PTA方法的估计性能曲线。采用的采样时钟归一化值为0.00002,剩余载波频率偏移归一化值分别为0.06、0.04和0.02。由图7可知PTA方法随着剩余频率偏移的减小,其剩余频率偏移的MSE略有减小;本发明方法中的估计性能在三种情况下,性能均优于PTA方法,但在剩余频率偏移较大时,其性能趋进于PTA方法,随着剩余频率偏移的减小,剩余频率偏移的MSE迅速下降,这是由于随着剩余频率偏移的减小,高质量的子信道随之增多,因此本发明的方法的性能有了明显的提高。Fig. 7 is the estimated performance curves of the method of the present invention and the PTA method under the same normalized value of sampling clock offset and different normalized value of residual carrier frequency offset. The normalized value of the sampling clock used is 0.00002, and the normalized values of the remaining carrier frequency offset are 0.06, 0.04 and 0.02, respectively. It can be seen from Fig. 7 that the MSE of the residual frequency offset of the PTA method decreases slightly with the reduction of the residual frequency offset; the estimation performance in the method of the present invention is better than that of the PTA method in three cases, but in When the residual frequency offset is large, its performance tends to be that of the PTA method. As the residual frequency offset decreases, the MSE of the residual frequency offset decreases rapidly. This is because the high-quality The number of sub-channels increases accordingly, so the performance of the method of the present invention is obviously improved.
图8为在相同剩余载波频率偏移归一化值和不同采样时钟偏移归一化值下,本发明方法和PTA方法的估计性能曲线。采用的剩余载波频率偏移归一化值为0.04,采用的采样时钟偏移归一化值分别为0.00004、0.00002和0.000005。由图8可以看出,PTA方法随着采样时钟偏移的减小,其采样时钟偏移的MSE略有减小;本发明方法中的性能在三种情况下均优于PTA方法,且随着采样时钟偏移的减小,采样时钟偏移的MSE迅速下降。这是由于随着采样时钟的减小,高质量的子信道随之增多。但由于采样时钟偏移的数值一般较小,同剩余载波频率偏移的变化相比,其对子信道传输质量的影响小。Fig. 8 is an estimated performance curve of the method of the present invention and the PTA method under the same normalized value of residual carrier frequency offset and different normalized value of sampling clock offset. The adopted normalized value of residual carrier frequency offset is 0.04, and the adopted normalized values of sampling clock offset are 0.00004, 0.00002 and 0.000005 respectively. As can be seen from Fig. 8, the MSE of the sampling clock offset of the PTA method decreases slightly with the decrease of the sampling clock offset; the performance in the method of the present invention is better than that of the PTA method in three cases, and with As the sampling clock skew decreases, the MSE of the sampling clock skew drops rapidly. This is due to the increase in high-quality sub-channels as the sampling clock decreases. However, since the value of the sampling clock offset is generally small, compared with the change of the remaining carrier frequency offset, its impact on the sub-channel transmission quality is small.
图9为在平均信噪比为15dB,剩余载波频率偏移归一化值为0.05,以及采样时钟偏移归一化值为0.0004的条件下,本发明方法和PTA方法的剩余载波频率偏移跟踪曲线。如图9所示,本发明方法和PTA方法的收敛速度都很快,但在跟踪中PTA方法的波动范围较大,而本发明方法的波动范围比较小,通过计算可以得出在跟踪过程中,PTA方法的剩余载波频率跟踪的方差为1.8457e-004,而本发明方法的剩余载波频率跟踪的方差为2.6659e-005,相对于PTA方法,本发明方法的性能提高了5.9倍。Fig. 9 is under the condition that the average signal-to-noise ratio is 15dB, the normalized value of residual carrier frequency offset is 0.05, and the normalized value of sampling clock offset is 0.0004, the residual carrier frequency offset of the method of the present invention and the PTA method Trace the curve. As shown in Figure 9, the convergence speeds of the method of the present invention and the PTA method are very fast, but the fluctuation range of the PTA method is relatively large in tracking, while the fluctuation range of the method of the present invention is relatively small, and it can be concluded that in the tracking process , the variance of the residual carrier frequency tracking of the PTA method is 1.8457e-004, while the variance of the residual carrier frequency tracking of the method of the present invention is 2.6659e-005. Compared with the PTA method, the performance of the method of the present invention is improved by 5.9 times.
图10为在平均信噪比为15dB,剩余载波频率偏移归一化值为0.05,以及采样时钟偏移为0.0004的条件下,本发明方法和PTA方法的采样时钟偏移跟踪曲线。由图10可见,跟踪中,PTA方法的波动范围大,本发明方法的波动范围小,通过计算可以得到在跟踪过程中,PTA方法的采样时钟偏移跟踪的方差为8.2279e-009,而本发明方法的采样时钟偏移跟踪的方差为2.1542e-009,相对于PTA方法性能提高了2.8倍。Fig. 10 is the sampling clock offset tracking curves of the method of the present invention and the PTA method under the conditions that the average signal-to-noise ratio is 15dB, the normalized value of the remaining carrier frequency offset is 0.05, and the sampling clock offset is 0.0004. It can be seen from Fig. 10 that during tracking, the fluctuation range of the PTA method is large, and the fluctuation range of the method of the present invention is small. Through calculation, it can be obtained that in the tracking process, the variance of the sampling clock offset tracking of the PTA method is 8.2279e-009, while this The variance of the sampling clock offset tracking of the inventive method is 2.1542e-009, and the performance is improved by 2.8 times compared with the PTA method.
由以上描述可以看出,本发明实施例提供的OFDM技术的同步估计方法和系统,通过利用获取的满足设定传输质量要求的子信道上的互相关数据,对剩余载波频率偏移和采样时钟偏移进行估计,克服了传输质量差的子信道中产生的误码的影响,提高了同步估计的精度。It can be seen from the above description that the synchronization estimation method and system of the OFDM technology provided by the embodiments of the present invention use the cross-correlation data obtained on the sub-channels that meet the set transmission quality requirements to calculate the remaining carrier frequency offset and sampling clock The offset is estimated, which overcomes the influence of bit errors generated in sub-channels with poor transmission quality, and improves the accuracy of synchronization estimation.
更进一步地,本发明实施例提供的方法和系统,所获取的满足设定传输质量要求的子信道为信号子信道,还可以包括满足设定传输质量要求的导频子信道或者全部的导频子信道,增加了采用的子信道数据,克服了PTA方法中,同步估计的精度由于导频子信道数据少而受限的缺点。Furthermore, in the method and system provided by the embodiments of the present invention, the obtained subchannels that meet the set transmission quality requirements are signal subchannels, and may also include pilot subchannels or all pilot subchannels that meet the set transmission quality requirements. The sub-channel increases the sub-channel data used, and overcomes the disadvantage of the PTA method that the accuracy of synchronization estimation is limited due to the lack of pilot sub-channel data.
更进一步地,本发明所采用的硬判决方法不需要对信道估计,就可以对接收端子信道上的数据或互相关数据进行补偿,以获得发送端可能发送的数据,克服了同步估计方法对信道估计的依赖。Furthermore, the hard decision method adopted in the present invention does not need to estimate the channel, and can compensate the data or cross-correlation data on the channel of the receiving terminal to obtain the data that the transmitting terminal may send, which overcomes the channel estimation method of the synchronous estimation method. Estimated dependencies.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the present invention. within the scope of protection.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101071606A CN101299737B (en) | 2007-04-30 | 2007-04-30 | Synchronous estimation method and system for orthogonal frequency division multiplexing technique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007101071606A CN101299737B (en) | 2007-04-30 | 2007-04-30 | Synchronous estimation method and system for orthogonal frequency division multiplexing technique |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101299737A CN101299737A (en) | 2008-11-05 |
CN101299737B true CN101299737B (en) | 2011-12-07 |
Family
ID=40079428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007101071606A Expired - Fee Related CN101299737B (en) | 2007-04-30 | 2007-04-30 | Synchronous estimation method and system for orthogonal frequency division multiplexing technique |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101299737B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102075460B (en) * | 2009-11-20 | 2014-01-01 | 中兴通讯股份有限公司 | Frequency offset estimating method and device based on data |
CN102196296B (en) * | 2010-03-12 | 2012-12-26 | 扬智科技股份有限公司 | Method and device for detecting spectrum inversion in terrestrial digital television broadcasting system |
CN102263721B (en) * | 2010-05-31 | 2015-08-12 | 中兴通讯股份有限公司 | The time offset estimation method of upward signal, base station and OFDMA system |
CN102694762B (en) * | 2011-03-25 | 2017-02-22 | 北京新岸线移动多媒体技术有限公司 | Method for realizing synchronization of carrier and sampling clock, and user site device |
CN102790737B (en) * | 2011-05-17 | 2017-11-28 | 中兴通讯股份有限公司 | The synchronous method and device of a kind of system |
CN105659549A (en) * | 2014-08-06 | 2016-06-08 | 华为技术有限公司 | Method and apparatus for transmitting uplink information in multi-user multiple-input multiple-output system |
WO2016074165A1 (en) * | 2014-11-12 | 2016-05-19 | 华为技术有限公司 | Method and device for reducing inter-subcarrier interference in ofdma system |
WO2017181352A1 (en) * | 2016-04-20 | 2017-10-26 | Hong Kong Applied Science and Technology Research Institute Company Limited | Timing offset estimation in an ofdm-based system by sinr measurement |
CN109274620B (en) * | 2017-07-18 | 2020-10-30 | 电信科学技术研究院 | Frequency offset determination method and device |
CN111131106B (en) * | 2018-10-31 | 2022-08-30 | 中国科学院上海高等研究院 | Frequency offset estimation method, system, storage medium and receiving device of communication signal |
CN119363544B (en) * | 2024-12-25 | 2025-06-24 | 深圳市鼎阳科技股份有限公司 | Clock error compensation method, orthogonal frequency division multiplexing system and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1758639A (en) * | 2004-10-09 | 2006-04-12 | 北京中电华大电子设计有限责任公司 | Sample clock frequency deviation compensation method and device for OFDM receiver |
-
2007
- 2007-04-30 CN CN2007101071606A patent/CN101299737B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1758639A (en) * | 2004-10-09 | 2006-04-12 | 北京中电华大电子设计有限责任公司 | Sample clock frequency deviation compensation method and device for OFDM receiver |
Also Published As
Publication number | Publication date |
---|---|
CN101299737A (en) | 2008-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101299737B (en) | Synchronous estimation method and system for orthogonal frequency division multiplexing technique | |
CN1802831B (en) | Method and device for adaptive phase compensation of OFDM signals | |
CN101507219B (en) | Method and system for time error estimation for data symbols | |
CN100531176C (en) | Equalization circuit for enhancing channel estimation and compensating for residual frequency offset in receiver | |
CN1881970B (en) | Method and apparatus for compensating sampling frequency offset and carrier frequency offset in OFDM system | |
CN101336522A (en) | Apparatus and method for carrier frequency synchronization in orthogonal frequency division multiplexing system | |
US9413580B2 (en) | Symbol time offset correction via intercarrier interference detection in OFDM receiver | |
US20070253497A1 (en) | Phase tracking method and device thereof | |
EP2245816B1 (en) | Post-DTF/FFT time tracking algorithm for OFDM receivers | |
CN103873422A (en) | Method for eliminating multipath interference in system symbol in underwater sound orthogonal frequency-division multiplexing system | |
WO2001020831A1 (en) | Ofdm communication device and detecting method | |
CN101924730B (en) | Method for correcting phase demodulating error of orthogonal frequency multichannel signal | |
CN101534287A (en) | Method and device for correcting carrier frequency offset in mobile communication system | |
US8059736B2 (en) | Orthogonal frequency division multiplexing receiver | |
US7869495B2 (en) | OFDM receiver using time-domain and frequency-domain equalizing and time domain equalizer | |
CN102857466A (en) | Orthogonal frequency division multiplexing (OFDM) system common phase error compensation method and device | |
Tanhaei et al. | A novel channel estimation technique for OFDM systems with robustness against timing offset | |
CN102664858A (en) | Combined method for reducing peak-to-average ratio of OFDM (orthogonal frequency division multiplexing) system and tracking carrier frequency | |
EP2245814B1 (en) | Frame timing and carrier frequency recovery for frequency selective signals | |
CN106101042A (en) | A kind of CFO method of estimation based on many noises | |
CN102223336B (en) | Wireless communication method and equipment | |
CN101039288B (en) | Channel Estimation Method and Device Against Timing Deviation in OFDM System | |
Speziali et al. | A new approach to post-FFT synchronization for DVB-T receivers | |
Ge et al. | Joint frequency offset tracking and PAPR reduction algorithm in OFDM systems | |
CN101237436B (en) | A method and circuit for detecting carrier frequency offset and sampling frequency offset |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111207 Termination date: 20160430 |