US7724325B2 - Liquid crystal display device and method for manufacturing the same - Google Patents

Liquid crystal display device and method for manufacturing the same Download PDF

Info

Publication number
US7724325B2
US7724325B2 US10/875,577 US87557704A US7724325B2 US 7724325 B2 US7724325 B2 US 7724325B2 US 87557704 A US87557704 A US 87557704A US 7724325 B2 US7724325 B2 US 7724325B2
Authority
US
United States
Prior art keywords
line
common
lcd device
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/875,577
Other versions
US20040263752A1 (en
Inventor
Woo Hyun Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Assigned to LG.PHILIPS LCD CO., LTD. reassignment LG.PHILIPS LCD CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, WOO HYUN
Publication of US20040263752A1 publication Critical patent/US20040263752A1/en
Assigned to LG DISPLAY CO., LTD. reassignment LG DISPLAY CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: LG.PHILIPS LCD CO., LTD.
Application granted granted Critical
Publication of US7724325B2 publication Critical patent/US7724325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • the present invention relates to a liquid crystal display (LCD) device. More particularly, the present invention relates to a liquid crystal display (LCD) device and a method for manufacturing the same that improve picture quality by decreasing the reflection of external light.
  • LCD liquid crystal display
  • LCD liquid crystal display
  • PDP plasma display panel
  • ELD electroluminescent display
  • VFD vacuum fluorescent display
  • LCD liquid crystal display
  • LCD devices have been most widely used because of its advantageous characteristics such as having a thin profile, light weight, and low power consumption.
  • the LCD devices provide a substitute for a Cathode Ray Tube (CRT).
  • CRT Cathode Ray Tube
  • LCD devices have been developed for computer monitors and televisions to receive and display broadcast signals.
  • the LCD device includes an LCD panel for displaying a picture image, and a driving part for applying a driving signal to the LCD panel.
  • the LCD panel includes first and second glass substrates bonded to each other at a predetermined interval, and a liquid crystal layer injected between the first and second glass substrates.
  • the first glass substrate also called a TFT array substrate
  • the plurality of gate lines are formed on the first glass substrate at fixed intervals in one direction, and the plurality of data lines are formed at fixed intervals perpendicular to the plurality of gate lines.
  • the plurality of pixel electrodes are respectively formed in a matrix configuration in pixel regions defined by the plurality of gate and data lines crossing each other.
  • the plurality of thin film transistors are switched on/off according to signals of the gate lines for transmitting signals of the data lines to the respective pixel electrodes.
  • the second glass substrate also called a color filter substrate
  • the common electrode is formed on the first glass substrate.
  • a predetermined space is maintained between the first and second glass substrates by spacers, and the first and second substrates are bonded to each other by a sealant pattern having a liquid crystal injection inlet.
  • the liquid crystal layer is formed using a liquid crystal injection method, in which the liquid crystal injection inlet is dipped into a container having a liquid crystal material while maintaining a vacuum state in the predetermined space between the first and second glass substrates. That is, the liquid crystal material is injected between the first and second substrates by an osmotic action. Then, the liquid crystal injection inlet is sealed with a sealant.
  • the LCD device is driven according to optical anisotropy and polarizability of liquid crystal.
  • Liquid crystal molecules are aligned using directional characteristics because the liquid crystal molecules each have long and thin shapes.
  • an electric field is applied to the liquid crystal to control the alignment direction of the liquid crystal molecules. If the alignment direction of the liquid crystal molecules is controlled by the electric field, the light is polarized and changed by the optical anisotropy of the liquid crystal, thereby displaying the picture image.
  • the liquid crystal is classified into positive (+) type liquid crystal having positive dielectric anisotropy and negative ( ⁇ ) type liquid crystal having negative dielectric anisotropy according to electrical characteristics of the liquid crystal.
  • a longitudinal axis of a positive (+) liquid crystal molecule is parallel to the electric field applied to the liquid crystal.
  • a longitudinal axis of a negative ( ⁇ ) liquid crystal molecule is perpendicular to the electric field applied to the liquid crystal.
  • FIG. 1 is an exploded perspective view illustrating parts of a general Twisted Nematic (TN) mode LCD device.
  • the general TN mode LCD device includes lower and upper substrates 1 and 2 bonded to each other at a predetermined interval, and a liquid crystal layer 3 formed by injecting a liquid crystal material between the lower and upper substrates 1 and 2 .
  • the lower substrate 1 includes a plurality of gate lines 4 , a plurality of data lines 5 , a plurality of pixel electrodes 6 , and a plurality of thin film transistors T.
  • the plurality of gate lines 4 are formed on the lower substrate 1 in one direction at fixed intervals, and the plurality of data lines 5 are formed perpendicular to the plurality of gate lines 4 at fixed intervals, thereby defining a plurality of pixel regions P.
  • the plurality of pixel electrodes 6 are respectively formed in the pixel regions P defined by the plurality of gate and data lines 4 and 5 crossing each other, and the plurality of thin film transistors T are respectively formed at crossing portions of the plurality of gate and data lines 4 and 5 .
  • the upper substrate 2 includes a black matrix layer 7 that excludes light from regions except the pixel regions P, an R/G/B color filter layer 8 for displaying various colors, and a common electrode 9 for displaying a picture image.
  • the thin film transistor T includes a gate electrode protruding from the gate line 4 , a gate insulating layer (not shown) on an entire surface of the lower substrate 1 , an active layer on the gate insulating layer above the gate electrode, a source electrode protruding from the data line 5 , and a drain electrode opposite to the source electrode.
  • the pixel electrode 6 is formed of a transparent conductive metal material having the increased light transmittance, such as indium-tin-oxide (ITO).
  • liquid crystal molecules of the liquid crystal layer 3 positioned on the pixel electrode 6 are aligned according to a signal applied from the thin film transistor T, and light transmittance through the liquid crystal layer 3 is controlled by the alignment of the liquid crystal layer 3 , thereby displaying the picture image. Also, the liquid crystal molecules are driven according to an electric field perpendicular to the lower and upper substrates, thereby obtaining increased light transmittance and high aperture ratio.
  • the common electrode 9 of the upper substrate 2 serves as a ground, whereby it is possible to prevent liquid crystal cells from being damaged by static electricity.
  • the TN mode LCD has disadvantageous characteristics such as a narrow viewing angle.
  • FIG. 2 is a cross-sectional view illustrating a general IPS mode LCD device.
  • a pixel electrode 12 and a common electrode 13 are formed on a lower substrate 11 .
  • an upper substrate 15 is bonded to the lower substrate 11 at a predetermined interval therebetween, and a liquid crystal layer 14 is formed between the lower and upper substrates 11 and 15 .
  • the liquid crystal layer 14 is driven according to an electric field parallel to the lower and upper substrates 11 and 15 between the pixel electrode 12 and the common electrode 13 .
  • FIG. 3A and FIG. 3B illustrate the alignment direction of liquid crystal when a voltage is turned off/on in the IPS mode LCD device.
  • FIG. 3A illustrates the IPS mode LCD device when the voltage is turned off. For example, when an electric field parallel to the lower and upper substrates is not applied to the common electrode 13 or the pixel electrode 12 , there is no change in alignment of the liquid crystal layer 14 . In more detail, the liquid crystal molecules are twisted at 45° with reference to the pixel electrode 12 and the common electrode 13 .
  • FIG. 3B illustrates the IPS mode LCD device when the voltage is turned on i.e., when an electric field parallel to the lower and upper substrates is applied to the common electrode 13 and the pixel electrode 12 . Accordingly, the alignment direction of the liquid crystal layer 14 is changed.
  • the alignment of liquid crystal layer 14 is twisted more at 45° as compared to the alignment of liquid crystal layer when the voltage is turned off.
  • the horizontal direction of the common and pixel electrodes 13 and 12 is identical to the twisted direction of liquid crystal molecules.
  • the IPS mode LCD device has the common electrode 13 and the pixel electrode 12 on the same plane.
  • it has advantageous characteristics such as a wide viewing angle.
  • a viewer can have a viewing angle of 70° in all directions (i.e., lower, upper, left, and right directions).
  • the IPS mode LCD device has simplified manufacturing process steps, and reduced color shift.
  • the IPS mode LCD device has the problems of low light transmittance and low aperture ratio because the common electrode 13 and the pixel electrode 12 are formed on the same substrate. Also, in the case of the IPS mode LCD device, a rapid response time is required, and it is necessary to maintain a uniform cell gap due to a small misalignment margin.
  • FIG. 4A and FIG. 4B are perspective views illustrating the operation of the IPS mode LCD device when the voltage is turned on/off.
  • the alignment direction 16 of the liquid crystal molecules is the same as an alignment direction of an initial alignment layer (not shown).
  • the alignment direction 16 of the liquid crystal molecules corresponds to a direction 17 of the applied electric field.
  • FIG. 5 is a plan view illustrating an IPS mode LCD device according to the related art
  • FIG. 6 is a cross-sectional view taken along lines I-I′ and II-II′ of FIG. 5
  • FIG. 7 is a plane view illustrating another IPS mode LCD device according the related art
  • FIG. 8 is a cross-sectional view taken along lines III-III′ and IV-IV′ of FIG. 7
  • FIG. 9 is a plane view illustrating another IPS mode LCD device according to the related art
  • FIG. 10 is a cross-sectional view taken along lines V-V′ and VI-VI′ of FIG. 9 .
  • a gate line 61 including a gate electrode 61 a is formed on a transparent lower substrate 60 .
  • a common line 61 b including a common electrode 61 c and a first storage electrode 61 d is formed in parallel to the gate line 61 within a pixel region.
  • a gate insulating layer 62 of SiN x or SiO x is formed on an entire surface of the lower substrate 60 including the gate line 61 and the common line 61 b .
  • an island-shaped active layer 63 is formed on the gate insulating layer 62 above the gate electrode 61 a .
  • a data line 64 is formed on the gate insulating layer 62 perpendicular to the gate line 61 .
  • the data line 64 includes source/drain electrodes 64 a / 64 b overlapped with both sides of the active layer 63 .
  • the plurality of common electrodes 61 c are formed as one body with the common line 61 b parallel to the data line 64 within the pixel region.
  • a pixel electrode 64 d extending from the drain electrode 64 b are formed between the common electrodes 61 c
  • a second storage electrode 64 c extending from the pixel electrode 64 c is formed on the common line 61 b and the first storage electrode 61 d .
  • the drain electrode 64 b and the pixel electrode 64 d are formed on the same layer as the second storage electrode 64 c in one body.
  • an upper substrate 50 is formed opposite to the lower substrate 60 .
  • the upper substrate 50 includes a black matrix layer 51 that excludes light from regions except the pixel regions of the lower substrate 60 , and an R/G/B color filter layer 52 corresponding to the pixel regions of the lower substrate 60 .
  • the black matrix layer 51 is formed to cover the interval between the data line 64 and the adjacent common electrode 61 c .
  • the black matrix layer 51 is formed as a large dimension because of the bonding margin of the lower and upper substrates corresponding the data line 64 , the gate line 61 and the thin film transistor TFT.
  • the IPS mode LCD device has the following disadvantages.
  • the opaque common line (electrode) and the pixel electrode are formed at predetermined portions of the pixel region, thereby lowering the aperture ratio.
  • the black matrix layer is formed to have a large dimension because of the bonding margin of the lower and upper substrates to prevent light leakage between the gate line and the common line, whereby the aperture ratio lowers.
  • a gate line 81 including a gate electrode 81 a is formed on a transparent lower substrate 80 .
  • a common line 81 b including a common electrode 81 c and a first storage electrode 81 d is formed in parallel to the gate line 81 within a pixel region.
  • a gate insulating layer 82 of SiN x or SiO x is formed on an entire surface of the lower substrate 80 including the gate line 81 and the common line 81 b , and an island-shaped active layer 83 is formed on the gate insulating layer 82 above the gate electrode 81 a .
  • a data line 84 is formed on the gate insulating layer 82 perpendicular to the gate line 81 .
  • the data line 84 includes source/drain electrodes 84 a / 84 b overlapping both sides of the active layer 83 .
  • a second storage electrode 84 c is formed on the common line 81 b and the first storage electrode 81 d .
  • the plurality of common electrodes 81 c are formed as one body with the common line 61 b parallel to the data line 64 within the pixel region.
  • First and second contact holes 87 a and 87 b are formed in the drain electrode 84 b and the second storage electrode 84 c .
  • An insulating interlayer 85 is formed on the entire surface of the substrate including the data line 84 in state of forming first and second contact holes 87 a and 87 b in the drain electrode 84 b and the second storage electrode 84 c .
  • a pixel electrode 86 is formed between the common electrodes 81 c to be connected with the drain electrode 84 b and the second storage electrode 84 c through the first and second contact holes 87 a and 87 b .
  • the pixel electrode 86 is formed of a transparent conductive layer.
  • the drain electrode 84 b is formed on the same layer as the second storage electrode 84 c , and on the different layer from the pixel electrode 86 .
  • the upper substrate 70 is formed opposite to the lower substrate 80 .
  • the upper substrate 70 includes a black matrix layer 71 that excludes light from regions except the pixel regions of the lower substrate 80 , and an R/G/B color filter layer 72 corresponding to the pixel regions of the lower substrate 80 .
  • the black matrix layer 71 is formed to cover the interval between the data line 84 and the adjacent common electrode 81 c . Furthermore, the black matrix layer 71 is formed as a large dimension because of the bonding margin of the lower and upper substrates corresponding to the data line 84 , the gate line 81 and the thin film transistor T.
  • the IPS mode LCD device explained in FIG. 7 and FIG. 8 has the following disadvantages.
  • the pixel electrode is formed of the transparent material, whereby it is possible to improve the aperture ratio as compared with that of the IPS mode LCD device explained in FIG. 5 .
  • the common line electrode
  • the aperture ratio lowers.
  • the black matrix layer is formed as a large dimension because of the bonding margin of the lower and upper substrates to prevent light leakage between the gate line and the common line, whereby the aperture ratio is lowered.
  • a gate line 101 including a gate electrode 101 a is formed on a transparent lower substrate 100 , and a first common line 10 b is formed in parallel to the gate line 101 within a pixel region.
  • a gate insulating layer 102 of SiN x or SiO x is formed on an entire surface of the lower substrate 100 including the gate line 101 and the first common line 101 b , and an island-shaped active layer 103 is formed on the gate insulating layer 102 above the gate electrode 101 a .
  • a data line 104 is formed on the gate insulating layer 102 perpendicular to the gate line 101 .
  • the data line 104 includes source/drain electrodes 104 a / 104 b overlapping both sides of the active layer 103 .
  • a storage electrode 104 c is formed as one body with the drain electrode 104 b and overlaps the first common line 101 b .
  • An insulating interlayer 105 is formed on the entire surface of the lower substrate 100 including the data line 104 .
  • the insulating interlayer 105 has a contact hole 106 on the drain electrode 104 b and the storage electrode 104 c .
  • a pixel electrode 107 c is connected to the drain electrode 104 b and the storage electrode 104 c through the contact hole 106 .
  • the pixel electrode 107 c is parallel to the data line 104 within the pixel region.
  • a second common line 107 a is formed on the gate line 101
  • a common electrode 107 b is formed between the pixel electrode 107 c and the data line 104 adjacent to the pixel region.
  • the common electrode 107 b is formed as one body with the second common line 107 a .
  • the pixel electrode 107 c , the second common line 107 a and the common electrode 107 b are formed of a transparent conductive layer on the same layer.
  • the first common line 10 b and the second common line 107 a are connected to each other in a non-display region, and the same common voltage is additionally applied to the first common line 10 b and the second common line 107 a .
  • an upper substrate 90 is formed opposite to the lower substrate 100 , the upper substrate 90 including a black matrix layer 91 that excludes light from regions except the pixel regions P of the lower substrate 100 , and an RIG/B color filter layer 92 corresponding to the pixel regions P.
  • the lower and upper substrates are bonded to each other with a sealant in state of forming a liquid crystal injection inlet between the lower substrates.
  • the common electrode and the pixel electrode are formed of the transparent material, whereby it is possible to obtain the high aperture ratio.
  • the color filter layer is formed on the upper substrate, it may generate misalignment problems between the pixel region and the color filter layer when bonding the lower and upper substrates to each other. As glass substrates become large, the position difference is increased between the pixel region of the lower substrate and the color filter layer of the upper substrate. In order to overcome these problems, it is necessary to obtain a design that resolves the misalignment problem. In case of the design for solving the problem of the misalignment, the aperture ratio lowers after bonding the lower and upper substrates to each other.
  • FIG. 11 is a cross-sectional view taken along line VI-VI′ of FIG. 9 and illustrates a related art IPS mode LCD device having a COT structure therein. That is, a gate line (‘ 101 ’ of FIG. 9 ) including a gate electrode (‘ 101 a’ of FIG. 9 ) is formed on a lower substrate 100 .
  • a gate insulating layer 102 is formed on an entire surface of the lower substrate 10 including the gate line, and an island-shaped active layer (‘ 103 ’ of FIG. 9 ) is formed on the gate insulating layer 102 above the gate electrode.
  • a data line 104 is formed on the gate insulating layer 102 perpendicular to the gate line, the data line 104 including source/drain electrodes (‘ 104 a’ and ‘ 104 b ’ of FIG. 9 ) overlapping both sides of the active layer.
  • an insulating interlayer 105 is formed on the entire surface of the substrate including the data line 104 , and R/G/B color filter layers are formed on the insulating interlayer 105 of the respective pixel regions. If the R/G/B color filter layers are overlapped above the data line 104 , it decreases the planarization effect of an organic insulating layer formed on the color filter layer. Accordingly, it is necessary to obtain a sufficient margin ‘c’ in due consideration of accuracy when forming the color filter layer. For example, when forming the color filter layer, position accuracy is about ⁇ 3 ⁇ m, whereby it requires the minimum margin ‘c’ of 6 ⁇ m on the designing process, and it generates a maximum interval of 12 ⁇ m on the practical manufacturing process.
  • the color filter layer overlaps both sides of the data line 104 , and the color filter layer is not formed above the center of the data line 104 .
  • the organic insulating layer 109 is formed on the entire surface of the substrate to flatten the surface of the substrate, and a contact hole (‘106’ of FIG. 9 ) is formed in the drain electrode (‘ 104 b’ of FIG. 9 ).
  • a pixel electrode 107 c is formed in parallel to the data line 104 within the pixel region and connected to the drain electrode through the contact hole.
  • a second common line 107 b is formed between the pixel electrode 107 c and the data line 104 adjacent to the pixel region.
  • the second common line 107 b When the second common line 107 b is formed above the data line 104 , the second common line 107 b is wider than both sides of the data line 104 in the extent of ‘a’ and ‘b’, wherein ‘a’ is formed in the same width as ‘b’.
  • the second common line 107 b is formed at a width of approx. 4 ⁇ m.
  • the IPS mode LCD device having the COT structure has the following disadvantages.
  • the color filter layer is not formed above the predetermined portion of the data line to prevent the decrease of the planarization effect, thereby decreasing a contrast ratio by the reflection of the external light in the predetermined portion of the data line having no color filter layer.
  • a resin BM may be formed above the predetermined portion of the data line having no color filter layer.
  • the resin BM is expensive, has low electrical characteristics due to its low resistivity, and generates the problem of impurity contamination on the particle source.
  • the present invention is directed to a LCD device and a method for manufacturing the same that substantially obviates one or more problems due to limitations and disadvantages of the related art.
  • An advantage of the present invention is to provide an IPS mode LCD device having a COT structure therein, and a method for manufacturing the same, to improve picture quality by decreasing the reflection of external light above the data line, to obtain the economic efficiency, to simplify the manufacturing process by forming a light-shielding layer of a metal material, and to solve the problem of decreasing aperture ratio after bonding lower and upper substrates to each other.
  • a liquid crystal display (LCD) device includes first and second substrates facing each other; gate and data lines crossing each other on the first substrate to define a pixel region; a first common line parallel to the gate line; a thin film transistor at a crossing portion of the gate and data lines; an insulating interlayer on an entire surface of the first substrate including the data line; color filter layers in the pixel region to completely cover the data line; a planarization layer on the entire surface of the first substrate including the color filter layers; a second common line along the gate line and the thin film transistor; common electrodes completely overlapping the data line, and arranged at one direction in the pixel region; and a pixel electrode in contact with a drain electrode of the thin film transistor and formed between the common electrodes at fixed intervals.
  • LCD liquid crystal display
  • a method for manufacturing a liquid crystal display (LCD) device includes forming a gate line including a gate electrode on a predetermined portion of a substrate; forming a first common line parallel to the gate line; forming a gate insulating layer on the substrate including the gate line; forming an active layer above the gate electrode; forming a data line perpendicular to the gate line to define a pixel region; forming source and drain electrodes that overlap both sides of the active layer; forming an insulating interlayer on an entire surface of the substrate including the data line; forming color filter layers in the pixel region to completely cover the data line; forming a planarization layer on the entire surface of the substrate including the color filter layers; forming a second common line above the gate line and a thin film transistor; forming common electrodes completely covering the data line in one direction within the pixel region; and forming a pixel electrode between the common electrodes at fixed intervals in the pixel region.
  • FIG. 1 is an exploded perspective view illustrating some parts of a general TN mode LCD device
  • FIG. 2 is a cross-sectional view illustrating a general IPS mode LCD device
  • FIG. 3A and FIG. 3B illustrate the alignment direction of liquid crystal when a voltage is turned off/on in the IPS mode LCD device
  • FIG. 4A and FIG. 4B are perspective views illustrating the operation of the IPS mode LCD device when the voltage is turned on/off;
  • FIG. 5 is a plan view illustrating an LCD device according to the related art
  • FIG. 6 is a cross-sectional view taken along lines I-I′ and II-I′ of FIG. 5 ;
  • FIG. 7 is a plan view illustrating another LCD device according to the related art.
  • FIG. 8 is a cross-sectional view taken along lines III-III′ and IV-IV′ of FIG. 7 ;
  • FIG. 9 is a plan view illustrating another LCD device according to the related art.
  • FIG. 10 is a cross-sectional view taken along lines V-V′ and VI-VI′ of FIG. 9 ;
  • FIG. 11 is a cross-sectional view illustrating an IPS mode LCD device having a COT structure therein according to the related art
  • FIG. 12 is a plan view illustrating an LCD device according to the preferred embodiment of the present invention.
  • FIG. 13A is a cross-sectional view taken along lines VII-VII′ and VIII-VIII′ of FIG. 12 ;
  • FIG. 13B is an expanded cross-sectional view illustrating a data line of FIG. 13A ;
  • FIG. 14A to FIG. 14C are cross-sectional view illustrating manufacturing process steps of an LCD device according to an embodiment of the present invention.
  • the LCD device according to the embodiment is formed in an In-Plane switching (IPS) mode of a COT (Color filter On TFT array) structure for forming a color filter layer on a lower substrate.
  • IPS In-Plane switching
  • COT Color filter On TFT array
  • a light-shielding layer (a black matrix layer) is formed above a channel region of a thin film transistor TFT on the lower substrate.
  • the light-shielding layer is formed of metal instead of resin, as in the related art.
  • the color filter layer and a common electrode completely overlap each other above a data line.
  • FIG. 12 is a plan view illustrating an LCD device according to the embodiment of the present invention.
  • FIG. 13A is a cross-sectional view taken along lines VII-VII′ and VIII-VIII′ of FIG. 12 .
  • FIG. 13B is an expanded cross-sectional view of a data line shown in FIG. 13A .
  • the LCD device is formed as an In-Plane switching (IPS) mode, wherein a common electrode is formed on a lower substrate.
  • IPS In-Plane switching
  • a gate line 121 including a gate electrode 121 a is formed on a transparent lower substrate 120 in one direction, and a first common line 121 b is formed on the same layer as the gate line 121 in parallel.
  • a gate insulating layer 122 of SiN x or SiO x is formed on an entire surface of the lower substrate 120 including the gate line 121 and the first common line 121 b .
  • an island-shaped active layer 123 is formed on the gate insulating layer 122 above the gate electrode 121 a .
  • a data line 124 is formed perpendicular to the gate line 121 . Simultaneously, a source electrode 124 a protruding from the data line 124 overlaps one side of the active layer 123 , and a drain electrode 124 a overlaps the other side of the active layer 123 at a predetermined interval from the source electrode 124 a . After that, an insulating interlayer 125 is formed on the entire surface of the lower substrate 120 including the data line 124 , the source electrode 124 a and the drain electrode 124 b . Also, R/G/B color filter layers 126 are formed in the respective pixel regions of the lower substrate, and completely overlap the data line 124 .
  • an insulating (planarization) layer 128 is formed on the entire surface of the lower substrate 120 including the color filter layer 126 to flatten the surface of the substrate.
  • the insulating layer 128 has a first contact hole 127 a on the drain electrode 124 b , and a second contact hole 127 b on the first common line 121 b .
  • a light-shielding layer 129 is formed on the insulating layer 128 above a channel region of a thin film transistor TFT having the gate electrode 121 a , the source electrode 124 a and the drain electrode 124 b .
  • a second common line 130 a is formed on a thin film transistor region including the light-shielding layer 129 and the insulating layer 128 above the gate line 121 , and is connected to the first common line 121 b through the second contact hole 127 b .
  • a common electrode 130 b is formed to completely cover the data line 124 parallel at a predetermined portion of the pixel region.
  • the second common line 130 a and the common electrode 130 b may be in contact with the first common line 121 b outside of an active region of an LCD panel, or an external power may be provided to the second common line 130 a and the common electrode 130 b . In this state, the second common line 130 a is formed as one body with the common electrode 130 b.
  • the second common line 130 a , the common electrode 130 b and the pixel electrode 130 c are formed on the same layer, and formed of indium-tin-oxide (ITO), tin-oxide (TO), indium-zinc-oxide (IZO), or indium-tin-zinc-oxide (ITZO) or other transparent conductive material.
  • the pixel electrode 130 c is formed between and parallel to the common electrodes 130 b within the pixel region, and is connected to the drain electrode 124 b through the first contact hole 127 a .
  • a storage electrode 124 c extending from the drain electrode 124 b is formed on the gate insulating layer 122 above the first common line 121 b .
  • the LCD device according to the first embodiment of the present invention has a Storage On Common structure.
  • an alignment layer (not shown) of polyimide or other such material is formed on the entire surface of the lower substrate 120 .
  • the data line 124 , the color filter layer 126 and the common electrode 130 b of the IPS mode LCD device having the COT structure according to the present invention will be described in detail.
  • the color filter layer 126 is formed to completely cover the data line 124 to decrease the reflection of the external light.
  • the respective R/G/B color filter layers are positioned at sufficient intervals to prevent a decreased planarization effect.
  • the common electrode 130 b is formed above the data line 124 to provide sufficient margin for covering the data line 124 and the interval between the color filter layers, thereby preventing a voltage of the data line 124 from effecting a pixel voltage.
  • the common electrode 130 b completely overlaps the data line 124 , wherein the common electrode 130 b is driven together with the adjacent pixel electrode 130 according to an electric field parallel to the substrates.
  • the common electrode 130 b above the data line 124 is formed to have a predetermined margin on the left side, and to have a predetermined margin for accuracy of the color filter layers corresponding to the interval between the color filter layers 126 at the right side.
  • the common electrode 130 b has the margin (a) of approx. 4 ⁇ m at one side, the margin (c) of approx.
  • the margin (a) and the margin (b) of the common electrode 130 b are asymmetric.
  • the margin (c) between one side of the color filter layer 126 and one side of the data line 124 may be controlled based upon an allowable reflection extent of the external light.
  • the margin (d) corresponding to the interval between the color filter layers may be controlled based upon the planarization level.
  • the respective R/G/B color filter layers 126 When forming the respective R/G/B color filter layers 126 to cover the data lines 124 completely, if the respective R/G/B color filter layers 126 have a light transmittance of approx. 30%, the external light is incident on the R/G/B color filter layers 126 , and then reflected to the external. Thus, the external light passes through the color filter layers 126 two times, so that the reflexibility of the external light lowers at approx. 9% by 30% ⁇ 30%.
  • the insulating layer 128 is formed of at least one of photoacryl, polyimide, and BCB (BenzoCycloButene) at a thickness of approx. 3 ⁇ m.
  • the light-shielding layer 129 is formed of metal instead of resin because the resin is expensive, has low electrical characteristics due to its low resistivity, and generates contamination by impurity of the particle source.
  • the light-shielding layer 129 is formed of at least one of chrome Cr, molybdenum Mo, copper Cu, tantalum Ta and aluminum Al.
  • an oxide layer 129 a may be formed on the light-shielding layer 129 to decrease the reflection of the external light.
  • the oxide layer 129 a may be formed in an anodic oxidation method of the light-shielding layer, or an additional deposition process.
  • the common electrode 130 b When forming the common electrode 130 b above the data line 124 , the common electrode 130 b covers the portion corresponding to the interval between the respective color filter layers; otherwise, the white light transmits without passing through the color filter layer 126 as the light passes through the color filter layer by driving the liquid crystal from the edge of the common electrode 130 b to the edge of the pixel electrode 130 c , thereby deteriorating the color purity.
  • the interval is increased between the color filter layers, it is disadvantageous to an aperture ratio. Accordingly, it is required to determine the optimal dimension based upon the relationship between the color purity and the aperture ratio.
  • an upper substrate 110 formed opposite to the lower substrate 120 .
  • the upper substrate 110 includes an alignment layer (not shown) without the color filter layer and the black matrix layer in that the gate line 121 , the data line 124 , the second common line 130 a above the channel region of the thin film transistor, the common electrode 130 b and the light-shielding layer 129 serve as the black matrix layer. Also, the island-shaped light-shielding layer 129 may be formed on the upper substrate 100 corresponding to the channel region of the thin film transistor of the lower substrate 120 , thereby preventing light incidence.
  • FIG. 14A to FIG. 14C are cross-sectional views illustrating the manufacturing process of the LCD device according to an embodiment of the present invention.
  • a conductive metal material is deposited on the transparent lower substrate 120 , and the patterned by photolithography, thereby forming the gate line 121 having a gate pad (not shown) and the gate electrode 121 a .
  • the first common line 121 b is formed on the same layer and parallel to the gate line 121 .
  • the gate insulating layer 122 is formed on an entire surface of the lower substrate 120 including the gate line 121 and the first common line 121 b .
  • the gate insulating layer 122 is formed of SiN x or SiO x .
  • a semiconductor layer e.g., ‘amorphous silicon’+‘impurity amorphous silicon’
  • a semiconductor layer e.g., ‘amorphous silicon’+‘impurity amorphous silicon’
  • a conductive metal material is deposited on the entire surface of the lower substrate 120 including the active layer 123 , and then patterned by photolithography, thereby simultaneously forming the data line 124 perpendicular to the gate line 121 , the source electrode 124 a protruding from the data line 124 , and the drain electrode 124 b at a predetermined interval from the source electrode 124 a .
  • the storage electrode 124 c extending from the drain electrode 124 b is formed above the first common line 121 b , thereby obtaining the Storage On Common structure.
  • the insulating interlayer 125 is formed on the entire surface of the lower substrate 120 including the data line 124 .
  • the insulating interlayer 125 is formed of an oxide layer or a nitride layer.
  • the R/G/B color filter layers 126 are formed in the respective pixel regions.
  • the respective color filter layers 126 completely overlap the data lines 124 .
  • Each color filter layer 126 is increased by a predetermined width in one portion corresponding to one side of the data line 124 , whereby the data line 124 is completely covered with each color filter layer 126 .
  • the respective R/G/B color filter layers 126 are formed at fixed intervals to obtain the flatness on the entire surface of the substrate.
  • the color filter layer 126 and the insulating interlayer 125 are selectively etched, thereby forming the first and second contact holes 127 a and 127 b to expose the predetermined portion of the drain electrode 124 b and the predetermined portion of the first common line 121 b.
  • the insulating layer 128 is formed on the color filter layer 126 to flatten the surface of the lower substrate 120 .
  • the insulating layer 128 is formed of at least one of photoacryl, polyimide, and BCB (BenzoCycloButene). By etching the insulating layer 128 , the contact holes are formed to expose the predetermined portions of the drain electrode 124 b or the storage electrode 124 c extending therefrom, and the first common line 121 b .
  • the insulating layer 128 , the insulating layer 128 , the color filter layer 126 , the insulating interlayer 125 and the gate insulating layer 122 may be sequentially etched to expose the predetermined portions of the drain electrode 124 b and the first common line 121 b , thereby forming the first and second contact holes 127 a and 127 b .
  • a metal layer is deposited on the insulating layer 128 , and then patterned by photolithography, thereby forming the light-shielding layer 129 above the channel region of the thin film transistor.
  • the light-shielding layer 129 is formed of at least one of chrome Cr, molybdenum Mo, copper Cu, tantalum Ta, and aluminum Al. Furthermore, the oxide layer 129 a is additionally formed on the light-shielding layer 129 .
  • the oxide layer 129 a may be formed using a heat treatment on the metal layer, or by depositing a transparent conductive layer for the common electrode and the pixel electrode in the oxygen atmosphere. After that, a transparent conductive layer is deposited on the insulating layer 128 including the light-shielding layer 129 , and then selectively removed by photolithography, thereby forming the second common line 130 a , the common electrode 130 b , and the pixel electrode 130 c .
  • the second common line 130 a overlaps the gate line 121 and the thin film transistor.
  • the common electrode 130 b is formed as one body with the second common line 130 a .
  • the common electrode 130 b is formed to cover the data line 124 completely, and the common electrode 130 b extending from the second common line 130 a is formed at one direction in the pixel region.
  • the common electrode 130 b overlaps the data line 124 by a predetermined margin at the left side, and a predetermined margin for accuracy of the color filter layers corresponding to the interval between the color filter layers 126 at the right side.
  • the margin of the right side is greater than the margin of the left side, whereby the right and left sides of the common electrode 130 b are asymmetrically formed above the data line 124 .
  • the margin of the color filter layer 126 may be controlled based upon the allowable reflection extent of the external light.
  • the margin corresponding to the interval between the color filter layers 126 may be controlled based upon the planarization level.
  • the common electrode 130 b When forming the common electrode 130 b above the data line 124 , the common electrode 130 b covers the portion corresponding to the interval between the respective color filter layers 126 ; otherwise, the white light transmits without passing through the color filter layer 126 as the light passes through the color filter layer by driving the liquid crystal from the edge of the common electrode 130 b to the edge of the pixel electrode 130 c , thereby deteriorating the color purity.
  • the interval is increased between the color filter layers 126 , it is disadvantageous to an aperture ratio. Accordingly, it is required to determine the optimal dimension based upon the relationship between the color purity and the aperture ratio.
  • the common electrode 130 b is formed parallel to the data line 124 in one direction within the pixel region, and one end of the common electrode 130 b overlaps the first common line 121 b.
  • the pixel electrode 130 c is connected to the drain electrode 124 b through the first contact hole 127 a
  • the second common line 130 a is connected with the first common line 121 b through the second contact hole 127 b .
  • the transparent conductive layer is formed of indium-tin-oxide (ITO), tin-oxide (TO), indium-zinc-oxide (IZO), or indium-tin-zinc-oxide (ITZO) or the like.
  • the alignment layer (not shown) of polyimide or photosensitive material is formed on the entire surface of the lower substrate 120 including the second common line 130 a , the common electrode 130 b and the pixel electrode 130 c .
  • the alignment direction is determined by mechanical rubbing. Meanwhile, if the alignment layer is formed of the photosensitive material such as polyvinylcinnamate(PVCN)-based material or polysiloxane-based material, the alignment direction is determined by irradiation of ultraviolet rays. At this time, the alignment direction depends on light irradiation direction or light characteristics such as polarizing direction.
  • the upper substrate 110 is prepared, and a sealant (not shown) is formed on any one of the lower and upper substrates 120 and 110 . Then, the lower and upper substrates 120 and 110 are bonded to each other. Although not shown, the same alignment layer is formed on the entire surface of the upper substrate 110 .
  • the LCD device according to the present invention and the method for manufacturing the same has the following advantages.
  • the color filter layer and the common electrode are formed to cover the data line completely, so that it is possible to decrease the reflection of the external light above the data line, thereby improving the picture quality.
  • the light-shielding layer is formed of metal instead of resin, thereby improving the price of the LCD and its electrical characteristics.
  • the LCD device according to the present invention obtains the COT structure of forming the color filter layer on the lower substrate, and the light-shielding layer to completely cover the channel region of the thin film transistor so that it is possible to solve problems such as the decrease of the aperture ratio due to the margin for bonding the lower and upper substrates to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

An in-plane switching (IPS) mode liquid crystal display (LCD) device having a color filter on TFT (COT) structure therein and a method for manufacturing the same is disclosed to improve picture quality by decreasing the reflection of external light above the data line, to obtain the economic efficiency, simplify the manufacturing process by forming a light-shielding layer of a metal material, and to solve the problem of decreasing aperture ratio after bonding lower and upper substrates to each other. The device includes first and second substrates facing each other, gate and data lines crossing each other on the first substrate to define a pixel region, a first common line parallel to the gate line, a thin film transistor at a crossing portion of the gate and data lines, an insulating interlayer on an entire surface of the first substrate including the data line, color filters in the pixel region, wherein at least one of the color filters completely covers the data line, a planarization layer on the entire surface of the first substrate including the color filter layers, a second common line along the gate line and the thin film transistor; common electrodes completely overlapping the data line, and arranged at one direction in the pixel region, and a pixel electrode in contact with a drain electrode of the thin film transistor and formed between the common electrodes at fixed intervals.

Description

This application claims the benefit of Korean Application No. P2003-42963, filed on Jun. 28, 2003, which is hereby incorporated by reference for all purposes as if fully set forth herein.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a liquid crystal display (LCD) device. More particularly, the present invention relates to a liquid crystal display (LCD) device and a method for manufacturing the same that improve picture quality by decreasing the reflection of external light.
2. Discussion of the Related Art
With development of an information society, demands for various display devices have increased. As a result, efforts have been made to research and develop flat display devices such as liquid crystal display (LCD), plasma display panel (PDP), electroluminescent display (ELD), and vacuum fluorescent display (VFD). Some types of flat display devices have already been applied to displays for various equipment. Among these flat display devices, liquid crystal display (LCD) devices have been most widely used because of its advantageous characteristics such as having a thin profile, light weight, and low power consumption. The LCD devices provide a substitute for a Cathode Ray Tube (CRT). In addition to mobile type LCD devices such as a display for a notebook computer, LCD devices have been developed for computer monitors and televisions to receive and display broadcast signals. Despite the various technical developments in LCD technology having applications in different fields, research in enhancing the picture quality of the LCD device has, in some respects, lacked as compared to other features and advantages of the LCD device. In order to use LCD devices in various fields as a general display, the key to developing LCD devices depends on whether the LCD devices can provide a high quality picture, such as high resolution and high luminance with a large-sized screen, while still maintaining its light weight, thin profile, and low power consumption.
In general, the LCD device includes an LCD panel for displaying a picture image, and a driving part for applying a driving signal to the LCD panel. The LCD panel includes first and second glass substrates bonded to each other at a predetermined interval, and a liquid crystal layer injected between the first and second glass substrates. The first glass substrate (also called a TFT array substrate) includes a plurality of gate and data lines, a plurality of pixel electrodes, and a plurality of thin film transistors. The plurality of gate lines are formed on the first glass substrate at fixed intervals in one direction, and the plurality of data lines are formed at fixed intervals perpendicular to the plurality of gate lines. The plurality of pixel electrodes are respectively formed in a matrix configuration in pixel regions defined by the plurality of gate and data lines crossing each other. The plurality of thin film transistors are switched on/off according to signals of the gate lines for transmitting signals of the data lines to the respective pixel electrodes. The second glass substrate (also called a color filter substrate) includes a black matrix layer that excludes light from regions except the pixel regions of the first substrate, an R/G/B color filter layer displaying various colors, and a common electrode to obtain the picture image. In the case of an IPS mode LCD device, the common electrode is formed on the first glass substrate. A predetermined space is maintained between the first and second glass substrates by spacers, and the first and second substrates are bonded to each other by a sealant pattern having a liquid crystal injection inlet. The liquid crystal layer is formed using a liquid crystal injection method, in which the liquid crystal injection inlet is dipped into a container having a liquid crystal material while maintaining a vacuum state in the predetermined space between the first and second glass substrates. That is, the liquid crystal material is injected between the first and second substrates by an osmotic action. Then, the liquid crystal injection inlet is sealed with a sealant.
The LCD device is driven according to optical anisotropy and polarizability of liquid crystal. Liquid crystal molecules are aligned using directional characteristics because the liquid crystal molecules each have long and thin shapes. In this respect, an electric field is applied to the liquid crystal to control the alignment direction of the liquid crystal molecules. If the alignment direction of the liquid crystal molecules is controlled by the electric field, the light is polarized and changed by the optical anisotropy of the liquid crystal, thereby displaying the picture image. In this state, the liquid crystal is classified into positive (+) type liquid crystal having positive dielectric anisotropy and negative (−) type liquid crystal having negative dielectric anisotropy according to electrical characteristics of the liquid crystal. In the positive (+) type liquid crystal, a longitudinal axis of a positive (+) liquid crystal molecule is parallel to the electric field applied to the liquid crystal. In the negative (−) type liquid crystal, a longitudinal axis of a negative (−) liquid crystal molecule is perpendicular to the electric field applied to the liquid crystal.
FIG. 1 is an exploded perspective view illustrating parts of a general Twisted Nematic (TN) mode LCD device. As shown in FIG. 1, the general TN mode LCD device includes lower and upper substrates 1 and 2 bonded to each other at a predetermined interval, and a liquid crystal layer 3 formed by injecting a liquid crystal material between the lower and upper substrates 1 and 2.
The lower substrate 1 includes a plurality of gate lines 4, a plurality of data lines 5, a plurality of pixel electrodes 6, and a plurality of thin film transistors T. The plurality of gate lines 4 are formed on the lower substrate 1 in one direction at fixed intervals, and the plurality of data lines 5 are formed perpendicular to the plurality of gate lines 4 at fixed intervals, thereby defining a plurality of pixel regions P. Subsequently, the plurality of pixel electrodes 6 are respectively formed in the pixel regions P defined by the plurality of gate and data lines 4 and 5 crossing each other, and the plurality of thin film transistors T are respectively formed at crossing portions of the plurality of gate and data lines 4 and 5. Also, the upper substrate 2 includes a black matrix layer 7 that excludes light from regions except the pixel regions P, an R/G/B color filter layer 8 for displaying various colors, and a common electrode 9 for displaying a picture image. The thin film transistor T includes a gate electrode protruding from the gate line 4, a gate insulating layer (not shown) on an entire surface of the lower substrate 1, an active layer on the gate insulating layer above the gate electrode, a source electrode protruding from the data line 5, and a drain electrode opposite to the source electrode. Also, the pixel electrode 6 is formed of a transparent conductive metal material having the increased light transmittance, such as indium-tin-oxide (ITO).
In the aforementioned TN mode LCD device, liquid crystal molecules of the liquid crystal layer 3 positioned on the pixel electrode 6 are aligned according to a signal applied from the thin film transistor T, and light transmittance through the liquid crystal layer 3 is controlled by the alignment of the liquid crystal layer 3, thereby displaying the picture image. Also, the liquid crystal molecules are driven according to an electric field perpendicular to the lower and upper substrates, thereby obtaining increased light transmittance and high aperture ratio. The common electrode 9 of the upper substrate 2 serves as a ground, whereby it is possible to prevent liquid crystal cells from being damaged by static electricity. However, the TN mode LCD has disadvantageous characteristics such as a narrow viewing angle.
In order to solve this problem, an IPS mode LCD device has been proposed. FIG. 2 is a cross-sectional view illustrating a general IPS mode LCD device. As shown in FIG. 2, a pixel electrode 12 and a common electrode 13 are formed on a lower substrate 11. Then, an upper substrate 15 is bonded to the lower substrate 11 at a predetermined interval therebetween, and a liquid crystal layer 14 is formed between the lower and upper substrates 11 and 15. The liquid crystal layer 14 is driven according to an electric field parallel to the lower and upper substrates 11 and 15 between the pixel electrode 12 and the common electrode 13.
FIG. 3A and FIG. 3B illustrate the alignment direction of liquid crystal when a voltage is turned off/on in the IPS mode LCD device. FIG. 3A illustrates the IPS mode LCD device when the voltage is turned off. For example, when an electric field parallel to the lower and upper substrates is not applied to the common electrode 13 or the pixel electrode 12, there is no change in alignment of the liquid crystal layer 14. In more detail, the liquid crystal molecules are twisted at 45° with reference to the pixel electrode 12 and the common electrode 13. FIG. 3B illustrates the IPS mode LCD device when the voltage is turned on i.e., when an electric field parallel to the lower and upper substrates is applied to the common electrode 13 and the pixel electrode 12. Accordingly, the alignment direction of the liquid crystal layer 14 is changed. In more detail, the alignment of liquid crystal layer 14 is twisted more at 45° as compared to the alignment of liquid crystal layer when the voltage is turned off. In this state, the horizontal direction of the common and pixel electrodes 13 and 12 is identical to the twisted direction of liquid crystal molecules.
As mentioned above, the IPS mode LCD device has the common electrode 13 and the pixel electrode 12 on the same plane. Thus, it has advantageous characteristics such as a wide viewing angle. For example, along a front direction of the IPS mode LCD device, a viewer can have a viewing angle of 70° in all directions (i.e., lower, upper, left, and right directions). Furthermore, the IPS mode LCD device has simplified manufacturing process steps, and reduced color shift. However, the IPS mode LCD device has the problems of low light transmittance and low aperture ratio because the common electrode 13 and the pixel electrode 12 are formed on the same substrate. Also, in the case of the IPS mode LCD device, a rapid response time is required, and it is necessary to maintain a uniform cell gap due to a small misalignment margin.
FIG. 4A and FIG. 4B are perspective views illustrating the operation of the IPS mode LCD device when the voltage is turned on/off. As shown in FIG. 4A, when the electric field parallel to the lower and upper substrates is not applied to the pixel electrode 12 or the common electrode 13, the alignment direction 16 of the liquid crystal molecules is the same as an alignment direction of an initial alignment layer (not shown). As shown in FIG. 4B, when the electric field parallel to the lower and upper substrates is applied to the pixel electrode 12 and the common electrode 13, the alignment direction 16 of the liquid crystal molecules corresponds to a direction 17 of the applied electric field.
Hereinafter, a related art LCD device will be described with reference to the accompanying drawings. FIG. 5 is a plan view illustrating an IPS mode LCD device according to the related art, and FIG. 6 is a cross-sectional view taken along lines I-I′ and II-II′ of FIG. 5. FIG. 7 is a plane view illustrating another IPS mode LCD device according the related art, and FIG. 8 is a cross-sectional view taken along lines III-III′ and IV-IV′ of FIG. 7. FIG. 9 is a plane view illustrating another IPS mode LCD device according to the related art, and FIG. 10 is a cross-sectional view taken along lines V-V′ and VI-VI′ of FIG. 9.
As shown in FIG. 5 and FIG. 6, a gate line 61 including a gate electrode 61 a is formed on a transparent lower substrate 60. Then, a common line 61 b including a common electrode 61 c and a first storage electrode 61 d is formed in parallel to the gate line 61 within a pixel region. After that, a gate insulating layer 62 of SiNx or SiOx is formed on an entire surface of the lower substrate 60 including the gate line 61 and the common line 61 b. Also, an island-shaped active layer 63 is formed on the gate insulating layer 62 above the gate electrode 61 a. In order to define the pixel region, a data line 64 is formed on the gate insulating layer 62 perpendicular to the gate line 61. The data line 64 includes source/drain electrodes 64 a/64 b overlapped with both sides of the active layer 63. The plurality of common electrodes 61 c are formed as one body with the common line 61 b parallel to the data line 64 within the pixel region. Then, a pixel electrode 64 d extending from the drain electrode 64 b are formed between the common electrodes 61 c, and a second storage electrode 64 c extending from the pixel electrode 64 c is formed on the common line 61 b and the first storage electrode 61 d. In the aforementioned structure, the drain electrode 64 b and the pixel electrode 64 d are formed on the same layer as the second storage electrode 64 c in one body. After that, an upper substrate 50 is formed opposite to the lower substrate 60. The upper substrate 50 includes a black matrix layer 51 that excludes light from regions except the pixel regions of the lower substrate 60, and an R/G/B color filter layer 52 corresponding to the pixel regions of the lower substrate 60. The black matrix layer 51 is formed to cover the interval between the data line 64 and the adjacent common electrode 61 c. Furthermore, the black matrix layer 51 is formed as a large dimension because of the bonding margin of the lower and upper substrates corresponding the data line 64, the gate line 61 and the thin film transistor TFT.
However, the IPS mode LCD device according to the related art has the following disadvantages. The opaque common line (electrode) and the pixel electrode are formed at predetermined portions of the pixel region, thereby lowering the aperture ratio. Also, the black matrix layer is formed to have a large dimension because of the bonding margin of the lower and upper substrates to prevent light leakage between the gate line and the common line, whereby the aperture ratio lowers.
In order to improve the aperture ratio, another IPS mode LCD device according to the related art will be described. As shown in FIG. 7 and FIG. 8, a gate line 81 including a gate electrode 81 a is formed on a transparent lower substrate 80. Then, a common line 81 b including a common electrode 81 c and a first storage electrode 81 d is formed in parallel to the gate line 81 within a pixel region. After that, a gate insulating layer 82 of SiNx or SiOx is formed on an entire surface of the lower substrate 80 including the gate line 81 and the common line 81 b, and an island-shaped active layer 83 is formed on the gate insulating layer 82 above the gate electrode 81 a. In order to define the pixel region, a data line 84 is formed on the gate insulating layer 82 perpendicular to the gate line 81. The data line 84 includes source/drain electrodes 84 a/84 b overlapping both sides of the active layer 83. At this time, a second storage electrode 84 c is formed on the common line 81 b and the first storage electrode 81 d. The plurality of common electrodes 81 c are formed as one body with the common line 61 b parallel to the data line 64 within the pixel region. First and second contact holes 87 a and 87 b are formed in the drain electrode 84 b and the second storage electrode 84 c. An insulating interlayer 85 is formed on the entire surface of the substrate including the data line 84 in state of forming first and second contact holes 87 a and 87 b in the drain electrode 84 b and the second storage electrode 84 c. Also, a pixel electrode 86 is formed between the common electrodes 81 c to be connected with the drain electrode 84 b and the second storage electrode 84 c through the first and second contact holes 87 a and 87 b. In the aforementioned LCD device, the pixel electrode 86 is formed of a transparent conductive layer. Also, the drain electrode 84 b is formed on the same layer as the second storage electrode 84 c, and on the different layer from the pixel electrode 86. Next, an upper substrate 70 is formed opposite to the lower substrate 80. The upper substrate 70 includes a black matrix layer 71 that excludes light from regions except the pixel regions of the lower substrate 80, and an R/G/B color filter layer 72 corresponding to the pixel regions of the lower substrate 80. The black matrix layer 71 is formed to cover the interval between the data line 84 and the adjacent common electrode 81 c. Furthermore, the black matrix layer 71 is formed as a large dimension because of the bonding margin of the lower and upper substrates corresponding to the data line 84, the gate line 81 and the thin film transistor T.
The IPS mode LCD device explained in FIG. 7 and FIG. 8 has the following disadvantages. In the IPS mode LCD device of FIG. 7 and FIG. 8, the pixel electrode is formed of the transparent material, whereby it is possible to improve the aperture ratio as compared with that of the IPS mode LCD device explained in FIG. 5. However, because the common line (electrode) is formed at the predetermined portion of the pixel region, the aperture ratio lowers. Furthermore, the black matrix layer is formed as a large dimension because of the bonding margin of the lower and upper substrates to prevent light leakage between the gate line and the common line, whereby the aperture ratio is lowered.
In order to improve the aperture ratio, another IPS mode LCD device according to the related art will be described as follows. As shown in FIG. 9 and FIG. 10, a gate line 101 including a gate electrode 101 a is formed on a transparent lower substrate 100, and a first common line 10 b is formed in parallel to the gate line 101 within a pixel region. Then, a gate insulating layer 102 of SiNx or SiOx is formed on an entire surface of the lower substrate 100 including the gate line 101 and the first common line 101 b, and an island-shaped active layer 103 is formed on the gate insulating layer 102 above the gate electrode 101 a. In order to define the pixel region, a data line 104 is formed on the gate insulating layer 102 perpendicular to the gate line 101. The data line 104 includes source/drain electrodes 104 a/104 b overlapping both sides of the active layer 103. A storage electrode 104 c is formed as one body with the drain electrode 104 b and overlaps the first common line 101 b. An insulating interlayer 105 is formed on the entire surface of the lower substrate 100 including the data line 104. The insulating interlayer 105 has a contact hole 106 on the drain electrode 104 b and the storage electrode 104 c. Also, a pixel electrode 107 c is connected to the drain electrode 104 b and the storage electrode 104 c through the contact hole 106. The pixel electrode 107 c is parallel to the data line 104 within the pixel region. Simultaneously, a second common line 107 a is formed on the gate line 101, and a common electrode 107 b is formed between the pixel electrode 107 c and the data line 104 adjacent to the pixel region. The common electrode 107 b is formed as one body with the second common line 107 a. The pixel electrode 107 c, the second common line 107 a and the common electrode 107 b are formed of a transparent conductive layer on the same layer. The first common line 10 b and the second common line 107 a are connected to each other in a non-display region, and the same common voltage is additionally applied to the first common line 10 b and the second common line 107 a. Then, an upper substrate 90 is formed opposite to the lower substrate 100, the upper substrate 90 including a black matrix layer 91 that excludes light from regions except the pixel regions P of the lower substrate 100, and an RIG/B color filter layer 92 corresponding to the pixel regions P. Although not shown, the lower and upper substrates are bonded to each other with a sealant in state of forming a liquid crystal injection inlet between the lower substrates.
In the IPS mode LCD device explained with reference to FIG. 9 and FIG. 10, the common electrode and the pixel electrode are formed of the transparent material, whereby it is possible to obtain the high aperture ratio. However, because the color filter layer is formed on the upper substrate, it may generate misalignment problems between the pixel region and the color filter layer when bonding the lower and upper substrates to each other. As glass substrates become large, the position difference is increased between the pixel region of the lower substrate and the color filter layer of the upper substrate. In order to overcome these problems, it is necessary to obtain a design that resolves the misalignment problem. In case of the design for solving the problem of the misalignment, the aperture ratio lowers after bonding the lower and upper substrates to each other.
Accordingly, a COT-structure (Color filter On TFT array) LCD device forming a color filter layer on a lower substrate is recently developed in order to overcome the problem of the position difference between the pixel region of the lower substrate and the color filter layer of the upper substrate. The COT-structure LCD device according to the related art will be briefly described. FIG. 11 is a cross-sectional view taken along line VI-VI′ of FIG. 9 and illustrates a related art IPS mode LCD device having a COT structure therein. That is, a gate line (‘101’ of FIG. 9) including a gate electrode (‘101a’ of FIG. 9) is formed on a lower substrate 100. Then, a gate insulating layer 102 is formed on an entire surface of the lower substrate 10 including the gate line, and an island-shaped active layer (‘103’ of FIG. 9) is formed on the gate insulating layer 102 above the gate electrode. In order to define a pixel region, a data line 104 is formed on the gate insulating layer 102 perpendicular to the gate line, the data line 104 including source/drain electrodes (‘104a’ and ‘104b ’ of FIG. 9) overlapping both sides of the active layer. Then, an insulating interlayer 105 is formed on the entire surface of the substrate including the data line 104, and R/G/B color filter layers are formed on the insulating interlayer 105 of the respective pixel regions. If the R/G/B color filter layers are overlapped above the data line 104, it decreases the planarization effect of an organic insulating layer formed on the color filter layer. Accordingly, it is necessary to obtain a sufficient margin ‘c’ in due consideration of accuracy when forming the color filter layer. For example, when forming the color filter layer, position accuracy is about ±3 μm, whereby it requires the minimum margin ‘c’ of 6 μm on the designing process, and it generates a maximum interval of 12 μm on the practical manufacturing process. That is, the color filter layer overlaps both sides of the data line 104, and the color filter layer is not formed above the center of the data line 104. After that, the organic insulating layer 109 is formed on the entire surface of the substrate to flatten the surface of the substrate, and a contact hole (‘106’ of FIG. 9) is formed in the drain electrode (‘104b’ of FIG. 9). Also, a pixel electrode 107 c is formed in parallel to the data line 104 within the pixel region and connected to the drain electrode through the contact hole. Simultaneously, a second common line 107 b is formed between the pixel electrode 107 c and the data line 104 adjacent to the pixel region. When the second common line 107 b is formed above the data line 104, the second common line 107 b is wider than both sides of the data line 104 in the extent of ‘a’ and ‘b’, wherein ‘a’ is formed in the same width as ‘b’. The second common line 107 b is formed at a width of approx. 4 μm.
However, the IPS mode LCD device having the COT structure has the following disadvantages. As shown in FIG. 11, the color filter layer is not formed above the predetermined portion of the data line to prevent the decrease of the planarization effect, thereby decreasing a contrast ratio by the reflection of the external light in the predetermined portion of the data line having no color filter layer. In order to solve this problem, a resin BM may be formed above the predetermined portion of the data line having no color filter layer. However, the resin BM is expensive, has low electrical characteristics due to its low resistivity, and generates the problem of impurity contamination on the particle source.
SUMMARY OF THE INVENTION
Accordingly, the present invention is directed to a LCD device and a method for manufacturing the same that substantially obviates one or more problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide an IPS mode LCD device having a COT structure therein, and a method for manufacturing the same, to improve picture quality by decreasing the reflection of external light above the data line, to obtain the economic efficiency, to simplify the manufacturing process by forming a light-shielding layer of a metal material, and to solve the problem of decreasing aperture ratio after bonding lower and upper substrates to each other.
Additional advantages and features of the invention will be set forth in the description which follows, and in part will become apparent from the description, or may be learned by practice of the invention. These and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a liquid crystal display (LCD) device includes first and second substrates facing each other; gate and data lines crossing each other on the first substrate to define a pixel region; a first common line parallel to the gate line; a thin film transistor at a crossing portion of the gate and data lines; an insulating interlayer on an entire surface of the first substrate including the data line; color filter layers in the pixel region to completely cover the data line; a planarization layer on the entire surface of the first substrate including the color filter layers; a second common line along the gate line and the thin film transistor; common electrodes completely overlapping the data line, and arranged at one direction in the pixel region; and a pixel electrode in contact with a drain electrode of the thin film transistor and formed between the common electrodes at fixed intervals.
In another aspect, a method for manufacturing a liquid crystal display (LCD) device includes forming a gate line including a gate electrode on a predetermined portion of a substrate; forming a first common line parallel to the gate line; forming a gate insulating layer on the substrate including the gate line; forming an active layer above the gate electrode; forming a data line perpendicular to the gate line to define a pixel region; forming source and drain electrodes that overlap both sides of the active layer; forming an insulating interlayer on an entire surface of the substrate including the data line; forming color filter layers in the pixel region to completely cover the data line; forming a planarization layer on the entire surface of the substrate including the color filter layers; forming a second common line above the gate line and a thin film transistor; forming common electrodes completely covering the data line in one direction within the pixel region; and forming a pixel electrode between the common electrodes at fixed intervals in the pixel region.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings:
FIG. 1 is an exploded perspective view illustrating some parts of a general TN mode LCD device;
FIG. 2 is a cross-sectional view illustrating a general IPS mode LCD device;
FIG. 3A and FIG. 3B illustrate the alignment direction of liquid crystal when a voltage is turned off/on in the IPS mode LCD device;
FIG. 4A and FIG. 4B are perspective views illustrating the operation of the IPS mode LCD device when the voltage is turned on/off;
FIG. 5 is a plan view illustrating an LCD device according to the related art;
FIG. 6 is a cross-sectional view taken along lines I-I′ and II-I′ of FIG. 5;
FIG. 7 is a plan view illustrating another LCD device according to the related art;
FIG. 8 is a cross-sectional view taken along lines III-III′ and IV-IV′ of FIG. 7;
FIG. 9 is a plan view illustrating another LCD device according to the related art;
FIG. 10 is a cross-sectional view taken along lines V-V′ and VI-VI′ of FIG. 9;
FIG. 11 is a cross-sectional view illustrating an IPS mode LCD device having a COT structure therein according to the related art;
FIG. 12 is a plan view illustrating an LCD device according to the preferred embodiment of the present invention;
FIG. 13A is a cross-sectional view taken along lines VII-VII′ and VIII-VIII′ of FIG. 12;
FIG. 13B is an expanded cross-sectional view illustrating a data line of FIG. 13A; and
FIG. 14A to FIG. 14C are cross-sectional view illustrating manufacturing process steps of an LCD device according to an embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
Hereinafter, an LCD device according to an embodiment of the present invention will be described with reference to the accompanying drawings. The LCD device according to the embodiment is formed in an In-Plane switching (IPS) mode of a COT (Color filter On TFT array) structure for forming a color filter layer on a lower substrate. In the aforementioned COT structure, a light-shielding layer (a black matrix layer) is formed above a channel region of a thin film transistor TFT on the lower substrate. The light-shielding layer is formed of metal instead of resin, as in the related art. Also, the color filter layer and a common electrode completely overlap each other above a data line.
An LCD device according to an embodiment of the present invention will be described as follows. FIG. 12 is a plan view illustrating an LCD device according to the embodiment of the present invention. FIG. 13A is a cross-sectional view taken along lines VII-VII′ and VIII-VIII′ of FIG. 12. FIG. 13B is an expanded cross-sectional view of a data line shown in FIG. 13A.
The LCD device according to the embodiment of the present invention is formed as an In-Plane switching (IPS) mode, wherein a common electrode is formed on a lower substrate. As shown in FIG. 12 and FIG. 13A, a gate line 121 including a gate electrode 121 a is formed on a transparent lower substrate 120 in one direction, and a first common line 121 b is formed on the same layer as the gate line 121 in parallel. Then, a gate insulating layer 122 of SiNx or SiOx is formed on an entire surface of the lower substrate 120 including the gate line 121 and the first common line 121 b. Also, an island-shaped active layer 123 is formed on the gate insulating layer 122 above the gate electrode 121 a. In order to define a pixel region, a data line 124 is formed perpendicular to the gate line 121. Simultaneously, a source electrode 124 a protruding from the data line 124 overlaps one side of the active layer 123, and a drain electrode 124 a overlaps the other side of the active layer 123 at a predetermined interval from the source electrode 124 a. After that, an insulating interlayer 125 is formed on the entire surface of the lower substrate 120 including the data line 124, the source electrode 124 a and the drain electrode 124 b. Also, R/G/B color filter layers 126 are formed in the respective pixel regions of the lower substrate, and completely overlap the data line 124.
Then, an insulating (planarization) layer 128 is formed on the entire surface of the lower substrate 120 including the color filter layer 126 to flatten the surface of the substrate. The insulating layer 128 has a first contact hole 127 a on the drain electrode 124 b, and a second contact hole 127 b on the first common line 121 b. Next, a light-shielding layer 129 is formed on the insulating layer 128 above a channel region of a thin film transistor TFT having the gate electrode 121 a, the source electrode 124 a and the drain electrode 124 b. Also, a second common line 130 a is formed on a thin film transistor region including the light-shielding layer 129 and the insulating layer 128 above the gate line 121, and is connected to the first common line 121 b through the second contact hole 127 b. A common electrode 130 b is formed to completely cover the data line 124 parallel at a predetermined portion of the pixel region. The second common line 130 a and the common electrode 130 b may be in contact with the first common line 121 b outside of an active region of an LCD panel, or an external power may be provided to the second common line 130 a and the common electrode 130 b. In this state, the second common line 130 a is formed as one body with the common electrode 130 b.
In the aforementioned LCD device, the second common line 130 a, the common electrode 130 b and the pixel electrode 130 c are formed on the same layer, and formed of indium-tin-oxide (ITO), tin-oxide (TO), indium-zinc-oxide (IZO), or indium-tin-zinc-oxide (ITZO) or other transparent conductive material. Also, the pixel electrode 130 c is formed between and parallel to the common electrodes 130 b within the pixel region, and is connected to the drain electrode 124 b through the first contact hole 127 a. A storage electrode 124 c extending from the drain electrode 124 b is formed on the gate insulating layer 122 above the first common line 121 b. Herein, the LCD device according to the first embodiment of the present invention has a Storage On Common structure. Although not shown, an alignment layer (not shown) of polyimide or other such material is formed on the entire surface of the lower substrate 120.
The data line 124, the color filter layer 126 and the common electrode 130 b of the IPS mode LCD device having the COT structure according to the present invention will be described in detail. As shown in FIG. 13B, the color filter layer 126 is formed to completely cover the data line 124 to decrease the reflection of the external light. Also, the respective R/G/B color filter layers are positioned at sufficient intervals to prevent a decreased planarization effect. The common electrode 130 b is formed above the data line 124 to provide sufficient margin for covering the data line 124 and the interval between the color filter layers, thereby preventing a voltage of the data line 124 from effecting a pixel voltage. That is, the common electrode 130 b completely overlaps the data line 124, wherein the common electrode 130 b is driven together with the adjacent pixel electrode 130 according to an electric field parallel to the substrates. To prevent the effect of the voltage of the data line 124 on the voltage of the pixel electrode 130 c, the common electrode 130 b above the data line 124 is formed to have a predetermined margin on the left side, and to have a predetermined margin for accuracy of the color filter layers corresponding to the interval between the color filter layers 126 at the right side. For example, as shown in FIG. 13B, the common electrode 130 b has the margin (a) of approx. 4 μm at one side, the margin (c) of approx. 3 μm between one side of the color filter layer 126 that overlaps the data line 124 and one side of the data line 124, the margin (d) of approx. 6 μm corresponding to the interval between the color filter layers, and the margin (b) of approx. 9 μm between the other side of the common line 130 b and the data line 124. The margin (a) and the margin (b) of the common electrode 130 b are asymmetric. The margin (c) between one side of the color filter layer 126 and one side of the data line 124 may be controlled based upon an allowable reflection extent of the external light. The margin (d) corresponding to the interval between the color filter layers may be controlled based upon the planarization level.
When forming the respective R/G/B color filter layers 126 to cover the data lines 124 completely, if the respective R/G/B color filter layers 126 have a light transmittance of approx. 30%, the external light is incident on the R/G/B color filter layers 126, and then reflected to the external. Thus, the external light passes through the color filter layers 126 two times, so that the reflexibility of the external light lowers at approx. 9% by 30%×30%. In order to prevent a signal delay of the gate line 121 and the data line 124 by the second common line 130 a and the common electrode 130 b, the insulating layer 128 is formed of at least one of photoacryl, polyimide, and BCB (BenzoCycloButene) at a thickness of approx. 3 μm. Also, the light-shielding layer 129 is formed of metal instead of resin because the resin is expensive, has low electrical characteristics due to its low resistivity, and generates contamination by impurity of the particle source. The light-shielding layer 129 is formed of at least one of chrome Cr, molybdenum Mo, copper Cu, tantalum Ta and aluminum Al. Furthermore, an oxide layer 129 a may be formed on the light-shielding layer 129 to decrease the reflection of the external light. The oxide layer 129 a may be formed in an anodic oxidation method of the light-shielding layer, or an additional deposition process.
When forming the common electrode 130 b above the data line 124, the common electrode 130 b covers the portion corresponding to the interval between the respective color filter layers; otherwise, the white light transmits without passing through the color filter layer 126 as the light passes through the color filter layer by driving the liquid crystal from the edge of the common electrode 130 b to the edge of the pixel electrode 130 c, thereby deteriorating the color purity. However, as the interval is increased between the color filter layers, it is disadvantageous to an aperture ratio. Accordingly, it is required to determine the optimal dimension based upon the relationship between the color purity and the aperture ratio. Also, an upper substrate 110 formed opposite to the lower substrate 120. The upper substrate 110 includes an alignment layer (not shown) without the color filter layer and the black matrix layer in that the gate line 121, the data line 124, the second common line 130 a above the channel region of the thin film transistor, the common electrode 130 b and the light-shielding layer 129 serve as the black matrix layer. Also, the island-shaped light-shielding layer 129 may be formed on the upper substrate 100 corresponding to the channel region of the thin film transistor of the lower substrate 120, thereby preventing light incidence.
A method for manufacturing the LCD device according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 14A to FIG. 14C are cross-sectional views illustrating the manufacturing process of the LCD device according to an embodiment of the present invention.
As shown in FIG. 12 and FIG. 14A, a conductive metal material is deposited on the transparent lower substrate 120, and the patterned by photolithography, thereby forming the gate line 121 having a gate pad (not shown) and the gate electrode 121 a. Simultaneously, the first common line 121 b is formed on the same layer and parallel to the gate line 121. After that, the gate insulating layer 122 is formed on an entire surface of the lower substrate 120 including the gate line 121 and the first common line 121 b. The gate insulating layer 122 is formed of SiNx or SiOx. Then, a semiconductor layer (e.g., ‘amorphous silicon’+‘impurity amorphous silicon’) is formed on the gate insulating layer 122, and patterned by photolithography, thereby forming the island-shaped active layer 123 above the gate electrode 121 a. Next, a conductive metal material is deposited on the entire surface of the lower substrate 120 including the active layer 123, and then patterned by photolithography, thereby simultaneously forming the data line 124 perpendicular to the gate line 121, the source electrode 124 a protruding from the data line 124, and the drain electrode 124 b at a predetermined interval from the source electrode 124 a. The storage electrode 124 c extending from the drain electrode 124 b is formed above the first common line 121 b, thereby obtaining the Storage On Common structure.
As shown in FIG. 12 and FIG. 14B, the insulating interlayer 125 is formed on the entire surface of the lower substrate 120 including the data line 124. The insulating interlayer 125 is formed of an oxide layer or a nitride layer. After that, the R/G/B color filter layers 126 are formed in the respective pixel regions. The respective color filter layers 126 completely overlap the data lines 124. Each color filter layer 126 is increased by a predetermined width in one portion corresponding to one side of the data line 124, whereby the data line 124 is completely covered with each color filter layer 126. Also, the respective R/G/B color filter layers 126 are formed at fixed intervals to obtain the flatness on the entire surface of the substrate. Then, the color filter layer 126 and the insulating interlayer 125 are selectively etched, thereby forming the first and second contact holes 127 a and 127 b to expose the predetermined portion of the drain electrode 124 b and the predetermined portion of the first common line 121 b.
As shown in FIG. 12 and FIG. 14C, the insulating layer 128 is formed on the color filter layer 126 to flatten the surface of the lower substrate 120. The insulating layer 128 is formed of at least one of photoacryl, polyimide, and BCB (BenzoCycloButene). By etching the insulating layer 128, the contact holes are formed to expose the predetermined portions of the drain electrode 124 b or the storage electrode 124 c extending therefrom, and the first common line 121 b. Alternatively, after forming the insulating layer 128, the insulating layer 128, the color filter layer 126, the insulating interlayer 125 and the gate insulating layer 122 may be sequentially etched to expose the predetermined portions of the drain electrode 124 b and the first common line 121 b, thereby forming the first and second contact holes 127 a and 127 b. Subsequently, a metal layer is deposited on the insulating layer 128, and then patterned by photolithography, thereby forming the light-shielding layer 129 above the channel region of the thin film transistor. The light-shielding layer 129 is formed of at least one of chrome Cr, molybdenum Mo, copper Cu, tantalum Ta, and aluminum Al. Furthermore, the oxide layer 129 a is additionally formed on the light-shielding layer 129. The oxide layer 129 a may be formed using a heat treatment on the metal layer, or by depositing a transparent conductive layer for the common electrode and the pixel electrode in the oxygen atmosphere. After that, a transparent conductive layer is deposited on the insulating layer 128 including the light-shielding layer 129, and then selectively removed by photolithography, thereby forming the second common line 130 a, the common electrode 130 b, and the pixel electrode 130 c. The second common line 130 a overlaps the gate line 121 and the thin film transistor. Also, the common electrode 130 b is formed as one body with the second common line 130 a. The common electrode 130 b is formed to cover the data line 124 completely, and the common electrode 130 b extending from the second common line 130 a is formed at one direction in the pixel region.
To prevent the voltage of the data line 124 from effecting the voltage of the pixel electrode 130 c, the common electrode 130 b overlaps the data line 124 by a predetermined margin at the left side, and a predetermined margin for accuracy of the color filter layers corresponding to the interval between the color filter layers 126 at the right side. The margin of the right side is greater than the margin of the left side, whereby the right and left sides of the common electrode 130 b are asymmetrically formed above the data line 124. The margin of the color filter layer 126 may be controlled based upon the allowable reflection extent of the external light. The margin corresponding to the interval between the color filter layers 126 may be controlled based upon the planarization level.
When forming the common electrode 130 b above the data line 124, the common electrode 130 b covers the portion corresponding to the interval between the respective color filter layers 126; otherwise, the white light transmits without passing through the color filter layer 126 as the light passes through the color filter layer by driving the liquid crystal from the edge of the common electrode 130 b to the edge of the pixel electrode 130 c, thereby deteriorating the color purity. However, as the interval is increased between the color filter layers 126, it is disadvantageous to an aperture ratio. Accordingly, it is required to determine the optimal dimension based upon the relationship between the color purity and the aperture ratio. Also, the common electrode 130 b is formed parallel to the data line 124 in one direction within the pixel region, and one end of the common electrode 130 b overlaps the first common line 121 b.
In the aforementioned LCD device, the pixel electrode 130 c is connected to the drain electrode 124 b through the first contact hole 127 a, and the second common line 130 a is connected with the first common line 121 b through the second contact hole 127 b. The transparent conductive layer is formed of indium-tin-oxide (ITO), tin-oxide (TO), indium-zinc-oxide (IZO), or indium-tin-zinc-oxide (ITZO) or the like. Although not shown, the alignment layer (not shown) of polyimide or photosensitive material is formed on the entire surface of the lower substrate 120 including the second common line 130 a, the common electrode 130 b and the pixel electrode 130 c. If the alignment layer is formed of polyimide, the alignment direction is determined by mechanical rubbing. Meanwhile, if the alignment layer is formed of the photosensitive material such as polyvinylcinnamate(PVCN)-based material or polysiloxane-based material, the alignment direction is determined by irradiation of ultraviolet rays. At this time, the alignment direction depends on light irradiation direction or light characteristics such as polarizing direction. After that, the upper substrate 110 is prepared, and a sealant (not shown) is formed on any one of the lower and upper substrates 120 and 110. Then, the lower and upper substrates 120 and 110 are bonded to each other. Although not shown, the same alignment layer is formed on the entire surface of the upper substrate 110.
As mentioned above, the LCD device according to the present invention and the method for manufacturing the same has the following advantages.
First, the color filter layer and the common electrode are formed to cover the data line completely, so that it is possible to decrease the reflection of the external light above the data line, thereby improving the picture quality. Also, the light-shielding layer is formed of metal instead of resin, thereby improving the price of the LCD and its electrical characteristics. Furthermore, the LCD device according to the present invention obtains the COT structure of forming the color filter layer on the lower substrate, and the light-shielding layer to completely cover the channel region of the thin film transistor so that it is possible to solve problems such as the decrease of the aperture ratio due to the margin for bonding the lower and upper substrates to each other.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (16)

1. A liquid crystal display (LCD) device comprising:
first and second substrates facing each other;
gate and data lines crossing each other on the first substrate to define a pixel region, wherein the data lines is formed in a straight line;
a first common line parallel to the gate line;
a thin film transistor at a crossing portion of the gate and data lines;
an insulating interlayer on an entire surface of the first substrate including the data line;
color filters on the first substrate in the pixel region, wherein each color filter does not overlap each other, and completely overlaps only one of the adjacent two data lines so that a fixed interval between the color filter layers is not disposed on the data line;
a planarization layer on the entire surface of the first substrate including the color filter layers;
a second common line along the gate line and the thin film transistor;
common electrodes completely overlapping the data line and extending to a portion between respective color filters, wherein the common electrodes are arranged in one direction in the pixel region; and
a pixel electrode in contact with a drain electrode of the thin film transistor and formed between the common electrodes at fixed intervals,
wherein the common electrodes are wider than the data line, and are formed in an asymmetric structure with respect to a portion of the common electrodes on a left side of the data line and a portion of the common electrodes corresponding to and covering the fixed interval between the color filter layers.
2. The LCD device of claim 1, wherein the color filter layers are formed at fixed intervals, each color filter layer being increased a predetermined width on one side of the data line.
3. The LCD device of claim 1, wherein the common electrodes of the pixel region are formed parallel to the data line.
4. The LCD device of claim 1, wherein the common electrodes are formed as one body with the second common line.
5. The LCD device of claim 1, wherein the second common line, the common electrodes and the pixel electrode are formed on the same layer.
6. The LCD device of claim 1, wherein the second common line, the common electrode and the pixel electrode are formed of indium-tin-oxide (ITO), tin-oxide (TO), indium-zinc-oxide (IZO), or indium-tin-zinc-oxide (ITZO).
7. The LCD device of claim 1, further comprising a light-shielding layer on the planarization layer above a channel region of the thin film transistor.
8. The LCD device of claim 7, wherein the light-shielding layer is formed of at least one of chrome Cr, molybdenum Mo, copper Cu, tantalum Ta and aluminum Al.
9. The LCD device of claim 7, wherein an oxide layer is formed on the surface of the light-shielding layer to decrease a reflection of external light.
10. The LCD device of claim 1, further comprising a black matrix layer on the second substrate, the black matrix layer corresponding to a channel region of the thin film transistor of the first substrate.
11. The LCD device of claim 1, wherein the first common line is formed on a same layer as the gate line.
12. The LCD device of claim 1, wherein a storage electrode extending from the drain electrode is formed on a gate insulating layer above the first common line.
13. The LCD device of claim 1, wherein the planarization layer is formed of at least one of photoacryl, polyimide, and BCB (BenzoCycloButene).
14. The LCD device of claim 1, further comprising a first contact hole on one portion of the drain electrode, and a second contact hole on one portion of the first common line.
15. The LCD device of claim 14, wherein the second common line is in contact with the first common line through the second contact hole within the pixel region.
16. The LCD device of claim 14, wherein the pixel electrode is in contact with the drain electrode through the first contact hole.
US10/875,577 2003-06-28 2004-06-25 Liquid crystal display device and method for manufacturing the same Expired - Lifetime US7724325B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020030042963A KR100710166B1 (en) 2003-06-28 2003-06-28 Liquid crystal display device and method for fabricating the same
KRP2003-42963 2003-06-28
KR10-2003-0042963 2003-06-28

Publications (2)

Publication Number Publication Date
US20040263752A1 US20040263752A1 (en) 2004-12-30
US7724325B2 true US7724325B2 (en) 2010-05-25

Family

ID=33536364

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/875,577 Expired - Lifetime US7724325B2 (en) 2003-06-28 2004-06-25 Liquid crystal display device and method for manufacturing the same

Country Status (2)

Country Link
US (1) US7724325B2 (en)
KR (1) KR100710166B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207365A1 (en) * 2008-02-19 2009-08-20 Lg Display Co., Ltd. Liquid crystal display device
US8659734B2 (en) 2011-01-03 2014-02-25 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof
US11624953B2 (en) 2017-07-05 2023-04-11 Samsung Display Co., Ltd. Display apparatus comprising a color conversion pattern and a light blocking pattern disposed on a data pattern of a thin film transistor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710164B1 (en) * 2003-12-30 2007-04-20 엘지.필립스 엘시디 주식회사 In-Plane Switching mode Liquid Crystal Display Device
KR100672648B1 (en) * 2004-12-14 2007-01-24 엘지.필립스 엘시디 주식회사 Liquid Crystal Display Device and Method for Manufacturing the Same
KR20060100850A (en) * 2005-03-18 2006-09-21 엘지.필립스 엘시디 주식회사 Method of manufacturing liquid crystal display device
KR101189275B1 (en) 2005-08-26 2012-10-09 삼성디스플레이 주식회사 Thin film transistor array panel and method for manufacturing the same
KR101335276B1 (en) * 2006-09-20 2013-11-29 삼성디스플레이 주식회사 Array substrat, display panel having the same and fabricating of display panel
US7808595B2 (en) * 2007-04-02 2010-10-05 Lg Display Co., Ltd. Array substrate for liquid crystal display device and manufacturing method of the same
KR101448668B1 (en) * 2007-07-05 2014-10-08 삼성디스플레이 주식회사 Display substrate, method of manufacturing the same and display apparatus having the same
TWI654754B (en) * 2008-11-28 2019-03-21 日商半導體能源研究所股份有限公司 Liquid crystal display device
TWI633371B (en) 2008-12-03 2018-08-21 半導體能源研究所股份有限公司 Liquid crystal display device
JP5384982B2 (en) * 2009-03-27 2014-01-08 株式会社ジャパンディスプレイ Liquid crystal display
KR101635746B1 (en) 2009-10-20 2016-07-05 삼성디스플레이 주식회사 Sensor array substrate, display device comprising the same and method of manufacturing the same
US8804081B2 (en) 2009-12-18 2014-08-12 Samsung Display Co., Ltd. Liquid crystal display device with electrode having opening over thin film transistor
KR20120044745A (en) * 2010-10-28 2012-05-08 삼성모바일디스플레이주식회사 Liquid crystal display device and manufacturing method thereof
CN103353683B (en) * 2013-06-26 2016-02-10 京东方科技集团股份有限公司 A kind of array base palte and comprise the display device of this array base palte
CN105068336A (en) * 2015-08-25 2015-11-18 深圳市华星光电技术有限公司 Manufacturing method for array substrate and array substrate
CN105529301B (en) * 2016-01-04 2019-07-05 京东方科技集团股份有限公司 Manufacturing method, array substrate and the display device of array substrate
KR101910518B1 (en) 2017-04-11 2018-10-22 삼성전자주식회사 Biometric sensor and device comprising the same
KR102421629B1 (en) * 2017-07-05 2022-07-18 삼성디스플레이 주식회사 Display apparatus and method of manufacturing the same
KR20230103603A (en) * 2021-12-31 2023-07-07 엘지디스플레이 주식회사 Liquid crystal display device
CN117457658A (en) * 2022-12-31 2024-01-26 Tcl华星光电技术有限公司 Array substrate and display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470667A (en) * 1980-04-01 1984-09-11 Canon Kabushiki Kaisha Display process and apparatus thereof incorporating overlapping of color filters
US5648861A (en) * 1995-01-31 1997-07-15 Victor Company Of Japan, Ltd. Spatial light modulator having a germanium oxide light shielding layer containing additive material or laminated with SiO2
KR20000057973A (en) 1999-02-10 2000-09-25 다카노 야스아키 Color liquid crystal display apparatus
KR20020069168A (en) 2001-02-23 2002-08-29 닛뽄덴끼 가부시끼가이샤 In-plane switching mode active matrix type liquid crystal display device and method of fabricating the same
US20060152655A1 (en) * 2002-07-30 2006-07-13 Dong-Gyu Kim Thin film transistor array panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000081637A (en) * 1998-09-03 2000-03-21 Nec Corp Liquid crystal display device
JP2000352713A (en) 1999-06-11 2000-12-19 Matsushita Electric Ind Co Ltd Liquid crystal display panel of lateral electric field system and its production
JP3636641B2 (en) 1999-08-20 2005-04-06 セイコーエプソン株式会社 Electro-optic device
JP2002055335A (en) 2001-05-28 2002-02-20 Matsushita Electric Ind Co Ltd Liquid crystal display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4470667A (en) * 1980-04-01 1984-09-11 Canon Kabushiki Kaisha Display process and apparatus thereof incorporating overlapping of color filters
US5648861A (en) * 1995-01-31 1997-07-15 Victor Company Of Japan, Ltd. Spatial light modulator having a germanium oxide light shielding layer containing additive material or laminated with SiO2
KR20000057973A (en) 1999-02-10 2000-09-25 다카노 야스아키 Color liquid crystal display apparatus
US6639640B1 (en) * 1999-02-10 2003-10-28 Sanyo Electric Co., Ltd. Color liquid crystal display having data line overlapping orientation control windows or slope faces within regions of associated pixel electrodes
KR20020069168A (en) 2001-02-23 2002-08-29 닛뽄덴끼 가부시끼가이샤 In-plane switching mode active matrix type liquid crystal display device and method of fabricating the same
US20020159016A1 (en) * 2001-02-23 2002-10-31 Nec Corporation In-plane switching mode active matrix type liquid crystal display device and method of fabricating the same
US20060152655A1 (en) * 2002-07-30 2006-07-13 Dong-Gyu Kim Thin film transistor array panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090207365A1 (en) * 2008-02-19 2009-08-20 Lg Display Co., Ltd. Liquid crystal display device
US7978294B2 (en) * 2008-02-19 2011-07-12 Lg Display Co., Ltd. Liquid crystal display device
US8659734B2 (en) 2011-01-03 2014-02-25 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof
US9588385B2 (en) 2011-01-03 2017-03-07 Samsung Display Co., Ltd. Liquid crystal display and manufacturing method thereof
US11624953B2 (en) 2017-07-05 2023-04-11 Samsung Display Co., Ltd. Display apparatus comprising a color conversion pattern and a light blocking pattern disposed on a data pattern of a thin film transistor

Also Published As

Publication number Publication date
KR20050001953A (en) 2005-01-07
KR100710166B1 (en) 2007-04-20
US20040263752A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
US7724325B2 (en) Liquid crystal display device and method for manufacturing the same
US8199271B2 (en) Liquid crystal display device with active layer over the gate line, data line, gate electrode and source/drain electrodes
US7528917B2 (en) Liquid crystal display device having structure of color filter on TFT and using in plane switching mode
US7417705B2 (en) Liquid crystal display device and method for fabricating the same
US7388639B2 (en) In-plane switching mode liquid crystal display device having multi-domains
US8004641B2 (en) Color filter substrate and liquid crystal display panel including the same
US7751014B2 (en) Liquid-crystal display device
KR100741890B1 (en) Liquid crystal display device of in-plane switching and method for fabricating the same
US7349051B2 (en) In plane switching mode liquid crystal display device having particular common lines
US6970223B2 (en) In-plane switching mode LCD device and method for fabricating the same
US7385661B2 (en) In-plane switching mode liquid crystal display device and method of manufacturing the same
US20080001883A1 (en) Liquid Crystal Display Device and Method for Fabricating the Same
US7420640B2 (en) In-plane switching mode liquid crystal device and method for manufacturing the same
US7289180B2 (en) Liquid crystal display device of a horizontal electric field applying type comprising a storage capacitor substantially parallel to the data line and fabricating method thereof
US7262826B2 (en) Liquid crystal device with process margins for stitching spots
KR100949495B1 (en) Liquid crystal display device of in-plane switching and method for fabricating the same
KR100983578B1 (en) Liquid crystal display device of in-plane switching and method for fabricating the same
KR20050069105A (en) Liquid crystal display device and method for fabricating the same
KR100864924B1 (en) Liquid crystal display device and method for manufacturing the same
KR20050049926A (en) Method for fabricating the in-plane switching mode liquid crystal display device
KR20050082549A (en) In-plain switching liquid crystal display device and method for fabricating the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG.PHILIPS LCD CO., LTD.,KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, WOO HYUN;REEL/FRAME:016160/0465

Effective date: 20040622

Owner name: LG.PHILIPS LCD CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIM, WOO HYUN;REEL/FRAME:016160/0465

Effective date: 20040622

AS Assignment

Owner name: LG DISPLAY CO., LTD.,KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

Owner name: LG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:LG.PHILIPS LCD CO., LTD.;REEL/FRAME:021754/0230

Effective date: 20080304

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12