US7719352B2 - Active circuits with isolation switches - Google Patents

Active circuits with isolation switches Download PDF

Info

Publication number
US7719352B2
US7719352B2 US11/832,581 US83258107A US7719352B2 US 7719352 B2 US7719352 B2 US 7719352B2 US 83258107 A US83258107 A US 83258107A US 7719352 B2 US7719352 B2 US 7719352B2
Authority
US
United States
Prior art keywords
amplifier
coupled
switch
lna
turned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/832,581
Other versions
US20080224770A1 (en
Inventor
Tae Wook Kim
Kenneth Charles Barnett
Harish Muthali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US11/832,581 priority Critical patent/US7719352B2/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARNETT, KENNETH CHARLES, KIM, TAE WOOK, MUTHALI, HARISH
Priority to PCT/US2008/056696 priority patent/WO2008112789A2/en
Priority to TW097108928A priority patent/TW200845711A/en
Publication of US20080224770A1 publication Critical patent/US20080224770A1/en
Application granted granted Critical
Publication of US7719352B2 publication Critical patent/US7719352B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/342Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21142Output signals of a plurality of power amplifiers are parallel combined to a common output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45731Indexing scheme relating to differential amplifiers the LC comprising a transformer

Definitions

  • the present disclosure relates generally to circuits, and more specifically to active circuits such as amplifiers.
  • a modern communication receiver may support operation in multiple modes, on multiple frequency bands, etc.
  • the multiple modes may be for different communication systems that may have different signal characteristics and requirements.
  • the receiver may have multiple radio frequency (RF) paths.
  • RF radio frequency
  • Each RF path may be designed for one or more frequency bands in one or more modes.
  • An appropriate RF path may be selected for use depending on the frequency band and mode being received.
  • only one of the RF paths may be enabled at any given moment, and the remaining RF paths may be disabled. It is desirable to achieve good performance for the enabled RF path with as little degradation from the disabled RF paths as possible.
  • An active circuit is a circuit having at least one active circuit component such as transistor.
  • An active circuit may comprise an amplifier, a mixer, a buffer, an active filter, etc.
  • An isolation switch is a switch that may be activated (e.g., opened or closed depending on the switch configuration) to improve isolation of an active circuit when the active circuit is turned off. The isolation switch may result in less leakage signal flowing through the active circuit when the active circuit is turned off.
  • an apparatus may include first and second amplifiers coupled in parallel, e.g., connected at their inputs and/or their outputs.
  • the first amplifier may receive a first input signal and provide a first output signal.
  • the second amplifier may receive a second input signal and provide a second output signal.
  • the first amplifier may have a first switch configured to isolate the first amplifier when this amplifier is turned off.
  • the second amplifier may have a second switch configured to isolate the second amplifier when this amplifier is turned off.
  • the first amplifier may be a high gain amplifier and the second amplifier may be a low gain amplifier.
  • the first and second amplifiers may be low noise amplifiers (LNAs) in a receiver.
  • the first and second amplifiers may be for different communication systems, different frequency bands, and/or different gain ranges.
  • the apparatus may further include a third amplifier coupled in parallel with the first and/or second amplifier.
  • the third amplifier may receive a third input signal and provide a third output signal.
  • the third amplifier may have a third switch configured to isolate the third amplifier when this amplifier is turned off.
  • any number of amplifiers may be coupled in parallel, and each amplifier may have a switch to isolate the amplifier when it is turned off.
  • a switch for an amplifier may comprise a shunt switch coupled between an internal node of the amplifier and alternating current (AC) ground, which may be circuit ground or a supply voltage.
  • the shunt switch may be closed when the amplifier is turned off and may be opened when the amplifier is turned on.
  • the switch for the amplifier may comprise a series switch that is inserted at an internal node of the amplifier.
  • FIG. 1 shows a block diagram of a receiver.
  • FIGS. 2A to 2C show three LNA configurations for the receiver in FIG. 1 .
  • FIGS. 3A and 3B show LNAs without and with feedback, respectively.
  • FIG. 4A shows an LNA with a shunt isolation switch.
  • FIG. 4B shows an LNA with a series isolation switch.
  • FIG. 4C shows an LNA with feedback and isolation switches.
  • FIG. 5 shows three LNAs with isolation switches and coupled in parallel.
  • FIG. 6 shows three LNAs with multiple gain modes and isolation switches.
  • FIG. 7 shows a differential LNA with multiple gain modes and isolation switches.
  • FIG. 8 shows two single-ended LNAs with multiple gain modes and isolation switches.
  • FIGS. 9A and 9B show two designs of an isolation switch.
  • the active circuits with isolation switches described herein may be used for various electronics devices such as broadcast receivers, cellular phones, personal digital assistants (PDAs), handheld devices, wireless modems, laptop computers, cordless phones, consumer electronics devices, etc. These active circuits may also be used for various communication systems such as Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Frequency Division Multiple Access (FDMA) systems, Orthogonal FDMA (OFDMA) systems, Single-Carrier FDMA (SC-FDMA) systems, wireless local area networks (WLANs), broadcast systems, satellite positioning systems, etc.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • WLANs wireless local area networks
  • the broadcast receiver may support MediaFLOTM, Digital Video Broadcasting for Handhelds (DVB-H), Integrated Services Digital Broadcasting for Terrestrial Television Broadcasting (ISDB-T), and/or other terrestrial broadcast systems.
  • MediaFLOTM, DVB-H, and ISDB-T may be considered as different modes.
  • a MediaFLOTM system may operate with a 6 megaHertz (MHz) bandwidth in a frequency range of 698 to 746 MHz.
  • a DVB-H system may operate with a 5, 6, 7 or 8 MHz bandwidth in a frequency range of 470 to 860 MHz.
  • An ISDB-T system may operate with a 6 MHz bandwidth in a frequency range of 470 to 770 MHz.
  • MediaFLOTM is described in a document TIA-1099, entitled “Forward Link Only Air Interface Specification for Terrestrial Mobile Multimedia Multicast,” dated August 2006.
  • DVB-H is described in a document ETSI EN 300 744, entitled “Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television,” dated November 2004 January 2001.
  • ISDB-T is described in a document ARIB STD-B31, entitled “Transmission System for Digital Terrestrial Television Broadcasting,” dated July 2003.
  • FIG. 1 shows a block diagram of a design of a broadcast receiver 100 .
  • broadcast receiver 100 includes three LNAs 120 a , 120 b and 120 c that may be used for multiple frequency bands and multiple modes.
  • LNA 120 a supports DVB-H and/or ISDB-T
  • LNA 120 b supports high band MediaFLOTM from 719 to 746 MHz
  • LNA 120 c supports low band MediaFLOTM from 698 to 719 MHz.
  • a receiver may include any number of LNAs for any number of frequency bands and any number of modes.
  • Each LNA may support one or more modes and one or more frequency bands.
  • a receiver may be implemented with a super-heterodyne architecture or a direct-conversion architecture.
  • a received signal is downconverted from RF to baseband in multiple stages, e.g., from RF to an intermediate frequency (IF) in one stage, and then from IF to baseband in another stage.
  • IF intermediate frequency
  • the direct-conversion architecture which is also referred to as a zero-IF architecture, a received signal is downconverted from RF to baseband in one stage.
  • the super-heterodyne and direct-conversion architectures may use different circuit blocks and/or have different requirements. The following description assumes that broadcast receiver 100 implements the direct-conversion architecture.
  • an antenna 110 receives broadcast signals from broadcast stations and provides a received signal to an antenna interface unit 112 .
  • Unit 112 may include one or more switches, filters, baluns, etc. Each filter may pass signal components in a designated frequency range and may be implemented with a surface acoustic wave (SAW) filter, a ceramic filter, or some other type of filter. If multiple filters are present within unit 112 , then one of the filters may be selected for use, and a switch may couple antenna 110 to the selected filter.
  • a balun may be used for single-ended to differential conversion, impedance transformation, etc.
  • LNA 120 a is a differential amplifier whereas LNAs 120 b and 120 c are single-ended amplifiers.
  • unit 112 may process the received signal and provide a differential LNA input signal on lines V inp and V inm .
  • LNA 120 a may then amplify the differential LNA input signal and provide a differential LNA output signal on lines V outp and V outm .
  • unit 112 may process the received signal and provide a single-ended LNA input signal on line V inp .
  • LNA 120 b may then amplify the LNA input signal and provide an LNA output signal on line V outp .
  • unit 112 may process the received signal and provide a single-ended LNA input signal on line V inm .
  • LNA 120 c may then amplify the LNA input signal and provide an LNA output signal on line V outm .
  • An output stage 130 may receive the LNA output signal on line V outp and/or line V outm and may provide a differential conditioned signal to mixers 140 a and 140 b .
  • Output stage 130 may include a balun for single-ended to differential conversion and one or more programmable attenuators, buffers, amplifiers, etc.
  • Mixer 140 a may downconvert the conditioned signal with an inphase (I) local oscillator (LO) signal from an LO generator 144 and provide an I downconverted signal.
  • a lowpass filter 142 a may filter the I downconverted signal and provide an I baseband signal (Ibb) to a data processor 150 .
  • mixer 140 b may downconvert the conditioned signal from output stage 130 with a quadrature (Q) LO signal from LO generator 144 and provide a Q downconverted signal.
  • a lowpass filter 142 b may filter the Q downconverted signal and provide a Q baseband signal (Qbb) to data processor 150 .
  • LO generator 144 may generate the I and Q LO signals for mixers 140 a and 140 b , respectively.
  • LO generator 144 may include one or more voltage controlled oscillators (VCOs), phase locked loops (PLLs), reference oscillators, etc.
  • VCOs voltage controlled oscillators
  • PLLs phase locked loops
  • reference oscillators etc.
  • FIG. 1 shows an example receiver design.
  • the conditioning of the signals in a receiver may be performed by one or more stages of amplifier, filter, mixer, etc.
  • These circuit blocks may be arranged differently from the configuration shown in FIG. 1 .
  • other circuit blocks not shown in FIG. 1 may be used to condition the signals in the receiver.
  • All or a portion of the receiver may be implemented on one or more RF integrated circuits (RFICs), mixed-signal ICs, etc.
  • RFICs RF integrated circuits
  • LNAs 120 a , 120 b and 120 c and the subsequent analog circuits in broadcast receiver 100 may be implemented in a Universal Broadcast Modem (UBM) chip.
  • UBM Universal Broadcast Modem
  • Data processor 150 may include various processing units for data reception and other functions.
  • data processor 150 may include a digital signal processor (DSP), a reduced instruction set computer (RISC) processor, a central processing unit (CPU), etc.
  • DSP digital signal processor
  • RISC reduced instruction set computer
  • CPU central processing unit
  • a controller/processor 160 may control the operation at broadcast receiver 100 .
  • Memory 162 may store program codes and data for broadcast receiver 100 .
  • Data processor 150 , controller/processor 160 , and/or memory 162 may be implemented on one or more application specific integrated circuits (ASICs) and/or other ICs.
  • ASICs application specific integrated circuits
  • broadcast receiver 100 has three RF paths via three LNAs 120 a , 120 b and 120 c for multiple modes and multiple frequency bands.
  • One of the LNAs may be selected for use at any given moment, and the other two LNAs may be turned off. Since the three LNAs are coupled in parallel, there may be a leakage path through each LNA that is turned off. The leakage paths may degrade performance.
  • FIG. 2A shows an LNA configuration for the DVB-H mode.
  • LNA 120 a is turned on, and LNAs 120 b and 120 c are turned off.
  • LNA 120 a amplifies a differential LNA input signal on lines V inp and V inm and provides a differential LNA output signal on lines V outp and V outm .
  • LNA 120 b may provide a leakage path, and some of the signal from line V inp may leak onto line V outp .
  • LNA 120 c may also provide a leakage path, and some of the signal from line V inm may leak onto line V outm .
  • FIG. 2B shows an LNA configuration for the high band MediaFLOTM mode.
  • LNA 120 b is turned on, and LNAs 120 a and 120 c are turned off.
  • LNA 120 b amplifies an LNA input signal on line V inp and provides an LNA output signal on line V outp .
  • LNA 120 a may provide leakage paths, and some of the signals from lines V inp and V inm may leak onto lines V outp and V outm .
  • LNA 120 c may also provide a leakage path, and some of the signal from line V inm may leak onto line V outm .
  • FIG. 2C shows an LNA configuration for the low band MediaFLOTM mode.
  • LNA 120 c is turned on, and LNAs 120 a and 120 b are turned off.
  • LNA 120 c amplifies an LNA input signal on line V inm and provides an LNA output signal on line V outm .
  • LNA 120 a may provide leakage paths, and some of the signals from lines V inp and V inm may leak onto lines V outp and V outm .
  • LNA 120 b may also provide a leakage path, and some of the signal from line V inp may leak onto line V outp .
  • leakage signals from the LNAs that are turned off may act as interference that may degrade receiver performance.
  • a broadcast signal being received e.g., for DVB-H
  • broadcast signals not being received e.g., for high band and low band MediaFLOTM.
  • the leakage paths may be attenuated relative to the LNA that is turned on, the leakage signals may be relatively large in comparison to the desired signal and may adversely impact receiver performance.
  • FIG. 3A shows a schematic diagram of an LNA 320 a , which may be used for any one of LNAs 120 a through 120 c in FIG. 1 .
  • an N-channel field effect transistor (N-FET) 322 has its source coupled to circuit ground, its gate receiving an input signal V in , and its drain coupled to the source of an N-FET 324 .
  • the input signal may be from line V inp or V inm in FIG. 1 .
  • N-FET 324 has its gate receiving a bias voltage V bias and its drain providing an output signal V out .
  • the output signal may be for line V outp or V outm in FIG. 1 .
  • a load circuit 326 is coupled between the drain of N-FET 324 and a power supply voltage V DD .
  • N-FET 322 provides signal amplification for the input signal V in .
  • N-FET 324 provides load isolation for N-FET 322 and drives load circuit 326 .
  • Load circuit 326 provides a load for N-FET 324 and may perform other functions such as output impedance matching.
  • Load circuit 326 may include one or more resistors, inductors, capacitors, transistors, etc.
  • LNA 320 a may be turned off by providing a bias voltage of 0V or some other low voltage to the gate of N-FET 322 and/or 324 .
  • the low bias voltage may turn off N-FET 322 and/or 324 .
  • these parasitic capacitances may couple a portion of the input signal to the output of LNA 320 a.
  • FIG. 3B shows a schematic diagram of an LNA 320 b , which may also be used for any one of LNAs 120 a through 120 c in FIG. 1 .
  • LNA 320 b includes N-FETs 322 and 324 and load circuit 326 that are coupled as described above for FIG. 3A .
  • LNA 320 b further includes a feedback circuit 328 having one end coupled to the gate of N-FET 322 and the other end coupled to the drain of N-FET 324 .
  • Feedback circuit 328 may include one or more resistors, inductors, capacitors, transistors, etc. Feedback circuit 328 may improve linearity, reduce gain variability, and/or provide other benefits for LNA 320 b.
  • LNA 320 b may be turned off by providing a low bias voltage to the gate of N-FET 322 and/or 324 . However, there may be one leakage path through the parasitic capacitances of N-FETs 322 and 324 and another leakage path through feedback circuit 328 .
  • one or more isolation switches may be used in an active circuit such as an LNA to improve isolation between the input and output of the active circuit.
  • An isolation switch may be added within the active circuit and may comprise (i) a shunt switch between an internal node of the active circuit and AC ground and/or (ii) a series switch inserted at an internal node of the active circuit.
  • an active circuit may employ one or more shunt isolation switches and/or one or more series isolation switches.
  • FIG. 4A shows a schematic diagram of a design of an LNA 420 a with a shunt isolation switch.
  • LNA 420 a may be used for any one of LNAs 120 a through 120 c in FIG. 1 .
  • LNA 420 a includes N-FETs 422 and 424 and a load circuit 426 that are coupled in similar manner as N-FETs 322 and 324 and load circuit 326 , respectively, in FIG. 3A .
  • LNA 420 a further includes a shunt isolation switch 432 having one end coupled to the drain of N-FET 422 and the other end coupled to circuit ground.
  • Shunt isolation switch 432 may be implemented with one or more N-FETs, P-channel FETs (P-FETs), and/or other circuit components.
  • Shunt isolation switch 432 may be opened when LNA 420 a is turned on to enable operation of LNA 420 a .
  • Shunt isolation switch 432 may be closed when LNA 420 a is turned off to achieve high isolation.
  • any signal leaking from the input of LNA 420 a via the parasitic capacitance of N-FET 422 may be shorted via isolation switch 432 to circuit ground (instead of being routed to the output of the LNA).
  • FIG. 4B shows a schematic diagram of a design of an LNA 420 b with a series isolation switch.
  • LNA 420 b may also be used for any one of LNAs 120 a through 120 c in FIG. 1 .
  • LNA 420 b includes N-FETs 422 and 424 and load circuit 426 in LNA 420 a in FIG. 4A .
  • LNA 420 b further includes a series isolation switch 434 that is inserted between the drain of N-FET 424 and node A, which provides the output signal V out .
  • Load circuit 426 is coupled between node A and the supply voltage V DD .
  • Series isolation switch 434 may be implemented with one or more N-FETs, P-FETs, etc. Series isolation switch 434 may be closed when LNA 420 b is turned on to pass the signal to the output. Series isolation switch 434 may be opened when LNA 420 b is turned off to improve isolation.
  • FIG. 4C shows a schematic diagram of a design of an LNA 420 c with feedback and isolation switches.
  • LNA 420 c may also be used for any one of LNAs 120 a through 120 c in FIG. 1 .
  • LNA 420 c includes N-FETs 422 and 424 and load circuit 426 in LNA 420 a in FIG. 4A .
  • LNA 420 c further includes a feedback circuit 428 , shunt isolation switches 432 and 438 , and a series isolation switch 436 .
  • Feedback circuit 428 has one end coupled to the gate of N-FET 422 and the other end coupled to node B.
  • Series isolation switch 436 has one end coupled to node B and the other end coupled to the drain of N-FET 424 .
  • Shunt isolation switch 438 has one end coupled to node B and the other end coupled to the supply voltage V DD .
  • Shunt isolation switch 432 has one end coupled to the drain of N-FET 422 and the other
  • isolation switches 432 and 438 are opened, and isolation switch 436 is closed.
  • isolation switch 432 and 438 are closed, and isolation switch 436 is opened.
  • any signal leaking from the input of LNA 420 c via the parasitic capacitance of N-FET 422 may be shorted via isolation switch 432 to circuit ground.
  • Any signal leaking from the input of LNA 420 c via feedback circuit 428 may be shorted via isolation switch 438 to the supply voltage.
  • the supply voltage and circuit ground are both AC ground for high frequency signals. Hence, good isolation may be achieved for LNA 420 c when it is turned off, even with the presence of feedback circuit 428 .
  • FIGS. 4A through 4C show three example designs of LNAs with isolation switches.
  • An LNA may also be implemented with other designs.
  • an LNA may include one or more isolation switches, which may comprise shunt and/or series isolation switches that may be located anywhere within the LNA. For simplicity, much of the following description assumes the use of shunt isolation switches.
  • FIG. 5 shows a block diagram of a design of LNAs 520 a , 520 b and 520 c with isolation switches.
  • LNAs 520 a , 520 b and 520 c may be used for LNAs 120 a , 120 b and 120 c , respectively, in FIG. 1 .
  • LNA 520 a has an isolation switch 522 a coupled between an internal node and circuit ground.
  • LNA 520 b has an isolation switch 522 b coupled between an internal node and circuit ground.
  • LNA 520 c has an isolation switch 522 c coupled between an internal node and circuit ground.
  • LNA 520 a may be turned on, LNAs 520 b and 520 c may be turned off, isolation switch 520 a may be opened, and isolation switches 522 b and 522 c may be closed.
  • the leakage paths through LNAs 520 b and 520 c may be shorted via isolation switches 522 b and 522 c .
  • LNA 520 b may be turned on, LNAs 520 a and 520 c may be turned off, isolation switch 520 b may be opened, and isolation switches 522 a and 522 c may be closed.
  • LNAs 520 a and 520 c may be shorted via isolation switches 522 a and 522 c . If the low band MediaFLOTM mode is selected, then LNA 520 c may be turned on, LNAs 520 a and 520 b may be turned off, isolation switch 520 c may be opened, and isolation switches 522 a and 522 b may be closed. The leakage paths through LNAs 520 a and 520 b may be shorted via isolation switches 522 a and 522 b.
  • any number of LNAs may be coupled in parallel.
  • its shunt isolation switch may be opened to pass the desired signal.
  • its shunt isolation switch may be closed to short any leakage signal and improve isolation.
  • Data processor 150 or controller/processor 160 may generate a control signal for each isolation switch to open or close that switch.
  • FIG. 5 shows one shunt isolation switch for each LNA.
  • each of isolation switches 522 a , 522 b and 522 c may comprise one or more shunt and/or series isolation switches.
  • LNAs 120 a , 120 b and/or 120 c may have a relatively wide gain range (e.g., around 50 to 60 decibels (dB) of gain range) in order to handle a wide range of received power for a desired signal as well as potentially large interfering signals (or jammers).
  • Multiple gain modes may be used to support a wide gain range, with each gain mode covering a portion of the entire gain range. For example, six gain modes may be used to support a gain range of 60 dB, with each gain mode covering approximately 10 dB. Adjacent gain modes may overlap to provide continuous gain coverage.
  • FIG. 6 shows a block diagram of a design of LNAs 620 a , 620 b and 620 c with multiple gain modes and isolation switches.
  • LNAs 620 a , 620 b and 620 c may be used for LNAs 120 a , 120 b and 120 c , respectively, in FIG. 1 .
  • LNA 620 a includes an input programmable attenuator 630 a , a low gain amplifier (Amp) 640 a , a high gain amplifier 650 a , and a buffer 660 . If LNA 620 a is enabled, then either amplifier 640 a or 650 a may be selected for use depending the desired gain for LNA 620 a . Attenuator 630 a attenuates a differential LNA input signal on lines V inp and V inm and provides a differential attenuated signal to amplifier 640 a . If enabled, amplifier 640 a amplifies its differential input signal with a fixed low gain and provides a differential output signal to buffer 660 .
  • Amp low gain amplifier
  • amplifier 650 a amplifies the differential LNA input signal with a fixed high gain and provides a differential output signal to buffer 660 .
  • Buffer 660 buffers its differential input signal and provides a differential LNA output signal on lines V outp and V outm .
  • An isolation switch 642 a may be opened when low gain amplifier 640 a is turned on and closed when amplifier 640 a is turned off.
  • An isolation switch 652 a may be opened when high gain amplifier 650 a is turned on and closed when amplifier 650 a is turned off.
  • LNA 620 b includes an input programmable attenuator 630 b , a low gain amplifier 640 b , and a high gain amplifier 650 b . If LNA 620 b is enabled, then either amplifier 640 b or 650 b may be selected for use depending the desired gain for LNA 620 b . Attenuator 630 b attenuates an LNA input signal on line V inp and provides an attenuated signal to amplifier 640 b . If enabled, amplifier 640 b amplifies its input signal with a fixed low gain and provides an LNA output signal on line V outp .
  • amplifier 650 b amplifies the LNA input signal with a fixed high gain and provides an LNA output signal on line V outp .
  • An isolation switch 642 b may be opened when low gain amplifier 640 b is turned on and closed when amplifier 640 b is turned off.
  • An isolation switch 652 b may be opened when high gain amplifier 650 b is turned on and closed when amplifier 650 b is turned off.
  • LNA 620 c includes an input programmable attenuator 630 c , amplifiers 640 c and 650 c , and switches 642 c and 652 c that are coupled and operated in similar manner as attenuator 630 b , amplifiers 640 b and 650 b , and switches 642 b and 652 b , respectively, in LNA 620 b.
  • FIG. 6 also shows a design of output stage 130 in FIG. 1 .
  • output stage 130 includes a balun 670 and an output programmable attenuator 680 .
  • Balun 670 has two inputs coupled to lines V outp and V outm and two outputs coupled to attenuator 680 .
  • Balun 670 performs single-ended to differential conversion of the output signals from LNAs 620 b and 620 c and may also perform bandpass filtering.
  • Attenuator 680 attenuates the signal from balun 670 and provides a differential output signal for output stage 130 .
  • Output stage 130 may also include one or more amplifiers, buffers, filters, etc.
  • Output stage 130 may be considered as an LNA portion that is common to LNAs 620 a , 620 b and 620 c.
  • LNA 620 a has six gain modes and an overall gain range of approximately 60 dB.
  • High gain amplifier 650 a and output programmable attenuator 680 may be used for the three highest gain modes, which may cover a gain range of approximately +24 to ⁇ 6 dB.
  • Low gain amplifier 640 a and input programmable attenuator 630 a may be used for the three lowest gain modes, which may cover a gain range of approximately ⁇ 6 to ⁇ 36 dB.
  • each of LNAs 620 a , 620 b and 620 c may have any number of gain modes and any overall gain range.
  • the three LNAs may have the same or different number of gain modes, and the same or different overall gain ranges.
  • the low gain amplifier may be biased with less current than the high gain amplifier in order to reduce power consumption.
  • Attenuator 630 may be used at the front of each LNA 620 to combat large interfering signals.
  • Each attenuator 630 may be implemented with a resistor ladder, a voltage divider network, etc.
  • the use of attenuators 630 and 670 and amplifiers 640 and 650 allows each LNA 620 to achieve a wide gain range.
  • the parallel connection of low gain amplifier 640 and high gain amplifier 650 in each LNA 620 may result in a leakage path through each amplifier that is turned off.
  • the leakage signal from high gain amplifier 650 to low gain amplifier 640 may be problematic since the isolation from amplifier 650 to amplifier 640 (without isolation switch 652 ) may be smaller than the total attenuation of attenuator 630 and amplifier 640 .
  • the use of isolation switches 642 and 652 may improve isolation between the high and low gain paths and support multi-gain operation.
  • FIG. 6 shows an example design of LNAs with multiple gain modes and isolation switches.
  • an LNA may include any number of amplifiers, attenuators, buffers, etc., which may be arranged differently from the configuration shown in FIG. 6 .
  • multiple amplifiers may be coupled in cascaded, and each amplifier may be bypassed when not selected.
  • An LNA may also include filters and/or other circuit blocks.
  • FIG. 6 shows the use of isolation switches for both low gain amplifier 640 and high gain amplifier 650 in each LNA 620 .
  • Isolation switch 642 for low gain amplifier 640 may be omitted if the attenuation through attenuator 630 and amplifier 640 can provide sufficient isolation when amplifier 640 is turned off.
  • FIG. 7 shows a schematic diagram of a design of a differential LNA 720 a with multiple gain modes and isolation switches.
  • LNA 720 a is one design of LNA 620 a in FIG. 6 and may be used for LNA 120 a in FIG. 1 .
  • LNA 720 a includes an input programmable attenuator 730 , a low gain section 740 , a high gain section 750 , and a buffer section 760 that correspond to attenuator 630 a , low gain amplifier 640 a , high gain amplifier 650 a , and buffer 660 , respectively, in LNA 620 a in FIG. 6 .
  • Attenuator 730 receives the differential LNA input signal on lines V inp and V inm and provides a differential attenuated signal on lines V attp and V attm .
  • Low gain section 740 includes a gain stage composed of N-FETs 744 a and 744 b and a cascode buffer composed of N-FETs 748 a and 748 b .
  • N-FETs 744 a and 744 b have their sources coupled to circuit ground and their gates coupled to lines V attm and V attp , respectively.
  • N-FETs 748 a and 748 b have their sources coupled to the drains of N-FETs 744 a and 744 b , respectively, their gates receiving a bias voltage V a1 , and their drains coupled to nodes X and Y, respectively.
  • Isolation switches 742 a and 742 b have one end coupled to the drains of N-FETs 744 a and 744 b , respectively, and the other end coupled to circuit ground.
  • High gain section 750 includes a gain stage composed of N-FETs 754 a and 754 b , a filter 756 , and a cascode buffer composed of N-FETs 758 a and 758 b .
  • N-FETs 754 a and 754 b have their sources coupled to circuit ground, their gates coupled to lines V inm and V inp , respectively, and their drains coupled to a differential input of filter 756 .
  • N-FETs 758 a and 758 b have their sources coupled to a differential output of filter 756 , their gates receiving a bias voltage V a2 , and their drains coupled to nodes X and Y, respectively.
  • Isolation switches 752 a and 752 b have one end coupled to the drains of N-FETs 754 a and 754 b , respectively, and the other end coupled to circuit ground.
  • Buffer section 760 includes a filter 762 , a cascode buffer composed of N-FETs 764 a and 764 b , and capacitors 766 a and 766 b .
  • Filter 762 has its differential input coupled to nodes X and Y.
  • N-FETs 764 a and 764 b have their sources coupled to a differential output of filter 762 , their gates receiving a bias voltage V a3 , and their drains coupled to lines V outp and V outm , respectively.
  • Capacitor 766 a is coupled between line V outp and circuit ground.
  • Capacitor 766 b is coupled between line V outm and circuit ground.
  • Capacitors 766 a and 766 b may be tunable capacitors, as shown in FIG. 7 , or fixed capacitors.
  • Capacitors 766 a and 766 b and balun 670 provide filtering for DVB-H.
  • the N-FETs in high gain section 750 may be turned off, and isolation switches 752 a and 752 b may be closed to provide good isolation from lines V inp and V inm to nodes X and Y.
  • the N-FETs in low gain section 740 may be turned off, and isolation switches 742 a and 742 b may be closed to provide good isolation. Isolation switches 742 a and 742 b may be omitted if turning off the N-FETs in low gain section 740 can provide sufficient isolation in the high gain mode.
  • Isolation switches may also be added at other locations within LNA 720 a .
  • series isolation switches may be inserted between the drains of N-FETs 754 a and 754 b and the differential input of filter 756 .
  • FIG. 8 shows a schematic diagram of a design of single-ended LNAs 820 b and 820 c with multiple gain modes and isolation switches.
  • LNAs 820 b and 820 c are one design of LNAs 620 b and 620 c , respectively, in FIG. 6 and may be used for LNAs 120 b and 120 c , respectively, in FIG. 1 .
  • LNA 820 b includes an input programmable attenuator 830 b , a low gain section 840 b , and a high gain section 850 b that correspond to attenuator 630 b , low gain amplifier 640 b , and high gain amplifier 650 b , respectively, in LNA 620 b in FIG. 6 .
  • Attenuator 730 b receives the LNA input signal on line V inp and provides an attenuated signal on line V attb .
  • Low gain section 840 b includes a gain stage composed of an N-FET 844 b and a cascode buffer composed of an N-FET 848 b .
  • N-FET 844 b has its source coupled to circuit ground and its gate coupled to line V attb .
  • N-FETs 848 b has its source coupled to the drain of N-FET 844 b , its gate receiving a bias voltage V b1 , and its drain coupled to line V outp .
  • An isolation switch 842 b has one end coupled to the drain of N-FET 844 b and the other end coupled to circuit ground.
  • High gain section 850 b includes a gain stage composed of an N-FET 854 b and a cascode buffer composed of an N-FET 858 b .
  • N-FET 854 b has its source coupled to circuit ground and its gate coupled to line V inp .
  • N-FETs 858 b has its source coupled to the drain of N-FET 854 b , its gate receiving a bias voltage V b2 , and its drain coupled to line V outp .
  • An isolation switch 852 b has one end coupled to the drain of N-FET 854 b and the other end coupled to circuit ground.
  • a capacitor 866 b is coupled between line V outp and circuit ground and may be a tunable capacitor, as shown in FIG. 8 , or a fixed capacitor. Capacitor 866 b and balun 670 provide filtering for high band MediaFLOTM.
  • LNA 820 c includes an input programmable attenuator 830 c , a low gain section 840 c , and a high gain section 850 c that correspond to attenuator 630 c , low gain amplifier 640 c , and high gain amplifier 650 c , respectively, in LNA 620 c in FIG. 6 .
  • Attenuator 830 c and gain sections 840 c and 850 c are implemented in similar manner as attenuator 830 b and gain section 840 b and 850 b , respectively, in LNA 820 b .
  • a capacitor 866 c is coupled between line V outm and circuit ground and may be a tunable capacitor, as shown in FIG. 8 , or a fixed capacitor. Capacitor 866 c and balun 670 provide filtering for low band MediaFLOTM.
  • LNA 820 c When low gain mode is selected for LNA 820 b , the N-FETs in high gain section 850 b may be turned off, and isolation switch 852 b may be closed to provide good isolation from line V inp to line V outp . When high gain mode is selected, the N-FETs in low gain section 840 b may be turned off, and isolation switch 842 b may be closed to provide good isolation. Isolation switch 842 b may be omitted if turning of the N-FETs in low gain section 840 b can provide sufficient isolation in the high gain mode.
  • LNA 820 c may be operated in similar manner as LNA 820 b.
  • Isolation switches may also be added at other locations within LNAs 820 b and 820 c .
  • series isolation switch may be inserted between the drain of N-FET 854 b and the source of N-FET 858 b.
  • FIG. 7 shows LNA 720 a with filters for the high gain section and FIG. 8 shows LNAs 820 b and 820 c without any filters.
  • an LNA may or may not include filters, depending on system requirements and/or other considerations.
  • An LNA may also include any number of filters, and each filter may be implemented with various designs and may be of any order.
  • a filter may be a Butterworth filter, an elliptical filter, etc.
  • the LNA designs shown in FIGS. 7 and 8 use gain stages composed of stacked N-FETs without feedback, which correspond generally to the LNA design shown in FIG. 4A .
  • the gain stages may also be implemented with feedback, e.g., as shown in FIG. 4C .
  • N-FETs 854 b and 858 b and isolation switch 852 b may be replaced with N-FETs 422 and 424 , feedback circuit 428 , and isolation switches 432 , 436 and 436 shown in FIG. 4C .
  • the isolation switches may be implemented in various manners and with various circuit components. To simplify design, the isolation switches may be implemented with the same type of transistors used for the LNA.
  • FIG. 9A shows a schematic diagram of a design of an LNA 920 a with an isolation switch.
  • LNA 920 a includes N-FETs 922 and 924 and a load circuit 926 that are coupled in similar manner as N-FETs 422 and 424 and load circuit 426 within LNA 420 a in FIG. 4A .
  • LNA 920 a further includes an isolation switch that is implemented with an N-FET 928 .
  • N-FET 928 has its source coupled to circuit ground, its gate receiving a control signal V ctrl and its drain coupled to the drain of N-FET 922 .
  • the isolation switch may be closed by applying logic high on V ctrl or opened by applying logic low on V ctrl .
  • FIG. 9B shows a schematic diagram of a design of an LNA 920 b with an isolation switch.
  • LNA 920 b includes N-FETs 922 and 924 , load circuit 926 , and an isolation switch that is implemented with N-FET 928 and a P-FET 930 .
  • N-FET 928 is coupled as described above for FIG. 9A .
  • P-FET 930 has its source coupled to the drain of N-FET 922 , its gate receiving a complementary control signal V ctrlb , and its drain coupled to circuit ground.
  • the isolation switch may be (i) closed by applying logic high on V ctrl and logic low on V ctrlb or (ii) opened by applying logic low on V ctrl and logic high on V ctlb .
  • isolation switches for multiple LNAs coupled in parallel has been described above.
  • isolation switches may be used for any set of signals paths coupled in parallel. These signal paths may be at RF, as described above, or at other frequencies. Each signal path may include any number and any type of circuits. Isolation between the parallel signal paths may be improved by (i) shorting leakage signals in unselected signal paths to AC ground with shunt isolation switches and/or (ii) blocking the leakage signals in the unselected signal paths with series isolation switches. The improved isolation with the use of isolation switches may avoid degradation of receiver performance.
  • the isolation switches may be used for various active circuits such as different types of amplifiers, mixers, buffers, active filters, etc.
  • the active circuits with isolation switches may be used for various applications such as communication, networking, computing, consumer electronics, etc. These active circuits may be used for broadcast receivers, cellular phones, PDAs, wireless devices, handheld devices, wireless modems, laptop computers, cordless phones, etc. These active circuits may also be used for various communication systems such as CDMA2000 systems, Wideband-CDMA (W-CDMA) systems, Global System for Mobile Communications (GSM) systems, WLANs, broadcast systems, etc.
  • the active circuits may also be used for Bluetooth devices, Global Positioning System (GPS) receivers, etc.
  • an apparatus may include first and second active circuits coupled in parallel, e.g., connected at their inputs and/or their outputs.
  • the first active circuit may receive a first input signal and provide a first output signal.
  • the second active circuit may receive a second input signal and provide a second output signal.
  • the first active circuit may have a first switch configured to isolate the first active circuit when this circuit is turned off.
  • the second active circuit may have a second switch configured to isolate the second active circuit when this circuit is turned off.
  • Each active circuit may comprise an amplifier, a mixer, a buffer, an active filter, etc., or a combination thereof. More than two active circuits may also be coupled in parallel and may have switches to improve isolation.
  • an apparatus may include first and second amplifiers coupled in parallel, e.g., connected at their inputs and/or their outputs.
  • the first amplifier may receive a first input signal and provide a first output signal.
  • the second amplifier may receive a second input signal and provide a second output signal.
  • the first amplifier may have a first switch configured to isolate the first amplifier when this amplifier is turned off.
  • the second amplifier may have a second switch configured to isolate the second amplifier when this amplifier is turned off.
  • the first and second amplifiers may be LNAs in a receiver.
  • the first amplifier may be a differential LNA (e.g., LNA 120 a in FIG. 1 )
  • the second amplifier may be a single-ended LNA (e.g., LNA 120 b ).
  • the differential LNA may be coupled to first and second input lines (e.g., lines V inp and V inm ) and first and second output lines (e.g., lines V outp and V outm ).
  • the single-ended LNA may be coupled to the first input line (e.g., line V inp ) and the first output line (e.g., line V outp ).
  • the apparatus may further include a third amplifier coupled in parallel with the first and/or second amplifier.
  • the third amplifier may receive a third input signal and provide a third output signal.
  • the third amplifier may have a third switch configured to isolate the third amplifier when this amplifier is turned off.
  • the third amplifier may be a single-ended LNA and may be coupled to the second input line (e.g., line V inm ) and the second output line (e.g., line V outm ).
  • the first amplifier may be a high gain amplifier (e.g., amplifier 650 a in FIG. 6 ), and the second amplifier may be a low gain amplifier (e.g., amplifier 640 a ).
  • the apparatus may further include an attenuator (e.g., attenuator 630 a ) coupled to the low gain amplifier. The attenuator may receive the first input signal for the first/high gain amplifier and provide the second input signal for the second/low gain amplifier.
  • a switch for an amplifier may comprise a shunt switch coupled between an internal node of the amplifier and AC ground, e.g., circuit ground or a supply voltage.
  • the shunt switch may be closed when the amplifier is turned off and may be opened when the amplifier is turned on.
  • the switch for the amplifier may comprise a series switch that is inserted at an internal node of the amplifier.
  • An amplifier may include first and second FETs.
  • the first FET e.g., N-FET 422 in FIG. 4A , 4 B or 4 C
  • the second FET e.g., N-FET 424
  • each FET may be an N-FET, a P-FET, or some other type of transistor.
  • a switch may be coupled to the drain of the first FET and AC ground and may be implemented with a FET (e.g., N-FET 928 in FIG. 9A ).
  • the amplifier may further include a feedback circuit (e.g., feedback circuit 428 in FIG. 4C ) coupled between the gate of the first FET and the drain of the second FET.
  • a switch e.g., switch 438
  • a switch may be coupled between the drain of the second FET and AC ground.
  • a switch e.g., switch 436
  • the amplifier may further include a feedback circuit (e.g., feedback circuit 428 in FIG. 4C ) coupled between the gate of the first FET and the drain of the second FET.
  • a switch e.g., switch 438
  • a switch e.g., switch 436
  • the first and second amplifiers may be for first and second communication systems, respectively, first and second frequency bands, respectively, and/or first and second gain ranges, respectively.
  • the first amplifier may amplify a DVB-H signal
  • the second amplifier may amplify a MediaFLOTM signal.
  • the active circuits with isolation switches described herein may be implemented within an IC, an RFIC, a mixed-signal IC, an ASIC, a printed circuit board (PCB), an electronics device, etc. These active circuits may also be fabricated with various IC process technologies such as complementary metal oxide semiconductor (CMOS), N-channel MOS (N-MOS), P-channel MOS (P-MOS), bipolar junction transistor (BJT), bipolar-CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-MOS N-channel MOS
  • P-MOS P-channel MOS
  • BJT bipolar junction transistor
  • BiCMOS bipolar-CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • An apparatus implementing the active circuits with isolation switches described herein may be a stand-alone device or may be part of a larger device.
  • a device may be (i) a stand-alone IC, (ii) a set of one or more ICs that may include memory ICs for storing data and/or instructions, (iii) an RFIC such as an RF receiver (RFR) or an RF transmitter/receiver (RTR), (iv) an ASIC such as a mobile station modem (MSM), (v) a module that may be embedded within other devices, (vi) a receiver, cellular phone, wireless device, handset, or mobile unit, (vii) etc.
  • RFR RF receiver
  • RTR RF transmitter/receiver
  • MSM mobile station modem

Abstract

Active circuits with isolation switches are described. In one design, an apparatus includes first and second amplifiers coupled in parallel. Each amplifier receives an input signal and provides an output signal. Each amplifier has a switch that isolates the amplifier when the amplifier is turned off. The first and second amplifiers may be high and low gain amplifiers or two low noise amplifiers (LNAs). The first and second amplifiers may be for different communication systems, different frequency bands, and/or different gain ranges. In general, any number of amplifiers may be coupled in parallel, and each amplifier may have a switch to isolate that amplifier when turned off. A switch for an amplifier may be a shunt switch coupled between an internal node of the amplifier and ground. The shunt switch may be closed when the amplifier is turned off and may be opened when the amplifier is turned on.

Description

CLAIM OF PRIORITY UNDER 35 U.S.C. §119
The present Application for Patent claims priority to Provisional Application Ser. No. 60/894,492, entitled “ISOLATION SWITCH FOR MULTI-BAND/MULTI-MODE/MULTI-GAIN MODE RF CIRCUIT OPERATION,” filed Mar. 13, 2007, and Ser. No. 60/909,407, entitled “ISOLATION SWITCH FOR MULTI-BAND/MULTI-MODE/MULTI-GAIN MODE RF CIRCUIT OPERATION,” filed Mar. 30, 2007, both assigned to the assignee hereof, and expressly incorporated herein by reference.
BACKGROUND
I. Field
The present disclosure relates generally to circuits, and more specifically to active circuits such as amplifiers.
II. Background
A modern communication receiver may support operation in multiple modes, on multiple frequency bands, etc. The multiple modes may be for different communication systems that may have different signal characteristics and requirements. In order to support multi-mode and/or multi-band operation, the receiver may have multiple radio frequency (RF) paths. Each RF path may be designed for one or more frequency bands in one or more modes. An appropriate RF path may be selected for use depending on the frequency band and mode being received. Typically, only one of the RF paths may be enabled at any given moment, and the remaining RF paths may be disabled. It is desirable to achieve good performance for the enabled RF path with as little degradation from the disabled RF paths as possible.
SUMMARY
Active circuits with isolation switches and suitable for use in multiple signal paths are described herein. An active circuit is a circuit having at least one active circuit component such as transistor. An active circuit may comprise an amplifier, a mixer, a buffer, an active filter, etc. An isolation switch is a switch that may be activated (e.g., opened or closed depending on the switch configuration) to improve isolation of an active circuit when the active circuit is turned off. The isolation switch may result in less leakage signal flowing through the active circuit when the active circuit is turned off.
In one design, an apparatus may include first and second amplifiers coupled in parallel, e.g., connected at their inputs and/or their outputs. The first amplifier may receive a first input signal and provide a first output signal. The second amplifier may receive a second input signal and provide a second output signal. The first amplifier may have a first switch configured to isolate the first amplifier when this amplifier is turned off. The second amplifier may have a second switch configured to isolate the second amplifier when this amplifier is turned off. In one design, the first amplifier may be a high gain amplifier and the second amplifier may be a low gain amplifier. In another design, the first and second amplifiers may be low noise amplifiers (LNAs) in a receiver. The first and second amplifiers may be for different communication systems, different frequency bands, and/or different gain ranges.
The apparatus may further include a third amplifier coupled in parallel with the first and/or second amplifier. The third amplifier may receive a third input signal and provide a third output signal. The third amplifier may have a third switch configured to isolate the third amplifier when this amplifier is turned off. In general, any number of amplifiers may be coupled in parallel, and each amplifier may have a switch to isolate the amplifier when it is turned off.
A switch for an amplifier may comprise a shunt switch coupled between an internal node of the amplifier and alternating current (AC) ground, which may be circuit ground or a supply voltage. The shunt switch may be closed when the amplifier is turned off and may be opened when the amplifier is turned on. Alternatively or additionally, the switch for the amplifier may comprise a series switch that is inserted at an internal node of the amplifier.
Various aspects and features of the disclosure are described in further detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a block diagram of a receiver.
FIGS. 2A to 2C show three LNA configurations for the receiver in FIG. 1.
FIGS. 3A and 3B show LNAs without and with feedback, respectively.
FIG. 4A shows an LNA with a shunt isolation switch.
FIG. 4B shows an LNA with a series isolation switch.
FIG. 4C shows an LNA with feedback and isolation switches.
FIG. 5 shows three LNAs with isolation switches and coupled in parallel.
FIG. 6 shows three LNAs with multiple gain modes and isolation switches.
FIG. 7 shows a differential LNA with multiple gain modes and isolation switches.
FIG. 8 shows two single-ended LNAs with multiple gain modes and isolation switches.
FIGS. 9A and 9B show two designs of an isolation switch.
DETAILED DESCRIPTION
The active circuits with isolation switches described herein may be used for various electronics devices such as broadcast receivers, cellular phones, personal digital assistants (PDAs), handheld devices, wireless modems, laptop computers, cordless phones, consumer electronics devices, etc. These active circuits may also be used for various communication systems such as Code Division Multiple Access (CDMA) systems, Time Division Multiple Access (TDMA) systems, Frequency Division Multiple Access (FDMA) systems, Orthogonal FDMA (OFDMA) systems, Single-Carrier FDMA (SC-FDMA) systems, wireless local area networks (WLANs), broadcast systems, satellite positioning systems, etc.
For clarity, the use of active circuits with isolation switches in a broadcast receiver is described below. The broadcast receiver may support MediaFLO™, Digital Video Broadcasting for Handhelds (DVB-H), Integrated Services Digital Broadcasting for Terrestrial Television Broadcasting (ISDB-T), and/or other terrestrial broadcast systems. MediaFLO™, DVB-H, and ISDB-T may be considered as different modes. A MediaFLO™ system may operate with a 6 megaHertz (MHz) bandwidth in a frequency range of 698 to 746 MHz. A DVB-H system may operate with a 5, 6, 7 or 8 MHz bandwidth in a frequency range of 470 to 860 MHz. An ISDB-T system may operate with a 6 MHz bandwidth in a frequency range of 470 to 770 MHz. MediaFLO™ is described in a document TIA-1099, entitled “Forward Link Only Air Interface Specification for Terrestrial Mobile Multimedia Multicast,” dated August 2006. DVB-H is described in a document ETSI EN 300 744, entitled “Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television,” dated November 2004 January 2001. ISDB-T is described in a document ARIB STD-B31, entitled “Transmission System for Digital Terrestrial Television Broadcasting,” dated July 2003. These documents are publicly available.
FIG. 1 shows a block diagram of a design of a broadcast receiver 100. In this design, broadcast receiver 100 includes three LNAs 120 a, 120 b and 120 c that may be used for multiple frequency bands and multiple modes. In one design, LNA 120 a supports DVB-H and/or ISDB-T, LNA 120 b supports high band MediaFLO™ from 719 to 746 MHz, and LNA 120 c supports low band MediaFLO™ from 698 to 719 MHz. In general, a receiver may include any number of LNAs for any number of frequency bands and any number of modes. Each LNA may support one or more modes and one or more frequency bands.
A receiver may be implemented with a super-heterodyne architecture or a direct-conversion architecture. In the super-heterodyne architecture, a received signal is downconverted from RF to baseband in multiple stages, e.g., from RF to an intermediate frequency (IF) in one stage, and then from IF to baseband in another stage. In the direct-conversion architecture, which is also referred to as a zero-IF architecture, a received signal is downconverted from RF to baseband in one stage. The super-heterodyne and direct-conversion architectures may use different circuit blocks and/or have different requirements. The following description assumes that broadcast receiver 100 implements the direct-conversion architecture.
In broadcast receiver 100, an antenna 110 receives broadcast signals from broadcast stations and provides a received signal to an antenna interface unit 112. Unit 112 may include one or more switches, filters, baluns, etc. Each filter may pass signal components in a designated frequency range and may be implemented with a surface acoustic wave (SAW) filter, a ceramic filter, or some other type of filter. If multiple filters are present within unit 112, then one of the filters may be selected for use, and a switch may couple antenna 110 to the selected filter. A balun may be used for single-ended to differential conversion, impedance transformation, etc.
In the design shown in FIG. 1, LNA 120 a is a differential amplifier whereas LNAs 120 b and 120 c are single-ended amplifiers. In general, the choice of single-ended or differential design for each LNA may be made based on system requirements and/or other considerations such as design complexity, power consumption, cost, etc. When a DVB-H or ISDB-T mode is selected, unit 112 may process the received signal and provide a differential LNA input signal on lines Vinp and Vinm. LNA 120 a may then amplify the differential LNA input signal and provide a differential LNA output signal on lines Voutp and Voutm. When a high band MediaFLO™ mode is selected, unit 112 may process the received signal and provide a single-ended LNA input signal on line Vinp. LNA 120 b may then amplify the LNA input signal and provide an LNA output signal on line Voutp. When a low band MediaFLO™ mode is selected, unit 112 may process the received signal and provide a single-ended LNA input signal on line Vinm. LNA 120 c may then amplify the LNA input signal and provide an LNA output signal on line Voutm.
An output stage 130 may receive the LNA output signal on line Voutp and/or line Voutm and may provide a differential conditioned signal to mixers 140 a and 140 b. Output stage 130 may include a balun for single-ended to differential conversion and one or more programmable attenuators, buffers, amplifiers, etc. Mixer 140 a may downconvert the conditioned signal with an inphase (I) local oscillator (LO) signal from an LO generator 144 and provide an I downconverted signal. A lowpass filter 142 a may filter the I downconverted signal and provide an I baseband signal (Ibb) to a data processor 150. Similarly, mixer 140 b may downconvert the conditioned signal from output stage 130 with a quadrature (Q) LO signal from LO generator 144 and provide a Q downconverted signal. A lowpass filter 142 b may filter the Q downconverted signal and provide a Q baseband signal (Qbb) to data processor 150.
LO generator 144 may generate the I and Q LO signals for mixers 140 a and 140 b, respectively. LO generator 144 may include one or more voltage controlled oscillators (VCOs), phase locked loops (PLLs), reference oscillators, etc.
FIG. 1 shows an example receiver design. In general, the conditioning of the signals in a receiver may be performed by one or more stages of amplifier, filter, mixer, etc. These circuit blocks may be arranged differently from the configuration shown in FIG. 1. Furthermore, other circuit blocks not shown in FIG. 1 may be used to condition the signals in the receiver. All or a portion of the receiver may be implemented on one or more RF integrated circuits (RFICs), mixed-signal ICs, etc. For example, LNAs 120 a, 120 b and 120 c and the subsequent analog circuits in broadcast receiver 100 may be implemented in a Universal Broadcast Modem (UBM) chip.
Data processor 150 may include various processing units for data reception and other functions. For example, data processor 150 may include a digital signal processor (DSP), a reduced instruction set computer (RISC) processor, a central processing unit (CPU), etc. A controller/processor 160 may control the operation at broadcast receiver 100. Memory 162 may store program codes and data for broadcast receiver 100. Data processor 150, controller/processor 160, and/or memory 162 may be implemented on one or more application specific integrated circuits (ASICs) and/or other ICs.
In the design shown in FIG. 1, broadcast receiver 100 has three RF paths via three LNAs 120 a, 120 b and 120 c for multiple modes and multiple frequency bands. One of the LNAs may be selected for use at any given moment, and the other two LNAs may be turned off. Since the three LNAs are coupled in parallel, there may be a leakage path through each LNA that is turned off. The leakage paths may degrade performance.
FIG. 2A shows an LNA configuration for the DVB-H mode. In this mode, LNA 120 a is turned on, and LNAs 120 b and 120 c are turned off. LNA 120 a amplifies a differential LNA input signal on lines Vinp and Vinm and provides a differential LNA output signal on lines Voutp and Voutm. LNA 120 b may provide a leakage path, and some of the signal from line Vinp may leak onto line Voutp. LNA 120 c may also provide a leakage path, and some of the signal from line Vinm may leak onto line Voutm.
FIG. 2B shows an LNA configuration for the high band MediaFLO™ mode. In this mode, LNA 120 b is turned on, and LNAs 120 a and 120 c are turned off. LNA 120 b amplifies an LNA input signal on line Vinp and provides an LNA output signal on line Voutp. LNA 120 a may provide leakage paths, and some of the signals from lines Vinp and Vinm may leak onto lines Voutp and Voutm. LNA 120 c may also provide a leakage path, and some of the signal from line Vinm may leak onto line Voutm.
FIG. 2C shows an LNA configuration for the low band MediaFLO™ mode. In this mode, LNA 120 c is turned on, and LNAs 120 a and 120 b are turned off. LNA 120 c amplifies an LNA input signal on line Vinm and provides an LNA output signal on line Voutm. LNA 120 a may provide leakage paths, and some of the signals from lines Vinp and Vinm may leak onto lines Voutp and Voutm. LNA 120 b may also provide a leakage path, and some of the signal from line Vinp may leak onto line Voutp.
In each of the LNA configurations shown in FIGS. 2A through 2C, leakage signals from the LNAs that are turned off may act as interference that may degrade receiver performance. A broadcast signal being received (e.g., for DVB-H) may be small relative to broadcast signals not being received (e.g., for high band and low band MediaFLO™). Hence, even though the leakage paths may be attenuated relative to the LNA that is turned on, the leakage signals may be relatively large in comparison to the desired signal and may adversely impact receiver performance.
FIG. 3A shows a schematic diagram of an LNA 320 a, which may be used for any one of LNAs 120 a through 120 c in FIG. 1. Within LNA 320 a, an N-channel field effect transistor (N-FET) 322 has its source coupled to circuit ground, its gate receiving an input signal Vin, and its drain coupled to the source of an N-FET 324. The input signal may be from line Vinp or Vinm in FIG. 1. N-FET 324 has its gate receiving a bias voltage Vbias and its drain providing an output signal Vout. The output signal may be for line Voutp or Voutm in FIG. 1. A load circuit 326 is coupled between the drain of N-FET 324 and a power supply voltage VDD.
N-FET 322 provides signal amplification for the input signal Vin. N-FET 324 provides load isolation for N-FET 322 and drives load circuit 326. Load circuit 326 provides a load for N-FET 324 and may perform other functions such as output impedance matching. Load circuit 326 may include one or more resistors, inductors, capacitors, transistors, etc.
LNA 320 a may be turned off by providing a bias voltage of 0V or some other low voltage to the gate of N-FET 322 and/or 324. The low bias voltage may turn off N-FET 322 and/or 324. However, there may be a leakage path through a parasitic gate-to-drain capacitance Cgd of N-FET 322 and a parasitic source-to-drain capacitance Cds of N-FET 324. At high frequency, these parasitic capacitances may couple a portion of the input signal to the output of LNA 320 a.
FIG. 3B shows a schematic diagram of an LNA 320 b, which may also be used for any one of LNAs 120 a through 120 c in FIG. 1. LNA 320 b includes N- FETs 322 and 324 and load circuit 326 that are coupled as described above for FIG. 3A. LNA 320 b further includes a feedback circuit 328 having one end coupled to the gate of N-FET 322 and the other end coupled to the drain of N-FET 324. Feedback circuit 328 may include one or more resistors, inductors, capacitors, transistors, etc. Feedback circuit 328 may improve linearity, reduce gain variability, and/or provide other benefits for LNA 320 b.
LNA 320 b may be turned off by providing a low bias voltage to the gate of N-FET 322 and/or 324. However, there may be one leakage path through the parasitic capacitances of N- FETs 322 and 324 and another leakage path through feedback circuit 328.
In an aspect, one or more isolation switches may be used in an active circuit such as an LNA to improve isolation between the input and output of the active circuit. An isolation switch may be added within the active circuit and may comprise (i) a shunt switch between an internal node of the active circuit and AC ground and/or (ii) a series switch inserted at an internal node of the active circuit. In general, an active circuit may employ one or more shunt isolation switches and/or one or more series isolation switches.
FIG. 4A shows a schematic diagram of a design of an LNA 420 a with a shunt isolation switch. LNA 420 a may be used for any one of LNAs 120 a through 120 c in FIG. 1. LNA 420 a includes N- FETs 422 and 424 and a load circuit 426 that are coupled in similar manner as N- FETs 322 and 324 and load circuit 326, respectively, in FIG. 3A. LNA 420 a further includes a shunt isolation switch 432 having one end coupled to the drain of N-FET 422 and the other end coupled to circuit ground. Shunt isolation switch 432 may be implemented with one or more N-FETs, P-channel FETs (P-FETs), and/or other circuit components.
Shunt isolation switch 432 may be opened when LNA 420 a is turned on to enable operation of LNA 420 a. Shunt isolation switch 432 may be closed when LNA 420 a is turned off to achieve high isolation. When LNA 420 a is turned off, any signal leaking from the input of LNA 420 a via the parasitic capacitance of N-FET 422 may be shorted via isolation switch 432 to circuit ground (instead of being routed to the output of the LNA).
FIG. 4B shows a schematic diagram of a design of an LNA 420 b with a series isolation switch. LNA 420 b may also be used for any one of LNAs 120 a through 120 c in FIG. 1. LNA 420 b includes N- FETs 422 and 424 and load circuit 426 in LNA 420 a in FIG. 4A. LNA 420 b further includes a series isolation switch 434 that is inserted between the drain of N-FET 424 and node A, which provides the output signal Vout. Load circuit 426 is coupled between node A and the supply voltage VDD.
Series isolation switch 434 may be implemented with one or more N-FETs, P-FETs, etc. Series isolation switch 434 may be closed when LNA 420 b is turned on to pass the signal to the output. Series isolation switch 434 may be opened when LNA 420 b is turned off to improve isolation.
FIG. 4C shows a schematic diagram of a design of an LNA 420 c with feedback and isolation switches. LNA 420 c may also be used for any one of LNAs 120 a through 120 c in FIG. 1. LNA 420 c includes N- FETs 422 and 424 and load circuit 426 in LNA 420 a in FIG. 4A. LNA 420 c further includes a feedback circuit 428, shunt isolation switches 432 and 438, and a series isolation switch 436. Feedback circuit 428 has one end coupled to the gate of N-FET 422 and the other end coupled to node B. Series isolation switch 436 has one end coupled to node B and the other end coupled to the drain of N-FET 424. Shunt isolation switch 438 has one end coupled to node B and the other end coupled to the supply voltage VDD. Shunt isolation switch 432 has one end coupled to the drain of N-FET 422 and the other end coupled to circuit ground.
When LNA 420 c is turned on, isolation switches 432 and 438 are opened, and isolation switch 436 is closed. When LNA 420 c is turned off, isolation switches 432 and 438 are closed, and isolation switch 436 is opened. In this case, any signal leaking from the input of LNA 420 c via the parasitic capacitance of N-FET 422 may be shorted via isolation switch 432 to circuit ground. Any signal leaking from the input of LNA 420 c via feedback circuit 428 may be shorted via isolation switch 438 to the supply voltage. The supply voltage and circuit ground are both AC ground for high frequency signals. Hence, good isolation may be achieved for LNA 420 c when it is turned off, even with the presence of feedback circuit 428.
FIGS. 4A through 4C show three example designs of LNAs with isolation switches. An LNA may also be implemented with other designs. In general, an LNA may include one or more isolation switches, which may comprise shunt and/or series isolation switches that may be located anywhere within the LNA. For simplicity, much of the following description assumes the use of shunt isolation switches.
FIG. 5 shows a block diagram of a design of LNAs 520 a, 520 b and 520 c with isolation switches. LNAs 520 a, 520 b and 520 c may be used for LNAs 120 a, 120 b and 120 c, respectively, in FIG. 1. In this design, LNA 520 a has an isolation switch 522 a coupled between an internal node and circuit ground. LNA 520 b has an isolation switch 522 b coupled between an internal node and circuit ground. LNA 520 c has an isolation switch 522 c coupled between an internal node and circuit ground.
If the DVB-H/ISDB-T mode is selected, then LNA 520 a may be turned on, LNAs 520 b and 520 c may be turned off, isolation switch 520 a may be opened, and isolation switches 522 b and 522 c may be closed. The leakage paths through LNAs 520 b and 520 c may be shorted via isolation switches 522 b and 522 c. If the high band MediaFLO™ mode is selected, then LNA 520 b may be turned on, LNAs 520 a and 520 c may be turned off, isolation switch 520 b may be opened, and isolation switches 522 a and 522 c may be closed. The leakage paths through LNAs 520 a and 520 c may be shorted via isolation switches 522 a and 522 c. If the low band MediaFLO™ mode is selected, then LNA 520 c may be turned on, LNAs 520 a and 520 b may be turned off, isolation switch 520 c may be opened, and isolation switches 522 a and 522 b may be closed. The leakage paths through LNAs 520 a and 520 b may be shorted via isolation switches 522 a and 522 b.
In general, any number of LNAs may be coupled in parallel. For an LNA that is turned on, its shunt isolation switch may be opened to pass the desired signal. For an LNA that is turned off, its shunt isolation switch may be closed to short any leakage signal and improve isolation. Data processor 150 or controller/processor 160 may generate a control signal for each isolation switch to open or close that switch.
For simplicity, FIG. 5 shows one shunt isolation switch for each LNA. In general, each of isolation switches 522 a, 522 b and 522 c may comprise one or more shunt and/or series isolation switches.
In FIG. 1, LNAs 120 a, 120 b and/or 120 c may have a relatively wide gain range (e.g., around 50 to 60 decibels (dB) of gain range) in order to handle a wide range of received power for a desired signal as well as potentially large interfering signals (or jammers). Multiple gain modes may be used to support a wide gain range, with each gain mode covering a portion of the entire gain range. For example, six gain modes may be used to support a gain range of 60 dB, with each gain mode covering approximately 10 dB. Adjacent gain modes may overlap to provide continuous gain coverage.
FIG. 6 shows a block diagram of a design of LNAs 620 a, 620 b and 620 c with multiple gain modes and isolation switches. LNAs 620 a, 620 b and 620 c may be used for LNAs 120 a, 120 b and 120 c, respectively, in FIG. 1.
In the design shown in FIG. 6, LNA 620 a includes an input programmable attenuator 630 a, a low gain amplifier (Amp) 640 a, a high gain amplifier 650 a, and a buffer 660. If LNA 620 a is enabled, then either amplifier 640 a or 650 a may be selected for use depending the desired gain for LNA 620 a. Attenuator 630 a attenuates a differential LNA input signal on lines Vinp and Vinm and provides a differential attenuated signal to amplifier 640 a. If enabled, amplifier 640 a amplifies its differential input signal with a fixed low gain and provides a differential output signal to buffer 660. If enabled, amplifier 650 a amplifies the differential LNA input signal with a fixed high gain and provides a differential output signal to buffer 660. Buffer 660 buffers its differential input signal and provides a differential LNA output signal on lines Voutp and Voutm. An isolation switch 642 a may be opened when low gain amplifier 640 a is turned on and closed when amplifier 640 a is turned off. An isolation switch 652 a may be opened when high gain amplifier 650 a is turned on and closed when amplifier 650 a is turned off.
LNA 620 b includes an input programmable attenuator 630 b, a low gain amplifier 640 b, and a high gain amplifier 650 b. If LNA 620 b is enabled, then either amplifier 640 b or 650 b may be selected for use depending the desired gain for LNA 620 b. Attenuator 630 b attenuates an LNA input signal on line Vinp and provides an attenuated signal to amplifier 640 b. If enabled, amplifier 640 b amplifies its input signal with a fixed low gain and provides an LNA output signal on line Voutp. If enabled, amplifier 650 b amplifies the LNA input signal with a fixed high gain and provides an LNA output signal on line Voutp. An isolation switch 642 b may be opened when low gain amplifier 640 b is turned on and closed when amplifier 640 b is turned off. An isolation switch 652 b may be opened when high gain amplifier 650 b is turned on and closed when amplifier 650 b is turned off.
LNA 620 c includes an input programmable attenuator 630 c, amplifiers 640 c and 650 c, and switches 642 c and 652 c that are coupled and operated in similar manner as attenuator 630 b, amplifiers 640 b and 650 b, and switches 642 b and 652 b, respectively, in LNA 620 b.
FIG. 6 also shows a design of output stage 130 in FIG. 1. In this design, output stage 130 includes a balun 670 and an output programmable attenuator 680. Balun 670 has two inputs coupled to lines Voutp and Voutm and two outputs coupled to attenuator 680. Balun 670 performs single-ended to differential conversion of the output signals from LNAs 620 b and 620 c and may also perform bandpass filtering. Attenuator 680 attenuates the signal from balun 670 and provides a differential output signal for output stage 130. Output stage 130 may also include one or more amplifiers, buffers, filters, etc. Output stage 130 may be considered as an LNA portion that is common to LNAs 620 a, 620 b and 620 c.
In one design, LNA 620 a has six gain modes and an overall gain range of approximately 60 dB. High gain amplifier 650 a and output programmable attenuator 680 may be used for the three highest gain modes, which may cover a gain range of approximately +24 to −6 dB. Low gain amplifier 640 a and input programmable attenuator 630 a may be used for the three lowest gain modes, which may cover a gain range of approximately −6 to −36 dB. In general, each of LNAs 620 a, 620 b and 620 c may have any number of gain modes and any overall gain range. The three LNAs may have the same or different number of gain modes, and the same or different overall gain ranges. For each LNA, the low gain amplifier may be biased with less current than the high gain amplifier in order to reduce power consumption.
In the design shown in FIG. 6, attenuator 630 may be used at the front of each LNA 620 to combat large interfering signals. Each attenuator 630 may be implemented with a resistor ladder, a voltage divider network, etc. The use of attenuators 630 and 670 and amplifiers 640 and 650 allows each LNA 620 to achieve a wide gain range. However, the parallel connection of low gain amplifier 640 and high gain amplifier 650 in each LNA 620 may result in a leakage path through each amplifier that is turned off. The leakage signal from high gain amplifier 650 to low gain amplifier 640 may be problematic since the isolation from amplifier 650 to amplifier 640 (without isolation switch 652) may be smaller than the total attenuation of attenuator 630 and amplifier 640. The use of isolation switches 642 and 652 may improve isolation between the high and low gain paths and support multi-gain operation.
FIG. 6 shows an example design of LNAs with multiple gain modes and isolation switches. In general, an LNA may include any number of amplifiers, attenuators, buffers, etc., which may be arranged differently from the configuration shown in FIG. 6. For example, multiple amplifiers may be coupled in cascaded, and each amplifier may be bypassed when not selected. An LNA may also include filters and/or other circuit blocks.
FIG. 6 shows the use of isolation switches for both low gain amplifier 640 and high gain amplifier 650 in each LNA 620. Isolation switch 642 for low gain amplifier 640 may be omitted if the attenuation through attenuator 630 and amplifier 640 can provide sufficient isolation when amplifier 640 is turned off.
FIG. 7 shows a schematic diagram of a design of a differential LNA 720 a with multiple gain modes and isolation switches. LNA 720 a is one design of LNA 620 a in FIG. 6 and may be used for LNA 120 a in FIG. 1. In this design, LNA 720 a includes an input programmable attenuator 730, a low gain section 740, a high gain section 750, and a buffer section 760 that correspond to attenuator 630 a, low gain amplifier 640 a, high gain amplifier 650 a, and buffer 660, respectively, in LNA 620 a in FIG. 6. Attenuator 730 receives the differential LNA input signal on lines Vinp and Vinm and provides a differential attenuated signal on lines Vattp and Vattm.
Low gain section 740 includes a gain stage composed of N- FETs 744 a and 744 b and a cascode buffer composed of N- FETs 748 a and 748 b. N- FETs 744 a and 744 b have their sources coupled to circuit ground and their gates coupled to lines Vattm and Vattp, respectively. N- FETs 748 a and 748 b have their sources coupled to the drains of N- FETs 744 a and 744 b, respectively, their gates receiving a bias voltage Va1, and their drains coupled to nodes X and Y, respectively. Isolation switches 742 a and 742 b have one end coupled to the drains of N- FETs 744 a and 744 b, respectively, and the other end coupled to circuit ground.
High gain section 750 includes a gain stage composed of N- FETs 754 a and 754 b, a filter 756, and a cascode buffer composed of N- FETs 758 a and 758 b. N- FETs 754 a and 754 b have their sources coupled to circuit ground, their gates coupled to lines Vinm and Vinp, respectively, and their drains coupled to a differential input of filter 756. N- FETs 758 a and 758 b have their sources coupled to a differential output of filter 756, their gates receiving a bias voltage Va2, and their drains coupled to nodes X and Y, respectively. Isolation switches 752 a and 752 b have one end coupled to the drains of N- FETs 754 a and 754 b, respectively, and the other end coupled to circuit ground.
Buffer section 760 includes a filter 762, a cascode buffer composed of N- FETs 764 a and 764 b, and capacitors 766 a and 766 b. Filter 762 has its differential input coupled to nodes X and Y. N- FETs 764 a and 764 b have their sources coupled to a differential output of filter 762, their gates receiving a bias voltage Va3, and their drains coupled to lines Voutp and Voutm, respectively. Capacitor 766 a is coupled between line Voutp and circuit ground. Capacitor 766 b is coupled between line Voutm and circuit ground. Capacitors 766 a and 766 b may be tunable capacitors, as shown in FIG. 7, or fixed capacitors. Capacitors 766 a and 766 b and balun 670 provide filtering for DVB-H.
When low gain mode is selected for LNA 720 a, the N-FETs in high gain section 750 may be turned off, and isolation switches 752 a and 752 b may be closed to provide good isolation from lines Vinp and Vinm to nodes X and Y. When high gain mode is selected, the N-FETs in low gain section 740 may be turned off, and isolation switches 742 a and 742 b may be closed to provide good isolation. Isolation switches 742 a and 742 b may be omitted if turning off the N-FETs in low gain section 740 can provide sufficient isolation in the high gain mode.
Isolation switches may also be added at other locations within LNA 720 a. For example, series isolation switches may be inserted between the drains of N- FETs 754 a and 754 b and the differential input of filter 756.
FIG. 8 shows a schematic diagram of a design of single-ended LNAs 820 b and 820 c with multiple gain modes and isolation switches. LNAs 820 b and 820 c are one design of LNAs 620 b and 620 c, respectively, in FIG. 6 and may be used for LNAs 120 b and 120 c, respectively, in FIG. 1. In this design, LNA 820 b includes an input programmable attenuator 830 b, a low gain section 840 b, and a high gain section 850 b that correspond to attenuator 630 b, low gain amplifier 640 b, and high gain amplifier 650 b, respectively, in LNA 620 b in FIG. 6. Attenuator 730 b receives the LNA input signal on line Vinp and provides an attenuated signal on line Vattb.
Low gain section 840 b includes a gain stage composed of an N-FET 844 b and a cascode buffer composed of an N-FET 848 b. N-FET 844 b has its source coupled to circuit ground and its gate coupled to line Vattb. N-FETs 848 b has its source coupled to the drain of N-FET 844 b, its gate receiving a bias voltage Vb1, and its drain coupled to line Voutp. An isolation switch 842 b has one end coupled to the drain of N-FET 844 b and the other end coupled to circuit ground.
High gain section 850 b includes a gain stage composed of an N-FET 854 b and a cascode buffer composed of an N-FET 858 b. N-FET 854 b has its source coupled to circuit ground and its gate coupled to line Vinp. N-FETs 858 b has its source coupled to the drain of N-FET 854 b, its gate receiving a bias voltage Vb2, and its drain coupled to line Voutp. An isolation switch 852 b has one end coupled to the drain of N-FET 854 b and the other end coupled to circuit ground. A capacitor 866 b is coupled between line Voutp and circuit ground and may be a tunable capacitor, as shown in FIG. 8, or a fixed capacitor. Capacitor 866 b and balun 670 provide filtering for high band MediaFLO™.
LNA 820 c includes an input programmable attenuator 830 c, a low gain section 840 c, and a high gain section 850 c that correspond to attenuator 630 c, low gain amplifier 640 c, and high gain amplifier 650 c, respectively, in LNA 620 c in FIG. 6. Attenuator 830 c and gain sections 840 c and 850 c are implemented in similar manner as attenuator 830 b and gain section 840 b and 850 b, respectively, in LNA 820 b. The gate of an N-FET 854 c within LNA 820 c is coupled to line Vinm, and the drains of N- FETs 848 c and 858 c are coupled to line Voutm. A capacitor 866 c is coupled between line Voutm and circuit ground and may be a tunable capacitor, as shown in FIG. 8, or a fixed capacitor. Capacitor 866 c and balun 670 provide filtering for low band MediaFLO™.
When low gain mode is selected for LNA 820 b, the N-FETs in high gain section 850 b may be turned off, and isolation switch 852 b may be closed to provide good isolation from line Vinp to line Voutp. When high gain mode is selected, the N-FETs in low gain section 840 b may be turned off, and isolation switch 842 b may be closed to provide good isolation. Isolation switch 842 b may be omitted if turning of the N-FETs in low gain section 840 b can provide sufficient isolation in the high gain mode. LNA 820 c may be operated in similar manner as LNA 820 b.
Isolation switches may also be added at other locations within LNAs 820 b and 820 c. For example, series isolation switch may be inserted between the drain of N-FET 854 b and the source of N-FET 858 b.
FIG. 7 shows LNA 720 a with filters for the high gain section and FIG. 8 shows LNAs 820 b and 820 c without any filters. In general, an LNA may or may not include filters, depending on system requirements and/or other considerations. An LNA may also include any number of filters, and each filter may be implemented with various designs and may be of any order. For example, a filter may be a Butterworth filter, an elliptical filter, etc.
The LNA designs shown in FIGS. 7 and 8 use gain stages composed of stacked N-FETs without feedback, which correspond generally to the LNA design shown in FIG. 4A. The gain stages may also be implemented with feedback, e.g., as shown in FIG. 4C. For example, to implement feedback in LNA 820 b in FIG. 8, N- FETs 854 b and 858 b and isolation switch 852 b may be replaced with N- FETs 422 and 424, feedback circuit 428, and isolation switches 432, 436 and 436 shown in FIG. 4C.
The isolation switches may be implemented in various manners and with various circuit components. To simplify design, the isolation switches may be implemented with the same type of transistors used for the LNA.
FIG. 9A shows a schematic diagram of a design of an LNA 920 a with an isolation switch. LNA 920 a includes N- FETs 922 and 924 and a load circuit 926 that are coupled in similar manner as N- FETs 422 and 424 and load circuit 426 within LNA 420 a in FIG. 4A. LNA 920 a further includes an isolation switch that is implemented with an N-FET 928. N-FET 928 has its source coupled to circuit ground, its gate receiving a control signal Vctrl and its drain coupled to the drain of N-FET 922. The isolation switch may be closed by applying logic high on Vctrl or opened by applying logic low on Vctrl.
FIG. 9B shows a schematic diagram of a design of an LNA 920 b with an isolation switch. LNA 920 b includes N- FETs 922 and 924, load circuit 926, and an isolation switch that is implemented with N-FET 928 and a P-FET 930. N-FET 928 is coupled as described above for FIG. 9A. P-FET 930 has its source coupled to the drain of N-FET 922, its gate receiving a complementary control signal Vctrlb, and its drain coupled to circuit ground. The isolation switch may be (i) closed by applying logic high on Vctrl and logic low on Vctrlb or (ii) opened by applying logic low on Vctrl and logic high on Vctlb.
The use of isolation switches for multiple LNAs coupled in parallel has been described above. In general, isolation switches may be used for any set of signals paths coupled in parallel. These signal paths may be at RF, as described above, or at other frequencies. Each signal path may include any number and any type of circuits. Isolation between the parallel signal paths may be improved by (i) shorting leakage signals in unselected signal paths to AC ground with shunt isolation switches and/or (ii) blocking the leakage signals in the unselected signal paths with series isolation switches. The improved isolation with the use of isolation switches may avoid degradation of receiver performance.
The isolation switches may be used for various active circuits such as different types of amplifiers, mixers, buffers, active filters, etc. The active circuits with isolation switches may be used for various applications such as communication, networking, computing, consumer electronics, etc. These active circuits may be used for broadcast receivers, cellular phones, PDAs, wireless devices, handheld devices, wireless modems, laptop computers, cordless phones, etc. These active circuits may also be used for various communication systems such as CDMA2000 systems, Wideband-CDMA (W-CDMA) systems, Global System for Mobile Communications (GSM) systems, WLANs, broadcast systems, etc. The active circuits may also be used for Bluetooth devices, Global Positioning System (GPS) receivers, etc.
In general, an apparatus may include first and second active circuits coupled in parallel, e.g., connected at their inputs and/or their outputs. The first active circuit may receive a first input signal and provide a first output signal. The second active circuit may receive a second input signal and provide a second output signal. The first active circuit may have a first switch configured to isolate the first active circuit when this circuit is turned off. The second active circuit may have a second switch configured to isolate the second active circuit when this circuit is turned off. Each active circuit may comprise an amplifier, a mixer, a buffer, an active filter, etc., or a combination thereof. More than two active circuits may also be coupled in parallel and may have switches to improve isolation.
In one design, an apparatus may include first and second amplifiers coupled in parallel, e.g., connected at their inputs and/or their outputs. The first amplifier may receive a first input signal and provide a first output signal. The second amplifier may receive a second input signal and provide a second output signal. The first amplifier may have a first switch configured to isolate the first amplifier when this amplifier is turned off. The second amplifier may have a second switch configured to isolate the second amplifier when this amplifier is turned off.
The first and second amplifiers may be LNAs in a receiver. For example, the first amplifier may be a differential LNA (e.g., LNA 120 a in FIG. 1), and the second amplifier may be a single-ended LNA (e.g., LNA 120 b). The differential LNA may be coupled to first and second input lines (e.g., lines Vinp and Vinm) and first and second output lines (e.g., lines Voutp and Voutm). The single-ended LNA may be coupled to the first input line (e.g., line Vinp) and the first output line (e.g., line Voutp).
The apparatus may further include a third amplifier coupled in parallel with the first and/or second amplifier. The third amplifier may receive a third input signal and provide a third output signal. The third amplifier may have a third switch configured to isolate the third amplifier when this amplifier is turned off. The third amplifier may be a single-ended LNA and may be coupled to the second input line (e.g., line Vinm) and the second output line (e.g., line Voutm).
Alternatively, the first amplifier may be a high gain amplifier (e.g., amplifier 650 a in FIG. 6), and the second amplifier may be a low gain amplifier (e.g., amplifier 640 a). The apparatus may further include an attenuator (e.g., attenuator 630 a) coupled to the low gain amplifier. The attenuator may receive the first input signal for the first/high gain amplifier and provide the second input signal for the second/low gain amplifier.
A switch for an amplifier may comprise a shunt switch coupled between an internal node of the amplifier and AC ground, e.g., circuit ground or a supply voltage. The shunt switch may be closed when the amplifier is turned off and may be opened when the amplifier is turned on. Alternatively or additionally, the switch for the amplifier may comprise a series switch that is inserted at an internal node of the amplifier.
An amplifier may include first and second FETs. The first FET (e.g., N-FET 422 in FIG. 4A, 4B or 4C) may have a gate that receives an input signal for the amplifier. The second FET (e.g., N-FET 424) may have a drain that provides an output signal for the amplifier and a source that is coupled to a drain of the first FET. In general, each FET may be an N-FET, a P-FET, or some other type of transistor. A switch may be coupled to the drain of the first FET and AC ground and may be implemented with a FET (e.g., N-FET 928 in FIG. 9A). The amplifier may further include a feedback circuit (e.g., feedback circuit 428 in FIG. 4C) coupled between the gate of the first FET and the drain of the second FET. A switch (e.g., switch 438) may be coupled between the drain of the second FET and AC ground. A switch (e.g., switch 436) may be coupled between the feedback circuit and the gate of the first FET.
The first and second amplifiers may be for first and second communication systems, respectively, first and second frequency bands, respectively, and/or first and second gain ranges, respectively. For example, the first amplifier may amplify a DVB-H signal, and the second amplifier may amplify a MediaFLO™ signal.
The active circuits with isolation switches described herein may be implemented within an IC, an RFIC, a mixed-signal IC, an ASIC, a printed circuit board (PCB), an electronics device, etc. These active circuits may also be fabricated with various IC process technologies such as complementary metal oxide semiconductor (CMOS), N-channel MOS (N-MOS), P-channel MOS (P-MOS), bipolar junction transistor (BJT), bipolar-CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
An apparatus implementing the active circuits with isolation switches described herein may be a stand-alone device or may be part of a larger device. A device may be (i) a stand-alone IC, (ii) a set of one or more ICs that may include memory ICs for storing data and/or instructions, (iii) an RFIC such as an RF receiver (RFR) or an RF transmitter/receiver (RTR), (iv) an ASIC such as a mobile station modem (MSM), (v) a module that may be embedded within other devices, (vi) a receiver, cellular phone, wireless device, handset, or mobile unit, (vii) etc.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (35)

1. An apparatus comprising:
a first active circuit configured to receive a first input signal and provide a first output signal, the first active circuit comprising a first switch configured to isolate the first active circuit when turned off; and
a second active circuit coupled in parallel with the first active circuit and configured to receive a second input signal and provide a second output signal, wherein the first active circuit receives a differential input and the second active circuit receives a single-ended input.
2. The apparatus of claim 1, wherein the second active circuit comprises a second switch configured to isolate the second active circuit when turned off.
3. The apparatus of claim 1, wherein the first switch comprises a shunt switch coupled between an internal node of the first active circuit and alternating current (AC) ground.
4. The apparatus of claim 1, wherein the first active circuit comprises at least one of an amplifier, a mixer, a buffer, and an active filter.
5. An apparatus comprising:
a first amplifier configured to receive a first input signal and provide a first output signal, the first amplifier comprising a first switch configured to isolate the first amplifier when turned off; and
a second amplifier coupled in parallel with the first amplifier and configured to receive a second input signal and provide a second output signal, wherein the first amplifier is a differential low noise amplifier (LNA) and the second amplifier is a first single-ended LNA.
6. The apparatus of claim 5, wherein the second amplifier comprises a second switch configured to isolate the second amplifier when turned off.
7. The apparatus of claim 6, further comprising:
a third amplifier coupled in parallel with the second amplifier and configured to receive a third input signal and provide a third output signal, the third amplifier comprising a third switch configured to isolate the third amplifier when turned off.
8. The apparatus of claim 5, wherein the first and second amplifiers are in a receiver.
9. The apparatus of claim 5, wherein the differential low noise amplifier (LNA) is coupled to first and second input lines and first and second output lines, and wherein the first single-ended LNA is coupled to the first input line and the first output line.
10. The apparatus of claim 7, wherein the third amplifier is a second single-ended low noise amplifier (LNA).
11. The apparatus of claim 10, wherein the differential low noise amplifier (LNA) is coupled to first and second input lines and first and second output lines, wherein the first single-ended LNA is coupled to the first input line and the first output line, and wherein the second single-ended LNA is coupled to the second input line and the second output line.
12. The apparatus of claim 5, wherein the first amplifier is a high gain amplifier and the second amplifier is a low gain amplifier.
13. The apparatus of claim 12, further comprising:
an attenuator coupled to the low gain amplifier and configured to receive the first input signal and provide the second input signal for the low gain amplifier.
14. The apparatus of claim 5, wherein the first switch comprises a shunt switch coupled between an internal node of the first amplifier and alternating current (AC) ground.
15. The apparatus of claim 14, wherein the shunt switch is closed when the first amplifier is turned off and is opened when the first amplifier is turned on.
16. The apparatus of claim 5, wherein the first switch comprises a series switch inserted at an internal node of the first amplifier.
17. The apparatus of claim 5, wherein the first amplifier comprises
a first transistor configured to receive the first input signal, and
a second transistor coupled to the first transistor and configured to provide the first output signal, and
wherein the first switch is coupled to the first transistor and alternating current (AC) ground.
18. The apparatus of claim 5, wherein the first amplifier comprises
a first field effect transistor (FET) having a gate receiving the first input signal, and
a second FET having a drain providing the first output signal and a source coupled to a drain of the first FET, and
wherein the first switch is coupled to the drain of the first FET and alternating current (AC) ground.
19. The apparatus of claim 18, wherein the first switch comprises a third field effect transistor (FET) having a drain coupled to the drain of the first FET and a source coupled to alternating current (AC) ground.
20. The apparatus of claim 18, wherein the first amplifier further comprises
a feedback circuit coupled between the gate of the first field effect transistor (FET) and the drain of the second FET.
21. The apparatus of claim 20, wherein the first amplifier further comprises
a second switch coupled between the feedback circuit and alternating current (AC) ground.
22. The apparatus of claim 20, wherein the first amplifier further comprises
a second switch coupled in series with the feedback circuit.
23. The apparatus of claim 5, wherein the first and second amplifiers are for first and second communication systems, respectively.
24. The apparatus of claim 5, wherein the first amplifier is configured to amplify a Digital Video Broadcasting for Handhelds (DVB-H) signal, and wherein the second amplifier is configured to amplify a MediaFLO™ signal.
25. The apparatus of claim 5, wherein the first and second amplifiers are for first and second frequency bands, respectively.
26. The apparatus of claim 5, wherein the first and second amplifiers are for first and second gain ranges, respectively.
27. An integrated circuit comprising:
a first amplifier configured to receive a first input signal and provide a first output signal, the first amplifier comprising a first switch configured to isolate the first amplifier when turned off; and
a second amplifier coupled in parallel with the first amplifier and configured to receive a second input signal and provide a second output signal, wherein the first amplifier is a differential low noise amplifier (LNA) and the second amplifier is a single-ended LNA.
28. The integrated circuit of claim 27, wherein the second amplifier comprises a second switch configured to isolate the second amplifier when turned off.
29. The integrated circuit of claim 28, further comprising:
a third amplifier coupled in parallel with the second amplifier and configured to receive a third input signal and provide a third output signal, the third amplifier comprising a third switch configured to isolate the third amplifier when turned off.
30. A method comprising:
turning on a differential amplifier among multiple single-ended amplifiers coupled in parallel;
turning off remaining ones of the multiple single-ended amplifiers; and
activating at least one switch for at least one single-ended amplifier among the remaining ones of the multiple single-ended amplifiers to isolate the at least one single-ended amplifier when turned off.
31. The method of claim 30, wherein the activating the at least one switch comprises
closing the at least one switch coupled between internal node of the at least one single-ended amplifier and alternating current (AC) ground.
32. The method of claim 30, further comprising:
opening a switch for the differential amplifier that is turned on.
33. An apparatus comprising:
means for turning on a differential amplifier among multiple single-ended amplifiers coupled in parallel;
means for turning off remaining ones of the multiple single-ended amplifiers; and
means for activating at least one switch for at least one single-ended amplifier among the remaining ones of the multiple single-ended amplifiers to isolate the at least one single-ended amplifier when turned off.
34. The apparatus of claim 33, wherein the means for activating the at least one switch comprises
means for closing the at least one switch coupled between internal node of the at least one single-ended amplifier and alternating current (AC) ground.
35. The apparatus of claim 33, further comprising:
means for opening a switch for the differential amplifier that is turned on.
US11/832,581 2007-03-13 2007-08-01 Active circuits with isolation switches Expired - Fee Related US7719352B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/832,581 US7719352B2 (en) 2007-03-13 2007-08-01 Active circuits with isolation switches
PCT/US2008/056696 WO2008112789A2 (en) 2007-03-13 2008-03-12 Active circuits with isolation switches
TW097108928A TW200845711A (en) 2007-03-13 2008-03-13 Active circuits with isolation switches

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US89449207P 2007-03-13 2007-03-13
US90940707P 2007-03-30 2007-03-30
US11/832,581 US7719352B2 (en) 2007-03-13 2007-08-01 Active circuits with isolation switches

Publications (2)

Publication Number Publication Date
US20080224770A1 US20080224770A1 (en) 2008-09-18
US7719352B2 true US7719352B2 (en) 2010-05-18

Family

ID=39666043

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/832,581 Expired - Fee Related US7719352B2 (en) 2007-03-13 2007-08-01 Active circuits with isolation switches

Country Status (3)

Country Link
US (1) US7719352B2 (en)
TW (1) TW200845711A (en)
WO (1) WO2008112789A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110102088A1 (en) * 2009-11-05 2011-05-05 Texas Instruments Incorporated Low noise amplifier circuit
US20110130109A1 (en) * 2009-12-02 2011-06-02 Kabushiki Kaisha Toshiba Differential amplifier circuit and wireless receiving apparatus
US20120231752A1 (en) * 2007-03-19 2012-09-13 Razieh Roufoogaran Method and System for a Configurable Front End
US8792540B2 (en) 2011-11-01 2014-07-29 Mediatek Inc. Amplifiers and transceiver devices using the same
US8975966B2 (en) 2012-03-07 2015-03-10 Qualcomm Incorporated Shared bypass capacitor matching network
US20150091648A1 (en) * 2013-10-02 2015-04-02 Novatek Microelectronics Corp. Amplifier circuit and operation method thereof
US20150263687A1 (en) * 2012-09-17 2015-09-17 Djp Co., Ltd. Broadband frequency detector
US9859849B2 (en) 2015-07-24 2018-01-02 Bae Systems Information And Electronic Systems Integration Inc. Off-state isolation enhancement for feedback amplifiers
US20180062601A1 (en) * 2016-08-31 2018-03-01 Skyworks Solutions, Inc. Amplifier with improved return loss and mismatch over gain modes
US10693231B2 (en) 2017-09-11 2020-06-23 Qualcomm Incorporated Transmit/receive switching circuit
US20210351749A1 (en) * 2018-10-03 2021-11-11 Richwave Technology Corp. Amplifier circuit

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030080811A1 (en) * 2001-10-05 2003-05-01 Toshifumi Nakatani Variable gain amplifying apparatus and wireless communication apparatus
US9026070B2 (en) 2003-12-18 2015-05-05 Qualcomm Incorporated Low-power wireless diversity receiver with multiple receive paths
US9450665B2 (en) * 2005-10-19 2016-09-20 Qualcomm Incorporated Diversity receiver for wireless communication
US20100074371A1 (en) * 2008-09-24 2010-03-25 Donald Lee West Ultra narrow band frequency selectior for zero point modulated carrier
US8199556B2 (en) * 2009-09-22 2012-06-12 Micron Technology, Inc. Methods of reading and using memory cells
CN101924524B (en) * 2010-08-25 2012-07-04 复旦大学 Differential complementary metal-oxide-semiconductor (CMOS) multi-mode low-noise amplifier with on-chip active Balun
US9178669B2 (en) 2011-05-17 2015-11-03 Qualcomm Incorporated Non-adjacent carrier aggregation architecture
US9252827B2 (en) 2011-06-27 2016-02-02 Qualcomm Incorporated Signal splitting carrier aggregation receiver architecture
US9154179B2 (en) 2011-06-29 2015-10-06 Qualcomm Incorporated Receiver with bypass mode for improved sensitivity
US8774334B2 (en) 2011-11-09 2014-07-08 Qualcomm Incorporated Dynamic receiver switching
JP5967905B2 (en) * 2011-11-21 2016-08-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. Amplifier circuit and wireless communication device
US9172402B2 (en) 2012-03-02 2015-10-27 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
US9362958B2 (en) 2012-03-02 2016-06-07 Qualcomm Incorporated Single chip signal splitting carrier aggregation receiver architecture
US9118439B2 (en) 2012-04-06 2015-08-25 Qualcomm Incorporated Receiver for imbalanced carriers
US9154356B2 (en) * 2012-05-25 2015-10-06 Qualcomm Incorporated Low noise amplifiers for carrier aggregation
US9867194B2 (en) 2012-06-12 2018-01-09 Qualcomm Incorporated Dynamic UE scheduling with shared antenna and carrier aggregation
US9300420B2 (en) 2012-09-11 2016-03-29 Qualcomm Incorporated Carrier aggregation receiver architecture
US9543903B2 (en) * 2012-10-22 2017-01-10 Qualcomm Incorporated Amplifiers with noise splitting
US8913976B2 (en) * 2012-10-23 2014-12-16 Qualcomm Incorporated Amplifiers with shunt switches
US8995591B2 (en) 2013-03-14 2015-03-31 Qualcomm, Incorporated Reusing a single-chip carrier aggregation receiver to support non-cellular diversity
US20150004922A1 (en) * 2013-06-27 2015-01-01 Samsung Electronics Co., Ltd. Modulation circuit and wireless communication apparatus
CN104579331A (en) * 2013-10-14 2015-04-29 苏州普源精电科技有限公司 Low-spurious radio frequency signal source
CN103763600B (en) * 2013-12-25 2017-06-20 络达科技股份有限公司 Digital television signal receiving method and its system
US9425832B2 (en) * 2014-01-16 2016-08-23 Qualcomm Incorporated Inter carrier-aggregation isolation in a receiver
US9271239B2 (en) 2014-02-14 2016-02-23 Qualcomm Incorporated Current-efficient low noise amplifier (LNA)
US9496906B2 (en) * 2015-02-18 2016-11-15 Silicon Laboratories, Inc. Receiver with wide gain range
US10177722B2 (en) 2016-01-12 2019-01-08 Qualcomm Incorporated Carrier aggregation low-noise amplifier with tunable integrated power splitter
CN106160673B (en) * 2016-06-30 2021-03-30 唯捷创芯(天津)电子技术股份有限公司 Harmonic suppression method, corresponding low-noise amplifier and communication terminal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965530A (en) * 1989-09-26 1990-10-23 General Electric Company Parallelled amplifier with switched isolation resistors
US20050248402A1 (en) 2004-05-10 2005-11-10 Li Zhenbiao Dual-band CMOS front-end with two gain modes
US7023272B2 (en) 2004-04-19 2006-04-04 Texas Instruments Incorporated Multi-band low noise amplifier system
US7132844B2 (en) * 2002-11-21 2006-11-07 Advantest Corporation Testing device and testing method for testing an electronic device
US7142042B1 (en) * 2003-08-29 2006-11-28 National Semiconductor Corporation Nulled error amplifier
US7161423B2 (en) * 2004-06-30 2007-01-09 Silicon Laboratories Inc. Parallel power amplifier and associated methods
US7362171B2 (en) * 2003-11-13 2008-04-22 Nec Corporation High-frequency amplifier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965530A (en) * 1989-09-26 1990-10-23 General Electric Company Parallelled amplifier with switched isolation resistors
US7132844B2 (en) * 2002-11-21 2006-11-07 Advantest Corporation Testing device and testing method for testing an electronic device
US7142042B1 (en) * 2003-08-29 2006-11-28 National Semiconductor Corporation Nulled error amplifier
US7362171B2 (en) * 2003-11-13 2008-04-22 Nec Corporation High-frequency amplifier
US7023272B2 (en) 2004-04-19 2006-04-04 Texas Instruments Incorporated Multi-band low noise amplifier system
US20050248402A1 (en) 2004-05-10 2005-11-10 Li Zhenbiao Dual-band CMOS front-end with two gain modes
US7167044B2 (en) 2004-05-10 2007-01-23 University Of Florida Research Foundation, Inc. Dual-band CMOS front-end with two gain modes
US7161423B2 (en) * 2004-06-30 2007-01-09 Silicon Laboratories Inc. Parallel power amplifier and associated methods

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
International Preliminary Report on Patentability - PCT/US08/056696 - European Patent Office - Munich - Jun. 22, 2009.
International Search Report-PCT/US08/056696, International Search Authority-European Patent Office-Aug. 25, 2008.
Moreira C P et al: "A Reconfigurable DCS1800/W-CDMA LNA: Design and Implementation Issues" Microwave Conference, 2006. 36th European, IEEE, PI, (Sep. 1, 2006), pp. 1652-1655.
Naveed Ahsan et al: "Dual Band Tunable LNA for Flexible RF Front End" Applied Sciences&Technology. 2007. IBCAST 2007. International Bhur Ban Conference on, IEEE, PI (Jan. 1, 2007), pp. 19-22.
Written Opinion-PCT/US08/056696, International Search Authority-European Patent Office-Aug. 25, 2008.

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120231752A1 (en) * 2007-03-19 2012-09-13 Razieh Roufoogaran Method and System for a Configurable Front End
US8600315B2 (en) * 2007-03-19 2013-12-03 Broadcom Corporation Method and system for a configurable front end
US8217723B2 (en) * 2009-11-05 2012-07-10 Texas Instruments Incorporated Low noise amplifier circuit
US20110102088A1 (en) * 2009-11-05 2011-05-05 Texas Instruments Incorporated Low noise amplifier circuit
US20110130109A1 (en) * 2009-12-02 2011-06-02 Kabushiki Kaisha Toshiba Differential amplifier circuit and wireless receiving apparatus
US8676148B2 (en) * 2009-12-02 2014-03-18 Kabushiki Kaisha Toshiba Differential amplifier circuit and wireless receiving apparatus
US8792540B2 (en) 2011-11-01 2014-07-29 Mediatek Inc. Amplifiers and transceiver devices using the same
US8975966B2 (en) 2012-03-07 2015-03-10 Qualcomm Incorporated Shared bypass capacitor matching network
US20150263687A1 (en) * 2012-09-17 2015-09-17 Djp Co., Ltd. Broadband frequency detector
US20150091648A1 (en) * 2013-10-02 2015-04-02 Novatek Microelectronics Corp. Amplifier circuit and operation method thereof
US9059673B2 (en) * 2013-10-02 2015-06-16 Novatek Microelectronics Corp. Amplifier circuit and operation method thereof
US9859849B2 (en) 2015-07-24 2018-01-02 Bae Systems Information And Electronic Systems Integration Inc. Off-state isolation enhancement for feedback amplifiers
US20180062601A1 (en) * 2016-08-31 2018-03-01 Skyworks Solutions, Inc. Amplifier with improved return loss and mismatch over gain modes
US10284160B2 (en) * 2016-08-31 2019-05-07 Skyworks Solutions, Inc. Amplifier with improved return loss and mismatch over gain modes
US10693231B2 (en) 2017-09-11 2020-06-23 Qualcomm Incorporated Transmit/receive switching circuit
US10910714B2 (en) 2017-09-11 2021-02-02 Qualcomm Incorporated Configurable power combiner and splitter
US20210351749A1 (en) * 2018-10-03 2021-11-11 Richwave Technology Corp. Amplifier circuit

Also Published As

Publication number Publication date
WO2008112789A2 (en) 2008-09-18
WO2008112789A3 (en) 2008-11-13
TW200845711A (en) 2008-11-16
US20080224770A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
US7719352B2 (en) Active circuits with isolation switches
US8237509B2 (en) Amplifier with integrated filter
CN107959507B (en) Wireless receiver and signal processing method thereof
US8035447B2 (en) Active circuits with load linearization
US8301101B2 (en) Frequency translated filter
US20090088124A1 (en) Radio Frequency Receiver Architecture
US9246438B2 (en) Receiver architecture for a compact and low power receiver
US8224275B2 (en) Area reduction techniques for saw-less receivers
US20090088110A1 (en) Radio frequency receiver architecture
US9154170B2 (en) TIA-to-ADC interface with low-noise and a wide-range of passive gain control
WO2006116527A1 (en) Differential inductor based low noise amplifier
US8019314B2 (en) Radio communication apparatus
JP4001818B2 (en) Front end and high frequency receiver with quadrature low noise amplifier
US20130078937A1 (en) Switched capacitor detuner for low noise amplification circuit having bypass path
Wang et al. 28.7 A wideband blocker-tolerant receiver with high-Q RF-input selectivity and<-80dBm LO leakage
US20180175805A1 (en) Switch and matching noise cancelling for switch low noise amplifier
Yanduru et al. A WCDMA, GSM/GPRS/EDGE receiver front end without interstage SAW filter
US20160080018A1 (en) On-chip linearity calibration
Duan et al. An S-band CMOS transceiver front-end for digital array radars
US11909368B2 (en) Dual mode notch filter
Loong et al. 1.575 GHz to 2.48 GHz multi-standard low noise amplifier using 0.18-µm CMOS with on-chip matching
JP6346651B2 (en) Multiband RF receiver
Çetinkaya et al. A concurrent multiband fully differential CMOS LNA with a local active feedback for cellular applications 3G-4G
Chowdhury et al. Monolithic CMOS HD radio: Architecture design and front-end implementation
Ni et al. A wide-band RF front-end for multi-standard application

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, TAE WOOK;BARNETT, KENNETH CHARLES;MUTHALI, HARISH;REEL/FRAME:019811/0775

Effective date: 20070711

Owner name: QUALCOMM INCORPORATED,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, TAE WOOK;BARNETT, KENNETH CHARLES;MUTHALI, HARISH;REEL/FRAME:019811/0775

Effective date: 20070711

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180518