US7703066B2 - Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product - Google Patents
Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product Download PDFInfo
- Publication number
- US7703066B2 US7703066B2 US11/185,945 US18594505A US7703066B2 US 7703066 B2 US7703066 B2 US 7703066B2 US 18594505 A US18594505 A US 18594505A US 7703066 B2 US7703066 B2 US 7703066B2
- Authority
- US
- United States
- Prior art keywords
- mask
- pattern
- flatness
- real
- mask blanks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/36—Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/70—Adapting basic layout or design of masks to lithographic process requirements, e.g., second iteration correction of mask patterns for imaging
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/38—Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
Definitions
- the present invention relates to an exposure mask manufacturing method, an drawing apparatus, a semiconductor device manufacturing method, and a mask blanks product in a semiconductor field.
- the device design rule is as small as 65 nm. Accordingly, the pattern dimension precision is required to be controlled very strictly at 5 nm or less.
- a multilayer pattern is formed by using plural photo masks.
- an alignment precision between upper and lower patterns is also very strict, same as in pattern dimension precision, in the trend of the finer design rule.
- hindering factors of high precision in a pattern forming process include deformation such as distortion of photo masks occurring when the photo masks for use in the photolithography process is chucked in the exposure apparatus.
- a photo mask has been developed, which guarantees a desired flatness in a state that the photo mask is chucked in the exposure apparatus by predicting in advance flatness of the mask after chucking of the photo mask (Jpn. Pat. Appln. KOKAI Publication No. 2003-050458).
- the mask flatness is extremely excellent in a state that the photo mask is chucked in the exposure apparatus.
- a photo mask manufacturing process includes a process of drawing a mask pattern on a mask blanks substrate by using a mask drawing apparatus.
- the mask drawing apparatus holds the mask blanks substrate so as not to distort the mask blanks substrate as much as possible. For example, the mask blanks substrate is held at three points. Thus, the mask pattern is drawn in a state that native flatness of the mask blanks substrate is maintained.
- a wafer pattern manufacturing process includes a process of transferring a mask pattern on a wafer by using a wafer exposure apparatus.
- the wafer exposure apparatus chucks a photo mask by using a chucking mechanism such as a vacuum chucking mechanism. By using such a chucking mechanism, however, the photo mask is deformed.
- a position of a pattern 92 is deviated by ⁇ between the case where a photo mask 91 is not deformed (before chucking) and the case where the photo mask is deformed (after chucking).
- warp is schematically indicated by inclined straight line
- the position of the pattern 92 is deviated to right side.
- the photo mask in the Jpn. Pat. Appln. KOKAI Publication is used, the flatness of the photo mask after chucking is improved.
- a method of manufacturing an exposure mask comprising: generating or preparing flatness variation data relating to a mask blanks substrate to be processed into an exposure mask, the flatness variation data being data relating to change of flatness of the mask blank substrate caused when the mask blank substrate is chucked by a chuck unit of an exposure apparatus; generating position correction data of a pattern to be drawn on the mask blanks substrate based on the flatness variation data such that a mask pattern of the exposure mask comes to a predetermined position in a state that the exposure mask is chucked by the chuck unit; and drawing a pattern on the mask blanks substrate, the drawing the pattern including drawing the pattern with correcting a drawing position of the pattern and inputting drawing data corresponding to the pattern and the position correction data into a drawing apparatus.
- a drawing apparatus comprising: a position correction data generating unit configured to generate position correction data of a pattern to be drawn on a mask blanks substrate to be processed into an exposure mask, the position correction data being data for bringing a pattern of the exposure mask in a state chucked by a chuck unit of an exposure apparatus into a predetermined position; and a drawing unit configured to draw the pattern on the mask blanks substrate with correcting a drawing position of the pattern based on the drawing data corresponding to the pattern and the position correction data.
- a method of manufacturing a semiconductor device comprising: applying a resist on a substrate including a semiconductor substrate; disposing an exposure mask manufactured by the exposure mask manufacturing method according to any one of claims 1 , 2 and 3 above the substrate in an exposure apparatus, irradiating charged beam or light onto the resist by way of the exposure mask in a state that the exposure mask is chucked by a chuck unit of the exposure apparatus, and forming a first resist pattern by developing the resist after the irradiating the charged beam or the light onto the resist; and forming a first pattern by etching the substrate using the first resist pattern as a mask.
- a mask blanks product comprising: a mask blanks substrate to be processed into an exposure mask including a mask pattern; and a recording medium in which position correction data of a pattern to be drawn on the mask blanks substrate is recorded, the position correction data being data for bringing the mask pattern of the exposure mask in a state chucked by a chuck unit of an exposure apparatus into a predetermined position.
- a mask blanks product comprising: a mask blanks substrate to be processed into an exposure mask including a mask pattern; and a recording medium in which predicted flatness variation data is recorded, the predicted flatness variation data being data for predicting flatness variation of the exposure mask caused when the exposure mask is chucked by a chuck unit of an exposure apparatus.
- FIG. 1 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the first embodiment of the invention
- FIG. 2 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the second embodiment of the invention
- FIG. 3 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the third embodiment of the invention.
- FIG. 4 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the fourth embodiment of the invention.
- FIG. 5 is a diagram schematically showing a drawing apparatus according to the fourth embodiment.
- FIG. 6 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the fifth embodiment of the invention.
- FIG. 7 is a diagram schematically showing a drawing apparatus according to the fifth embodiment.
- FIG. 8 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the sixth embodiment of the invention.
- FIG. 9 is a diagram schematically showing a drawing apparatus according to the sixth embodiment.
- FIG. 10 is a diagram schematically showing a mask blanks product according to the seventh embodiment of the invention.
- FIG. 11 is a diagram schematically showing a mask blanks product according to the eighth embodiment of the invention.
- FIG. 12 is a diagram schematically showing a mask blanks product according to the ninth embodiment of the invention.
- FIG. 13 is a diagram schematically showing a mask blanks product according to the tenth embodiment of the invention.
- FIG. 14 is a diagram schematically showing a mask blanks product according to the eleventh embodiment of the invention.
- FIG. 15 is a diagram schematically showing a mask blanks product according to the twelfth embodiment of the invention.
- FIG. 16 is a diagram schematically showing a mask blanks product according to the thirteenth embodiment of the invention.
- FIG. 17 is a diagram schematically showing a mask blanks product according to the fourteenth embodiment of the invention.
- FIG. 18 is a diagram for explaining problems of a prior art.
- FIGS. 19A to 19C are diagrams for explaining a vacuum chucking mechanism.
- FIG. 1 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the first embodiment of the invention.
- the present embodiment is different from a prior art in that, when forming a pattern on a mask blanks substrate 5 by using a drawing apparatus 7 , data not used hitherto, that is, pattern position correction data 4 is used in addition to drawing data 6 hitherto used as data to be input to the drawing apparatus 7 .
- data not used hitherto that is, pattern position correction data 4 is used in addition to drawing data 6 hitherto used as data to be input to the drawing apparatus 7 .
- the present embodiment will be described below.
- a mask blanks product is purchased from a mask blanks manufacturer.
- the product comprises a mask blanks substrate 5 processed into a photo mask (exposure mask); flatness measurement data (native flatness data) 1 of the mask blanks substrate 5 in a state not chucked by a chuck unit (for example, a vacuum chuck) in a wafer exposure apparatus 10 ; and flatness prediction data (predicted flatness data) 2 of the mask blanks substrate 5 in a state chucked by the chuck unit.
- the mask blanks substrate 5 comprises a quartz substrate (transparent substrate) of 6 inches square (152 mm square) and about 6 mm in thickness, an ArF halftone film provided on the quartz substrate, a Cr film provided on the ArF halftone film, and a chemically amplified resist FEP-171 of 300 nm in thickness provided on the Cr film.
- the native flatness data is acquired by measuring flatness of the mask blanks substrate 5 by use of, for example, UltraFlat of Tropel.
- the native flatness data is mask flatness data of 1 mm grid in a region of 150 mm square.
- the native flatness data 1 and predicted flatness data 2 are input into a computer 3 .
- the computer 3 generates correction data (pattern position correction data) 4 necessary for correcting a position of a pattern (mask pattern) on a photo mask to be a desired position in a sate that the mask blanks substrate 5 is chucked in the wafer exposure apparatus 10 based on the native flatness data 1 and predicted flatness data 2 .
- the positional deviation of the pattern before and after chucking the photo mask in the wafer exposure apparatus 10 is 6 as shown in FIG. 18 , it is intended to generate data instructing the position of the mask blanks substrate 5 to be deviated by ⁇ to the right side relatively with respect to drawing beam when drawing the pattern.
- a process of generating the pattern position correction data 4 is, for example, as follows.
- data mask flatness variation data
- the pattern position correction data 4 is given, for example, by X-Y stage position coordinates (X-Y coordinates) for mounting the mask blanks substrate 5 and moving the mask blanks substrate Sin the X-Y direction.
- the mask blanks substrate 5 is set in the drawing apparatus (for example, an electron beam drawing apparatus EBM4000) 7 .
- the pattern position correction data 4 and drawing data 6 are input to the drawing apparatus 7 .
- a mask manufacturing process 8 including the drawing process using the drawing apparatus 7 is carried out. That is, the drawing apparatus 7 draws a pattern corresponding to the drawing data 6 on the mask blanks substrate 5 with correcting the relative positions of the mask blanks substrate 5 and electron beam, such that the mask pattern of the photo mask in a state chucked in the exposure apparatus 10 coincides with the desired position based on the pattern position correction data 4 . Thereafter, a resist pattern is formed by ordinary post exposure bake (PEB) and developing process. And using this resist pattern as a mask, the Cr film and halftone film are etched by an etching apparatus (for example, UNAXIS-G4). In this manner, a mask substrate comprising a quartz substrate, patterns of the Cr film and halftone film formed on the quartz substrate 5 is formed.
- PAB post exposure bake
- the resist pattern is removed, defect inspection and defect repair for the mask substrate are carried out, thereafter, a pellicle is attached to the mask substrate to obtain a photo mask 9 .
- the photo mask 9 is set in the wafer exposure apparatus (for example, a wafer exposure apparatus S307 of Nikon) 10 , the resist applied on the wafer is exposed, thereafter, an ordinary resist process such as developing is carried out to form a resist pattern 11 .
- the wafer exposure apparatus for example, a wafer exposure apparatus S307 of Nikon
- a pattern of elements and wires may be already formed, or a pattern may not be formed.
- the resist pattern 11 is used for forming, for example, an isolation trench.
- the device pattern 12 is a pattern of, for example, an isolation trench, a transistor, a wiring, an electrode, a contact hole, etc.
- the in-plane distribution (64 positions in chip) of alignment error of the device pattern of the uppermost layer and its immediately lower device pattern (underlying pattern) is measured by a measuring instrument of KLA.
- the alignment error of 20 nm (3 ⁇ ) existing in the case of using a conventional photo mask has been outstandingly decreased to 12 nm (3 ⁇ ) in the case of using the photo mask of the present embodiment. Therefore, the device manufacturing yield is improved, and the semiconductor device can be supplied at lower price and shorter term than in the prior art.
- FIG. 2 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the second embodiment of the invention. Same parts as in FIG. 1 are identified with same reference numerals, and detailed description of configuration and effects is omitted.
- the present embodiment explains that a mask blanks product comprising the mask blanks substrate 5 and native flatness data 1 is purchased from a mask blanks manufacturer. That is, the predicted flatness data 2 is not supplied from the mask blanks manufacturer. In the present embodiment, therefore, the predicted flatness data 2 is generated by the mask manufacturer.
- chuck structure data 2 a of the exposure apparatus 10 is prepared at the mask manufacturer.
- the chuck structure data 2 a is data relating to a chuck unit (for example, a vacuum chuck mechanism) for chucking the mask blanks substrate 5 , and it is dimensional data relating to the structure of a portion for chucking the mask blanks substrate 5 (chuck unit). More specifically, it is dimensional data of a portion having effects on deformation (distortion) of the mask blanks substrate 5 , out of the chuck unit.
- a chuck unit for example, a vacuum chuck mechanism
- the data relates to a distance L between two chuck units 31 , a length of the chuck unit 31 , a width W of the chuck unit 31 , a width W 1 of an opening of the chuck unit 31 (the portion not contacting with the mask blanks substrate 5 ), and a width W 2 of the portion of the chuck unit 31 contacting with the mask blanks substrate 5 .
- the computer 3 generates predicted flatness data in a state that the mask blanks substrate 5 is chucked in the exposure apparatus 10 based on the native flatness data 1 and chuck structure data 2 a , and generates pattern position correction data 4 a based on the predicted flatness data and native flatness data 1 .
- FIG. 3 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the third embodiment of the invention. Same parts as in FIG. 1 are identified with same reference numerals, and detailed description of configuration and effects is omitted.
- the present embodiment is different from the first embodiment in that a mask blanks product comprising the mask blanks substrate 5 and mask flatness variation data 2 b is purchased from a mask blanks manufacturer.
- a computer 3 generates pattern position correction data based on the mask flatness variation data 2 b.
- the mask flatness variation data is generated from the native flatness data 1 and predicted flatness data 2 , but in the present embodiment, the mask flatness variation data 2 b is preliminarily given from the mask blanks manufacturer, and thus, the process of generating the pattern position correction data is simplified. Besides, same effects as in the first embodiment are obtained.
- FIG. 4 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the fourth embodiment of the invention.
- FIG. 5 is a diagram schematically showing a drawing apparatus 7 a of the present embodiment. Same parts as in FIG. 1 are identified with same reference numerals, and detailed description of configuration and effects is omitted.
- the present embodiment is different from the first embodiment ( FIG. 1 ) in that a drawing apparatus 7 a having a mechanism for generating pattern position correction data 4 is used. That is, the drawing apparatus 7 a comprises, as shown in FIG. 5 , a pattern position correction data generating unit 13 a for generating the pattern position correction data 4 by using the native flatness data 1 and predicted flatness data 2 , and a pattern drawing mechanism 14 for drawing a pattern on the mask blanks substrate 5 with correcting the mask pattern position based on the pattern position correction data 4 and the drawing data 6 .
- the pattern position correction data generating unit 13 a comprises exclusive hardware for generating the pattern position correction data 4 , or a general-purpose computer (CPU), and a program for causing the computer to execute the instruction for generating pattern position correction data.
- the instruction for generating the pattern position correction data includes a instruction for generating flatness variation data based on the predicted flatness data 2 , and a instruction for generating pattern position correction data based on the flatness variation data and the native flatness data.
- the drawing apparatus 7 a is manufactured, for example, by a drawing apparatus manufacturer.
- FIG. 6 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the fifth embodiment of the invention.
- FIG. 7 is a diagram schematically showing a drawing apparatus 7 b of the present embodiment. Same parts as in FIG. 2 are identified with same reference numerals, and detailed description of configuration and effects is omitted.
- the present embodiment is different from the second embodiment ( FIG. 2 ) in that the drawing apparatus 7 b having a mechanism for generating pattern position correction data 4 is used. That is, the drawing apparatus 7 b comprises, as shown in FIG. 7 , a pattern position correction data generating unit 13 b for generating the pattern position correction data 4 by using the native flatness data 1 and the chuck structure data 2 a , and a pattern drawing mechanism 14 for drawing a pattern on the mask blanks substrate 5 with correcting the mask pattern position based on the pattern position correction data 4 and the drawing data 6 .
- the pattern position correction data generating unit 13 b comprises exclusive hardware for generating the pattern position correction data 4 , or a general-purposed computer (CPU), and a program for causing the computer to execute the instruction for generating pattern position correction data.
- the instruction for generating the pattern position correction data includes a instruction for generating predicted flatness data 2 based on the chuck structure data, a instruction for generating flatness variation data based on the predicted flatness data 2 , and a instruction for generating pattern position correction data based on the flatness variation data and the native flatness data 1 .
- the drawing apparatus 7 b is manufactured, for example, by a drawing apparatus manufacturer.
- FIG. 8 is a flowchart from a photo mask manufacturing process to a semiconductor device manufacturing process according to the sixth embodiment of the invention.
- FIG. 9 is a diagram schematically showing a drawing apparatus 7 c of the present embodiment. Same parts as in FIG. 3 are identified with same reference numerals, and detailed description of configuration and effects is omitted.
- the present embodiment is different from the third embodiment ( FIG. 3 ) in that the drawing apparatus 7 c having a mechanism for generating pattern position correction data 4 is used. That is, the drawing apparatus 7 c comprises, as shown in FIG. 9 , a pattern position correction data generating unit 13 c for generating the pattern position correction data 4 based on the flatness variation data 2 b , and a pattern drawing mechanism 14 for drawing a pattern on the mask blanks substrate 5 with correcting the mask pattern position based on the pattern position correction data 4 and the drawing data 6 .
- the pattern position correction data generating unit 13 c comprises exclusive hardware for generating pattern position correction data, or a general-purpose computer (CPU), and a program for causing the computer to execute the instruction of generating pattern position correction data.
- the drawing apparatus 7 c is manufactured, for example, by a drawing apparatus manufacturer.
- FIG. 10 is a diagram schematic showing a mask blanks product according to the seventh embodiment of the invention.
- the mask blanks product 20 of the present embodiment comprises a mask blanks substrate 5 , and a recording medium 4 M having pattern position correction data recorded therein.
- the recording medium 4 M is, for example, a wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the mask blanks product 20 is manufactured and distributed by, for example, a mask blanks manufacturer. Native flatness data is prepared, for example, by a mask manufacturer having purchased the mask blanks product 20 , or a mask blanks manufacturer.
- the mask blanks product 20 of the present embodiment includes the recording medium 4 M, and therefore, the mask manufacturer having purchased the mask blanks product 20 does not have to generate pattern position correction data.
- FIG. 11 is a diagram schematically showing a mask blanks product according to the eighth embodiment of the invention. Same parts as in FIG. 10 are identified with same reference numerals, and detailed description is omitted.
- a mask blanks product 20 a of the present embodiment comprises a mask blanks substrate 5 , a recording medium 1 M having native flatness data recorded therein, and a recording medium 4 M having pattern position correction data recorded therein.
- the recording medium 1 M and recording medium 4 M may be either separate physically, or identical physically. In the latter case, the recording medium 1 M, 4 M is, for example, one wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the mask blanks product 20 a of the present embodiment includes the recording medium 4 M, the mask manufacturer having purchased the mask blanks product 20 a does not have to generate pattern position correction data.
- FIG. 12 is a diagram schematically showing a mask blanks product according to the ninth embodiment of the invention. Same parts as in FIG. 10 are identified with same reference numerals, and detailed description is omitted.
- a mask blanks product 20 b of the present embodiment comprises a mask blanks substrate 5 , a recording medium 2 M having predicted flatness data recorded therein, and a recording medium 4 M having pattern position correction data recorded therein.
- the recording medium 2 M and recording medium 4 M may be either separate physically, or identical physically. In the latter case, the recording medium 2 M, 4 M is, for example, one wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the mask blanks product 20 b of the present embodiment includes the recording medium 4 M, the mask manufacturer having purchased the mask blanks product 20 b does not have to generate pattern position correction data.
- FIG. 13 is a diagram schematically showing a mask blanks product according to the tenth embodiment of the invention. Same parts as in FIG. 10 are identified with same reference numerals, and detailed description is omitted.
- a mask blanks product 20 c of the present embodiment comprises a mask blanks substrate 5 , a recording medium 1 M having native flatness data recorded therein, a recording medium 2 M having predicted flatness data recorded therein, and a recording medium 4 M having pattern position correction data recorded therein.
- the recording medium 1 M, recording medium 2 M and recording medium 4 M may be either separate physically, or identical at least in two of them physically. When all of them are identical physically, the recording medium 1 M, 2 M, 4 M is, for example, one wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the mask blanks product 20 c of the present embodiment includes the recording medium 1 M, 2 M, 4 M which may be required at the mask manufacturer, and the load of the mask manufacturer may be substantially lessened.
- FIG. 14 is a diagram schematically showing a mask blanks product according to the eleventh embodiment of the invention. Same parts as in FIG. 10 are identified with same reference numerals, and detailed description is omitted.
- a mask blanks product 20 d of the present embodiment comprises a mask blanks substrate 5 , and a recording medium 6 M having recorded therein predicted flatness variation data for predicting a flatness variation of an exposure mask cased when the exposure mask is chucked by a chuck unit of an exposure apparatus.
- the recording medium 6 M is, for example, a wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the mask blanks product 20 d is manufactured and distributed, for example, by a mask blanks manufacturer.
- Native flatness data is prepared by a mask manufacturer having purchased the mask blanks product 20 d , or purchased from a mask blanks manufacturer.
- the mask blanks product 20 d of the present embodiment includes the recording medium 6 M, the mask manufacturer having purchased the mask blanks product 20 d does not have to generate predicted flatness variation data.
- FIG. 15 is a diagram schematically showing a mask blanks product according to the twelfth embodiment of the invention. Same parts as in FIG. 14 are identified with same reference numerals, and detailed description is omitted.
- a mask blanks product 20 e of the present embodiment comprises a mask blanks substrate 5 , a recording medium 1 M having native flatness data recorded therein, and a recording medium 6 M having predicted flatness variation data recorded therein.
- the recording medium 1 M and recording medium 6 M may be either separate physically, or identical physically. In the latter case, the recording medium 1 M, 6 M is, for example, one wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the manufacturer having purchased the mask blanks product 20 e does not have to prepare predicted flatness variation data.
- FIG. 16 is a diagram schematically showing a mask blanks product according to the thirteenth embodiment of the invention. Same parts as in FIG. 14 are identified with same reference numerals, and detailed description is omitted.
- a mask blanks product 20 f of the present embodiment comprises a mask blanks substrate 5 , a recording medium 2 M having predicted flatness data recorded therein, and a recording medium 6 M having predicted flatness variation data recorded therein.
- the recording medium 2 M and recording medium 6 M may be either separate physically, or identical physically. In the latter case, the recording medium 2 M, 6 M is, for example, one wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the mask manufacturer having purchased the mask blanks product 20 f does not have to prepare predicted flatness variation data.
- FIG. 17 is a diagram schematically showing a mask blanks product according to the fourteenth embodiment of the invention. Same parts as in FIGS. 15 and 16 are identified with same reference numerals, and detailed description is omitted.
- a mask blanks product 20 g of the present embodiment comprises a mask blanks substrate 5 , a recording medium 1 M having native flatness data recorded therein, a recording medium 2 M having predicted flatness data recorded therein, and a recording medium 6 M having predicted flatness variation data recorded therein.
- the recording medium 1 M, recording medium 2 M and recording medium 6 M may be either separate physically, or identical at least in two of them physically. When all of them are identical physically, the recording medium 1 M, 2 M, 6 M is, for example, one wireless IC tag seal attached to a container accommodating the mask blanks substrate 5 .
- the mask blanks product 20 g of the present embodiment includes the recording medium 1 M, 2 M, 6 M which may be required at the mask manufacturer, and therefore, the load of the mask manufacturer may be substantially lessened.
- the present invention is not limited to these embodiments alone.
- the resist on the wafer is exposed with light by way of the photo mask, but the present invention may be also applied in the case in which a resist on a wafer is exposure with charged beam (for example, electron beam) by way of a charged beam mask (for example, an electron beam exposure mask).
- charged beam for example, electron beam
- a charged beam mask for example, an electron beam exposure mask
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
Description
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/468,143 US8193100B2 (en) | 2004-07-27 | 2009-05-19 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
US12/659,396 US8533634B2 (en) | 2004-07-27 | 2010-03-08 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004219178A JP4488822B2 (en) | 2004-07-27 | 2004-07-27 | Exposure mask manufacturing method, exposure apparatus, semiconductor device manufacturing method, and mask blank product |
JP2004-219178 | 2004-07-27 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/468,143 Division US8193100B2 (en) | 2004-07-27 | 2009-05-19 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
US12/659,396 Division US8533634B2 (en) | 2004-07-27 | 2010-03-08 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060024591A1 US20060024591A1 (en) | 2006-02-02 |
US7703066B2 true US7703066B2 (en) | 2010-04-20 |
Family
ID=35732659
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/185,945 Active 2029-02-17 US7703066B2 (en) | 2004-07-27 | 2005-07-21 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
US12/468,143 Active 2026-10-03 US8193100B2 (en) | 2004-07-27 | 2009-05-19 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
US12/659,396 Active 2026-09-27 US8533634B2 (en) | 2004-07-27 | 2010-03-08 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/468,143 Active 2026-10-03 US8193100B2 (en) | 2004-07-27 | 2009-05-19 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
US12/659,396 Active 2026-09-27 US8533634B2 (en) | 2004-07-27 | 2010-03-08 | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
Country Status (5)
Country | Link |
---|---|
US (3) | US7703066B2 (en) |
JP (1) | JP4488822B2 (en) |
KR (1) | KR100707893B1 (en) |
DE (2) | DE102005035144B4 (en) |
TW (1) | TWI272660B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736398A (en) * | 2011-04-12 | 2012-10-17 | Hoya株式会社 | Substrate for photomask, photomask and pattern transfer method |
US10093044B2 (en) * | 2015-08-20 | 2018-10-09 | Toshiba Memory Corporation | Imprinting apparatus and imprinting method |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3673263B2 (en) * | 2003-05-30 | 2005-07-20 | 株式会社東芝 | Exposure mask substrate manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method |
JP4488822B2 (en) | 2004-07-27 | 2010-06-23 | 株式会社東芝 | Exposure mask manufacturing method, exposure apparatus, semiconductor device manufacturing method, and mask blank product |
JP2006153498A (en) * | 2004-11-25 | 2006-06-15 | Konica Minolta Sensing Inc | Standard surface sample and optical characteristic measuring system |
US20070061349A1 (en) * | 2005-09-15 | 2007-03-15 | Microsoft Corporation | Hierarchically describing shapes |
KR100735532B1 (en) * | 2006-03-21 | 2007-07-04 | 삼성전자주식회사 | A photomask including expansion region in substrate and method for flating the surface of a photomask |
JP4856798B2 (en) * | 2006-10-18 | 2012-01-18 | Hoya株式会社 | Reflective mask blank manufacturing method, reflective mask manufacturing method, and semiconductor device manufacturing method |
WO2008071295A1 (en) * | 2006-12-15 | 2008-06-19 | Carl Zeiss Sms Gmbh | Calibrating method for a mask writer |
JP2009175276A (en) * | 2008-01-22 | 2009-08-06 | Toshiba Corp | Photomask production method, photomask production system, and semiconductor device |
JP4536804B2 (en) * | 2008-06-27 | 2010-09-01 | Hoya株式会社 | Photomask manufacturing method |
JP5331638B2 (en) * | 2008-11-04 | 2013-10-30 | Hoya株式会社 | Photomask manufacturing method and drawing apparatus for display device manufacturing |
JP4728414B2 (en) | 2009-03-25 | 2011-07-20 | Hoya株式会社 | Mask blank substrate, mask blank, photomask, and semiconductor device manufacturing method |
CN102822743B (en) * | 2010-03-30 | 2014-09-03 | Hoya株式会社 | Method for manufacturing substrate for photomask blank, method for manufacturing photomask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device |
JP5703069B2 (en) * | 2010-09-30 | 2015-04-15 | 株式会社Screenホールディングス | Drawing apparatus and drawing method |
JP4819191B2 (en) * | 2011-04-14 | 2011-11-24 | Hoya株式会社 | Mask blank substrate, mask blank, photomask, and semiconductor device manufacturing method |
JP5724657B2 (en) | 2011-06-14 | 2015-05-27 | 旭硝子株式会社 | Glass substrate holding means and EUV mask blank manufacturing method using the same |
CN102929103B (en) * | 2011-08-10 | 2015-04-22 | 无锡华润上华科技有限公司 | Photoetching technology verifying method and system thereof |
CN103091996B (en) * | 2011-11-07 | 2015-04-08 | 无锡华润上华科技有限公司 | Photo-etching parameter correction method and system thereof |
JP2014120746A (en) * | 2012-12-19 | 2014-06-30 | Canon Inc | Drawing device and method of manufacturing article |
CN103293878B (en) * | 2013-05-31 | 2015-07-15 | 上海华力微电子有限公司 | Lithography machine capacity monitoring system |
JP6316036B2 (en) | 2014-03-14 | 2018-04-25 | 東芝メモリ株式会社 | Photomask manufacturing method |
JP6553887B2 (en) * | 2015-02-19 | 2019-07-31 | Hoya株式会社 | Photomask manufacturing method, drawing apparatus, photomask inspection method, and display device manufacturing method |
US10025177B2 (en) | 2016-03-16 | 2018-07-17 | Samsung Electronics Co., Ltd. | Efficient way to creating process window enhanced photomask layout |
US10552569B2 (en) * | 2017-09-11 | 2020-02-04 | Globalfoundries Inc. | Method for calculating non-correctable EUV blank flatness for blank dispositioning |
WO2019066827A1 (en) * | 2017-09-27 | 2019-04-04 | Intel Corporation | Gridded assist features and approaches for e-beam direct write (ebdw) lithography |
CN114721226B (en) * | 2021-01-04 | 2023-08-25 | 长鑫存储技术有限公司 | Photomask placement error correction method and device |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62159425A (en) | 1986-01-08 | 1987-07-15 | Toshiba Mach Co Ltd | Charged beam lithography |
WO2000072090A2 (en) | 1999-05-20 | 2000-11-30 | Micronic Laser Systems Ab | A method for error reduction in lithography |
JP2003050458A (en) | 2001-05-31 | 2003-02-21 | Toshiba Corp | Method for manufacturing exposure mask, method for generating mask base plate information, method for manufacturing semiconductor device, mask base plate, exposure mask and server |
US6537844B1 (en) | 2001-05-31 | 2003-03-25 | Kabushiki Kaisha Toshiba | Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server |
US20040072082A1 (en) | 2002-07-09 | 2004-04-15 | Sachiyo Ito | Photomask, method of manufacturing a photomask, and method of manufacturing an electronic product |
US20040081898A1 (en) | 2002-08-30 | 2004-04-29 | Frank-Michael Kamm | Method for patterning a mask layer and semiconductor product |
US20040253524A1 (en) | 2003-05-30 | 2004-12-16 | Masamitsu Itoh | Exposure mask substrate manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method |
US20050019677A1 (en) | 2003-07-25 | 2005-01-27 | Masayuki Nakatsu | Photomask blank substrate, photomask blank and photomask |
US20050019676A1 (en) | 2003-07-25 | 2005-01-27 | Masayuki Nakatsu | Method of selecting photomask blank substrates |
US20050214657A1 (en) * | 2004-03-24 | 2005-09-29 | Kabushiki Kaisha Toshiba | Method of generating writing pattern data of mask and method of writing mask |
US20050240895A1 (en) * | 2004-04-20 | 2005-10-27 | Smith Adlai H | Method of emulation of lithographic projection tools |
US7155689B2 (en) * | 2003-10-07 | 2006-12-26 | Magma Design Automation, Inc. | Design-manufacturing interface via a unified model |
US20070063453A1 (en) * | 2004-03-25 | 2007-03-22 | Ibiden Co., Ltd. | Vacuum chuck and suction board |
US7344808B2 (en) * | 2003-07-25 | 2008-03-18 | Shin-Etsu Chemical Co., Ltd. | Method of making photomask blank substrates |
US7444616B2 (en) * | 1999-05-20 | 2008-10-28 | Micronic Laser Systems Ab | Method for error reduction in lithography |
US7474386B2 (en) * | 2002-12-20 | 2009-01-06 | Kabushiki Kaisha Toshiba | Wafer flatness evaluation method, wafer flatness evaluation apparatus carrying out the evaluation method, wafer manufacturing method using the evaluation method, wafer quality assurance method using the evaluation method, semiconductor device manufacturing method using the evaluation method and semiconductor device manufacturing method using a wafer evaluated by the evaluation method |
US20090227112A1 (en) * | 2004-07-27 | 2009-09-10 | Kabushiki Kaisha Toshiba | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW418459B (en) * | 1998-06-30 | 2001-01-11 | Fujitsu Ltd | Semiconductor device manufacturing method |
KR20010075605A (en) * | 1998-11-06 | 2001-08-09 | 오노 시게오 | Exposure method and exposure apparatus |
JP3791484B2 (en) * | 2002-11-14 | 2006-06-28 | ソニー株式会社 | Exposure method and semiconductor device manufacturing method |
WO2004088421A1 (en) * | 2003-03-31 | 2004-10-14 | Hoya Corporation | Mask blank, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method |
TWI284253B (en) * | 2003-07-01 | 2007-07-21 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP2008151916A (en) * | 2006-12-15 | 2008-07-03 | Shin Etsu Chem Co Ltd | Method for recycling large-size photomask substrate |
-
2004
- 2004-07-27 JP JP2004219178A patent/JP4488822B2/en not_active Expired - Lifetime
-
2005
- 2005-07-21 US US11/185,945 patent/US7703066B2/en active Active
- 2005-07-26 KR KR1020050067698A patent/KR100707893B1/en active IP Right Grant
- 2005-07-26 TW TW094125256A patent/TWI272660B/en active
- 2005-07-27 DE DE102005035144A patent/DE102005035144B4/en active Active
- 2005-07-27 DE DE102005063546.6A patent/DE102005063546B4/en active Active
-
2009
- 2009-05-19 US US12/468,143 patent/US8193100B2/en active Active
-
2010
- 2010-03-08 US US12/659,396 patent/US8533634B2/en active Active
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62159425A (en) | 1986-01-08 | 1987-07-15 | Toshiba Mach Co Ltd | Charged beam lithography |
WO2000072090A2 (en) | 1999-05-20 | 2000-11-30 | Micronic Laser Systems Ab | A method for error reduction in lithography |
US7444616B2 (en) * | 1999-05-20 | 2008-10-28 | Micronic Laser Systems Ab | Method for error reduction in lithography |
US20030153114A1 (en) * | 2001-05-31 | 2003-08-14 | Kabushiki Kaisha Toshiba | Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server |
US6537844B1 (en) | 2001-05-31 | 2003-03-25 | Kabushiki Kaisha Toshiba | Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server |
US6727565B2 (en) * | 2001-05-31 | 2004-04-27 | Kabushiki Kaisha Toshiba | Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server |
US20040146789A1 (en) * | 2001-05-31 | 2004-07-29 | Kabushiki Kaisha Toshiba | Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server |
JP2003050458A (en) | 2001-05-31 | 2003-02-21 | Toshiba Corp | Method for manufacturing exposure mask, method for generating mask base plate information, method for manufacturing semiconductor device, mask base plate, exposure mask and server |
US7435609B2 (en) * | 2001-05-31 | 2008-10-14 | Kabushiki Kaisha Toshiba | Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server |
US7060519B2 (en) * | 2001-05-31 | 2006-06-13 | Kabushiki Kaisha Toshiba | Manufacturing method for exposure mask, generating method for mask substrate information, mask substrate, exposure mask, manufacturing method for semiconductor device and server |
US20040072082A1 (en) | 2002-07-09 | 2004-04-15 | Sachiyo Ito | Photomask, method of manufacturing a photomask, and method of manufacturing an electronic product |
US20040081898A1 (en) | 2002-08-30 | 2004-04-29 | Frank-Michael Kamm | Method for patterning a mask layer and semiconductor product |
US7474386B2 (en) * | 2002-12-20 | 2009-01-06 | Kabushiki Kaisha Toshiba | Wafer flatness evaluation method, wafer flatness evaluation apparatus carrying out the evaluation method, wafer manufacturing method using the evaluation method, wafer quality assurance method using the evaluation method, semiconductor device manufacturing method using the evaluation method and semiconductor device manufacturing method using a wafer evaluated by the evaluation method |
US20040253524A1 (en) | 2003-05-30 | 2004-12-16 | Masamitsu Itoh | Exposure mask substrate manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method |
US7479365B2 (en) * | 2003-05-30 | 2009-01-20 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing method |
US7384713B2 (en) * | 2003-05-30 | 2008-06-10 | Kabushiki Kaisha Toshiba | Exposure mask blank manufacturing method and exposure mask manufacturing method |
US7351504B2 (en) * | 2003-07-25 | 2008-04-01 | Shin-Etsu Chemical Co., Ltd. | Photomask blank substrate, photomask blank and photomask |
US7344808B2 (en) * | 2003-07-25 | 2008-03-18 | Shin-Etsu Chemical Co., Ltd. | Method of making photomask blank substrates |
US20050019676A1 (en) | 2003-07-25 | 2005-01-27 | Masayuki Nakatsu | Method of selecting photomask blank substrates |
US20050019677A1 (en) | 2003-07-25 | 2005-01-27 | Masayuki Nakatsu | Photomask blank substrate, photomask blank and photomask |
US7155689B2 (en) * | 2003-10-07 | 2006-12-26 | Magma Design Automation, Inc. | Design-manufacturing interface via a unified model |
US20050214657A1 (en) * | 2004-03-24 | 2005-09-29 | Kabushiki Kaisha Toshiba | Method of generating writing pattern data of mask and method of writing mask |
US20070063453A1 (en) * | 2004-03-25 | 2007-03-22 | Ibiden Co., Ltd. | Vacuum chuck and suction board |
US20050240895A1 (en) * | 2004-04-20 | 2005-10-27 | Smith Adlai H | Method of emulation of lithographic projection tools |
US20090227112A1 (en) * | 2004-07-27 | 2009-09-10 | Kabushiki Kaisha Toshiba | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product |
Non-Patent Citations (3)
Title |
---|
Goodall et al.; Effects and Interactions of Wafer Shape and Stepper Chucks on Wafer Flatness Control: Oct. 18-19, 1993; Advanced Semiconductor Manufacturing Conference and Workshop, 1993. ASMC 93 Proceedings. IEEE/SEMI pp. 118-123. * |
Notification of Reason for Rejection mailed Oct. 27, 2009, in corresponding Japanese Patent Application No. 2004-219178, and English-language translation therof. |
Official Action from the German Patent and Trademark Office, mailed Jul. 1, 2008, in German Patent Application No. 10 2005 035 144.1-51, and English translation thereof. |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102736398A (en) * | 2011-04-12 | 2012-10-17 | Hoya株式会社 | Substrate for photomask, photomask and pattern transfer method |
CN102736398B (en) * | 2011-04-12 | 2015-08-26 | Hoya株式会社 | Base board for optical mask, photomask and pattern transfer-printing method |
US10093044B2 (en) * | 2015-08-20 | 2018-10-09 | Toshiba Memory Corporation | Imprinting apparatus and imprinting method |
Also Published As
Publication number | Publication date |
---|---|
DE102005035144B4 (en) | 2012-03-15 |
US20060024591A1 (en) | 2006-02-02 |
JP2006039223A (en) | 2006-02-09 |
DE102005035144A1 (en) | 2006-03-23 |
US8193100B2 (en) | 2012-06-05 |
JP4488822B2 (en) | 2010-06-23 |
TWI272660B (en) | 2007-02-01 |
KR100707893B1 (en) | 2007-04-17 |
TW200620406A (en) | 2006-06-16 |
DE102005063546B4 (en) | 2018-01-25 |
US8533634B2 (en) | 2013-09-10 |
US20100228379A1 (en) | 2010-09-09 |
US20090227112A1 (en) | 2009-09-10 |
KR20060046772A (en) | 2006-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7703066B2 (en) | Exposure mask manufacturing method, drawing apparatus, semiconductor device manufacturing method, and mask blanks product | |
US7673281B2 (en) | Pattern evaluation method and evaluation apparatus and pattern evaluation program | |
US6749972B2 (en) | Optical proximity correction common process window maximization over varying feature pitch | |
US20120244459A1 (en) | Method for evaluating overlay error and mask for the same | |
US8137875B2 (en) | Method and apparatus for overlay compensation between subsequently patterned layers on workpiece | |
US9513552B2 (en) | Multiple-patterning photolithographic mask and method | |
US7644389B2 (en) | Method for producing a mask for the lithographic projection of a pattern onto a substrate | |
US20090220866A1 (en) | Pre-alignment marking and inspection to improve mask substrate defect tolerance | |
US7930654B2 (en) | System and method of correcting errors in SEM-measurements | |
US20090119635A1 (en) | Mask pattern correction method for manufacture of semiconductor integrated circuit device | |
US7745067B2 (en) | Method for performing place-and-route of contacts and vias in technologies with forbidden pitch requirements | |
US7669173B2 (en) | Semiconductor mask and method of making same | |
JP2019532342A (en) | Processing apparatus and method for correcting parameter variations across a substrate | |
US20170005015A1 (en) | Monitor process for lithography and etching processes | |
JP2008294352A (en) | Exposure method and photomask for exposure | |
US20080057410A1 (en) | Method of repairing a photolithographic mask | |
US20230326738A1 (en) | Method for chuck compensation via wafer shape control | |
JP2004235221A (en) | Manufacturing method of mask, forming method of pattern, photomask for measuring distortion and manufacturing method of semiconductor device | |
US20220276570A1 (en) | Device manufacturing method | |
KR20010028305A (en) | Method for revising registration | |
US6456953B1 (en) | Method for correcting misalignment between a reticle and a stage in a step-and-repeat exposure system | |
JP2005181044A (en) | Precision calibration method for coordinate measurement, evaluation method for coordinate measurement precision, and program and mask | |
KR100577556B1 (en) | method for matching exposing equipment for semiconductor manufaction | |
CN116868127A (en) | Novel interface definition for lithographic apparatus | |
JP2004264385A (en) | Exposure mask and its manufacturing method, and exposure method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOSHIBA,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ITOH, MASAMITSU;REEL/FRAME:017068/0986 Effective date: 20050722 Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ITOH, MASAMITSU;REEL/FRAME:017068/0986 Effective date: 20050722 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
AS | Assignment |
Owner name: TOSHIBA MEMORY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:045433/0337 Effective date: 20180330 |
|
AS | Assignment |
Owner name: K.K. PANGEA, JAPAN Free format text: MERGER;ASSIGNOR:TOSHIBA MEMORY CORPORATION;REEL/FRAME:055659/0471 Effective date: 20180801 Owner name: KIOXIA CORPORATION, JAPAN Free format text: CHANGE OF NAME AND ADDRESS;ASSIGNOR:TOSHIBA MEMORY CORPORATION;REEL/FRAME:055669/0001 Effective date: 20191001 Owner name: TOSHIBA MEMORY CORPORATION, JAPAN Free format text: CHANGE OF NAME AND ADDRESS;ASSIGNOR:K.K. PANGEA;REEL/FRAME:055669/0401 Effective date: 20180801 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |