US7697411B2 - OFDM broadcast system for transporting streams of data - Google Patents

OFDM broadcast system for transporting streams of data Download PDF

Info

Publication number
US7697411B2
US7697411B2 US10/111,527 US11152702A US7697411B2 US 7697411 B2 US7697411 B2 US 7697411B2 US 11152702 A US11152702 A US 11152702A US 7697411 B2 US7697411 B2 US 7697411B2
Authority
US
United States
Prior art keywords
transmission
ofdm
transport stream
digital broadcasting
transmission channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/111,527
Other versions
US20030103446A1 (en
Inventor
Shinji Negishi
Tamotsu Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000-254866 priority Critical
Priority to JP2000254866 priority
Application filed by Sony Corp filed Critical Sony Corp
Priority to PCT/JP2001/007317 priority patent/WO2002017524A1/en
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IKEDA, TAMOTSU, NEGISHI, SHINJI
Publication of US20030103446A1 publication Critical patent/US20030103446A1/en
Publication of US7697411B2 publication Critical patent/US7697411B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4347Demultiplexing of several video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/26Arrangements for switching distribution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/72Wireless systems of terrestrial networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2362Generation or processing of Service Information [SI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2365Multiplexing of several video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/238Interfacing the downstream path of the transmission network, e.g. adapting the transmission rate of a video stream to network bandwidth; Processing of multiplex streams
    • H04N21/2383Channel coding or modulation of digital bit-stream, e.g. QPSK modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving MPEG packets from an IP network
    • H04N21/4382Demodulation or channel decoding, e.g. QPSK demodulation
    • H04N5/4401
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/20Aspects of broadcast communication characterised by the type of broadcast system digital audio broadcasting [DAB]

Abstract

According to the present invention, when a terrestrial digital broadcasting is carried out by applying an OFDM modulation to transport streams MPEG-2 Systems, the plural transport streams subject to a connected transmission are divided into groups and these transport streams are coordinated. Then, a broadcasting station generates a connected transmission descriptor for coordinating the plural transport streams steams subject to the connected transmission and describes the generated connected transmission descriptor in an NIT to multiplex the transport streams.

Description

TECHNICAL FIELD

The present invention relates to a digital broadcasting system in which OFDM signals obtained by modulating transport streams prescribed in MPEG-2 Systems in accordance with an orthogonal frequency division multiplexing (OFDM) system are broadcast through a broadcasting network composed of a plurality of transmission channels.

BACKGROUND ART

In Japan, a broadcasting standard called an ISDB-Tn (Integrated Services Digital Broadcasting-Terrestrial narrow) or an ISDB-TSW using an OFDM (Orthogonal Frequency Division Multiplexing) modulation has been proposed as a terrestrial digital audio broadcasting system. Also, in Japan, the “service information for digital broadcasting system, ARIB STD-B10” has been proposed by the association of radio industries and business (ARIB) as the application standard of the configuration of service information, kinds of signals and the data structure and the identifier thereof used for digital broadcasting. There is published a 1.3 edition of the “service information for digital broadcasting system, ARIB STD-B10” as of June, 2000. This “service information for digital broadcasting system, ARIB STD-B10” will be referred to as ARIB STD-B10, hereinafter. According to the ARIB STD-B10, the service information is specified so as to be transmitted by using the data structure of a section type prescribed in the MPEG-2 Systems (ITU-T H.222.0 ISO/IEC13818-1). In the terrestrial digital audio broadcasting in Japan, the configuration of the service information of a broadcasting program is determined in accordance with the ARIB STD-B10. There is published a 3.1 edition of the ARIB STD-B10 which is a revised edition of the 1.3 edition as of Aug. 25, 2000.

When the digital broadcasting of the OFDM system is carried out, prescribed amount of frequency intervals are generally provided between respective channels in order to prevent a radio interference with the adjacent frequency channels to provide guard bands. As compared therewith, the applicant of the present invention proposed a connected transmission method in which adjacent frequency channels are connected in the direction of frequency and an OFDM modulation is performed to the connected frequency channels in the International Patent Application (International Patent Publication No. W000/52861). In the connected transmission method, the center frequencies of OFDM signals in the frequency areas of a plurality of transmission channels are respectively changed and the OFDM signals are multiplexed in the directions of frequencies and the OFDM signals in the frequency areas of the plural transmission channels are simultaneously subject to an IFFT (Inverse Fast Fourier Transform) process. Under the above-described process, the OFDM signals to be transmitted to the plural transmission channels can be multiplexed in the frequency directions, while an orthogonality thereof is maintained.

In the connected transmission method for the OFDM signals, while guard bands between the respective channels are removed, the OFDM signals can be transmitted by connecting the plural transmission channels in the directions of frequency axes and a broadcasting with a frequency availability improved can be performed.

This connected transmission method is currently applied to the ISDB-Tn.

When such a connected transmission is carried out, not only the frequency availability is improved, but also, for instance, a receiving side also has advantageous effects as mentioned below.

For example, when a transmission channel for receiving an OFDM signal is switched to another transmission channel, a receiver cancels a synchronizing channel before switching and tunes in the frequency of a transmission channel after switching. Then, the receiver detects the synchronous code of a transmission control signal (In the ISDB-Tn system, TMCC (Transmission and Multiplexing Configuration Control) corresponds to a transmission control signal) from the transmission channel after switching and carries out the synchronization pull-in operation of an OFDM segment (the frame of transmission data of the OFDM signal). When this synchronization pull-in operation of the OFDM segment is achieved, the receiver can demodulate the signal of the switched transmission channel.

As compared therewith, when the connected transmission is carried out, a transmission signal can be generated while the OFDM segments between channels are synchronized. When the transmission signal is generated while the OFDM segments are synchronized as described above, a receiver can continuously use a synchronizing timing established in a transmission channel before switching also in a transmission channel after switching, even when a channel is switched to another channel between the transmission channels in which the connected transmission is carried out. Therefore, the receiver can simplify the synchronization pull-in operation for demodulation of a signal and perform a channel switch at high speed.

Further, the applicant of the present invention proposed a high speed channel switching upon connected transmission in Japanese Patent Application Nos. 2000-117226 and 2000-117227.

When the modulation system of a transmission channel is a synchronous modulation system, the receiver estimates the transmission characteristics of a transmission line by using SP (Scattered Pilot) signals inserted into the OFDM segments to perform a waveform equalizing process. The SP signal is determined on the basis of the standard of the ISDB-Tn. Since the SP signals are discretely inserted relative to the frequency direction, the receiver interpolates these SP signals in the frequency direction so that the receiver can estimate transmission characteristics to OFDM symbols in all sub-carrier positions in the transmission channel. However, the OFDM symbol located at the end of the frequency direction in the transmission channel has the number of the SP signals referred to for estimation decreased more than that of the OFDM symbol located in the central position of the transmission channel. Therefore, the estimation feature of the transmission characteristics of the OFDM symbol at the end part in the frequency direction in the transmission channel has been deteriorated.

On the other hand, when an upper adjacent channel (a transmission channel adjacent to a high frequency side) of the connected transmission type synchronous modulation system or a lower adjacent transmission channel (a transmission channel adjacent to a low frequency side) of a synchronous modulation system exists in a transmission channel which is receiving a signal, the transmission characteristics can be estimated by using SP signals included in the upper and lower adjacent transmission channels. Accordingly, the OFDM symbol located at the end part in the frequency direction in the transmission channel can also obtain interpolation characteristics similar to those of the OFDM symbol in the central part in the frequency direction of the transmission channel and the transmission line characteristics can be more accurately estimated.

As described above, when the connected transmission is carried out, the receiver side can perform a channel switching at high speed or can improve the estimation characteristics of the transmission line characteristics.

However, it has been hitherto impossible for the receiver side to know information as to whether or not the connected transmission is performed between the transmission channel which is receiving a signal and other transmission channel, and information as to whether the upper adjacent channel is present or the lower adjacent transmission channel is present, and further, information as to whether these channels are of the synchronous modulation system or a differential modulation system.

DISCLOSURE OF THE INVENTION

It is an object of the present invention to provide a digital broadcasting system, a digital broadcasting transmitter, a digital broadcasting receiver and a digital broadcasting method in which a signal obtained by modulating a transport stream specified by MPEG-2 Systems in accordance with an orthogonal frequency division multiplexing (OFDM) system is applied as a broadcasting signal and a receiver side can know a transmission channel subject to a connected transmission.

The digital broadcasting system in which OFDM signals obtained by modulating transport streams specified in MPEG-2 Systems in accordance with an orthogonal frequency division multiplexing (OFDM) system are broadcast through a broadcasting network having a plurality of transmission channels; wherein a connected transmission that the OFDM signals transmitted to the plural channels are multiplexed in the frequency direction while the orthogonality thereof is maintained is carried out and a connected transmission descriptor for coordinating the plural transport streams subject to the connected transmission is included in control information specified in the MPEG-2 Systems and transmitted.

The digital broadcasting transmitter in which OFDM signals obtained by modulating transport streams specified in MPEG-2 Systems in accordance with an orthogonal frequency division multiplexing (OFDM) system are broadcast through a broadcasting network having a plurality of transmission channels; wherein a connected transmission that the OFDM signals transmitted to the plural channels are multiplexed in the frequency direction while the orthogonality thereof is maintained can be carried out in the broadcasting network and a connected transmission descriptor for coordinating the plural transport streams subject to the connected transmission is included in control information specified in the MPEG-2 Systems and transmitted.

The digital broadcasting receiver in which OFDM signals obtained by modulating transport streams specified in MPEG-2 Systems in accordance with an orthogonal frequency division multiplexing (OFDM) system are broadcast through a broadcasting network having a plurality of transmission channels; wherein when the transport streams are received in which a connected transmission that the OFDM signals transmitted to the plural channels are multiplexed in the frequency direction while the orthogonality thereof is maintained is carried out, a connected transmission descriptor for coordinating the plural transport streams subject to the connected transmission is extracted from control information specified in the MPEG-2 Systems, and a receiving control is carried out on the basis of information described in the extracted descriptor.

The digital broadcasting method in which OFDM signals obtained by modulating transport streams specified in MPEG-2 Systems in accordance with an orthogonal frequency division multiplexing (OFDM) system are broadcast through a broadcasting network having a plurality of transmission channels; wherein a connected transmission that the OFDM signals transmitted to the plural channels are multiplexed in the frequency direction while the orthogonality thereof is maintained can be carried out in the broadcasting network and a connected transmission descriptor for coordinating the plural transport streams subject to the connected transmission is included in control information specified in the MPEG-2 Systems and transmitted.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram for explaining a digital broadcasting system according to an embodiment of the present invention.

FIG. 2 is a diagram for explaining the data configuration (in the case of a differential modulation) of an OFDM segment prescribed in an ISDB-Tn.

FIG. 3 is a diagram for explaining the data configuration (in the case of a synchronous modulation) of the OFDM segment prescribed in the ISDB-Tn.

FIG. 4 is a diagram for explaining a segment structure prescribed in the ISDB-Tn.

FIG. 5 is a diagram for explaining the data structure of a connected transmission descriptor.

FIG. 6 is a diagram for explaining the types and kinds of segments in the above described connected transmission descriptor.

FIG. 7 is a diagram for explaining types of modulation systems in the connected transmission descriptor.

FIG. 8 is a diagram for explaining the data structure of an NIT.

FIG. 9 is a diagram for explaining the data structure of a second connected transmission descriptor.

FIG. 10 is a diagram for explaining the data structure of an extended terrestrial delivery system descriptor.

FIG. 11 is a diagram for explaining the contents of data described in the extended terrestrial delivery system descriptor.

FIG. 12 is a diagram for explaining the construction of a transmitter used in the digital broadcasting system.

FIG. 13 is a diagram for explaining the construction of a receiver used in the digital broadcasting system.

FIG. 14 is a diagram for explaining a terrestrial delivery system list.

FIG. 15 is a diagram for explaining a service list.

FIG. 16 is a diagram for explaining a connected transmission list.

BEST MODE FOR CARRYING OUT THE INVENTION

Now, an example that the present invention is applied to a terrestrial digital broadcasting system of an ISDB-Tn (Integrated Services Digital Broadcasting-Terrestrial narrow) system will be described. The ISDB-Tn is a terrestrial digital audio broadcasting standard employed in Japan.

A terrestrial digital broadcasting system 1 according to an embodiment of the present invention is a system that terrestrial broadcasting transmitted by a digital system respectively from a plurality of broadcasting stations 10, 20 and 30 are received by a receiver 200.

The broadcasting stations 10, 20 and 30 are respectively provided with transmitters 100. Each transmitter 100 transmits the broadcast wave through an antenna. The ranges of the broadcast waves transmitted from the broadcasting stations 10, 20 and 30 are limited. In the terrestrial digital broadcasting system 1, ranges where the broadcast waves can be received are shown as service areas 10 a, 20 a and 30 a.

In the ISDB-Tn, an OFDM (Orthogonal Frequency Division Multiplexing) modulation system is employed for a modulation system. Further, in the ISDB-Tn, MPEG-2 Systems (ITU-T H.222.0, ISO/IEC 13818-1) are used as digital information series to be transmitted. In addition, in the ISDB-Tn, one transport stream is transmitted to one transmission channel.

Still further, in the ISDB-Tn, there are provided groups each composed of a data unit called a data segment including a plurality of transport packets (TSP) prescribed in the MPEG-2 Systems. Further, pilot signals (SP [Scattered Pilot], CP [Continual Pilot], TMCC [transmission and Multiplexing Configuration Control], AC [Auxiliary Channel]) are added to the data segment to form a transmission frame called an OFDM segment and perform an OFDM modulation.

The data configuration (in the case of a mode 1 in the ISDB-Tn standard) of the OFDM segment is shown in FIGS. 2 and 3. In FIGS. 2 and 3, an axis of abscissas shows a direction of frequency and an axis of ordinates shows a direction of time. FIG. 2 shows the configuration of the OFDM segment when an information signal is modulated by a differential modulation (DQPSK). FIG. 3 shows the configuration of the OFDM segment when an information signal is modulated by a synchronous modulation (QPSK, 16QAM, 64QAM).

As shown in FIGS. 2 and 3, in the ISDB-Tn (mode 1), 204 OFDM symbols (symbol Nos. #0 to #203) are arranged in the direction of time. The OFDM symbol is a unit for performing a simultaneous FFT. The 1 OFDM symbol is composed of 108 data. The data forming each OFDM symbol is modulated to 108 pieces of sub-carriers (carrier Nos. #0 to #107) respectively assigned to bands.

The OFDM segment of the differential modulation system comprises various kinds of control signals having information signals (S0,0 to S95,203) orthogonally modulated in accordance with the DQPSK, CP (Continual Pilot) signals, TMCC (Transmission and Multiplexing Configuration Control) signals and AC (Auxiliary Channel) signals. On the other hand, the OFDM segment of the synchronous modulation system comprises control signals having information signals (S0,0 to S95,203) orthogonally modulated in accordance with the QPSK, 16QAM, 64QAM, CP signals, TMCC signals, AC signals and SP (Scattered Pilot) signals.

The CP signal is a signal having completely fixed phase and amplitude. When the information signal is modulated in accordance with the differential modulation system, the CP signal is arranged in the first carrier of each OFDM symbol (a position of the lowest frequency).

The SP signal is a signal modulated on the basis of BPSK modulation. The SP signals are arranged at intervals of 12 carriers in the direction of frequency and at intervals of 4 symbols in the direction of symbols. Since the SP signals are utilized to estimate propagation line characteristics when a receiving side equalizes a waveform, the SP signals are inserted into the OFDM segment only in the case of a synchronous modulation (QPSK, 16QAM, 64QAM) which requires a waveform equalization.

The TMCC signals and the AC signals are signals modulated on the basis of BPSK modulation and arranged in prescribed positions in the segment. The AC signal is employed for transmitting additional information. The TMCC signal is transmission control information composed of 204 bits (B0 to B203) which concludes for each OFDM segment unit. In the TMCC signal, a synchronous code, a modulation system, a convolutional coding rate, an interleave length and the like are included as the transmission control information.

In the ISDB-Tn, one or three of the above-described OFDM segments are combined together in the frequency direction to form one transmission channel and transmit a transport stream. In the ISDB-Tn, a transmission form that three OFDM segments are arranged in the frequency direction to form a transmission channel is called a three segment form. A transmission form that one OFDM segment is arranged in the frequency direction to from one transmission channel is called a one segment form.

In the three segment form, one OFDM segment (layer A) at the central part in the frequency direction and two OFDM segments (layers B) adjacent to the central segment in the upper and lower parts in the frequency direction form a transmission channel. Thus, a two-layered transmission that the transmission property of the layer A is different from that of the layer B can be carried out. More specifically, in the three segment form, parameters such as a modulation system, the coding rate of an inner code and a time interleave length in the layer A may be different from those in the layer B. Further, in the three segment form, a frequency interleave is completed in each layer. Therefore, the OFDM segment of the Layer A in the three segment form can be partly received even by a receiver with its function restricted which can receive only a transmission signal of one segment form.

The OFDM segment is prescribed so as to be interactively applied to ISDB-Tw (Integrated Services Digital Broadcasting-Terrestrial wide) as a terrestrial digital television broadcasting system. In the ISDB-Tw, 13 OFDM segments form one channel composed of a three-layered configuration having layers A, B and C.

According to the ISDB-Tn in Japan, a frequency band such as a band of 188 MHz to 194 MHz or a band of 192 to 198 MHz (bandwidth of 6 MHz) is assigned as an available frequency band. In the ISDB-Tn, the bandwidth of 6 MHz is divided into 13 segments. In the ISDB-Tn, the above-described OFDM segments are assigned to the 13 segments to perform a transmission.

Further, in the ISDB-Tn, when a plurality of transmission channels are subject to a connected transmission system, the connected transmission is carried out between the transmission channels in the 13 segments in this 6 MHz band. According to the ISDB-Tn, an arbitrary number of combinations among the number of combinations of the segments located within a range of 2 to 13 can be connected together. Additionally, the transmission channel of the one segment form can be connected to the transmission channel of the three segment form.

In the ISDB-Tn, PSI/SI (Program Specific Information/Service Information) which is auxiliary information for selecting programs or obtaining the information of programs is included in a transport stream and the transport stream including the PSI/SI is transmitted. The PSI/SI utilized in the ISDB-Tn is defined in the MPEG-2 Systems and the ARIB STD-B10.

In the MPEG-2 Systems and the ARIB STD-B10, an NIT (Network Information Table) is prescribed as one of the PSI/SI information. The NIT shows information concerning the physical configuration of the transport stream supplied by a network and the features of the network itself. In the ARIB STD-B10, there is provided a definition as described below. That is, a terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor ( )] indicating physical conditions concerning a broadcast signal itself such as frequency information or transmission parameters related to the transport stream which belongs to the network or a service list descriptor Service Description Table [service_list_descriptor( )] is included in a transport stream loop in the NIT and the transport stream loop including them is transmitted.

Now, the inventors of the invention decides that a connected transmission descriptor [connected_transmission_descriptor( )] in which the physical conditions of the transport stream belonging to the network upon connected transmission are described is newly defined as a descriptor to be included in the NIT (Network Information Table).

Now, the connected transmission descriptor [connected_transmission_descriptor( )] will be described below.

FIG. 5 shows the data structure of the connected transmission descriptor [connected_transmission_descriptor( )].

The connected transmission descriptor [connected_transmission_descriptor( )] is a descriptor which can identify the groups of the transport streams subject to the connected transmission to enumerate the transport streams in the groups. The connected transmission descriptor [connected_transmission_descriptor( )] is described in the TS loop of the NIT.

In a [descriptor_tag], a tag for discriminating the descriptor from other identifiers is described.

In a [descriptor_length], the number of all bytes continuing below is described.

In a [connected_transmission_group_id], a connected transmission group ID for identifying the group of the transport stream subject to the connected transmission is described.

In a [segment_type], is described a segment form type for identifying whether the transport stream designated by the connected transmission descriptor has the one segment form or the three segment form. The [segment_type] is information of 2 bits. As shown in FIG. 6, “00” designates the one segment form, “01” designates the three segment form and “11” indicates a decision by referring to a TMCC signal. “10” designates a reserve for future.

In a [modulation_type_A], is described a modulation system type indicating a synchronous modulation system or a differential modulation system. The [modulation_type_A] indicates the modulation system type of the data of a whole segment in the case of the one segment form, and the modulation system type of the layer A in the case of the three segment form. The [modulation_type_A] represents information of two bits. As shown in FIG. 7, “00” represents the differential modulation system (DQPSK), “01” represents the synchronous modulation system (QPSK, 16QAM, 64QAM) and “11” represents a decision by referring to a TMCC signal. “10” designates a reserve for future.

In a [modulation_type_B], is described a modulation system type for indicating whether the modulation system of the layer B in the three segment form is the synchronous modulation system or the differential modulation system. The [modulation_type_B] is meaningless in the case of the one segment form. The [modulation_type_B] is information of 2 bits. Like the [modulation_type_A], “00” designates the differential modulation system (DQPSK), “01” designates the synchronous modulation system (QPSK, 16QAM. 64QAM) and “11” designates a decision by referring to a TMCC signal. “10” designates a reserve for future.

In a [additional_connected_transmission_info], is described supplemental information specified by the application regulations of an enterprise.

The data structure of the NIT in which the above-described connected transmission descriptor [connected_transmission_descriptor( )] is described is shown in FIG. 8.

The NIT (Network Information Table) is a table for indicating information concerning the physical configuration of the transport stream supplied by the network and the features of the network itself. In the NIT, an NIT showing the information of its own network and an NIT showing the information of other network are included.

[table_id] designates an identifier showing what is indicated by a network information section. In the case of the NIT of its own network, a value of “0x40” is described. In the case of the NIT of other network, a value of “0x41” is described.

[section_syntax_indicator] designates an identifier indicating a section syntax instruction and its value is always set to “1”.

[reserved_future_use] designates a reserve extended area in which any information for future use can be prescribed.

[reserved] designates a reserve area.

[section_length] prescribes the number of bytes from a part immediately after a section length field to the last part of a section including CRC (Cyclic Redundancy Check).

[network_id] indicates an ID for identifying a network designated by NIT.

[version_number] designates the version number of a sub-table.

[current_next_indicator] designates an identifier for indicating that the sub-table is a present sub-table when the value thereof is “1”, and that a supplied sub-table is not applied yet and a next sub-table is used, when the value is “0”.

[section_number] designates the number of a section. When the section is a first section in the sub-table, a value of “0x00” is shown. The section number is increased by “1” for each addition of the section having the same [table_id] and [network_id].

[last_section_number] designates the last section of the sub-table to which a section belongs, that is, the number of the section having the largest section number.

[network_descriptor_length] designates the number of all bytes of a loop of a subsequent network descriptor (descriptor( ). In the loop, the network descriptor is described.

[transport_stream_loop_ength] designates the number of all bytes of a transport stream loop which concludes immediately before the first byte of a CRC.

Then, a TS loop is subsequently described.

[transport_stream_id] in the TS loop designates an ID for discriminating the transport stream from other multiplex in a delivery system.

[original_network_id] designates an ID for indicating [network_id] of an original network.

[transport_descriptor_length] designates an identifier for indicating the number of all bytes of a loop of a subsequent transport descriptor (descriptors). In the transport descriptor, the connected transmission descriptor [connected_transmission_descriptor( )], the terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor( )], and the service list descriptor Service Description Table [service_list_descriptor( ) ] are described.

[CRC32] designates a CRC and an error code including a CRC value that a register output obtained after a whole section is processed is “0”.

As described above, the connected transmission descriptor [connected_transmission_descriptor( )] serves to coordinate a plurality of transmission channels (transport stream) subject to the connected transmission. Therefore, the connected transmission descriptor is included in the control information of the MPEG-2 Systems, so that the plural transport streams subject to the connected transmission are coordinated to inform a receiver of the coordinated transport streams.

Accordingly, the receiver analyzes the connected transmission descriptor included in the NIT so that the receiver can decide whether or not an upper adjacent segment (a segment adjacent to a high frequency side) whose connected transmission is performed is present in a segment in which a currently received transport stream is contained, and whether or not a lower adjacent segment (a segment adjacent to a low frequency side) whose connected transmission is performed is present, and further whether the modulation system of the upper adjacent or lower adjacent segment is a synchronous modulation system or a differential modulation system. Thus, when the modulation system of the segment in which the currently received transport stream is contained is the synchronous modulation system, the receiver can estimate transmission characteristics by using SP signals included in the upper and lower adjacent segments. The SP signals of the adjacent segments are used as described above to estimate the transmission characteristics, so that the transmission characteristics of a sub-carrier in the frequency direction of the segment can be precisely estimated and a waveform can be more accurately equalized.

When the adjacent transmission channel (transport stream) whose connected transmission is performed has the three segment form, a layer B in the adjacent transmission channel serves as an adjacent segment. When the modulation system of the layer B is the synchronous modulation system, transmission characteristics can be estimated by using an SP signal. Further, when the transmission channel which is receiving the transport stream has the three segment form, a segment adjacent to the segment of a layer A is a layer B in its own transmission channel (transport stream). Further, a segment adjacent to the segment of the layer B is the segment of the layer A in its own transmission channel (transport stream) and the segment of other transmission channel (other transport stream).

Further, when the receiver analyzes the connected transmission descriptor included in the NIT to switch a transmission channel for receiving a transport stream to another transmission channel, the receiver can obtain information as to whether or not there exists a relation of the connected transmission between the transmission channel before switching and the transmission channel after switching. When there exists the relation of the connected transmission between the transmission channel before switching and the transmission channel after switching, the receiver can continuously employ a synchronizing timing established in the transmission channel before switching in the transmission channel after switching. Therefore, the receiver can simplify a synchronization pull-in operation for demodulation and decrease channel switching time.

The above-described connected transmission descriptor is defined in the edition 3.1 of the ARIB STD-B10 issued in Jul. 27, 2001.

As the method for coordinating a plurality of transmission channels (transport streams) subject to the connected transmission, although the example that the connected transmission descriptor [connected_transmission_descriptor( )] as shown in FIG. 5 is included in the NIT and transmitted is described, a plurality of transmission channels (transport streams) may be coordinated by a second connected transmission descriptor [connected_transmission_descriptor2( )] as shown below and a new terrestrial delivery system descriptor [terrestrial_delivery system_descriptor 2( )] obtained by extending the terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor( )] prescribed by the ARIB STD-B10.

FIG. 9 shows the data structure of the second connected transmission descriptor [connected_transmission_descriptor2( )].

The connected transmission descriptor [connected_transmission_descriptor2( )] designates a descriptor which can enumerate transport streams subject to the connected transmission together with the transport stream. The connected transmission descriptor [connected_transmission_descriptor2( )] is described in the TS loop of the NIT of, for instance, a self-network.

[descriptor_tag] designates a tag for discriminating the descriptor from other identifiers.

[descriptor_length] designates the number of all bytes of a subsequent loop (means a loop of [for(i=0; <N; i++) {to}]).

In the loop [for(i=0; <N; i++) {to}], [original_network_id] and [transport_stream_id] are described.

The [original_network_id] designates a network ID of an original network of a transport stream subject to the connected transmission.

The [transport_stream_id] designates an ID for identifying a transport stream subject to the connected transmission.

FIG. 10 shows the data structure of the extended terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor2( )].

The terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor2( )] designates a descriptor for indicating the physical conditions of a terrestrial transmission line. The terrestrial delivery system descriptor is described in the TS loop of the NIT.

[descriptor_tag] designates a tag for discriminating the descriptor from other identifiers.

[descriptor_length] indicates the number of all bytes of subsequent data.

[area_code] designates a service area to which the transport stream is transmitted. The [area_code] is extended to 16 bits as shown in FIG. 11.

[guard_interval] designates the guard interval of the transport stream.

[transmission_inode] designates the mode information of the transport stream.

[segment_type] designates information of 1 bit for identifying the one segment form or the three segment form. For example, as shown in FIG. 11, in the case of the one segment form, “0” is described. In the case of the three segment form, “1” is described. This [segment_type] is new information which is not prescribed in the ARIB STD B-10.

[modulation_type_A] designate segment form identifying information of 1 bit indicating whether the segment form of the layer A is the synchronous modulation system or the differential modulation system. For instance, as shown in FIG. 11, when the layer A shows the synchronous modulation system, “O” is described, and when the layer A shows the differential modulation system, “1” is described. The [modulation_type_A] is new information which is not prescribed in the ARIB STD B-10.

[modulation_type B] designate segment form identifying information of 1 bit indicating whether the segment form of the layer B is the synchronous modulation system or the differential modulation system. For instance, as shown in FIG. 11, when the layer B shows the synchronous modulation system, “0” is described, and when the layer B shows the differential modulation system, “1” is described. The [modulation_type_B] is new information which is not prescribed in the ARIB STD B-10.

[modulation_type_C] designate segment form identifying information of 1 bit indicating whether the segment form of the layer C is the synchronous modulation system or the differential modulation system. For instance, as shown in FIG. 11, when the layer C shows the synchronous modulation system, “0” is described, and when the layer C shows the differential modulation system, “1” is described. The [modulation_type_C] is new information which is not prescribed in the ARIB STD B-10.

[frequency] designates an identifier indicating frequency under which the transport stream is transmitted.

The above-described second connected transmission descriptor [connected_transmission_descriptor2( )] and the extended terrestrial delivery system descriptor [terrestrial_delivery_system_descriptor2( )] are also described in the TS loop of the NIT, so that a plurality of transport streams subject to the connected transmission can be coordinated together to inform the receiver of the coordinated transport streams.

Now, a transmitter 100 which can perform a connected transmission in a transmitting station 10 will be described.

As shown in FIG. 12, the transmitter 100 comprises a plurality of source encoders 101 a (101 a-101 to 101 a-n), an OFDM transmitter 102, an antenna 103 and a system controller 104.

To each source encoder 101 a, video data or audio data in a baseband is inputted. They are compressed and encoded in accordance with, for instance, the MPEG-2 system to generate program streams. The source encoders 101 a respectively multiplex these plural program streams to form transport streams prescribed in the MPEG-2 Systems. Each transport stream outputted from each source encoder 101 a corresponds to each transmission channel. Further, to each source encoder 101 a, the control information (PSI/SI information) such as the NIT generated in the system controller 104 is inputted. The control information is also included in and multiplexed to the transport streams. In the control information, the above-described connected transmission descriptor [connected_transmission_descriptor( )] is included.

The OFDM transmitter 102 applies a transmission line encoding process to each transport stream inputted from each source encoder 101 a, that is, each transmission channel to form an OFDM symbol shown in FIGS. 2 and 3 for each transport stream unit. Subsequently, the OFDM transmitter 102 synchronizes a plurality of OFDM symbols generated respectively for the transmission channels in the time base direction and further multiplexes these OFDM symbols in the frequency direction. Then, the OFDM transmitter 102 applies a simultaneous IFFT conversion to the OFDM symbols multiplexed in the frequency direction and an OFDM modulation to the multiplexed OFDM symbols. The OFDM transmitter 102 carries out the processes as mentioned above so that the OFDM transmitter 102 can connect altogether the plural transmission channels. Then, the transmitted waves of the plural transmission channels connected by the OFDM transmitter 102 are transmitted outside through an antenna 103.

Now, an explanation will be given to a receiver 200 for receiving transmitted terrestrial broadcast waves.

As shown in FIG. 13, the receiver 200 comprises a demodulation part 201 to which a broadcast signal is inputted from a receiving antenna 220 for receiving the broadcast wave of a terrestrial broadcasting to apply a digital demodulation process to the broadcast signal, a decoding part 202 for applying a decoding process to the signal digitally demodulated by the demodulation part 201 to take out a transport stream, an extracting part 203 for extracting digital data multiplexed to the transport stream taken out by the decoding part 202 to perform an output corresponding to the contents of the digital data, an audio decoder 204, a video decoder 205 and a data decoder 206 to which the digital data extracted by the extracting part 203 is respectively inputted to respectively generate an audio signal, a video signal and a data signal, a memory 208 for holding the control information (PSI/SI information) included in the transport stream, a system controller 209 for controlling the respective parts of the receiver 200, an operation input part 211 to which the operation of a user is inputted and a display part 212 for displaying the data for the user.

The demodulation part 201 applies the digital demodulation process to the broadcast signal inputted from the receiving antenna 220.

The decoding part 202 decodes the signal by performing a deinterleave process or an error correction process relative to the signal digitally demodulated in the demodulation part 201 to take out the transport stream.

The extracting part 203 extracts each TS packet on the basis of a PID (packet identifying number) described in a TS packet in the transport stream inputted from the decoding part 202 to decide whether the digital data included in each TS packet belongs to the audio signal or to the video signal and output each digital data to the audio decoder 204 or the video decoder 205. Further, the extracting part 203 extracts the PSI/SI information such as NIT, SDT and BAT included in the transport stream and outputs each information included in the PSI/SI information to the system controller 209.

The audio decoder 204, the video decoder 205 and the data decoder 206 respectively apply the decoding processes to the digital data inputted from the extracting part 203 to generate the audio signal, the video signal and the data signal.

When an audio broadcasting only having audio information is simply received, the video decoder 205 and the data decoder 206 in the receiver 200 may not be provided.

The memory 208 may be composed of various kinds of rewritable semiconductor memories, and for instance, detachably attached to the receiver 200.

The system controller 209 transmits various kinds of signals to and receives signals from the parts of the receiver 200 to control the operations of the respective parts. The system controller 209 also extracts the information included in the PSI/SI information such as NIT, SDT and BAT inputted from the extracting part 203 to holds the information in the memory 208.

In the operation input part 211, various types of operations to the receiver such as a receiving start instruction, a service changing instruction and a setting of service numbers are performed by the user.

The display part 212 is composed of, for instance, a liquid crystal display device for displaying data such as service numbers, service names and additional information for the user.

Now, a data base constructed on the memory 208 will be described below.

On the memory 208, a terrestrial delivery system list, a service list and the connected transmission relation of transport streams are constructed as the data base.

The system controller 209 of the receiver 200 constructs the terrestrial delivery system list and the service list as shown in FIGS. 14 and 15 on the basis of the NIT and SDT (Service Description Table) inputted from the extracting part 203. In the NIT, a terrestrial delivery system descriptor and a service list descriptor are described. Thus, these descriptors are referred to so that the above-described terrestrial delivery system list and the service list can be constructed. In the terrestrial delivery system list and the service list, information concerning the transport streams transmitted in all service areas included in the PSI transmitted in the NIT is tabulated on the basis of “transport_stream_id” which is information for identifying each transport stream. However, in order to reduce the quantity of memory of the receiver, all information does not need to be necessarily constantly stored and held.

For instance, it can be understood that “frequency”, “mode”, “guard interval”, and “area code” included in information required for receiving the transport stream in which the “transport_stream_id” is “TS1” respectively designates “xxxMHz”, “10”, “11” and “201010010011” by referring to the terrestrial delivery system list on the basis of the “transport_stream_id”. Similarly, the reference to the service list makes it possible to respectively understand a “service ID” and or a “service type” required for specifying a service (program) included in the transport stream that the “transport_stream_id” is “TS1” as “service 2” and “audio broadcasting”.

Accordingly, the receiver 200 refers to the terrestrial delivery system list and the service list so that the receiver can switch a reception from the service (program) which is being received to other service (program).

Further, the system controller 209 of the receiver 200 extracts the connected transmission descriptor [connected_transmission_descriptor( )] from the NIT in the currently received transport stream to constitute a connected transmission list obtained by listing a “TS-id” and a “connected transmission group ID” shown by each connected transmission descriptor and a “service ID” and a “network ID” as required.

The connected transmission list is constructed as mentioned above, hence other transport streams coordinated by the connected transmission descriptor can be recognized from the currently received transport stream. For example, when the transport stream having the connected transmission relation is switched to other transport stream, the transport stream can be rapidly switched with reference to the above-described list.

Further, when a reception is switched from the currently received service (program) to other service (program), the system controller 209 initially refers to the connected transmission list constructed on the memory 208. In this case, when a transport stream to which the currently received transport stream is switched is not shown on the connected transmission list, an ordinary receiving start process is carried out. On the contrary, when the transport stream to which the currently received transport stream is switched is shown on the connected transmission list, the channel is switched while a synchronizing operation upon demodulation is maintained.

Since the connected transmission descriptor is not always defined for all the transport streams, the connected transmission list may not be constructed for the transport stream which is not subject to the connected transmission process.

Further, since the connected transmission relation is different for each transport stream, the connected transmission list is updated when the transport stream is switched to other transport stream.

INDUSTRIAL APPLICABILITY

In a digital broadcasting system, a digital broadcasting transmitter, a digital broadcasting receiver and a digital broadcasting method according to the present invention, a signal obtained by modulating a transport stream specified in MPEG-2 Systems in accordance with an Orthogonal Frequency Division Multiplexing (OFDM) system can be employed as a broadcast signal. When a connected transmission that the OFDM signals to be transmitted to a plurality of transmission channels are multiplexed in the frequency direction while orthogonality is maintained is carried out, a connected transmission descriptor for coordinating a plurality of transport streams subject to a connected transmission process is included in control information prescribed in the MPEG-2 Systems and transmitted.

Thus, according to the present invention, a receiver side can know the transmission channels subject to the connected transmission process.

Claims (20)

1. A digital broadcasting transmitter for transmitting orthogonal frequency division multiplexing (OFDM) signals through a broadcasting network having a plurality of transmission channels, the OFDM signals being obtained by modulating a plurality of transport streams, the digital broadcasting transmitter comprising:
a transmitting device which transmits the OFDM signals in a connected transmission in the broadcasting network, wherein-an the OFDM signals comprising a plurality of OFDM segments including OFDM symbols generated in a time base direction for the plurality of transmission channels and multiplexed in a frequency direction, the plurality of OFDM segments multiplexed in the frequency direction and processed with a simultaneous Inverse Fast Fourier Transform (IFFT) to generate the OFDM signals; and
the transmitting device further transmitting control information, the control information including information concerning a physical configuration of a transport stream supplied by the broadcasting network and the features of the broadcasting network, wherein the control information further includes a connected transmission descriptor for coordinating the plurality of transmission channels subject to the connected transmission,
the connected transmission descriptor comprising:
information indicating whether a first data transport stream contained in an upper adjacent transmission channel op a higher frequency than a current transmission channel is present,
information indicating whether a second data transport stream contained in a lower adjacent transmission channel on a lower frequency than the current transmission channel is present, and
information indicating whether the first data transport stream contained in the upper adjacent transmission channel and the second data transport stream contained in the lower adjacent transmission channel are synchronously modulated or differentially modulated.
2. The digital broadcasting transmitter according to claim 1, wherein the connected transmission descriptor is included in an NIT (Network Information Table).
3. The digital broadcasting transmitter according to claim 1, wherein the connected transmission describes physical conditions of the connected transmission.
4. The digital broadcasting transmitter according to claim 1, wherein the plurality of transport streams and the control information are specified in MPEG-2 Systems.
5. The digital broadcasting transmitter according to claim 1 wherein the connected transmission descriptor indicates whether the OFDM symbols are transmitted in a connecte1 transmission a non-connected transmission.
6. A digital broadcasting receiver for receiving orthogonal frequency division multiplexing (OFDM) signals through a broadcasting network having a plurality of transmission channels, the OFDM signals being obtained by modulating transport streams, the digital broadcasting receiver comprising:
a receiving device which receives the OFDM signals in a connected transmission in the broadcasting network, the OFDM signals comprising a plurality of OFDM segments including OFDM symbols generated in a time base direction for the transmission channels and multiplexed in a frequency direction, the plurality of OFDM segments multiplexed in the frequency direction and processed with a simultaneous Inverse Fast Fourier Transform (IFFT) to generate the OFDM signals; and
an extracting device which extracts control information the control information including information concerning a physical configuration of a transport stream supplied by the broadcasting network and the features of the broadcasting network, wherein the control information further includes a connected transmission descriptor for coordinating a current transmission channel and the plurality of transmission channels subject to the connected transmission, the connected transmission descriptor comprising:
information indicating whether a first data transport stream contained in an upper adjacent transmission channel on a higher frequency than the current transmission channel is present, and
information indicating whether a second data transport stream contained in a lower adjacent transmission channel on a lower frequency than the current transmission channel is present, and
information indicating whether the first data transport stream contained in the upper adjacent transmission channel and the second data transport stream contained in the lower adjacent transmission channel a e synchronously modulated or differentially modulated; and
a controller which switches among the plurality o transmission channels based on the connected transmission descriptor.
7. The digital broadcasting receiver according to claim 6, wherein when the controller switches among the plurality of transmission channels the controller decides whether or not the connected transmission is established between a transmission channel before switching and the transmission channel after switching on the basis of the connected transmission descriptor, and when the connected transmission is established, the controller switches from one of the plurality of transmission channels to another transmission channel.
8. The digital broadcasting receiver according to claim 6, wherein when the received OFDM signals are synchronously modulated, an adjacent transmission channel is subject to the connected transmission, and when the adjacent transmission channel or an adjacent segment the synchronously modulated OFDM signals, the digital broadcasting receiver estimates transmission line characteristics using a pilot signal included in the OFDM signals of the adjacent transmission channel or the adjacent segment.
9. The digital broadcasting receiver according to claim 6, wherein the plurality of transport streams and the control information are specified in MPEG-2 Systems.
10. The digital broadcasting receiver according to claim 6, wherein the connected transmission descriptor indicates whether the OFDM symbols are transmitted in a connected transmission or a non-connected transmission.
11. The digital broadcasting receiver according to claim 6, wherein the control information further includes information concerning the physical conditions of the broadcast signal.
12. A digital broadcasting method for broadcasting orthogonal frequency division multiplexing (OFDM) signal through a broadcasting network having a plurality of transmission channels, the OFDM signals being obtained by modulating a plurality of transport streams, the digital broadcasting method comprising:
generating OFDM symbols in a time base direction for the plurality of transmission channels, the OFDM symbols being part f an OFDM segment;
multiplexing the OFDM symbols in a frequency direction;
processing a plurality of OFDM segments multiplexed in the frequency direction with a simultaneous inverse Fast Fourier Transform (IFFT) to generate the OFDM signals;
transmitting the OFDM signals in a connected transmission in the broadcasting network; and
transmitting control information including information concerning a physical configuration of a transport stream supplied by the broadcasting network and the features of the broadcasting network, wherein the control information includes a connected transmission descriptor for coordinating the transmission channels subject to the connected transmission, the connected transmission descriptor comprising:
information indicating whether a first dat1 transport stream contained in an upper adjacent transmission channel on a higher frequency than a current transmission channel is present,
information indicating whether a second data transport stream contained in a lower adjacent transmission channel on a lower frequency than the current transmission channel is present, and
information indicating whether the first data transport stream contained in the upper adjacent transmission channel and the second data transport stream contained in the lower adjacent transmission channel are synchronously modulated or differentially modulated.
13. The digital broadcasting method according to claim 12, wherein the connected transmission descriptor is included in an NIT (Network Information Table).
14. The digital broadcasting method according to claim 12, wherein the connected transmission descriptor describes physical conditions of the connected transmission.
15. The digital broadcasting method according to claim 12, wherein the plurality of transport streams and the control information are specified in MPEG-2 Systems.
16. The digital broadcasting method according to claim 12, wherein the connected transmission descriptor indicates whether the OFDM symbols are transmitted in a connected transmission or a non-connected transmission.
17. A digital broadcasting method for receiving orthogonal frequency division multiplexing (OFDM) signals through a broadcasting network having a plurality of transmission channels, the OFDM signals being obtained by modulating a plurality of transport streams, the digital broadcasting method comprising:
receiving the OFDM signals in a connected transmission, wherein the OFDM signals comprising a plurality of OFDM segments including OFDM symbols generated in a time base direction for the plurality of transmission channels and multiplexed in a frequency direction, the plurality of OFDM segments multiplexed in the frequency direction and processed with a simultaneous Inverse Fast Fourier Transform (IFFT) to generate the OFDM signals;
decoding the OFDM signals to receive a transport stream;
extracting control information from the transport stream, the control information including information concerning a physical configuration of the transport stream supplied by the broadcasting network and the features of the broadcasting network; and
switching among the plurality of transmission channels based on a connected transmission descriptor included in the control information which coordinates the plurality of transport streams subject to the connected transmission;
the connected transmission descriptor comprising:
information indicating whether a first data transport stream contained in an upper adjacent transmission channel on a higher frequency than a current transmission channel is present,
information indicating whether a second data transport stream contained in a lower adjacent transmission channel on a lower frequency than the current transmission channel is present, and
information indicating whether the first data transport stream contained in the upper adjacent transmission channel and the second data transport stream transmission contained in the lower adjacent channel are synchronously modulated or differentially modulated.
18. The digital broadcasting method according to claim 17, wherein the plurality of transport streams and the control information are specified in MPEG-2 Systems.
19. The digital broadcasting method according to claim 17, wherein the connected transmission descriptor indicates whether the OFDM symbols are transmitted in a connected transmission or a non-connected transmission.
20. The digital broadcasting method according to claim 17, wherein the control information further includes information concerning the physical conditions of the broadcast signal.
US10/111,527 2000-08-25 2001-08-27 OFDM broadcast system for transporting streams of data Active 2025-04-01 US7697411B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000-254866 2000-08-25
JP2000254866 2000-08-25
PCT/JP2001/007317 WO2002017524A1 (en) 2000-08-25 2001-08-27 Digital broadcast system

Publications (2)

Publication Number Publication Date
US20030103446A1 US20030103446A1 (en) 2003-06-05
US7697411B2 true US7697411B2 (en) 2010-04-13

Family

ID=18743742

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/111,527 Active 2025-04-01 US7697411B2 (en) 2000-08-25 2001-08-27 OFDM broadcast system for transporting streams of data

Country Status (6)

Country Link
US (1) US7697411B2 (en)
JP (5) JP4352701B2 (en)
CN (2) CN100576901C (en)
AU (1) AU784822B2 (en)
BR (1) BRPI0107141B1 (en)
WO (1) WO2002017524A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028435A1 (en) * 2012-04-10 2016-01-28 Gainspeed, Inc. Efficient bandwidth utilization methods for catv docsis channels and other applications

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728467B2 (en) * 1992-03-26 2004-04-27 Matsushita Electric Industrial Co., Ltd. Communication system
KR100428266B1 (en) * 2001-11-01 2004-04-28 한국전자통신연구원 Program and system information protocol conversion apparatus and thereof method, and digital cable television broadcasting system using the same apparatus
JP4197402B2 (en) * 2002-03-15 2008-12-17 株式会社日立製作所 Digital broadcast receiving apparatus and digital broadcast receiving method
US20040017831A1 (en) * 2002-04-05 2004-01-29 Jian Shen System and method for processing SI data from multiple input transport streams
JP4160371B2 (en) * 2002-11-29 2008-10-01 富士通株式会社 Digital broadcast signal distribution system and subscriber terminal
US7961759B2 (en) * 2002-12-31 2011-06-14 Vixs Systems, Inc. Method and apparatus for synchronized channel transmission
EP1463309A1 (en) * 2003-03-26 2004-09-29 THOMSON Licensing S.A. Data stream format processing for mobile audio/video reception
US7241500B2 (en) 2003-10-06 2007-07-10 Certainteed Corporation Colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles, and process for producing same
JP4902937B2 (en) * 2003-12-19 2012-03-21 ソニー株式会社 Digital broadcast receiver
US8571132B2 (en) * 2004-12-22 2013-10-29 Qualcomm Incorporated Constrained hopping in wireless communication systems
FR2884111B1 (en) 2005-04-07 2007-05-18 Saint Gobain Mat Constr Sas Biocidal granule, in particular for the manufacture of asphalt shingle
JP4049799B2 (en) * 2006-04-26 2008-02-20 三菱電機株式会社 Digital broadcast receiving apparatus and receiving method thereof
CN100466731C (en) * 2006-09-21 2009-03-04 青岛有线宽带数字电视发展有限公司 Universal break-in broadcasting for descriptor
JP2008289013A (en) * 2007-05-18 2008-11-27 Kyocera Corp Broadcasting method and broadcasting apparatus
KR101430483B1 (en) 2007-06-26 2014-08-18 엘지전자 주식회사 Digital broadcasting system and method of processing data in digital broadcasting system
CA2697453C (en) 2007-08-24 2013-10-08 Lg Electronics Inc. Digital broadcasting system and method of processing data in digital broadcasting system
JP5463165B2 (en) * 2010-02-26 2014-04-09 株式会社日立製作所 Recovery method from ONU sleep state in PON system that can save power
JP2012003077A (en) 2010-06-17 2012-01-05 Olympus Imaging Corp Imaging optical system and electronic imaging apparatus having the same
JP5630645B2 (en) 2010-10-19 2014-11-26 ソニー株式会社 Transmission device, transmission method thereof, and reception device
JP5630646B2 (en) * 2010-10-19 2014-11-26 ソニー株式会社 Transmission device, transmission method thereof, and reception device
JP5284500B2 (en) 2011-03-16 2013-09-11 株式会社東芝 Linked transmission system and linked transmission method
CN102238384A (en) * 2011-04-08 2011-11-09 金诗科技有限公司 Multi-channel video decoder
JP2013055568A (en) * 2011-09-06 2013-03-21 Sony Corp Broadcast wave reception device and method, broadcast wave transmission device and method, program, and recording medium
JP5867778B2 (en) 2011-10-26 2016-02-24 ソニー株式会社 Transmitting apparatus, transmitting method, receiving apparatus, receiving method, and program
JP6305895B2 (en) * 2014-10-02 2018-04-04 アルパイン株式会社 Digital broadcast receiver
JP6031484B2 (en) * 2014-10-09 2016-11-24 サターン ライセンシング エルエルシーSaturn Licensing LLC Transmission device, transmission method thereof, and reception device
JP6031485B2 (en) * 2014-10-09 2016-11-24 サターン ライセンシング エルエルシーSaturn Licensing LLC Transmission device, transmission method thereof, and reception device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928084A2 (en) 1998-01-02 1999-07-07 Mitsubishi Denki Kabushiki Kaisha Universal modem for digital video, audio and data communications
US5946326A (en) * 1995-05-11 1999-08-31 Nokia Telecommunications Oy Method and an equipment for transmitting a file-based multimedia and hypermedia service to a mobile receiver
JP2000013296A (en) 1998-06-22 2000-01-14 Victor Co Of Japan Ltd Synchronization multi-carrier radio communication system and transmitter
JP2000059746A (en) 1998-08-07 2000-02-25 Hitachi Ltd Catv system and its terminal device
US6040867A (en) * 1996-02-20 2000-03-21 Hitachi, Ltd. Television signal receiving apparatus and method specification
JP2000115119A (en) 1998-09-30 2000-04-21 Jisedai Digital Television Hoso System Kenkyusho:Kk Ground digital broadcasting transmission system
WO2000052861A1 (en) 1999-03-04 2000-09-08 Sony Corporation Transmitting device and method, and providing medium
JP2001298438A (en) 2000-04-13 2001-10-26 Sony Corp Ofdm receiver and method
JP2001298437A (en) 2000-04-13 2001-10-26 Sony Corp Ofdm transmitter amd method
US6366309B1 (en) * 1995-10-16 2002-04-02 Robert Bosch Gmbh Method for the terrestrially transmitting digital signals
US6985432B1 (en) * 2000-01-28 2006-01-10 Zion Hadad OFDM communication channel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190594B2 (en) * 1995-12-28 2008-12-03 ソニー株式会社 Electronic apparatus and signal processing method
EP0989743A1 (en) * 1998-09-25 2000-03-29 CANAL+ Société Anonyme Application data table for a multiservice digital transmission system
EP1001631A1 (en) * 1998-11-09 2000-05-17 CANAL+ Société Anonyme Signalling of bouquet information in a digital transmission system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5946326A (en) * 1995-05-11 1999-08-31 Nokia Telecommunications Oy Method and an equipment for transmitting a file-based multimedia and hypermedia service to a mobile receiver
US6366309B1 (en) * 1995-10-16 2002-04-02 Robert Bosch Gmbh Method for the terrestrially transmitting digital signals
US6040867A (en) * 1996-02-20 2000-03-21 Hitachi, Ltd. Television signal receiving apparatus and method specification
JPH11284688A (en) 1998-01-02 1999-10-15 Mitsubishi Electric Inf Technol Center America Inc Network communication system
EP0928084A2 (en) 1998-01-02 1999-07-07 Mitsubishi Denki Kabushiki Kaisha Universal modem for digital video, audio and data communications
JP2000013296A (en) 1998-06-22 2000-01-14 Victor Co Of Japan Ltd Synchronization multi-carrier radio communication system and transmitter
JP2000059746A (en) 1998-08-07 2000-02-25 Hitachi Ltd Catv system and its terminal device
JP2000115119A (en) 1998-09-30 2000-04-21 Jisedai Digital Television Hoso System Kenkyusho:Kk Ground digital broadcasting transmission system
JP2000261403A (en) 1999-03-04 2000-09-22 Sony Corp Transmitter, its method and served medium
WO2000052861A1 (en) 1999-03-04 2000-09-08 Sony Corporation Transmitting device and method, and providing medium
US6985432B1 (en) * 2000-01-28 2006-01-10 Zion Hadad OFDM communication channel
JP2001298438A (en) 2000-04-13 2001-10-26 Sony Corp Ofdm receiver and method
JP2001298437A (en) 2000-04-13 2001-10-26 Sony Corp Ofdm transmitter amd method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Narrow Band ISDB-T for Digital Terrestrial Sound Broadcasting: Specification of Channel, Coding, Framing Structure and Modulation", Nov. 29, 1999, ARIB. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028435A1 (en) * 2012-04-10 2016-01-28 Gainspeed, Inc. Efficient bandwidth utilization methods for catv docsis channels and other applications
US9762288B2 (en) * 2012-04-10 2017-09-12 Alcatel-Lucent Usa Inc. Efficient bandwidth utilization methods for CATV DOCSIS channels and other applications

Also Published As

Publication number Publication date
JP4352701B2 (en) 2009-10-28
CN100576901C (en) 2009-12-30
WO2002017524A1 (en) 2002-02-28
CN1236572C (en) 2006-01-11
CN1393074A (en) 2003-01-22
JP5071544B2 (en) 2012-11-14
JP5018954B2 (en) 2012-09-05
JP5018953B2 (en) 2012-09-05
JP2011045117A (en) 2011-03-03
JP2011055520A (en) 2011-03-17
US20030103446A1 (en) 2003-06-05
JP2011045116A (en) 2011-03-03
BR0107141A (en) 2002-07-02
CN1767626A (en) 2006-05-03
JP2011004433A (en) 2011-01-06
JP5018952B2 (en) 2012-09-05
AU8018301A (en) 2002-03-04
BRPI0107141B1 (en) 2015-06-16
AU784822B2 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US10750232B2 (en) Broadcasting signal transmission device, broadcasting signal reception device, and method for transmitting/receiving broadcasting signal using same
US10516713B2 (en) Convergence sublayer for use in a wireless broadcasting system
US9735994B2 (en) Broadcast signal transmitter, broadcast signal receiver, and method for transceiving broadcast signals in broadcast signal transceivers
US20190253212A1 (en) Demapping apparatus and method for reception of data in a multi-carrier broadcast system
US20160197663A1 (en) Transmission apparatus and method for transmission of data in a multi-carrier broadcast system
US20200274955A1 (en) Apparatus for transmitting signaling information, apparatus for receiving signaling information, method for transmitting signaling information and method for receiving signaling information
CA2819221C (en) Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, and broadcast signal transceiving method in broadcast signal transmitting and receiving apparatuses
US9882731B2 (en) Broadcasting signal transmitter/receiver and broadcasting signal transmission/reception method
US20140229803A1 (en) Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, and broadcast signal transceiving method in a broadcast signal transceiving apparatus
CA2818110C (en) Apparatus for transmitting a broadcast signal, apparatus for receiving a broadcast signal, and method for transmitting/receiving a broadcast signal using an apparatus for transmitting/receiving a broadcast signal
EP2639993B1 (en) Channel bonding with orbital angular momentum
US8023488B2 (en) Communication method, and transmitting apparatus and receiving apparatus using that communication method
US8780779B2 (en) Apparatuses and methods for multi-antenna channel quality data acquisition in a broadcast/multicast service network
US8483043B2 (en) Apparatus for generating a set of radio parameters, a transmitter and a receiver
KR100197846B1 (en) Orthogonal frequency division multiplexing transmission system and transmitter and receiver therefor
ES2374160T3 (en) Apparatus for transmitting and receiving a signal and method for transmitting and receiving a signal.
US8300658B2 (en) Apparatuses and methods for multi-antenna channel quality data acquisition in a broadcast/multicast service network using a multicast symbol
EP1083719B1 (en) Multicarrier transmission with adaptive allocation of reference symbols
US7050511B2 (en) In-band adjacent-channel digital audio broadcasting system
EP2245768B1 (en) Digital broadcast receiver capacity signalling metadata
US8064444B2 (en) Wireless broadcasting system
CA2825592C (en) Improved frame structure for communication system using adaptive modulation
US7133352B1 (en) Bi-directional communication channel
JP5449194B2 (en) Signaling the presence of extended frames
Takada et al. Transmission system for ISDB-T

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEGISHI, SHINJI;IKEDA, TAMOTSU;REEL/FRAME:013186/0319;SIGNING DATES FROM 20020418 TO 20020419

Owner name: SONY CORPORATION,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEGISHI, SHINJI;IKEDA, TAMOTSU;SIGNING DATES FROM 20020418 TO 20020419;REEL/FRAME:013186/0319

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8