US7562578B2 - Method and apparatus for detecting surface defects in rolling mill rollers - Google Patents

Method and apparatus for detecting surface defects in rolling mill rollers Download PDF

Info

Publication number
US7562578B2
US7562578B2 US11/597,862 US59786205A US7562578B2 US 7562578 B2 US7562578 B2 US 7562578B2 US 59786205 A US59786205 A US 59786205A US 7562578 B2 US7562578 B2 US 7562578B2
Authority
US
United States
Prior art keywords
roll
ultrasonic
accordance
roller
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US11/597,862
Other versions
US20080028859A1 (en
Inventor
Dieter Figge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Assigned to SMS DEMAG AG reassignment SMS DEMAG AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FIGGE, DIETER
Publication of US20080028859A1 publication Critical patent/US20080028859A1/en
Application granted granted Critical
Publication of US7562578B2 publication Critical patent/US7562578B2/en
Assigned to SMS SIEMAG AKTIENGESELLSCHAFT reassignment SMS SIEMAG AKTIENGESELLSCHAFT CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SMS DEMAG AG
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2493Wheel shaped probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0422Shear waves, transverse waves, horizontally polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/265Spherical objects

Definitions

  • the invention concerns a method and a device for determining surface defects such as cracks, spalling, and the like, on rolling mill rolls, especially work rolls that are supported with backup rolls in housing posts, by the use of ultrasonic waves.
  • DE 198 49 102 C1 discloses a method and a device for the nondestructive testing of objects for defects in the structure at and/or near the surface by means of Rayleigh waves.
  • the angles of incidence ( ⁇ ) are set at 1.04 ⁇ 0.2° of the angle obtained from the quotient of the speed of sound in the medium in front of the surface and the speed of the Rayleigh wave in the article or test object.
  • U.S. Pat. No. 4,423,636 discloses a test method in which ultrasound is introduced by a sound wave transducer into a roll to be tested and is then received at a different point by a receiver. Plate-shaped elements are brought into contact with the surface of the roll to transmit and receive the sound.
  • the objective of the invention is to make it possible to apply the ultrasonic test method, which in itself is already well known, to elongated parts of rolling mills in their operating position, namely, to wear-endangered rolls, and to simplify this method.
  • this objective is achieved by testing the roll in which defects are to be detected in its installed position, wherein generated ultrasonic transverse waves (so-called shear waves) with a frequency of about 0.5 to 2 MHz are introduced at one end of the roll and received at the other end of the roll, and wherein during the measuring operation, an ultrasonic transducer and an ultrasonic receiver are pressed against the surface of the roll for the duration of the test.
  • the speed of sound is about 50% lower in transverse waves than in longitudinal waves. This reduced speed of sound is also associated with a reduced wavelength, so that even very small cracks can be detected.
  • Defects in the surface of the rolls are defined here as cracks and checks and spalling with dimensions of 0.6 ⁇ 0.6 mm.
  • the cracks are assumed to have a width of 50 ⁇ m and a depth of 10 ⁇ m.
  • the frequency of 0.5 to 2 MHz represents a compromise between a maximum measuring depth and a standard resolution for detecting even small defects.
  • the arrangement of the ultrasonic transducer at one end of the roll and the ultrasonic receiver at the other end of the roll requires the least power consumption. Changes in acoustic properties occur at the boundaries of these defects, and these changes can be detected by various measuring techniques.
  • the roll materials that can be tested include especially the following:
  • the ultrasonic transducer and the ultrasonic receiver are applied radially at the edge of the barrel, close to the roll neck, which is supported in the housing bearing.
  • the roll in which defects are to be detected is stopped, and then, after the transducer and receiver have been applied, the roll is turned by about two revolutions. After the testing process, the devices can be swung away again.
  • the rolling stock guides and cooling devices that are present are not hindered by the these devices.
  • the ultrasonic waves are conveyed via a piezoelectric element through a core part of transparent plastic and an adjacent silicone filling to a roller-shaped contact body made of steel, which is pressed against the roll surface beyond the roll barrel.
  • the piezoelectric element serves the purpose of bundling the family of waves and thus systematically guiding the ultrasonic waves in the predetermined direction.
  • an iridium coating is applied on the outer running surface of the roller-shaped contact body.
  • the testing operation is carried out without rolling stock between the work rolls.
  • the testing operation can be carried out after a change of rolling stock or during a pause provided for this purpose.
  • the ultrasonic waves are introduced into the surface of the roll at an acute angle, and only the component in the direction of the roll surface is utilized.
  • the device for determining surface defects such as cracks, spalling, and the like, in rolling mill rolls, especially work rolls that are supported with backup rolls in housing posts, with the use of ultrasound achieves the objective of the invention by virtue of the fact that a holder, which can be swiveled out of a parking position and into a testing position or vice versa, is supported in the housing posts, wherein the holder holds either an ultrasonic transducer or an ultrasonic receiver, and wherein the holders can each be adjusted to a definite contact force by means of a drive.
  • a roller-shaped contact body made of steel is arranged at the pressing ends of the swivel arms.
  • the contact angle with the surface of the roll varies only slightly with different roll diameters.
  • the contact body creates the condition for uniform transmission of ultrasonic waves to the steel roll and their further conduction from the transducer to the receiver.
  • the contact body it is advantageous for the contact body to have a stationary core part made of plastic, which is rotationally rigidly connected with a head housing by a coupling (e.g., an Oldham coupling), wherein the core part is supported in the roller-shaped contact body in such a way that it can rotate smoothly, and wherein an electrically connected wave transducer or wave receiver is mounted in the contact body.
  • a coupling e.g., an Oldham coupling
  • the outer surface of the roller-shaped contact body is coated with iridium. This increases the transmissivity of ultrasonic waves through the contact roller to the roll to be tested.
  • the annular space between the roller contact body and the stationary plastic core part be filled with silicone for acoustic coupling.
  • an electric/electronic circuit for determining surface defects such as cracks, spalling, and the like, on rolling mill rolls, especially work rolls that are rotatably supported with backup rolls in housing posts, by the use of ultrasonic waves.
  • This circuit achieves the stated objective in such a way that an ultrasonic transducer is connected to an ultrasonic generator and, through the roll, with an ultrasonic receiver, which is connected to a receiver amplifier and a comparator; that a memory for sample measuring signals is connected with a parallel amplifier for the samples and with the comparator; and that a predetermined sample measuring signal is generated in an error signal generator connected to the comparator.
  • the circuit is expanded in such a way that the error signal generator is connected to a recorder with memory.
  • a relay to a following or preceding sample measuring signal is connected to the recorder for a detected sample measuring signal.
  • FIG. 1 shows a front elevation of a four-high rolling stand of a rolling mill in the rolling direction.
  • FIG. 2 shows a cross section of FIG. 1 with an ultrasonic transducer and an ultrasonic receiver.
  • FIG. 3 shows a partial cross section through the holder with contacting means for the ultrasonic transducer or ultrasonic receiver.
  • FIG. 4 shows a cross section through the housing post with the holder in its applied position.
  • FIG. 5 shows a family of ultrasonic waves.
  • FIG. 6 shows a cross section through a joint of the holder.
  • FIG. 7 shows a cross section through a steel roller, which has been placed against a work roll and is mounted on the holder, with part of the transducer.
  • FIG. 8 shows a cross section through another embodiment of the holder.
  • FIG. 9 shows a functional block diagram for the sequence of operations of one or more testing procedures.
  • FIG. 1 shows a rolling mill 1 , for example, a four-high rolling stand.
  • the rolling mill 1 consists of four rolls 2 , namely, two work rolls 2 a and two backup rolls 2 b supporting the work rolls 2 a.
  • the rolls 2 are rotatably supported in housing posts 3 by means of housing bearings 3 a .
  • the rolls 2 can be screwed down by means of hydraulic screw-down cylinders 7 , which are, however, kept free of pressure during a test procedure and therefore remain inactive.
  • a swivel arm 8 a ( FIG. 2 ) is supported in the housing post 3 for the upper work roll 2 a . It is swiveled upward into a parking position 9 and swiveled downward with its transmission head 10 into the testing position 11 . In the testing position 11 , the transmission head 10 is pressed firmly against the barrel edge 2 f at one end 2 c of the roll ( FIG. 1 ) and against the roll surface 2 e near the roll neck 2 g at the other end 2 d of the roll. Means for guiding and cooling the rolling stock are not adversely affected during this procedure and can remain in their operating configuration.
  • the holders 8 with the transmission heads 10 are easily protected from the adverse surrounding conditions.
  • Two holders 8 each are provided for detecting defects in the upper work roll 2 a and the lower work roll 2 a.
  • FIG. 3 shows an enlarged view of one of the swivel arms 8 a , which is supported in a swivel bearing 12 in the housing post 3 .
  • the swivel arm 8 a is part of the holder 8 .
  • a drive 13 e.g., a hydraulic cylinder 13 a
  • the housing 14 can be positioned against a stop 15 for fixing the location of a testing position 11 , to which the arm is to be repeatedly moved.
  • the hydraulic cylinder 13 a is pivoted with a displaceable rod 16 in the housing 14 , and the rod 16 carries the transmission head 10 at its tip.
  • the transmission head 10 consists of a contact roller 17 .
  • the transmission head 10 In the illustrated position, the transmission head 10 is in contact with the upper work roll 2 a , which has a mean roll diameter 18 .
  • the setting direction of the rod 16 is towards the center of the work roll 2 a .
  • compensation takes place by the stroke of the hydraulic cylinder 13 a .
  • the use of the contact roller 17 (made of steel) results in only negligible displacement of the contact angle.
  • the contact force of the transmission head 10 is controlled by the hydraulic cylinder 13 a.
  • FIG. 4 shows a side view of the arrangement of the holder 8 with the swivel arm 8 a .
  • the housing 14 holds the swivel bearing 12 .
  • the swivel bearing 12 consists of a pivot 21 mounted in the housing post 3 .
  • the housing 14 is rotated about the pivot 21 by means of a pivot bearing 22 and a hydraulic pivot drive 23 supported on the housing post 3 . This moves the swivel arm 8 a out of the parking position 9 and into the testing position 11 .
  • FIG. 5 shows the ultrasonic waves 4 used for the testing. They are ultrasonic transverse waves 4 a which move in direction 4 b.
  • the contact roller 17 is supported inside a head housing 24 , which can be part of the housing 14 .
  • the contact roller 17 is rotatably supported by means of roller bearings 25 a , 25 b .
  • the roller bearings 25 a , 25 b are sealed against flanges 26 of the head housing 24 .
  • a core part 27 made of transparent, glassy plastic e.g., commercially available plastic glass
  • the core part 27 is held in a mounting that consists of four sealed bearings 28 and a coupling 29 , preferably an Oldham coupling.
  • the plastic core part 27 is insulated and protected by a noncontact seal 30 .
  • a filling 32 in the form of an annular layer of silicone for acoustic coupling is introduced into the resulting annular space 31 between the contact roller 17 and the plastic core part 27 .
  • a piezoelectric element 33 a is mounted inside a cavity 27 a as part of the wave transducer 33 (or wave receiver).
  • Ultrasonic waves 4 generated in an ultrasonic generator 34 are transmitted by the piezoelectric element 33 a , through the plastic core part 27 and the filling 32 , into the contact roller 17 , whose circumference is coated with a layer of iridium 35 , and into the roll 2 a (made of steel), against which the contact roller 17 is firmly pressed. This results in double refraction of the ultrasonic waves 4 .
  • the piezoelectric element 33 a is connected by a cable 36 with the ultrasonic generator 34 ( FIGS. 6 , 8 , and 9 ).
  • the silicone filler 32 is one of various viscous liquids that are suitable as coupling media for ultrasonic waves 4 .
  • the ultrasonic waves 4 emerge from the piezoelectric element 33 a , pass through the core part 27 , which is made of (transparent) plastic, and enter the silicone filling 32 .
  • the ultrasonic waves 4 are refracted for the first time.
  • the ultrasonic waves 4 then pass through the iridium coating 35 and reach the roll surface 2 e as transverse ultrasonic waves 4 a .
  • they are refracted for the second time and enter the steel of the work roll 2 a that is to be tested (see FIG. 6 , bottom right).
  • a longitudinal component passes through the roll 2 in the longitudinal direction and strikes any surface defects that may be present, such as cracks, checks, spalling, and the like, which are determined as defects.
  • the roller-shaped contact body 17 is supported on a steel work roll 2 a .
  • the contact roller 17 which has an iridium coating 35 on its circumference, is pressed firmly against the work roll 2 a . This results in double refraction of the ultrasonic waves 4 .
  • the piezoelectric element 33 a is connected by a cable 36 with the ultrasonic generator ( FIG. 9 ).
  • the silicone filler 32 is one of various viscous liquids that are suitable as coupling media for ultrasonic waves 4 .
  • the ultrasonic waves 4 emerge from the piezoelectric element 33 a , pass through the core part 27 , and enter the silicone filling 32 .
  • the ultrasonic waves 4 are refracted for the first time.
  • the ultrasonic waves 4 then pass through the iridium coating 35 and reach the roll surface 2 e , where they are refracted for the second time.
  • a longitudinal component passes through the roll 2 in the longitudinal direction and strikes any surface defects that may be present, such as cracks, checks, spalling, and the like, which are determined as the defects that are being sought.
  • the roller-shaped contact body 17 is supported on a steel work roll 2 a .
  • the core part 27 (made of transparent plastic) is surrounded by the silicone filling 32 for acoustic coupling.
  • the cavity 27 a contains a wave transducer/wave receiver 33 , which consists of a piezoelectric element 33 a , which is shown in cross section.
  • the ultrasonic transducer 5 (or the ultrasonic receiver 6 ) sets down momentarily on the roll surface 2 e and is then carried along and caused to rotate by the moving roll surface 2 e.
  • FIG. 8 shows an alternative embodiment.
  • the ultrasonic transducer 5 (or the ultrasonic receiver 6 , to which the emitted waves are transmitted) is mounted in a swivel head 37 , which automatically adjusts itself to the proper angular position.
  • a carrier 38 can be rotated about a carrier axis 38 a , and an oblong contact body 39 is adjusted at a suitable angle to the mean roll diameter 18 and to the changing roll diameter 19 .
  • oil can be introduced as the coupling medium.
  • FIG. 9 shows a functional block diagram of a device for evaluating signal patterns that have been obtained.
  • the ultrasonic transducer 5 is connected to the ultrasonic generator 34 and, through the roll 2 , with the ultrasonic receiver 6 , which is connected to a receiver amplifier 40 and a comparator 41 .
  • a following memory oscillograph 42 generates an error signal when there is a difference between two signals. The difference comes about by virtue of the fact that the error signal is conducted over a line 43 and a recorder 44 , and in a memory 45 for sample measuring signals A, B, C, D, E, etc., a next following reference sample is selected and passed on to an amplifier 46 for samples.
  • a command is issued, e.g., in the event of a difference, to the recorder 44 to reroute to the next sample measuring signal A, B, C, D, E, etc.
  • a rotation 47 about a preset angle 48 (angle ⁇ ) is carried out.
  • additional comparison operations are initiated in the error signal generator 49 (when there is nonagreement of the signals) and carried out by a relay 50 .

Landscapes

  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

The invention relates to a method, device and a circuit for detecting surface defects such as cracks, fractures and the like on a roller (2) for a rolling mill (1), in particular on the working rollers (2 a) which are mounted with support roller (2 b) on a vertical stand (3). The rollers (2) are verified for detecting defects in the operation position thereof, transversal ultrasonic waves (4 a) whose frequency is approximately equal to 0.5-2 MHz are transmitted to the first end of the roller (2 c) and are received on the second end (2 d) thereof and during a measuring process an ultrasound transducer (5) and an ultrasound receiver (6) are pressed against the cylinder (2 e) surface for a test time.

Description

The invention concerns a method and a device for determining surface defects such as cracks, spalling, and the like, on rolling mill rolls, especially work rolls that are supported with backup rolls in housing posts, by the use of ultrasonic waves.
In the rolling mill sector, it is customary to change the work rolls in hot strip mills and cold rolling mills after a predetermined period of use, which depends on the rolling mill material and other rolling parameters. However, the resulting time factor cannot take serious defects in the given roll into account. For want of additional precise diagnosis, the work rolls are often changed much too early. This results in economic disadvantages.
DE 198 49 102 C1 discloses a method and a device for the nondestructive testing of objects for defects in the structure at and/or near the surface by means of Rayleigh waves. The angles of incidence (α) are set at 1.04±0.2° of the angle obtained from the quotient of the speed of sound in the medium in front of the surface and the speed of the Rayleigh wave in the article or test object.
However, the application of this method to rolling stand rolls is already out of the question due to the nature of the underlying principles of the method and the proposed device.
U.S. Pat. No. 4,423,636 discloses a test method in which ultrasound is introduced by a sound wave transducer into a roll to be tested and is then received at a different point by a receiver. Plate-shaped elements are brought into contact with the surface of the roll to transmit and receive the sound.
The basic possibility of carrying out nondestructive testing by ultrasonic waves is disclosed in U.S. Pat. No. 6,105,431. The sound waves are introduced into the test material at an angle and are detected again at a point distant from the ultrasonic transducer.
Similar solutions are known from U.S. Pat. No. 6,341,525, GB 1,561,811 A, U.S. Pat. Nos. 5,417,114, 3,868,847, and from the paper by I. Komsky entitled “Rolling dry-coupled transducers for ultrasonic inspections of aging aircraft structures” in Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, Mar. 15-17, 2004 San Diego, Calif., USA, Vol. 5,394, No. 1, p. 17.
The objective of the invention is to make it possible to apply the ultrasonic test method, which in itself is already well known, to elongated parts of rolling mills in their operating position, namely, to wear-endangered rolls, and to simplify this method.
In accordance with the invention, this objective is achieved by testing the roll in which defects are to be detected in its installed position, wherein generated ultrasonic transverse waves (so-called shear waves) with a frequency of about 0.5 to 2 MHz are introduced at one end of the roll and received at the other end of the roll, and wherein during the measuring operation, an ultrasonic transducer and an ultrasonic receiver are pressed against the surface of the roll for the duration of the test. The speed of sound is about 50% lower in transverse waves than in longitudinal waves. This reduced speed of sound is also associated with a reduced wavelength, so that even very small cracks can be detected. Defects in the surface of the rolls are defined here as cracks and checks and spalling with dimensions of 0.6×0.6 mm. The cracks are assumed to have a width of 50 μm and a depth of 10 μm. The frequency of 0.5 to 2 MHz represents a compromise between a maximum measuring depth and a standard resolution for detecting even small defects. The arrangement of the ultrasonic transducer at one end of the roll and the ultrasonic receiver at the other end of the roll requires the least power consumption. Changes in acoustic properties occur at the boundaries of these defects, and these changes can be detected by various measuring techniques.
The roll materials that can be tested include especially the following:
    • Steel roll for cold rolling mills: The sound transmission coefficient of forged steel is especially high due to its fine-grained structure.
    • Rolls made of cast steel: The structure is slightly more coarse-grained compared to forged steel; however, the material can still be tested well when the testing frequency is reduced. Rolls of this type are used, for example, as high-chromium steel rolls for the first rolling stands of hot strip finishing trains.
    • Indefinite chill rolls: These rolls have a core that consists of spheroidal graphite iron and a jacket that consists of a chill casting. This type of roll is difficult to test due to the graphite inclusions that are present. This can lead to a high level of acoustic scattering. Ultrasound frequencies less than 1 MHz are suggested for the testing. This type of rolling mill roll is used as a composite cast roll for the last rolling stands of a hot strip finishing train.
    • Backup rolls made of forged steel: The possibility of testing by ultrasound at frequencies around 1 MHz is very favorable.
In one embodiment, the ultrasonic transducer and the ultrasonic receiver are applied radially at the edge of the barrel, close to the roll neck, which is supported in the housing bearing.
In an improved embodiment, when the ultrasonic transducer and the ultrasonic receiver are being applied, the roll in which defects are to be detected is stopped, and then, after the transducer and receiver have been applied, the roll is turned by about two revolutions. After the testing process, the devices can be swung away again. The rolling stock guides and cooling devices that are present are not hindered by the these devices.
In a refinement, the ultrasonic waves are conveyed via a piezoelectric element through a core part of transparent plastic and an adjacent silicone filling to a roller-shaped contact body made of steel, which is pressed against the roll surface beyond the roll barrel. The piezoelectric element serves the purpose of bundling the family of waves and thus systematically guiding the ultrasonic waves in the predetermined direction.
To obtain conductive transmission of the incident ultrasonic waves, an iridium coating is applied on the outer running surface of the roller-shaped contact body.
In accordance with another advantageous measure, the testing operation is carried out without rolling stock between the work rolls. The testing operation can be carried out after a change of rolling stock or during a pause provided for this purpose.
In accordance with other steps, the ultrasonic waves are introduced into the surface of the roll at an acute angle, and only the component in the direction of the roll surface is utilized.
In accordance with the invention, the device for determining surface defects such as cracks, spalling, and the like, in rolling mill rolls, especially work rolls that are supported with backup rolls in housing posts, with the use of ultrasound, achieves the objective of the invention by virtue of the fact that a holder, which can be swiveled out of a parking position and into a testing position or vice versa, is supported in the housing posts, wherein the holder holds either an ultrasonic transducer or an ultrasonic receiver, and wherein the holders can each be adjusted to a definite contact force by means of a drive. This makes it possible not only to test different roll diameters according to their wear or dressing, but also always to maintain the contact force at a suitable level.
In accordance with a further refinement of the invention, a roller-shaped contact body made of steel is arranged at the pressing ends of the swivel arms. The contact angle with the surface of the roll varies only slightly with different roll diameters.
The contact body creates the condition for uniform transmission of ultrasonic waves to the steel roll and their further conduction from the transducer to the receiver. To this end, it is advantageous for the contact body to have a stationary core part made of plastic, which is rotationally rigidly connected with a head housing by a coupling (e.g., an Oldham coupling), wherein the core part is supported in the roller-shaped contact body in such a way that it can rotate smoothly, and wherein an electrically connected wave transducer or wave receiver is mounted in the contact body. In this way, the device creates bundled wave generation and further conduction within the roll.
In an improved modification, the outer surface of the roller-shaped contact body is coated with iridium. This increases the transmissivity of ultrasonic waves through the contact roller to the roll to be tested.
In conformity with the otherwise customary liquid coupling media, which cannot be provided on the mounted roll, it is proposed that the annular space between the roller contact body and the stationary plastic core part be filled with silicone for acoustic coupling.
In addition, an electric/electronic circuit is proposed for determining surface defects such as cracks, spalling, and the like, on rolling mill rolls, especially work rolls that are rotatably supported with backup rolls in housing posts, by the use of ultrasonic waves.
This circuit achieves the stated objective in such a way that an ultrasonic transducer is connected to an ultrasonic generator and, through the roll, with an ultrasonic receiver, which is connected to a receiver amplifier and a comparator; that a memory for sample measuring signals is connected with a parallel amplifier for the samples and with the comparator; and that a predetermined sample measuring signal is generated in an error signal generator connected to the comparator.
The circuit is expanded in such a way that the error signal generator is connected to a recorder with memory.
Furthermore, in another embodiment, it is provided that a relay to a following or preceding sample measuring signal is connected to the recorder for a detected sample measuring signal.
Specific embodiments of the invention are illustrated in the drawings and are explained in greater detail below.
FIG. 1 shows a front elevation of a four-high rolling stand of a rolling mill in the rolling direction.
FIG. 2 shows a cross section of FIG. 1 with an ultrasonic transducer and an ultrasonic receiver.
FIG. 3 shows a partial cross section through the holder with contacting means for the ultrasonic transducer or ultrasonic receiver.
FIG. 4 shows a cross section through the housing post with the holder in its applied position.
FIG. 5 shows a family of ultrasonic waves.
FIG. 6 shows a cross section through a joint of the holder.
FIG. 7 shows a cross section through a steel roller, which has been placed against a work roll and is mounted on the holder, with part of the transducer.
FIG. 8 shows a cross section through another embodiment of the holder.
FIG. 9 shows a functional block diagram for the sequence of operations of one or more testing procedures.
FIG. 1 shows a rolling mill 1, for example, a four-high rolling stand. The rolling mill 1 consists of four rolls 2, namely, two work rolls 2 a and two backup rolls 2 b supporting the work rolls 2 a.
The rolls 2 are rotatably supported in housing posts 3 by means of housing bearings 3 a. The rolls 2 can be screwed down by means of hydraulic screw-down cylinders 7, which are, however, kept free of pressure during a test procedure and therefore remain inactive.
A swivel arm 8 a (FIG. 2) is supported in the housing post 3 for the upper work roll 2 a. It is swiveled upward into a parking position 9 and swiveled downward with its transmission head 10 into the testing position 11. In the testing position 11, the transmission head 10 is pressed firmly against the barrel edge 2 f at one end 2 c of the roll (FIG. 1) and against the roll surface 2 e near the roll neck 2 g at the other end 2 d of the roll. Means for guiding and cooling the rolling stock are not adversely affected during this procedure and can remain in their operating configuration.
According to FIG. 2, the holders 8 with the transmission heads 10 are easily protected from the adverse surrounding conditions. Two holders 8 each are provided for detecting defects in the upper work roll 2 a and the lower work roll 2 a.
FIG. 3 shows an enlarged view of one of the swivel arms 8 a, which is supported in a swivel bearing 12 in the housing post 3. The swivel arm 8 a is part of the holder 8. A drive 13, e.g., a hydraulic cylinder 13 a, is pivoted at both ends inside the holder 8. The housing 14 can be positioned against a stop 15 for fixing the location of a testing position 11, to which the arm is to be repeatedly moved. The hydraulic cylinder 13 a is pivoted with a displaceable rod 16 in the housing 14, and the rod 16 carries the transmission head 10 at its tip. The transmission head 10 consists of a contact roller 17. In the illustrated position, the transmission head 10 is in contact with the upper work roll 2 a, which has a mean roll diameter 18. The setting direction of the rod 16 is towards the center of the work roll 2 a. In the case of changing roll diameters 19, 20, e.g., due to grinding of the roll barrel that has been carried out in the meantime, compensation takes place by the stroke of the hydraulic cylinder 13 a. The use of the contact roller 17 (made of steel) results in only negligible displacement of the contact angle. The contact force of the transmission head 10 is controlled by the hydraulic cylinder 13 a.
FIG. 4 shows a side view of the arrangement of the holder 8 with the swivel arm 8 a. The housing 14 holds the swivel bearing 12. The swivel bearing 12 consists of a pivot 21 mounted in the housing post 3. The housing 14 is rotated about the pivot 21 by means of a pivot bearing 22 and a hydraulic pivot drive 23 supported on the housing post 3. This moves the swivel arm 8 a out of the parking position 9 and into the testing position 11.
FIG. 5 shows the ultrasonic waves 4 used for the testing. They are ultrasonic transverse waves 4 a which move in direction 4 b.
As shown in FIG. 6, the contact roller 17 is supported inside a head housing 24, which can be part of the housing 14. The contact roller 17 is rotatably supported by means of roller bearings 25 a, 25 b. The roller bearings 25 a, 25 b are sealed against flanges 26 of the head housing 24. A core part 27 made of transparent, glassy plastic (e.g., commercially available plastic glass) is arranged inside the roller bore 17 a. The core part 27 is held in a mounting that consists of four sealed bearings 28 and a coupling 29, preferably an Oldham coupling. The plastic core part 27 is insulated and protected by a noncontact seal 30. A filling 32 in the form of an annular layer of silicone for acoustic coupling is introduced into the resulting annular space 31 between the contact roller 17 and the plastic core part 27. A piezoelectric element 33 a is mounted inside a cavity 27 a as part of the wave transducer 33 (or wave receiver).
Ultrasonic waves 4 generated in an ultrasonic generator 34 (see FIG. 9) are transmitted by the piezoelectric element 33 a, through the plastic core part 27 and the filling 32, into the contact roller 17, whose circumference is coated with a layer of iridium 35, and into the roll 2 a (made of steel), against which the contact roller 17 is firmly pressed. This results in double refraction of the ultrasonic waves 4.
The piezoelectric element 33 a is connected by a cable 36 with the ultrasonic generator 34 (FIGS. 6, 8, and 9).
The silicone filler 32 is one of various viscous liquids that are suitable as coupling media for ultrasonic waves 4. The ultrasonic waves 4 emerge from the piezoelectric element 33 a, pass through the core part 27, which is made of (transparent) plastic, and enter the silicone filling 32. At the exit plane to the steel contact roller 17, the ultrasonic waves 4 are refracted for the first time. The ultrasonic waves 4 then pass through the iridium coating 35 and reach the roll surface 2 e as transverse ultrasonic waves 4 a. At the roll surface 2 e, they are refracted for the second time and enter the steel of the work roll 2 a that is to be tested (see FIG. 6, bottom right). A longitudinal component passes through the roll 2 in the longitudinal direction and strikes any surface defects that may be present, such as cracks, checks, spalling, and the like, which are determined as defects.
In FIG. 7, the roller-shaped contact body 17 is supported on a steel work roll 2 a. The contact roller 17, which has an iridium coating 35 on its circumference, is pressed firmly against the work roll 2 a. This results in double refraction of the ultrasonic waves 4.
The piezoelectric element 33 a is connected by a cable 36 with the ultrasonic generator (FIG. 9).
The silicone filler 32 is one of various viscous liquids that are suitable as coupling media for ultrasonic waves 4. The ultrasonic waves 4 emerge from the piezoelectric element 33 a, pass through the core part 27, and enter the silicone filling 32.
At the exit plane to the steel contact roller 17, the ultrasonic waves 4 are refracted for the first time. The ultrasonic waves 4 then pass through the iridium coating 35 and reach the roll surface 2 e, where they are refracted for the second time.
A longitudinal component passes through the roll 2 in the longitudinal direction and strikes any surface defects that may be present, such as cracks, checks, spalling, and the like, which are determined as the defects that are being sought.
In FIG. 7, the roller-shaped contact body 17 is supported on a steel work roll 2 a. The core part 27 (made of transparent plastic) is surrounded by the silicone filling 32 for acoustic coupling. The cavity 27 a contains a wave transducer/wave receiver 33, which consists of a piezoelectric element 33 a, which is shown in cross section. The ultrasonic transducer 5 (or the ultrasonic receiver 6) sets down momentarily on the roll surface 2 e and is then carried along and caused to rotate by the moving roll surface 2 e.
FIG. 8 shows an alternative embodiment. The ultrasonic transducer 5 (or the ultrasonic receiver 6, to which the emitted waves are transmitted) is mounted in a swivel head 37, which automatically adjusts itself to the proper angular position. To this end, a carrier 38 can be rotated about a carrier axis 38 a, and an oblong contact body 39 is adjusted at a suitable angle to the mean roll diameter 18 and to the changing roll diameter 19. Instead of the silicone filling 32, oil can be introduced as the coupling medium.
It is not necessary to use the testing method and the device in all of the rolling mills of a rolling train. It is sufficient if the rolling mill with the greatest load (with the greatest draft) is tested, since there is a high probability that cracking will first take place there.
FIG. 9 shows a functional block diagram of a device for evaluating signal patterns that have been obtained. The ultrasonic transducer 5 is connected to the ultrasonic generator 34 and, through the roll 2, with the ultrasonic receiver 6, which is connected to a receiver amplifier 40 and a comparator 41. A following memory oscillograph 42 generates an error signal when there is a difference between two signals. The difference comes about by virtue of the fact that the error signal is conducted over a line 43 and a recorder 44, and in a memory 45 for sample measuring signals A, B, C, D, E, etc., a next following reference sample is selected and passed on to an amplifier 46 for samples. If a comparison in the comparator 41 fails to show agreement, a command is issued, e.g., in the event of a difference, to the recorder 44 to reroute to the next sample measuring signal A, B, C, D, E, etc. After completion of the comparisons with the available sample measuring signals, another test is carried out by a rotation 47 about a preset angle 48 (angle □). After these procedures, additional comparison operations are initiated in the error signal generator 49 (when there is nonagreement of the signals) and carried out by a relay 50.
LIST OF REFERENCE NUMBERS
  • 1 rolling mill
  • 2 roll
  • 2 a work roll
  • 2 b backup roll
  • 2 c first end of roll
  • 2 d second end of roll
  • 2 e roll surface
  • 2 f barrel edge
  • 2 g roll neck
  • 3 housing post
  • 3 a housing bearing
  • 4 ultrasonic waves
  • 4 a transverse ultrasonic waves
  • 4 b direction of propagation
  • 5 ultrasonic transducer
  • 6 ultrasonic receiver
  • 7 screw-down cylinder
  • 8 holder
  • 8 a swivel arm
  • 9 parking position
  • 10 transmission head
  • 11 testing position
  • 12 swivel bearing
  • 13 drive
  • 13 a hydraulic cylinder
  • 14 housing
  • 15 stop
  • 16 rod
  • 17 contact roller
  • 17 a roller bore
  • 18 mean roll diameter
  • 19 changing roll diameter
  • 20 changing roll diameter
  • 21 pivot
  • 22 pivot bearing
  • 23 pivot drive
  • 24 head housing
  • 25 a roller bearing
  • 25 b roller bearing
  • 26 flange
  • 27 core part made of (transparent) plastic
  • 27 a cavity
  • 28 sealed bearing
  • 29 (Oldham) coupling
  • 30 seal
  • 31 annular space
  • 32 silicone filling
  • 33 wave transducer/wave receiver
  • 33 a piezoelectric element
  • 34 ultrasonic generator
  • 35 iridium coating
  • 36 cable
  • 37 swivel head
  • 38 carrier
  • 38 a carrier axis
  • 39 contact body
  • 40 receiver amplifier
  • 41 comparator
  • 42 memory oscillograph
  • 43 line
  • 44 recorder
  • 45 memory
  • 46 amplifier for samples
  • 47 rotation about angle □
  • 48 preset angle
  • 49 error signal generator
  • 50 relay

Claims (12)

1. A method for determining surface defects such as cracks, spalling, on work rolls (2 a) of a rolling mill (1) that are supported with backup rolls (2 b) in housing posts (3), by the use of ultrasonic waves (4), wherein the roll (2) in which defects are to be detected is tested in its installed position, the method comprising the steps of firmly pressing an ultrasonic transducer (5) and an ultrasonic receiver (6) against the surface (2 e) of the roll for the duration of the test, and introducing ultrasonic transverse waves (4 a) with a frequency of about 0.5 to 2 MHz at one end (2 c) of the roll and receiving the ultrasonic waves at the other end (2 d) of the roll, where the ultrasonic waves (4) are conveyed via a piezoelectric element (33 a) through a core part (27) of transparent plastic and an adjacent silicone filling (32) to a roller-shaped contact body (17) made of steel, which is pressed against the roll surface (2 e) at one end of the roll barrel.
2. A method in accordance with claim 1, wherein the ultrasonic transducer (5) and the ultrasonic receiver (6) are applied radially at the edge (2 f) of the barrel, close to the roll neck (2 g), which is supported in the housing bearing (3 a).
3. A method in accordance with claim 1, wherein, when the ultrasonic transducer (5) and the ultrasonic receiver (6) are being applied, the roll (2) in which defects are to be detected is stopped, and then, after the transducer and receiver have been applied, the roll is turned by about two revolutions.
4. A method in accordance with claim 1, wherein an iridium coating (35) is applied on the outer running surface of the roller-shaped contact body (17).
5. A method in accordance with claim 1, wherein the testing operation is carried out without rolling stock between the work rolls (2 a).
6. A method in accordance with claim 1, wherein the ultrasonic waves (4) are introduced into the roll surface (2 e) at an acute angle, and only the component in the direction of the roll surface (2 e) is utilized.
7. A device for determining surface defects such as cracks, spalling, on work rolls (2 a) of a rolling mill (1) that are supported with backup rolls (2 b) in housing posts (3), with the use of ultrasonic waves (4), where a holder (8), which can be swiveled out of a parking position (9) and into a testing position (11) or vice versa, is supported in the housing posts (3), and where the holder (8) holds either an ultrasonic transducer (5) or an ultrasonic receiver (6), and where the holder (8) can be adjusted to a definite contact force by means of a drive (13), wherein a roller-shaped contact body (17) made of steel is arranged at the pressing ends of the swivel arms (8 a), where the contact roller (17) has a stationary core part (27) made of plastic, and where the annular space (31) between the contact roller (17) and the stationary plastic core part (27) is filled with silicone (32) for acoustic coupling.
8. A device in accordance with claim 7, wherein the stationary core part (27) made of plastic is rotationally rigidly connected with a head housing (24) by a coupling (29), where the core part (27) is supported in the contact roller (17) in such a way that it can rotate smoothly, and where an electrically connected wave transducer (33) or wave receiver (33) is mounted in the contact roller (17).
9. A device in accordance with claim 7, wherein the outer surface of the contact roller (17) is coated with iridium (35).
10. A device in accordance with claim 7, wherein it additionally has a circuit, where an ultrasonic transducer (5) is connected to an ultrasonic generator (34) and, through the roll (2), with an ultrasonic receiver (6), which is connected to a receiver amplifier (40) and a comparator (41), where a memory (45) for sample measuring signals (A, B, C, D, E, etc.) is connected with a parallel amplifier (46) for the samples and with the comparator (41), and where a predetermined sample measuring signal (A, B, C, D, E, etc.) is generated in an error signal generator (49) connected to the comparator (41).
11. A device in accordance with claim 10, wherein the error signal generator (49) is connected to a recorder (44) with memory (45).
12. A device in accordance with claims 10, wherein a relay (50) to a following or preceding sample measuring signal (A, B, C, D, E, etc.) is connected to the recorder (44) for a detected sample measuring signal (A, B, C, D, E, etc.).
US11/597,862 2004-10-20 2005-10-19 Method and apparatus for detecting surface defects in rolling mill rollers Expired - Fee Related US7562578B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004051020.2 2004-10-20
DE102004051020A DE102004051020A1 (en) 2004-10-20 2004-10-20 Method, apparatus and circuit for detecting surface defects such as cracks, eruptions and the like on a roll of a rolling mill
PCT/EP2005/011225 WO2006042748A2 (en) 2004-10-20 2005-10-19 Method, device and circuit for detecting surface defects such as cracks, fractures and the like on a rolling mill rollers

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/783,617 Continuation US20050186954A1 (en) 2004-02-20 2004-02-20 Systems and methods that provide user and/or network personal data disabling commands for mobile devices
PCT/IB2005/000333 A-371-Of-International WO2005084052A1 (en) 2004-02-20 2005-02-09 System and method for limiting mobile device functionality

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/642,264 Continuation US9794787B2 (en) 2004-02-20 2015-03-09 System and method for limiting mobile device functionality

Publications (2)

Publication Number Publication Date
US20080028859A1 US20080028859A1 (en) 2008-02-07
US7562578B2 true US7562578B2 (en) 2009-07-21

Family

ID=35871103

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/597,862 Expired - Fee Related US7562578B2 (en) 2004-10-20 2005-10-19 Method and apparatus for detecting surface defects in rolling mill rollers

Country Status (17)

Country Link
US (1) US7562578B2 (en)
EP (1) EP1733224B1 (en)
JP (1) JP2008516211A (en)
KR (1) KR100822696B1 (en)
CN (1) CN101027551B (en)
AT (1) ATE365317T1 (en)
BR (1) BRPI0514022A (en)
CA (1) CA2569546A1 (en)
DE (2) DE102004051020A1 (en)
ES (1) ES2287916T3 (en)
MX (1) MX2007004828A (en)
MY (1) MY142610A (en)
RU (1) RU2346269C1 (en)
TW (1) TW200622239A (en)
UA (1) UA88333C2 (en)
WO (1) WO2006042748A2 (en)
ZA (1) ZA200610864B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090260439A1 (en) * 2005-09-20 2009-10-22 Axel Stuber Device for the Ultrasound Testing of Hot Rolling Material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006028364A1 (en) * 2006-06-19 2007-12-27 Aluminium Norf Gmbh Method and device for condition monitoring of rolls
CN100578213C (en) * 2007-12-18 2010-01-06 宝钢集团常州轧辊制造公司 Fault detection method of roller body chamfering
JP4491800B2 (en) * 2008-03-27 2010-06-30 住友金属工業株式会社 Ultrasonic flaw detection method and apparatus
JP5391781B2 (en) * 2008-04-02 2014-01-15 Jfeスチール株式会社 Roller crack diagnostic apparatus and diagnostic method
JP5412931B2 (en) * 2009-04-08 2014-02-12 Jfeスチール株式会社 Rotation axis abnormality diagnosis device
US20110116961A1 (en) * 2009-11-13 2011-05-19 Hossein Akbari Stators for downhole motors, methods for fabricating the same, and downhole motors incorporating the same
KR101118955B1 (en) * 2009-12-28 2012-02-27 주식회사 성우하이텍 Damage sensing device of forming roll
DE102010045912B4 (en) * 2010-09-21 2014-05-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rotatable rolling bearing
GB201200274D0 (en) * 2012-01-09 2012-02-22 Airbus Operations Ltd Tool and method for manipulating a transducer assembly
CN102721744A (en) * 2012-06-28 2012-10-10 吴江市宏达探伤器材有限公司 Roll shaft C scanning ultrasonic reflectoscope
NO2755812T3 (en) * 2013-03-12 2018-06-30
CN106585100B (en) * 2016-12-20 2018-05-08 武汉钢铁有限公司 Strip surface defect spraying mark equipment
US11340196B2 (en) * 2017-12-21 2022-05-24 Hitachi Metals, Ltd. Online crack detection device for rolling roll, rolling roll, and online crack detection method for rolling roll
CN110856859B (en) * 2018-08-22 2021-05-07 上海梅山钢铁股份有限公司 Hot continuous rolling back-up roll peeling on-line monitoring method
CN109883857B (en) * 2019-03-19 2021-10-26 松下压缩机(大连)有限公司 Method for rapidly detecting internal defects of die-casting aluminum alloy
KR102190450B1 (en) 2019-03-22 2020-12-11 울산과학기술원 Monitoring method of damage in hole processing of carbon fiber reinforced plastic.
CN110726771A (en) * 2019-09-20 2020-01-24 郭拓 Ultrasonic detection equipment for detecting plate defects

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745815A (en) * 1970-10-17 1973-07-17 Riv Officine Di Villar Perosa Device for evaluating the vibrations of a revolving member
US3868847A (en) 1972-12-04 1975-03-04 Walter A Gunkel System and apparatus for inspecting elongated welds
GB1561811A (en) 1975-10-08 1980-03-05 Lamb W C Method and apparatus for ultrasonic inspection
US4423636A (en) 1981-12-08 1984-01-03 Bethlehem Steel Corporation Articulated test probe mechanism with fluid bearing in test roll gap
US5417114A (en) 1989-02-28 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Echo based detecting apparatus employing signal generator and correlator
US5469743A (en) * 1993-06-24 1995-11-28 Zorn; Roger H. Dynamic surface wave roll inspection device
US6105431A (en) 1995-05-18 2000-08-22 Aea Technology Plc Ultrasonic inspection
US6341525B1 (en) 1997-10-31 2002-01-29 Kawasaki Steel Corporation Method and apparatus for ultrasonic testing of the surface of columnar structures, and method for grinding rolls by use of them

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017151B1 (en) * 1970-04-18 1975-06-18
JPS61137059A (en) * 1984-12-08 1986-06-24 Kawasaki Steel Corp Apparatus for inspecting surface flaw
JPH089092B2 (en) * 1987-03-27 1996-01-31 スズキ株式会社 Casting method
JPS63241461A (en) * 1987-03-30 1988-10-06 Tokyo Electric Power Co Inc:The Pig for longitudinal seam flaw detection of pipeline
JPH0267958A (en) * 1988-09-02 1990-03-07 Power Reactor & Nuclear Fuel Dev Corp Ultrasonic wave probe
JPH05145957A (en) * 1991-11-18 1993-06-11 Nec Eng Ltd Subscriber circuit
JPH05322859A (en) * 1992-05-25 1993-12-07 Nkk Corp Roll surface defect detector
JPH08145957A (en) * 1994-11-25 1996-06-07 Sumitomo Metal Ind Ltd Roll flaw detecting method and roll grinding facility
JP3704846B2 (en) * 1996-12-02 2005-10-12 Jfeスチール株式会社 Grinding method and apparatus for surface inspection of rolled steel sheet
JPH11333678A (en) * 1998-05-27 1999-12-07 Nkk Corp Grinding wheel applying method for inspecting surface of rolled steel sheet
JP2000310622A (en) * 1999-04-27 2000-11-07 Hitachi Ltd Multichannel ultrasonic probe
JP2001074713A (en) * 1999-09-08 2001-03-23 Nkk Corp Tank-inspecting apparatus
JP4093459B2 (en) * 2001-09-19 2008-06-04 株式会社リコー Method for detecting protrusions on surface of member for electrophotographic image forming apparatus, detecting apparatus, and production system for member for image forming apparatus
CN1409107A (en) * 2001-09-29 2003-04-09 中国科学院金属研究所 Supersonic and eddy composite automatic detector for pipe
US20060048576A1 (en) * 2002-01-17 2006-03-09 Akihiro Kiuchi Bearing steel,method for evaluating large-sized inclusions in the steel and rolling bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3745815A (en) * 1970-10-17 1973-07-17 Riv Officine Di Villar Perosa Device for evaluating the vibrations of a revolving member
US3868847A (en) 1972-12-04 1975-03-04 Walter A Gunkel System and apparatus for inspecting elongated welds
GB1561811A (en) 1975-10-08 1980-03-05 Lamb W C Method and apparatus for ultrasonic inspection
US4423636A (en) 1981-12-08 1984-01-03 Bethlehem Steel Corporation Articulated test probe mechanism with fluid bearing in test roll gap
US5417114A (en) 1989-02-28 1995-05-23 Mitsubishi Denki Kabushiki Kaisha Echo based detecting apparatus employing signal generator and correlator
US5469743A (en) * 1993-06-24 1995-11-28 Zorn; Roger H. Dynamic surface wave roll inspection device
US6105431A (en) 1995-05-18 2000-08-22 Aea Technology Plc Ultrasonic inspection
US6341525B1 (en) 1997-10-31 2002-01-29 Kawasaki Steel Corporation Method and apparatus for ultrasonic testing of the surface of columnar structures, and method for grinding rolls by use of them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Komsky: "Rolling Dry-Coupled Transducers for Ultrasonic Inspections . . . of aging aircraft structures" in Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems III, Mar. 15-17, 2004, San Diego, Calif., USA, vol. 5, 394, No. 1, pp. 201-209.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090260439A1 (en) * 2005-09-20 2009-10-22 Axel Stuber Device for the Ultrasound Testing of Hot Rolling Material
US7987719B2 (en) * 2005-09-20 2011-08-02 Georgsmarienhütte Gmbh Device for the ultrasound testing of hot rolling material

Also Published As

Publication number Publication date
ATE365317T1 (en) 2007-07-15
CN101027551A (en) 2007-08-29
WO2006042748A3 (en) 2006-08-10
RU2346269C1 (en) 2009-02-10
DE502005000909D1 (en) 2007-08-02
ZA200610864B (en) 2007-08-29
TW200622239A (en) 2006-07-01
WO2006042748A2 (en) 2006-04-27
KR20070011535A (en) 2007-01-24
MX2007004828A (en) 2007-06-15
KR100822696B1 (en) 2008-04-17
JP2008516211A (en) 2008-05-15
US20080028859A1 (en) 2008-02-07
UA88333C2 (en) 2009-10-12
EP1733224B1 (en) 2007-06-20
CN101027551B (en) 2010-12-01
MY142610A (en) 2010-12-15
DE102004051020A1 (en) 2006-05-04
CA2569546A1 (en) 2006-04-27
ES2287916T3 (en) 2007-12-16
BRPI0514022A (en) 2008-05-27
EP1733224A2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
US7562578B2 (en) Method and apparatus for detecting surface defects in rolling mill rollers
US5392652A (en) Method and apparatus for inspection of metal objects utilizing variable angle ultrasonic transducer
JP5663382B2 (en) Rotating array probe system for nondestructive inspection
US7353709B2 (en) Method and system for determining material properties using ultrasonic attenuation
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
KR100585972B1 (en) Ultrasonic device for inspection of metal parts
US6138515A (en) Apparatus for the acoustic detection of defects in a moving strip
US5952578A (en) Ultrasonic examination of coated parts
Kim et al. Evaluating rolling contact fatigue damage precursors with Rayleigh waves in 1060 steel
CA1189944A (en) Well logging device
CN206862966U (en) One kind prevents/relief line ultrasonic phased array imaging detection device
JP3052550B2 (en) Bevel probe for ultrasonic flaw detection
JP3559682B2 (en) Ultrasonic flaw detector using shear wave and horizontal wave
JP2726359B2 (en) Ultrasonic flaw detector for cylindrical surface
JP3573967B2 (en) Plate wave ultrasonic inspection method
KR101890866B1 (en) Apparatus for testing
Canella et al. Ultrasonic inspection of hot thick steel products
Inoue et al. Reflection and Transmission Behaviors of Ultrasonic Wave at Nano-Air Gap Examined Using Newton's Ring Specimen
Lewis et al. Feasibility study for an ultrasonic sensor for monitoring wheel flange contact
JP3008105B2 (en) Ultrasonic inspection method and apparatus
Buttle et al. Early warnings of the onset of rolling contact fatigue by inspecting the residual stress environment of the railhead
JP2004020335A (en) Ultrasonic flaw detecting apparatus
JPH0961406A (en) Diagnostic apparatus for deterioration of metal column
Guo et al. Lamb wave sensors for detecting wall defects in pipes
KR200188752Y1 (en) Noncontact measuring apparatus of roll shape in roll grinder

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMS DEMAG AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIGGE, DIETER;REEL/FRAME:018630/0428

Effective date: 20061110

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: SMS SIEMAG AKTIENGESELLSCHAFT, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:SMS DEMAG AG;REEL/FRAME:025192/0325

Effective date: 20090325

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20130721