JPS61137059A - Apparatus for inspecting surface flaw - Google Patents

Apparatus for inspecting surface flaw

Info

Publication number
JPS61137059A
JPS61137059A JP59258461A JP25846184A JPS61137059A JP S61137059 A JPS61137059 A JP S61137059A JP 59258461 A JP59258461 A JP 59258461A JP 25846184 A JP25846184 A JP 25846184A JP S61137059 A JPS61137059 A JP S61137059A
Authority
JP
Japan
Prior art keywords
air cylinder
probe
spring
tire
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59258461A
Other languages
Japanese (ja)
Inventor
Hajime Takada
一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59258461A priority Critical patent/JPS61137059A/en
Publication of JPS61137059A publication Critical patent/JPS61137059A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To allow the titled apparatus to well follow the surface of an object to be inspected, by supporting a tire shaped ultrasonic probe through an air cylinder apparatus and a spring. CONSTITUTION:A surface flaw inspection apparatus has a support 14 relatively moved to the inspection direction of a steel pipe 13 and also has air cylinder apparatus 15 arranged to the support 14. A spring press plate 17 is fixed to the leading end part of the piston rod 16 of the apparatus 15 and a compression spring 18 is interposed between a holder 11 and the press plate 17. The apparatus 15 absorbs low speed vibration having large amplitude and the spring 18 absorbs small amplitude.

Description

【発明の詳細な説明】 〔産業上の利用分野J 本発明は、鋼板、大径鋼管等の表面疵検査装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a surface flaw inspection device for steel plates, large diameter steel pipes, etc.

〔従来の技術] 従来、鋼板等の表面疵の検査には、たとえば特開昭5l
−f1327flに示されるように、超音波領域の周波
数を有する表面波によって探傷する表面疵検査装置が用
いられている0表面波は、第3図に示すように、音波の
屈折の法則を用い、超音波振動子lが送信する超音波を
屈折角が90度となる入射角θIをもって鋼板2に斜め
入射させることにより鋼板2の表面に発生可能とされる
。入射角θiは第3図のように水3から鋼板2に超音波
を入射させる場合には約30度となる0表面波はその振
動エネルギーの大部分が1表面から一波長(表面波の波
長)までの深さに集中しており1表面疵を有効に検出可
能とする0表面波を用いた探傷では、表面波パルスを被
検体の表面に伝ぱんさせ、表面疵におい゛て反射し、送
受信子としての超音波1!&子lへ戻ってくる表面波パ
ルスを検出し、表面疵を検出可能とする。
[Prior art] Conventionally, for inspection of surface flaws on steel plates, for example,
-f1327fl As shown in Figure 3, a surface flaw inspection device that detects flaws using surface waves having a frequency in the ultrasonic range is used.As shown in Figure 3, surface waves use the law of refraction of sound waves. The ultrasonic wave transmitted by the ultrasonic transducer 1 can be generated on the surface of the steel plate 2 by making it obliquely incident on the steel plate 2 at an incident angle θI with a refraction angle of 90 degrees. The incident angle θi is approximately 30 degrees when the ultrasonic wave is incident on the steel plate 2 from the water 3 as shown in Fig. In flaw detection using surface waves, which are concentrated at a depth of up to 100 mm and can effectively detect surface flaws, surface wave pulses are propagated to the surface of the object, reflected at the surface flaws, Ultrasound 1 as a transmitter/receiver! Detects surface wave pulses that return to the surface, making it possible to detect surface flaws.

ところで、鋼板、大径鋼管の表面疵の検査において、第
4図に示すよ、うに、探触子ホルダl’lに転動可能に
保持され、超音波振動子1を内臓したタイヤ型超音波探
触子12を適当な接触媒質を介してたとえば大径鋼管1
3の表面に押当てれば、表面波パルスの送受信が可能と
なり、表面疵の検出が可能となる。そこで、上記タイヤ
型超音波探触子12を適当な保持手段を用いて固定し、
タイヤ型超音波探触子12を大径鋼管13に押当てた状
態で大径鋼管13を走行させるか、もしくは、タイヤ型
超音波探触子12を大径鋼管13に沿って走行する台車
に取付け、タイヤ型超音波探触子12を大径鋼管13に
押当てた状態で、この台車を走行させれば、大径鋼管1
3の表面全面の検査が可能となる。
By the way, in the inspection of surface flaws on steel plates and large-diameter steel pipes, as shown in FIG. The probe 12 is connected to a large diameter steel pipe 1 via a suitable couplant.
3, surface wave pulses can be transmitted and received, and surface flaws can be detected. Therefore, the tire-shaped ultrasonic probe 12 is fixed using a suitable holding means,
Either the tire-shaped ultrasonic probe 12 is pressed against the large-diameter steel pipe 13 and the large-diameter steel pipe 13 is run, or the tire-shaped ultrasonic probe 12 is mounted on a cart that runs along the large-diameter steel pipe 13. If the cart is run with the tire-shaped ultrasonic probe 12 pressed against the large-diameter steel pipe 13, the large-diameter steel pipe 1
3. It becomes possible to inspect the entire surface.

上記タイヤ型超音波探触子12による表面波を用いた表
面疵の検査においては、鋼管等の表面に対する表面波の
送受信の効率を一定に保つことが重要であり、表面波の
送受信をつかさどるタイヤ型超音波探触子12を鋼管等
の表面の動きによく追従させ、該表面に一定の圧力で押
付けることが重要となる。従来、タイヤ型探触子等の超
音波探触子を被検体の表面に追従させ一定の圧力で押付
ける手段としてスプリングもしくはエアシリンダ装置が
用いられている。
In inspecting surface flaws using surface waves using the tire-shaped ultrasonic probe 12, it is important to maintain a constant efficiency of transmitting and receiving surface waves to and from the surface of a steel pipe, etc. It is important to make the ultrasonic probe 12 closely follow the movement of the surface of the steel pipe, etc., and to press it against the surface with a constant pressure. Conventionally, a spring or an air cylinder device has been used as a means for causing an ultrasonic probe such as a tire-shaped probe to follow the surface of a subject and press it with a constant pressure.

[発明が解決しようとする問題点] しかしながら、J:、記スプリングもしくはエアシリン
ダ装置をタイヤ型超音波探触子を用いた表面波による表
面疵検査装置に用いる場合には、以下の欠点がある。
[Problems to be Solved by the Invention] However, when the spring or air cylinder device described in J. is used in a surface flaw inspection device using a surface wave using a tire-shaped ultrasonic probe, there are the following drawbacks. .

(a)スプリングは、ストロークを大きくとることがで
きないため、被検体の曲りが大きい場合、この曲りに追
従できない、すなわち、探触子が被検体から離れてしま
うか、もしくは探触子が被検体と該探触子の支持体の間
に強く挟み込まれ、破壊されてしまうにいたる場合もあ
り得る。
(a) Since the spring cannot take a large stroke, if the curve of the test object is large, it will not be able to follow this bend, in other words, the probe will move away from the test object, or the probe will not move away from the test object. In some cases, the probe may be strongly pinched between the probe and the support of the probe, leading to its destruction.

(b)エアシリンダ装置は、被検体の表面の動きに対す
る応答が遅く、タイヤ型超音波−探触子を固定し、被検
体を走行させて表面疵の検査を行う形式では、被検体が
走行する際に生ずる被検体の比較的小さな振幅ではある
が高速の振動により、またタイヤ型超音波探触子を被検
体に沿って走行する台車に取付け、この台車を走行させ
て表面疵の検査を行う方式では、台車の走行により生ず
るタイヤ型超音波探触子の支持体の比較的小さな振幅で
はあるが、高速の振動により、それぞれ、タイヤ型探触
子の被検体表面への押付は圧力が変化し、被検体の表面
への表面波の送受信の効率が安定しない。
(b) The air cylinder device has a slow response to the movement of the surface of the subject, and in a system in which the tire-shaped ultrasonic probe is fixed and the subject is moved to inspect the surface, The relatively small amplitude but high-speed vibrations of the specimen that occur during the process also allow a tire-shaped ultrasonic probe to be attached to a trolley that runs along the specimen, and this trolley is driven to inspect the surface for defects. In this method, the pressure of the tire-shaped ultrasonic probe against the surface of the specimen is reduced due to the relatively small amplitude but high-speed vibration of the support of the tire-shaped ultrasonic probe caused by the running of the cart. The efficiency of transmitting and receiving surface waves to and from the surface of the object is unstable.

また、上記スプリングやエアシリンダ装置の有する欠点
を改良し、超音波探触子を良好に被検体の表面に追従さ
せ、該超音波探触子を一定の圧力で被検体の表面に押付
けることを目的としてなされた発明として、特開昭59
−128241の多段エアシリンダ装置を用いた探触子
の押付は装置があるが、この多段エアシリンダ装置は構
造が複雑で取扱いが非常に難しいという欠点がある。
In addition, it is possible to improve the drawbacks of the spring and air cylinder devices described above, to make the ultrasonic probe follow the surface of the object well, and to press the ultrasonic probe against the surface of the object with a constant pressure. As an invention made for the purpose of
Although there is a device for pressing a probe using a multi-stage air cylinder device (No. 128241), this multi-stage air cylinder device has the disadvantage that it has a complicated structure and is very difficult to handle.

本発明は、簡単かつ取扱いの容易な構造により、タイヤ
型探触子を被検体の表面に良好に追従させ、かつ一定の
圧力で押付け、一定の効率で被検体の表面に対する表面
波の送受信を行い、安定的に被検体の表面疵の検査を行
うことを目的とする。
The present invention uses a simple and easy-to-handle structure to enable a tire-shaped probe to closely follow the surface of an object, press it with a constant pressure, and send and receive surface waves to and from the surface of the object with constant efficiency. The purpose of this test is to perform stable inspections for surface defects on specimens.

[問題点を解決するための手段] 本発明は、探触子ホルダに転動可能に保持されるタイヤ
型超音波探触子により、被検体の表面に表面波を伝ぱん
させ、被検体の表面疵を検査する表面疵検査装置におい
て、被検体の検査方向に該被検体に対して相対移動可能
とされる支持体と、支持体に配設されるエフシリンダ装
置と、エアシリンダ装置のピストンロッド先端部と探触
子ホルダとの間に介装されるスプリングとを有してなる
ようにしたものである。
[Means for Solving the Problems] The present invention uses a tire-shaped ultrasonic probe that is rotatably held in a probe holder to propagate surface waves to the surface of an object to be examined. A surface flaw inspection device that inspects surface flaws includes a support that is movable relative to the test object in the test direction of the test object, an F cylinder device disposed on the support, and a piston of an air cylinder device. The probe includes a spring interposed between the rod tip and the probe holder.

[作 用] 本発明においては、支持体と被検体との相対移動に伴う
支持体もしくは被検体の振動、すなわち振幅は小である
が高速の振動をスプリングの伸縮によって吸収し、被検
体の曲りによる支持体の振動、すなわち振幅の大きい低
速の振動をエアシリンダ装置の伸縮によって吸収するこ
とが可能である。したがって、本発明によれば、簡単か
つ取扱い容易なui造により、タイヤ型探触子を被検体
の表面に良好に追従させ、かつ一定の圧力で押付け、一
定の効率で被検体の表面に対する表面波の送受信を行い
、安定的に被検体の表面疵の検査を行うことか可能とな
る。
[Function] In the present invention, vibrations of the support or the object due to relative movement between the support and the object, that is, small amplitude but high-speed vibrations, are absorbed by the expansion and contraction of the spring, and bending of the object is absorbed. It is possible to absorb the vibrations of the support body due to this, that is, the low-speed vibrations with large amplitudes, by expanding and contracting the air cylinder device. Therefore, according to the present invention, by using a simple and easy-to-handle UI structure, the tire-shaped probe can be made to follow the surface of the subject well and pressed with a constant pressure, and the surface of the tire-shaped probe can be pressed against the surface of the subject with a constant efficiency. By transmitting and receiving waves, it becomes possible to stably inspect the surface of a subject for defects.

[実施例] 第1図は本発明の一実施例に係る表面疵検査装置10を
示す正面図、第2図は第1図の側面図である。
[Example] FIG. 1 is a front view showing a surface flaw inspection apparatus 10 according to an example of the present invention, and FIG. 2 is a side view of FIG. 1.

表面疵検査装置10は、探触子ホルダ11に転動可能に
保持されるタイヤ型超音波探触子12により、被検体と
しての大径鋼管13の表面に表面波を伝ぱんさせ、鋼管
13の表面疵を検査可能とする。タイヤ型超音波探触子
12は、不図示の超音波振動子を内蔵している。
The surface flaw inspection device 10 propagates surface waves onto the surface of a large diameter steel pipe 13 as a test object using a tire-shaped ultrasonic probe 12 that is rotatably held in a probe holder 11. surface flaws can be inspected. The tire-shaped ultrasonic probe 12 has a built-in ultrasonic transducer (not shown).

表面疵検査装置10は、鋼管13の検査方向において該
鋼管13に対して相対移動可能とされる支持体14を有
している。支持体14は、鋼管13に沿って走行する台
車に取付けられるか、走行する鋼管13に対して対向配
置される固定スタ/トに取付けられる。
The surface flaw inspection device 10 has a support 14 that is movable relative to the steel pipe 13 in the inspection direction of the steel pipe 13. The support body 14 is attached to a truck running along the steel pipe 13, or to a fixed start/start placed opposite to the running steel pipe 13.

表面疵検査装置10は、h記支持体14にエア/リンダ
装置15を配設している。エアシリンダ装置15のピス
トンロッド16の先端部にはスプリング押え板17が固
定され、前記探触子ホルダ11とスプリング押え板17
との間には圧縮子プリング18が介装されている。ここ
で、エアシリンダ装置15は、応答性は慈いものの、低
速の大きな振幅の振動であれば充分に吸収可能である。
The surface flaw inspection apparatus 10 has an air/linda device 15 disposed on the support 14 shown in h. A spring holding plate 17 is fixed to the tip of the piston rod 16 of the air cylinder device 15, and the probe holder 11 and the spring holding plate 17
A compressor pull 18 is interposed between the two. Here, although the air cylinder device 15 has poor responsiveness, it can sufficiently absorb vibrations of low speed and large amplitude.

また、圧縮スプリング18は、小さな振幅であれば、高
速の振動でも吸収可能である。
Further, the compression spring 18 can absorb even high-speed vibrations as long as the amplitude is small.

なお、探触子ホルダ11には、複数(この実施例では4
本)の案内ロッド19が固定され、案内ロッド19は、
スプリング押え板17に設けられた案内孔17Aを貫通
し、さらに支持体14に設けられた案内孔14Aを貫通
するとともに、探触子ホルダ11とスプリング押え板1
7の間に位賃する部分の周囲に圧縮スプリング18を遊
装されている。
Note that the probe holder 11 has a plurality of (four in this embodiment)
The guide rod 19 of the book) is fixed, and the guide rod 19 is
The probe holder 11 and the spring press plate 1 pass through the guide hole 17A provided in the spring press plate 17, and further penetrate the guide hole 14A provided in the support body 14.
A compression spring 18 is loosely installed around the part that extends between 7 and 7.

すなわち1表面疵検査装f1toは、エアシリンダMi
W15および圧縮スプリング18の伸縮下で、タイヤ型
超音波探触子12を支持体14に支持し、タイヤ型超音
波探触子12を一定の圧力で鋼管13の表面に押付は可
能としている。この時、探触子ホルタitは、案内ロッ
ド19をスプリング押え板17の案内孔17A、支持体
14の案内孔14Aに対して滑動させ、タイヤ型超音波
探触子12が上記エアシリンダ装3115、圧縮スプリ
ング18の伸縮方向に直交する前後左右方向に揺れ動く
のを防止可能とする。また、圧縮スプリング18は、探
触子ホルダ11とスプリング押え板17の間の案内ロッ
ド19の周囲において安定的に保持される。
In other words, the first surface flaw inspection device f1to is the air cylinder Mi.
The tire-shaped ultrasonic probe 12 is supported on the support body 14 under the expansion and contraction of W15 and the compression spring 18, and it is possible to press the tire-shaped ultrasonic probe 12 against the surface of the steel pipe 13 with a constant pressure. At this time, the probe holster it slides the guide rod 19 against the guide hole 17A of the spring holding plate 17 and the guide hole 14A of the support body 14, and the tire-type ultrasonic probe 12 slides into the air cylinder assembly 3115. , it is possible to prevent the compression spring 18 from swinging in the front, back, left and right directions orthogonal to the direction of expansion and contraction. Further, the compression spring 18 is stably held around the guide rod 19 between the probe holder 11 and the spring holding plate 17.

次に、上記実施例の作用について説明する。この表面疵
検査装置lOは、前述のように、支持体14と鋼管13
が検査方向において相対移動する状態下で、鋼管13の
表面の有害な疵を検出可能とする。
Next, the operation of the above embodiment will be explained. As described above, this surface flaw inspection device 10 includes a support body 14 and a steel pipe 13.
Harmful flaws on the surface of the steel pipe 13 can be detected under conditions in which the steel pipe 13 moves relatively in the inspection direction.

この時、支持体14と鋼管13との相対移動に伴う支持
体14もしくは鋼管13の振動、すなわち振幅は小であ
るが高速の振動が圧縮スプリング18の伸縮によって吸
収される。また、鋼管13の曲りによる支持体14と大
径鋼管13との距離の変動、すなわち振幅の大きい低速
の振動がエアシリンダ装置15の伸縮によって吸収され
る。
At this time, vibrations of the support body 14 or the steel pipe 13 due to relative movement between the support body 14 and the steel pipe 13, that is, vibrations having a small amplitude but high speed, are absorbed by the expansion and contraction of the compression spring 18. Furthermore, fluctuations in the distance between the support body 14 and the large-diameter steel pipe 13 due to bending of the steel pipe 13, that is, low-speed vibrations with large amplitudes, are absorbed by the expansion and contraction of the air cylinder device 15.

したがって、上記表面疵検査装置lOによれば、簡単か
つ取扱いの容易な構造により、一定の効率で鋼管13の
表面に対する表面波の送受信を行い、安定的に鋼管13
の表面疵の検査を行うことが可能となる。
Therefore, according to the above-mentioned surface flaw inspection device IO, surface waves can be transmitted and received to and from the surface of the steel pipe 13 with a certain efficiency, with a simple and easy-to-handle structure, and the surface of the steel pipe 13 can be stably
This makes it possible to inspect surface flaws.

なお1本発明は、鋼管のみならず、鋼板等の表面疵検査
にも広く適用可能である。
Note that the present invention is widely applicable not only to steel pipes but also to surface flaw inspections of steel plates and the like.

[発明の効果] 以上のように、本発明は、探触子ホルダに転動可能に保
持されるタイヤ型超音波探触子により。
[Effects of the Invention] As described above, the present invention uses a tire-shaped ultrasonic probe that is rotatably held in a probe holder.

被検体の表面に表面波を伝ぱんさせ、被検体の表面疵を
検査する表面疵検査装置において、被検体の検査方向に
該被検体に対して相対移動可能とされる支持体と、支持
体に配設されるエアシリンダ装置と、エアシリンダ装置
のピストンロッド先端部と探触子ホルダとの間に介装さ
れるスプリングとを有してなるようにしたものである。
In a surface flaw inspection device for inspecting surface flaws on a test object by propagating surface waves on the surface of the test object, a support member movable relative to the test object in an inspection direction of the test object; The probe holder includes an air cylinder device disposed in the air cylinder device, and a spring interposed between the tip of the piston rod of the air cylinder device and the probe holder.

したがって、簡単かつ取扱い容易な構造により、タイヤ
型探触子を被検体の表面に良好に追従させ、かつ−定の
圧力で押付け、一定の効率で被検体の表面に対する表面
波の送受信を行い、安定的に被検体の表面疵の検査を行
うことが可能となる。
Therefore, with a simple and easy-to-handle structure, the tire-shaped probe can be made to follow the surface of the object well, and pressed with a constant pressure, and the surface waves can be transmitted and received to and from the surface of the object with a certain efficiency. It becomes possible to stably inspect the surface flaws of the subject.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る表面疵検査装置を示す
正面図、第2図は第1図の側面図、第3図は一般的な表
面波の励振方法を示す断面図、第4図はタイヤ型超音波
探触子による表面波の送受信方法を示す模式図である。 lO・・・表面疵検査装置、11・・・探触子ホルダ、
12・・・タイヤ型超音波探触子、13・・・鋼管。 14・・・支持体、15・・・エアシリンダ装置、18
・・・圧縮スプリング。
FIG. 1 is a front view showing a surface flaw inspection apparatus according to an embodiment of the present invention, FIG. 2 is a side view of FIG. 1, and FIG. 3 is a sectional view showing a general surface wave excitation method. FIG. 4 is a schematic diagram showing a method of transmitting and receiving surface waves using a tire-shaped ultrasonic probe. lO...Surface flaw inspection device, 11...Probe holder,
12... Tire-shaped ultrasonic probe, 13... Steel pipe. 14... Support body, 15... Air cylinder device, 18
...Compression spring.

Claims (1)

【特許請求の範囲】[Claims] (1)探触子ホルダに転動可能に保持されるタイヤ型超
音波探触子により、被検体の表面に表面波を伝ぱんさせ
、被検体の表面疵を検査する表面疵検査装置において、
被検体の検査方向に該被検体に対して相対移動可能とさ
れる支持体と、支持体に配設されるエアシリンダ装置と
、エアシリンダ装置のピストンロッド先端部と探触子ホ
ルダとの間に介装されるスプリングとを有してなること
を特徴とする表面疵検査装置。
(1) In a surface flaw inspection device that inspects surface flaws on a test object by propagating surface waves onto the surface of the test object using a tire-shaped ultrasonic probe that is rotatably held in a probe holder,
A support that is movable relative to the test object in the test direction of the test object, an air cylinder device disposed on the support, and a space between the piston rod tip of the air cylinder device and the probe holder. 1. A surface flaw inspection device comprising: a spring interposed in the surface flaw inspection device;
JP59258461A 1984-12-08 1984-12-08 Apparatus for inspecting surface flaw Pending JPS61137059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59258461A JPS61137059A (en) 1984-12-08 1984-12-08 Apparatus for inspecting surface flaw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258461A JPS61137059A (en) 1984-12-08 1984-12-08 Apparatus for inspecting surface flaw

Publications (1)

Publication Number Publication Date
JPS61137059A true JPS61137059A (en) 1986-06-24

Family

ID=17320544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258461A Pending JPS61137059A (en) 1984-12-08 1984-12-08 Apparatus for inspecting surface flaw

Country Status (1)

Country Link
JP (1) JPS61137059A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129610U (en) * 1988-02-18 1989-09-04
JPH01137408U (en) * 1988-03-16 1989-09-20
JPH01137409U (en) * 1988-03-16 1989-09-20
JPH0650944A (en) * 1992-07-31 1994-02-25 Nkk Corp Inspecting apparatus for lap-joint welding part
JPH11337537A (en) * 1998-05-22 1999-12-10 Nippon Seiko Kk Ultrasonic manual inspection method
JP2008516211A (en) * 2004-10-20 2008-05-15 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method, apparatus and circuit for detecting roll surface defects, such as cracks, depressions, etc., in rolling equipment
CN103837599A (en) * 2012-11-23 2014-06-04 上海金艺检测技术有限公司 Contact-type four-channel ultrasonic probe bracket for roller flaw detection
CN109254085A (en) * 2018-11-07 2019-01-22 国网四川省电力公司成都供电公司 A kind of probe sticking machine for eminence GIS ultrasonic test

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01129610U (en) * 1988-02-18 1989-09-04
JPH0547366Y2 (en) * 1988-02-18 1993-12-14
JPH01137408U (en) * 1988-03-16 1989-09-20
JPH01137409U (en) * 1988-03-16 1989-09-20
JPH0650944A (en) * 1992-07-31 1994-02-25 Nkk Corp Inspecting apparatus for lap-joint welding part
JPH11337537A (en) * 1998-05-22 1999-12-10 Nippon Seiko Kk Ultrasonic manual inspection method
JP2008516211A (en) * 2004-10-20 2008-05-15 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Method, apparatus and circuit for detecting roll surface defects, such as cracks, depressions, etc., in rolling equipment
CN103837599A (en) * 2012-11-23 2014-06-04 上海金艺检测技术有限公司 Contact-type four-channel ultrasonic probe bracket for roller flaw detection
CN109254085A (en) * 2018-11-07 2019-01-22 国网四川省电力公司成都供电公司 A kind of probe sticking machine for eminence GIS ultrasonic test

Similar Documents

Publication Publication Date Title
US5587534A (en) Wall thickness and flow detection apparatus and method for gas pipelines
JPWO2007113907A1 (en) Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus
WO1996013720A9 (en) Gas pipeline wall thickness and flaw detection
CN104359979B (en) A kind of carbon steel/al blasting multiple tube interlayer transverse crack detection method
US7703327B2 (en) Apparatus and method for area limited-access through transmission ultrasonic inspection
JP2613654B2 (en) Ultrasonic testing
CN108896663B (en) Air coupling ultrasonic non-contact detection system for defects of inner surface layer of gas pipeline
Kharrat et al. Pipeline inspection using a torsional guided-waves inspection system. Part 1: Defect identification
JPS61137059A (en) Apparatus for inspecting surface flaw
KR100716593B1 (en) Contactless inspection system of pipe using ring-arrayed laser illumination
RU136576U1 (en) DEVICE FOR DETERMINING DEFECTS OF THE SAMPLE OF MAIN PIPELINES
US4760737A (en) Procedure for flaw detection in cast stainless steel
CN107356674A (en) A kind of construction steel structure supersonic detection device
CN111678986B (en) Ultrasonic guided wave detection device and method for edge defects of turbine blades
CN205157493U (en) Sheet metal crazing line ultrasonic testing positioner
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
Hayashi et al. Rapid thickness measurements using guided waves from a scanning laser source
CN212341109U (en) Guide wave detection device for edge defects of turbine blades
JP4144703B2 (en) Tube inspection method using SH waves
CN111693611A (en) Method and system for detecting metal subsurface defects by using laser ultrasonic
CN113295772B (en) Thin-walled tube nondestructive testing device and method based on ultrasonic leaky lamb waves
JP2006023215A (en) Ultrasonic inspection method, ultrasonic inspection device and guide wave transducer for the ultrasonic inspection device
Gauthier et al. EMAT generation of horizontally polarized guided shear waves for ultrasonic pipe inspection
CN110763582A (en) High-frequency vibration device for nondestructive testing of micro-cracks on surface layer of small-size component
JPS6439548A (en) Ultrasonic flaw detector