US7460800B2 - Image forming apparatus with adaptive pre-processing and post-processing based on usage history - Google Patents
Image forming apparatus with adaptive pre-processing and post-processing based on usage history Download PDFInfo
- Publication number
- US7460800B2 US7460800B2 US11/369,006 US36900606A US7460800B2 US 7460800 B2 US7460800 B2 US 7460800B2 US 36900606 A US36900606 A US 36900606A US 7460800 B2 US7460800 B2 US 7460800B2
- Authority
- US
- United States
- Prior art keywords
- time
- image forming
- forming apparatus
- processing operation
- developer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/50—Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
Definitions
- the present technology relates to an image forming apparatus such as a copier, printer, facsimile machine, etc., which performs a printing process of transferring an unfixed developer image of image information to a sheet of paper that is fed and fusing and fixing the image information of the unfixed developer to the paper.
- an image forming apparatus such as a copier, printer, facsimile machine, etc., which performs a printing process of transferring an unfixed developer image of image information to a sheet of paper that is fed and fusing and fixing the image information of the unfixed developer to the paper.
- the particle size of the toner has also become smaller. Specifically, the particle size of the toner used to be 8 to 12 ⁇ m in diameter, but is about 4 to 8 ⁇ m now. However, as the toner size becomes smaller, various kinds of problems with the image forming apparatuses also have arisen.
- Examples of the problems include the lack of uniformity of toner concentration control in the developer hopper, the lock (broken drive) of the cleaning member of the photoreceptor, and the like.
- the cause of the occurrence of the above problem can be attributed to the detection characteristics of the toner concentration sensor.
- a typical toner concentration sensor detects toner concentration using magnetic permeability detection.
- the toner concentration sensor detects the output voltage that increases in accordance with the magnetic permeability, so that it detects a reduction in toner concentration from increase in the voltage signal.
- the developer becomes dense in the developer hopper after a long cessation of the image forming apparatus, presenting an apparent high volume density.
- the toner concentration sensor will detect a lower value than the actual toner concentration at the start of agitation of the developer (toner and carrier).
- toner comes to be added to the developer hopper, causing “an over density of print” and toner scattering in the machine due to “excess toner”, giving rise to the problem of degradation of the image to be printed on the paper.
- the cleaning unit for removing leftover toner from the photoreceptor drum if the machine has not been operated for a long period, the collected toner may aggregate to cause increase in the load on the rotational drive of the conveyor screw of the collected toner at re-start, hence there is a risk of occurrence of the cleaning unit being locked. With this locking, the cleaning blade maybe excessively thrust onto the photoreceptor drum, causing damage on the photoreceptor drum and other problems, hence causing image degradation. Accordingly, it is necessary to perform a correct post-processing operation such as to convey the collected toner into the developer hopper, but there was a problem that there has been no conventional technology to perform a cleaning operation by taking into account the cessation time of the apparatus.
- the problem is that there has been no proposal of a technology to improve print quality by performing a pre-processing operation such as agitating the developer before a printing operation and performing a post-processing operation such as cleaning after a printing operation, in a suitable manner.
- the present technology has been devised in view of the above problems, it is therefore a feature of an example embodiment presented herein to provide an image forming apparatus in which in countermeasure against the change of the conditions of the developer with passage of time due to the usage history of the image forming apparatus, i.e., due to low frequency of usage or due to long time cessation, the developer can be processed suitably to thereby improve the quality of images to be formed on the paper.
- the present technology relates to an image forming apparatus and is configured as follows.
- An image forming apparatus includes: a paper feed portion for storing paper and selectively feeding and conveying the paper, sheet by sheet, from a stack of paper stored therein; a printing portion for performing a printing process for transferring image information of an unfixed developer to the fed paper; a fixing portion for fusing and fixing the image information formed of the unfixed developer to the paper; a paper discharge portion for discharging the paper with the image information fused and fixed thereon to the outside of the apparatus; a history storage portion for storing the usage history involving the number of prints of the image forming apparatus; and, a processing time controller for changing the time of the pre-processing operation before or the time of the post-processing operation after a printing process of the printing portion, based on the stored usage history so as to exclude the influence of the unfixed developer on the printing process.
- the usage history stored in the history storage portion is defined by separately counting the number of times the image forming apparatus has been used for printing operations for a single print and the numbers of times the apparatus has been used for printing operations for multiple prints, so as to grasp the conditions of operation of the image forming apparatus.
- the usage history stored in the history storage portion is the usage history of the image forming apparatus at least one day ago.
- the time controller calculates the printing process operation time of the image forming apparatus based on the usage history stored in the history storing portion, and extends the pre-processing operation time or post-processing operation time, longer than the usual processing operation time when the calculated printing process operation time is shorter than a predetermined reference time for change.
- the processing time controller calculates the printing process operation time of the image forming apparatus based on the usage history stored in the history storing portion and performs the pre-processing operation or post-processing operation with the usual processing operation time when the calculated printing process operation time is equal to or greater than a predetermined reference time for change.
- the predetermined reference time for change is set up based on the time over which no printing process is operated in the image forming apparatus.
- the image forming apparatus further includes a toner concentration sensor for detecting the toner concentration of the developer made up of a toner and a carrier and held in the developer hopper, and is characterized in that, when the image forming apparatus has been unused as long as or longer than the passage of time which would affect the detection of the magnetic permeability sensor due to the time-dependent change in the volume density of the unfixed developer, the predetermined reference time for change is set in accordance with the time of cessation.
- the processing time controller based on the stored usage history, extends the time of agitating the unfixed developer in the pre-processing operation until the volume density of the unfixed developer reaches a value at which the toner concentration sensor will not produce a wrong detection.
- the image forming apparatus further includes a toner concentration sensor for detecting the toner concentration of the developer made up of a toner and a carrier and held in the developer hopper, and is characterized in that the processing time controller extends the time of agitating the unfixed developer in the pre-processing operation until at least the output value from the toner concentration sensor falls within the predetermined range.
- the printing portion has a photoreceptor drum for forming an electrostatic latent image for the unfixed developer
- the processing time controller based on the stored usage history, extends the initializing rotational period for a developer roller at the pre-processing operation and that for the photoreceptor drum at the pre-processing operation, longer than the normal pre-processing operation time, in order to remove the influence of the unfixed developer on the printing process.
- the printing portion includes a photoreceptor drum for bearing image information formed with the unfixed developer and a cleaning unit that collects the unfixed developer remaining on the image support at the post-processing operation after the printing process, the influence of the unfixed developer on the printing process is time-dependent aggregation of the collected developer, and the processing time controller, based on the stored usage history, extends the drive time of the cleaning unit in the post-processing operation, longer than the normal post-processing operation time.
- the cleaning unit when the cleaning unit is driven in the pre-processing operation, the cleaning unit is preferably driven with a higher torque at the initial stage of activation and then driven with a normal torque.
- the processing time controller sums up the printing process operation time (T 1 ), the pre-processing operation time (T 2 ) and the post-processing operation time (T 3 ) of image forming apparatus separately and makes comparison based on the following formulae, and determines whether the pre-processing operation time or post-processing operation time should be made longer or shorter than the normal processing operation time: ⁇ ( T 1) ⁇ ( ⁇ ( T 2)+ ⁇ ( T 3)) (1) ⁇ ( T 1) ⁇ ( ⁇ ( T 2)+ ⁇ ( T 3)) (2), where when the relation (1) holds, the printing process operation time is determined to be equal to or longer than the predetermined reference time for change; and
- the printing process operation time is determined to be shorter than the predetermined reference time for change.
- the image forming apparatus since the image forming apparatus stores the usage history of the number of prints in the image forming apparatus and changes the time of the pre-processing operation before, or the post-processing operation after, the printing process effected by printing portion based on the stored usage history so as to exclude the influence on the printing process by the unfixed developer, it is possible to prevent the volume density of the developer from becoming high and prevent aggregation of the developer collected by the cleaning unit, for example. Accordingly, this configuration is markedly effective in eliminating the risk of the developer image being degraded and improving printing quality.
- the usage history is a one that is defined by separately counting the number of times the image forming apparatus has been used for printing operations for a single print and the numbers of times the apparatus has been used for printing operations for multiple prints, so as to present the usage history to grasp the conditions of operation of the image forming apparatus.
- the pre-processing or post-processing operation time can be varied as appropriate depending on the operated status of the image forming apparatus, taking into account the operations of a single prints and the operations of multiple prints.
- the usage history stored in the history storage portion is the usage history of the image forming apparatus at least one day ago.
- the usage history stored in the history storage portion may be preferably, that for one week and more preferably that for one month.
- the usage history from one day ago is stored, the latest usage history can be known; and use of the usage history for one week or one month makes it possible to change the time of the pre-processing operation or post-processing operation taking into account the usage history over time.
- the pre-processing operation time or post-processing operation time is extended longer than the usual processing operation time. Accordingly, it is possible to effectively prevent degradation of printing quality when the condition of the developer has changed due to a lower usage time.
- the pre-processing operation or post-processing operation is performed with the usual processing operation time, the time for the pre-processing operation or post-processing operation is unchanged when the condition of the developer has not changed too much because the apparatus has been used in longer time or more frequently.
- the time for the pre-processing operation or post-processing operation is unchanged when the condition of the developer has not changed too much because the apparatus has been used in longer time or more frequently.
- the predetermined reference time for change is set up based on the time over which no printing process is operated or the image forming apparatus is unused, etc., it is possible to determine whether the pre-processing operation or post-processing operation time is changed, taking into account the status change of the developer which depends on the printing cessation time.
- the processing time controller since the processing time controller, based on the stored usage history, extends the time of agitating the unfixed developer in the pre-processing operation until the volume density of the unfixed developer reaches a value at which the toner concentration sensor will not produce a wrong detection, it is possible to exclude the influence of the volume density of the unfixed developer on printing, hence improve printing quality.
- the developer can be supplied only after the volume density of the developer has been made pertinent by agitation without any risk of erroneous detection of the toner concentration sensor, so that it is possible to achieve toner concentration adjustment with high precision.
- the processing time controller based on the stored usage history, extends the drive time of the cleaning unit in the post-processing operation, longer than the normal post-processing operation time. If the developer collected by the cleaning unit becomes aggregated with the passage of time in the storage receptacle for temporarily storing the developer, there is a fear that the conveyor such as a screw for conveying the developer from the storage receptacle, to a collection box which is separately provided or, to the developer hopper, will lock.
- FIG. 1 shows an overall external configuration of an image forming apparatus according to an example embodiment.
- Optical lens element 6 is laid out on the light path of the reflected light from the original image, lead from third mirror 5 B of second scan unit 5 so that the light image is focused on photoelectric transducer 7 .
- laser scanning unit 8 emits laser beams in accordance with the printing image information output from image processing portion 57 over the surface of photoreceptor drum 11 (also functions as an image support) as a constituent of image forming portion (printing portion for performing an image forming process) 10 . In this way, an electrostatic latent image of the printing image information is written and formed on photoreceptor drum 11 .
- Photoreceptor drum 11 is rotationally driven in the direction of the arrow.
- a main charger 12 for charging the photoreceptor drum 11 surface at a predetermined potential
- laser scanning unit 8 for emitting laser beams for forming an electrostatic latent image on the photoreceptor drum 11 surface
- a developing unit 13 for developing the electrostatic latent image formed by illumination of the laser beams from laser scanning unit 8 with a developer (consisting of a toner and a magnetic carrier) into a visual image (form a toner image)
- a transfer roller 14 for transferring the toner image of the original image that has been visualized by the developing unit 13 to a sheet of recording paper (also called “print paper”) P fed through a paper feed path 25 from a paper feed cassette 23 detailed later
- a cleaning device corresponding to a “cleaning unit”
- Main charger 12 of image forming portion 10 also has the function of an unillustrated charge erasing device for erasing charge on the photoreceptor drum 11 surface after cleaning by cleaning device 15 .
- Developing unit 13 includes: a developer hopper 13 a for holding the developer consisting of a toner and a carrier of magnetic material; a toner concentration sensor 13 b of a magnetic permeability sensor for detecting the toner concentration of the developer in the developer hopper 13 a ; and a developing roller 13 c for delivering the developer from developer hopper 13 a to photoreceptor drum 11 .
- Cleaning device 15 includes: a cleaning member having a cleaning blade etc., for collecting the leftover toner from photoreceptor drum 11 by making the cleaning blade into sliding contact with the photoreceptor drum 11 and temporarily storing the collection in a storage receptacle etc.; and a waste toner conveyor screw (conveying member) 15 a for conveying the collected waste developer (waste toner) to an unillustrated collecting box or to developer hopper 13 a.
- the recording paper P with a toner image transferred thereon as it being nipped between photoreceptor drum 11 and transfer roller 14 is separated from the photoreceptor drum 11 surface and further conveyed along a main conveyance path 16 to fixing unit 30 where the paper enters between a heat roller (drive roller) 31 and pressing roller (an element opposing the drive roller) 32 .
- a nip is formed at the contact between heat roller 31 and pressing roller 32 by a predetermined pressing force.
- fixing unit 30 the recording paper P held between heat roller 31 and pressing roller 32 , i.e., at the nip, is heated by heat roller 31 and pressed by pressing roller 32 so that the unfixed toner image that has been transferred from photoreceptor drum 11 is fixed to the recording paper P.
- Recording paper P after fixing by this fixing unit 30 is conveyed along a paper discharge path 17 toward a paper discharge roller 19 on the paper discharge port 20 side by a paper discharge drive roller 18 .
- the recording paper P conveyed through paper discharge path 17 is detected by a fixing detection switch 21 A arranged downstream of fixing unit 30 when the recording paper P passes through the nip between heat roller 31 and pressing roller 32 .
- Recording paper P is conveyed to the side of the image forming portion 10 and discharged to paper output cassette 22 located over paper feed cassette 23 and under scanner portion 3 .
- an exchangeable paper feed cassette 23 Arranged at the inner bottom of main apparatus body 1 is an exchangeable paper feed cassette 23 , in which a stack of recording paper P of a predetermined paper size is accommodated. A crescent-shaped sheet pickup roller 24 is arranged over the paper delivering side of this paper feed cassette 23 .
- a pre-registration detection switch 21 C Arranged on the upstream side of registration roller 26 is a pre-registration detection switch 21 C.
- This pre-registration detection switch 21 C detects recording paper P that is fed and conveyed from paper feed cassette 23 . Paper feed to the aforementioned image forming portion 10 is adapted to be performed by adjusting the paper feed timing based on this signal.
- R-SPF document feed type reversing automatic document feeder
- this automatic document processor 40 has a document tray 41 on which originals G are set.
- originals G set on this document tray 41 are picked up, one by one, by a document pickup roller 42 so that original G is guided by a document drive roller 43 through a document conveyance path 44 and conveyed to the upstream side of a registration roller (PS roller) 45 .
- PS roller registration roller
- a document input sensor 46 for detecting the document size of original G is arranged on the upstream side of the registration roller 45 .
- This document input sensor 46 detects the leading end and trailing end of original G.
- Conveyance of original G to a document reading station 9 formed of a glass slit and arranged adjacent to one side of document placement table 2 , is controlled by adjusting the timing based on the detection of this signal.
- first scan unit 4 of scanner portion 3 is controlled so that it is positioned ready to go under document reading station 9 .
- one side of the original namely, the first image-scan side G 1 is scanned by first scan unit 4 of scanner portion 3 while the original is being moved.
- Other operations such as image reading by photoelectric transducer 7 , the image processing of the image information, the image forming process including printing etc., are performed in the same manner as above.
- the original G that has been scanned through document reading station 9 is conveyed by a conveyance roller 47 through document discharge path 48 toward the document discharge roller 49 side.
- the document is discharged onto a document output tray 51 by the switching control of a document switching gate 50 .
- recording paper P is reversed by the above-described sheet reversing device, then fed again into image forming portion 10 so that the original image on the front side of original G that has been previously stored in the memory is printed on the second printing side P 2 .
- control switches 76 for allowing the user to set up the image forming conditions such as sheet type of recording paper P (sheet thickness etc., in addition to sheet size), print number, magnification, density etc., are arranged on the front portion on the upper side of the image forming apparatus.
- the image forming apparatus performs processes such as image reading, image processing, image forming and conveyance of recording paper P, etc., by a central processing unit (CPU) 54 which performs control in accordance with the program stored beforehand in a ROM (read only memory) 55 , using temporal storage such as a RAM (random access memory) 56 etc. It is also possible to use other storage such as a HDD (hard disk drive) etc., instead of ROM and RAM.
- CPU central processing unit
- HDD hard disk drive
- the image information of an original(original image data) captured by scanner portion (original reading portion) 3 , or original image information transmitted from other terminal devices connected via an unillustrated communication network, is adapted to be input to an image processing portion 57 by way of a communication processor 58 .
- Image processor 57 shapes the original image information stored in the storage such as RAM 56 or the like into a printing image that is suitable for printing (image forming onto recording paper), in accordance with the aforementioned program.
- the printing image information is input to image forming portion 10 .
- Image forming portion 10 paper conveying portion (performing various detentions and controls of recording paper P in paper feed path 25 , main conveyance path 16 , sub conveyance path 28 (these are also called paper guides)) 59 , fixing unit 30 and paper discharge processor (performing various detentions and controls of recording paper P in paper discharge path 17 ) 60 are linked with respective drive controllers.
- Paper conveying portion 59 conveys recording paper P so through a printing stage (printing process of image information in image forming portion 10 ) and a fixing stage (at fixing unit 30 ) for the recording paper P having been processed with printing and then discharges it to paper discharge portion (paper output cassette 22 ).
- paper conveying portion 59 receives detection signals from the aforementioned pre-registration detection switch 21 C, fixing detection switch 21 A and paper discharge detecting switch 21 B.
- the image forming apparatus has an operational condition setter 77 .
- This operational condition setter 77 sets up operational conditions for image forming and conditions of conveyance etc., in the image forming apparatus, in accordance with the image forming request and the image forming conditions such as the type of recording media etc., designated by the user through control switches 76 .
- drive controller 62 is adapted to control drive actuators for the aforementioned reading portion (scanner portion 3 ), paper conveying portion 59 , image forming portion 10 , fixing unit 30 , paper discharge processor 60 etc., namely, an original reading driver 64 , a recording paper conveyance driver 66 , a printing process driver 68 , a fixing driver 70 and a paper discharge driver 72 so that they can operate in synchronization with instructions from CPU 54 in accordance with the program stored in ROM 55 .
- Original reading driver 64 is a drive actuator for the first scan unit 4 and the second scan unit 5 of scanner portion 3 .
- Recording paper conveyance driver 66 means paper conveying portion 59 , specifically, drive motors for paper pickup roller 24 and registration roller 26 along the aforementioned paper feed path 25 .
- Printing process driver 68 is a drive motor for photoreceptor drum 11 .
- Fixing driver 70 is of drive motors for heat roller 31 and pressing roller 32 in fixing unit 30 .
- Paper discharge driver 72 is of drive motors for paper discharge drive roller 18 , paper discharge roller 19 etc. All these drivers may be driven by common or different motors with appropriate power transmission mechanisms.
- the image forming apparatus may be used with optional configurations 74 including post-processors (stapler, puncher, multi-bin paper output trays, shifter, etc.), automatic document reader (automatic document processor 40 etc.), large-volume paper feed cassettes and the like.
- These optional configurations 74 incorporate individual controllers separately from the controller of the image forming apparatus so as to operate in synchronization with the main apparatus by performing timing adjustment via the aforementioned communication processor 58 .
- the program for the image forming apparatus in the embodiment is to realize the history storing function of storing the usage history of the number of prints in the image forming apparatus and the processing time control function of changing the time of the pre-processing operation before, or the post-processing operation after, the printing process effected by printing portion based on the stored usage history so as to exclude the influence on the printing process by the unfixed developer.
- CPU 54 which in accordance with the program stored in ROM 56 , stores the signals (usage history, toner concentration, etc.) output mainly from operation condition setter 77 including control switches 76 , etc., image forming portion 10 and concentration sensor 13 b , into RAM 55 and controls image forming portion 10 using the thus stored data.
- History storage portion 78 stores the usage history involving the number of prints of the image forming apparatus.
- the usage history involving the number of prints to be stored in the history storage portion is defined as the history of how many times in a predetermined duration requests for printing of a single print and requests for printing of multiple prints (equal to 10 sheets or lower, 11 to 50 sheets, 51 to 100 sheets, and equal to 101 sheets or greater) have been made.
- the usage history stored in the history storage portion is the usage history of the image forming apparatus at least one day ago (at least one day, preferably one week, more preferably one month). In this way, when the usage history from one day ago is stored, the latest usage history can be known; and use of the usage history for one week or one month makes it possible to change the time of the pre-processing operation or post-processing operation taking into account the usage history over time.
- the usage history stored in history storage portion 78 in the embodiment is defined by separately counting the number of times (the count of print requests) the image forming apparatus has been used for printing operations for a single print and the numbers of times (the count of print requests) the apparatus has been used for printing operations for multiple prints, so as to present the operation conditions of the image forming apparatus.
- a processing time controller 80 changes the duration of the pre-processing operation before, or post-processing operation after, a printing process performed by the image forming portion (printing portion) 10 in accordance with the stored usage history so as to exclude the influence on the printing process by the unfixed developer.
- Example of “the influence on the printing process by the unfixed developer” in the embodiment include: increase in the volume density of the unfixed developer due to cessation (cessation of printing operation) of the image forming apparatus; rotation of the photoreceptor drum (there is a risk that the photoreceptor drum would be damaged if the developing roller is rotated alone when the developer hopper is agitated); and rotational load acting on waste toner conveyor screw 15 a of cleaning device 15 .
- processing time controller 80 calculates the printing process operation time of the image forming apparatus based on the usage history stored in history storing portion 78 , and extends the pre-processing operation time or post-processing operation time, longer than the usual processing operation time when the calculated printing process operation time is shorter than a predetermined reference time for change.
- the phrase “based on the usage history stored in the history storing portion” means that in the embodiment whether the necessity of extension of initializing operation time (should be extended or not) is determined based on Y ⁇ (set value) or Y ⁇ (set value) where Y is the summation obtained by the above formula (3).
- the printing process operation time may be determined by measuring the actual printing process operation time every time printing is operated, but in the embodiment the value obtained by the formula (3) for calculation of the usage history, which calculates the summation of the counts for a single printing and multiple printing, multiplied by the associated coefficients for operation status, is used instead. This simplifies the numerals to be stored and hence reduce the memory capacity of the storage device, and enhances the control processing operation of CPU 54 and reduces the risk of freezing.
- processing time controller 80 sums up the printing process operation time (T 1 ), the pre-processing operation time (T 2 ) and the post-processing operation time (T 3 ) separately and makes comparison based on the following formulae, and determines whether the pre-processing operation time or post-processing operation time should be made longer or shorter than the normal processing operation time: ⁇ ( T 1) ⁇ ( ⁇ ( T 2)+ ⁇ ( T 3)) (1) ⁇ ( T 1)>( ⁇ ( T 2)+ ⁇ ( T 3)) (2) where when the relation (1) holds, the printing process operation time is determined to be equal to or longer than the predetermined reference time for change; and
- the printing process operation time is determined to be shorter than the predetermined reference time for change.
- processing time controller 80 calculates the printing process operation time of the image forming apparatus based on the usage history stored in history storing portion 78 and performs the pre-processing operation or post-processing operation with the usual processing operation time when the calculated printing process operation time is equal to or greater than the predetermined reference time for change.
- the predetermined reference time for change is set up based on the time during which the image forming apparatus is unused (the time in which no printing process is operated). Specifically, when the image forming apparatus has been unused as long as or longer than the passage of time which would affect the detection of magnetic permeability sensor (toner concentration sensor) 13 b due to the time-dependent change in the volume density of the unfixed developer, the predetermined reference time for change is set in accordance with the time of cessation.
- the developer of the embodiment is a one that contains toner having a smaller diameter (the mean particle size is approximately 4 to 8 ⁇ m in diameter) than the conventional toner (the mean particle size is approximately 8 to 12 ⁇ m in diameter), and the apparent volume density of the developer varies with passage of time immediately after agitation of the developer as shown by solid line in FIG. 5 .
- toner concentration sensor 13 b of a magnetic permeability sensor determines the toner concentration of the developer to be lower than actual concentration. Without any measures taken, the developer is determined to be low in toner concentration, so that toner is added more than needed.
- the effective detection range of toner concentration sensor 13 b is specified by the range indicated by hatching in FIG. 5 .
- the volume density varies with the passage of time over which the apparatus has been unused, if the detected value falls within the effective detection range, it is assumed that the toner concentration can be detected correctly, whereas it is determined that the toner concentration cannot be detected correctly if the detected value falls out of the range.
- the toner concentration sensor 13 b When the detection value falls within the above effective detection range, hence the toner concentration sensor 13 b can detect the toner concentration correctly, no reference time for change is set up, hence no change such as extension or the like of the pre-processing operation time or post-processing operation time is made. On the other hand, if the detection value falls out of the range so the toner concentration sensor 13 b cannot detect the toner concentration correctly, the reference time for change is set up so that extension or the like of the pre-processing operation time or post-processing operation time can be made.
- FIG. 7 shows a time chart of the pre-processing operation when the processing time is extended in the image forming apparatus of the embodiment while FIG. 6 shows a comparative time chart for the default setup in which the processing time is not extended.
- FIG. 9 shows a time chart of the post-processing operation when the processing time is extended while FIG. 8 shows a comparative time chart for the default setup in which the processing time is not extended.
- the pre-processing operation is performed for an initializing process made up of the following items 1) to 7) as shown in FIG. 7 .
- extension of the time for the pre-processing operation indicates the extension of the time for agitating the developer in developing hopper 13 a of developing unit 13 .
- the rotating time of photoreceptor drum 11 for initialization along with the rotation of developing roller 13 c during agitation of the developer is also extended.
- the extra-time mode for adding the time of pre-agitation of the developing hopper in the case of FIG. 7 , the processing time is extended
- the non-extra-time mode in the default case shown in FIG. 6 , the processing time not extended
- the initialization step for photoreceptor drum 11 is also added because if the developing roller (developing sleeve) alone is rotated, the photoreceptor drum 11 surface will damage.
- the initializing operation process is performed in a normal (general) method.
- the advantage of performing this pre-agitation process is that the developer will become as loose as it is supposed to be. This also improves the accuracy of the toner concentration adjustment. It also contributes to uniformity of the amount of charge on the toner (at the printing operation). It is also possible to stabilize printing quality. Further, there is also an advantage that the load torque on the developer driver can be reduced.
- the post-processing operation is performed as the following items 1) to 5) as shown in FIG. 9 .
- processing time controller 80 makes control such as to continue rotating waste toner conveyor screw (conveying member) 15 a of cleaning device 15 until the final end of the post-processing operation (after the end of the post-processing operation), to thereby convey all the waste toner collected by cleaning device 15 from the unillustrated storage receptacle to the collecting box or developing hopper 13 a , so that all the waste toner will have been discharged out from cleaning device 15 at the next printing operation.
- the processing time controller 80 is adapted to extend the time of agitating the unfixed developer in the pre-processing operation until at least the output value from toner concentration sensor 13 b falls within the predetermined range. That is, when the agitation time is extended until the output value from toner concentration sensor 13 b at least falls within the predetermined range, it is possible to adjust the toner concentration correctly because the detection can be done based on the stabilized output value from toner concentration sensor 13 b.
- processing time controller 80 While the time of the pre-processing operation is extended by processing time controller 80 , supply of the developer to the developer hopper 13 a is suspended. Then, after the end of the extended time of the pre-processing operation, adjustment of the developer concentration in developer hopper 13 a is performed.
- the developer is supplied only after the volume density of the developer has been made pertinent without any risk of erroneous detection of toner concentration sensor 13 b , so that it is possible to achieve toner concentration adjustment with high precision.
- the printing portion has photoreceptor drum 11 which is an image forming portion 10 for forming an electrostatic latent image for the unfixed developer.
- Processing time controller 80 based on the stored usage history, extends the initializing rotational period for developer roller 13 c (also called developing sleeve) at the pre-processing operation and that for photoreceptor drum 11 at the pre-processing operation, longer than the normal pre-processing operation time, in order to remove the influence of the unfixed developer on the printing process.
- Image forming portion (printing portion) 10 has a photoreceptor drum (image support) 11 for bearing image information formed with the unfixed developer; and a cleaning device (cleaning unit) 15 that collects the unfixed developer remaining on the image support at the post-processing operation after the printing process.
- the influence of the unfixed developer on the printing process is brought by the time-dependent aggregation of the collected developer.
- Processing time controller 80 based on the stored usage history, extends the drive time of cleaning device 15 in the post-processing operation longer than the normal post-processing operation time.
- the normal post-processing operation time is the default processing operation time of cleaning device 15 shown in FIG. 8 .
- conveyor screw 15 a of cleaning device 15 is preferably driven with a higher torque at the initial stage of activation and then driven with a normal torque. In this case, even if some collected developer remains in the collecting receptacle, the collected developer can be positively brought out to the collecting box or developer hopper 13 a , by driving conveyor screw 15 a of cleaning device 15 with a high torque.
- the operation enters the ready mode in which the temperature of the fixing roller surface is detected and controlled within the predetermined temperature range so that the printing process can be restarted in a short time if a next printing request is made. As a further time has elapsed, the operation enters the energy saving mode in which no temperature control of the fixing roller is performed.
- each “Step” is abbreviated as “S”.
- Step 2 when a print request is made (Step 2 ) during the waiting status (waiting mode) (Step 1 ), the time of cessation of the image forming apparatus from the last printing operation is calculated (Step 3 ).
- Step 4 Based on the time, i.e., the time during which the apparatus has been unused, it is determined using the relation shown in FIG. 5 , whether the volume density of the developer in developing hopper 13 a has already become high enough for toner concentration sensor 13 b to make a wrong detection (Step 4 ).
- Step 4 the initializing process is executed with the default initializing process operation time (T 1 ) of the image forming apparatus, as shown in FIG. 6 (Step 5 ).
- Step 6 the printing process is implemented.
- Step 7 toner supply is suspended (Step 7 ).
- the default initializing operation time (see FIG. 6 ) of the image forming apparatus is extended to implement the extended initializing process (see FIG. 7 ) (Step 8 ).
- the agitation time of developing hopper 13 a is extended.
- Step 9 it is determined whether the detection value from toner concentration sensor 13 b of the developer has stabilized.
- Step 9 If the detection value of toner concentration sensor 13 b has been stabilized (Step 9 : Yes), the suspension of toner supply is cancelled (Step 10 ). If not stabilized, the operation returns to Step 8 , and the initializing process is continued.
- Step 10 it is determined whether the initializing process is ended or not (Step 11 ), and after it is ended, the printing process is started (Step 6 ).
- Step 12 it is determined whether a next printing operation is present (Step 12 ), and if there is a next printing operation, the printing process (Step 6 ) is repeated. If there is no next printing, the post-processing of the image forming apparatus is executed (S 13 ).
- cleaning device 15 is driven. By driving conveyor screw 15 a long enough, the collected waste toner in cleaning device 15 is conveyed to the unillustrated collecting box or developing hopper 13 a without fail.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Or Security For Electrophotography (AREA)
- Dry Development In Electrophotography (AREA)
Abstract
Description
Σ(T1)≦(Σ(T2)+Σ(T3)) (1)
Σ(T1)≦(Σ(T2)+Σ(T3)) (2),
where when the relation (1) holds, the printing process operation time is determined to be equal to or longer than the predetermined reference time for change; and
Σ(T1)≦(Σ(T2)+Σ(T3)) (1)
Σ(T1)>(Σ(T2)+Σ(T3)) (2)
where when the relation (1) holds, the printing process operation time is determined to be equal to or longer than the predetermined reference time for change; and
Y=Σ{(5×A)+(4×B)+(3C)+(2×D)+(1×E)} (3).
Σ(T1)≦(Σ(T2)+Σ(T3)) (1)
Σ(T1)>(Σ(T2)+Σ(T3)) (2)
where when the relation (1) holds, the printing process operation time is determined to be equal to or longer than the predetermined reference time for change; and
- 1) Each of the sensors in scanner portion 3 (document reader) and photoelectric transducer (CCD) 7 are initialized while the optical unit is moved back to the home position and conduction of current through the illumination light source is performed.
- 2) In laser scanning unit 8 (image writer), laser beam is initialized and the polygon motor is rotated in a fixed period.
- 3)
Photoreceptor drum 11 is rotated for initialization and voltage is applied tomain charger 12. - 4) The developer in
developer hopper 13 a of developing unit 13 is agitated and detection and adjustment of the toner concentration is performed. - 5) In cleaning device 15 (cleaning unit), waste toner conveyor screw (conveying member) 15 a is rotated so as to convey the waste toner collected by cleaning device 15 to the collecting box or to
developer hopper 13 a. - 6) Heat roller (fixing roller) 31 and pressing
roller 32 of fixingunit 30 are driven for initialization and detection and control of the surface temperature of heat roller 31 is performed. - 7) Whether there is any remaining paper on paper output cassette 22 (paper output tray) is checked.
- 1) In
laser scanning unit 8 the rotation ending process of the polygon motor is performed. - 2) The rotation of
photoreceptor drum 11 is stopped and the voltage application tomain charger 12 is stopped. - 3) Agitation of the developer in
developer hopper 13 a of developing unit 13 is performed and detection and adjustment of toner concentration is implemented. - 4) In cleaning device 15 (cleaning unit), waste toner conveyor screw (conveying member) 15 a is rotated so as to convey the waste toner collected by cleaning device 15 to the collecting box or to
developer hopper 13 a. - 5) Heat roller (fixing roller) 31 and pressing
roller 32 of fixingunit 30 are driven for termination, and detection and control of the surface temperature of heat roller 31 is performed.
Claims (14)
Σ(T1)≦(Σ(T2)+Σ(T3)) (1)
Σ(T1)>(Σ(T2)+Σ(T3)) (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-074984 | 2005-03-16 | ||
JP2005074984A JP2006259097A (en) | 2005-03-16 | 2005-03-16 | Image forming apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060210289A1 US20060210289A1 (en) | 2006-09-21 |
US7460800B2 true US7460800B2 (en) | 2008-12-02 |
Family
ID=37010462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/369,006 Expired - Fee Related US7460800B2 (en) | 2005-03-16 | 2006-03-07 | Image forming apparatus with adaptive pre-processing and post-processing based on usage history |
Country Status (3)
Country | Link |
---|---|
US (1) | US7460800B2 (en) |
JP (1) | JP2006259097A (en) |
CN (1) | CN100474162C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080031649A1 (en) * | 2006-08-02 | 2008-02-07 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus |
US9261944B2 (en) * | 2014-01-16 | 2016-02-16 | Ricoh Company, Ltd. | Information processing apparatus, control method, and recording medium storing a control program |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8059287B2 (en) * | 2006-12-14 | 2011-11-15 | Ricoh Company, Ltd. | Image forming apparatus having an image forming part that can be set in a standby state in response to image forming operation to be performed subsequently |
JP5159448B2 (en) * | 2008-06-10 | 2013-03-06 | キヤノン株式会社 | PRINT CONTROL DEVICE, PRINT CONTROL METHOD, PROGRAM, STORAGE MEDIUM |
JP5264355B2 (en) * | 2008-07-31 | 2013-08-14 | キヤノン株式会社 | Image forming apparatus |
JP2010175764A (en) * | 2009-01-29 | 2010-08-12 | Konica Minolta Business Technologies Inc | Image forming apparatus |
JP5355183B2 (en) * | 2009-03-31 | 2013-11-27 | キヤノン株式会社 | Image forming apparatus |
JP5110140B2 (en) * | 2010-09-29 | 2012-12-26 | コニカミノルタビジネステクノロジーズ株式会社 | Image forming apparatus, display method, and display program |
JP2013167794A (en) * | 2012-02-16 | 2013-08-29 | Fuji Xerox Co Ltd | Image forming apparatus |
US9696654B2 (en) * | 2015-04-03 | 2017-07-04 | Ricoh Company, Ltd. | Image forming apparatus comprising image density detector and toner concentration detector |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07271174A (en) | 1994-03-31 | 1995-10-20 | Sanyo Electric Co Ltd | Toner concentration controller |
JPH09258637A (en) | 1996-03-26 | 1997-10-03 | Canon Inc | Process cartridge, developing device and electrophotographic image forming device |
JPH10307434A (en) | 1997-05-09 | 1998-11-17 | Konica Corp | Image forming device |
JP2001166636A (en) * | 1999-12-08 | 2001-06-22 | Canon Inc | Printing device, printing system, printing control method and storage medium |
JP2002040794A (en) | 2000-07-24 | 2002-02-06 | Ricoh Co Ltd | Toner replenishing amount control method and image forming device |
US20040114947A1 (en) * | 2002-12-12 | 2004-06-17 | Geleynse Carl D | Transfer component monitoring methods, image forming devices, data signals, and articles of manufacture |
-
2005
- 2005-03-16 JP JP2005074984A patent/JP2006259097A/en active Pending
-
2006
- 2006-03-07 US US11/369,006 patent/US7460800B2/en not_active Expired - Fee Related
- 2006-03-15 CN CNB2006100650077A patent/CN100474162C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07271174A (en) | 1994-03-31 | 1995-10-20 | Sanyo Electric Co Ltd | Toner concentration controller |
JPH09258637A (en) | 1996-03-26 | 1997-10-03 | Canon Inc | Process cartridge, developing device and electrophotographic image forming device |
JPH10307434A (en) | 1997-05-09 | 1998-11-17 | Konica Corp | Image forming device |
JP2001166636A (en) * | 1999-12-08 | 2001-06-22 | Canon Inc | Printing device, printing system, printing control method and storage medium |
JP2002040794A (en) | 2000-07-24 | 2002-02-06 | Ricoh Co Ltd | Toner replenishing amount control method and image forming device |
US20040114947A1 (en) * | 2002-12-12 | 2004-06-17 | Geleynse Carl D | Transfer component monitoring methods, image forming devices, data signals, and articles of manufacture |
Non-Patent Citations (1)
Title |
---|
computer translation of jp2002-40794A; cited by applicant. * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080031649A1 (en) * | 2006-08-02 | 2008-02-07 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus |
US7539432B2 (en) * | 2006-08-02 | 2009-05-26 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus |
US9261944B2 (en) * | 2014-01-16 | 2016-02-16 | Ricoh Company, Ltd. | Information processing apparatus, control method, and recording medium storing a control program |
Also Published As
Publication number | Publication date |
---|---|
JP2006259097A (en) | 2006-09-28 |
CN100474162C (en) | 2009-04-01 |
CN1837980A (en) | 2006-09-27 |
US20060210289A1 (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7460800B2 (en) | Image forming apparatus with adaptive pre-processing and post-processing based on usage history | |
US7539432B2 (en) | Image forming apparatus | |
US20070257418A1 (en) | Image forming device and sheet transport device | |
JP4374462B2 (en) | Cleaning device, image forming device | |
US7319836B2 (en) | Image forming device | |
US7274885B2 (en) | Image forming device having replaceable drum unit and developing unit | |
JP2004048184A (en) | Image reader | |
JP2006347645A (en) | Image forming apparatus | |
JP5325505B2 (en) | Image forming apparatus | |
US8045911B2 (en) | Image forming apparatus having a cleaning section | |
JP4060809B2 (en) | Image forming apparatus | |
JP2005338332A (en) | Image forming device | |
US20070127935A1 (en) | Image forming apparatus to which cartridges are detachably mountable | |
JP2010206684A (en) | Image reading apparatus and copying machine | |
US7796919B2 (en) | Image forming apparatus capable of preventing worsening of image quality caused by excessively charged developer | |
JP2006142694A (en) | Image processor | |
JP2004155522A (en) | Image forming apparatus | |
JP6384450B2 (en) | Sheet stacking apparatus, sheet post-processing apparatus including the same, and image forming apparatus | |
JP2006133538A (en) | Image forming apparatus | |
JP3638104B2 (en) | Image forming apparatus | |
JP2001209278A (en) | Image forming device | |
JP2004345252A (en) | Image forming apparatus and method of forming image | |
JP3866079B2 (en) | Paper transport device | |
US7391992B2 (en) | Sheet conveying unit, and image reading unit, post-processing unit, and image forming apparatus employing the sheet conveying unit | |
JP4119741B2 (en) | Paper feeder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHARP KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAUCHI, HIROKAZU;TAKIGUCHI, TOSHIKI;INOUE, TATSUYA;AND OTHERS;REEL/FRAME:017880/0023 Effective date: 20060509 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20201202 |