US7301531B2 - Optical mouse having image lights source with different colors - Google Patents

Optical mouse having image lights source with different colors Download PDF

Info

Publication number
US7301531B2
US7301531B2 US10/814,147 US81414704A US7301531B2 US 7301531 B2 US7301531 B2 US 7301531B2 US 81414704 A US81414704 A US 81414704A US 7301531 B2 US7301531 B2 US 7301531B2
Authority
US
United States
Prior art keywords
light
unit
optical mouse
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/814,147
Other versions
US20050219215A1 (en
Inventor
Yung Fu Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lite On Technology Corp
Original Assignee
Lite On Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lite On Technology Corp filed Critical Lite On Technology Corp
Priority to US10/814,147 priority Critical patent/US7301531B2/en
Assigned to LITE-ON TECHNOLOGY CORPORATION reassignment LITE-ON TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WU, YUNG FU
Publication of US20050219215A1 publication Critical patent/US20050219215A1/en
Application granted granted Critical
Publication of US7301531B2 publication Critical patent/US7301531B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • G06F3/0317Detection arrangements using opto-electronic means in co-operation with a patterned surface, e.g. absolute position or relative movement detection for an optical mouse or pen positioned with respect to a coded surface
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09072Hole or recess under component or special relationship between hole and component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10121Optical component, e.g. opto-electronic component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10439Position of a single component
    • H05K2201/10462Flat component oriented parallel to the PCB surface

Definitions

  • the present invention relates to an optical mouse and, more particularly to an optical mouse having image light sources with different colors.
  • an optical mouse is designed to detect movement of an image carried by a light reflected from a mouse pad (or a reflection surface) on which the optical mouse is moved, thereby causing a cursor on an associated display screen, to be moved in accordance with the movement of the mouse. Since such an optical mouse has advantages of the accuracy of its motion detection, and smoothness in its motion, as compared with the prior art ball-type mouse, its use is gradually increasing.
  • FIG. 1 is an illustration of a typical optical mouse.
  • Such an optical mouse includes a printed circuit board 10 a, a red Light Emitting Diode (LED) 20 a disposed on the printed circuit board 10 a for emitting red light, a photodetector unit 30 a for detecting the image formed on the mouse pad (or the reflection surface) due to the red light emitted thereto, and an optical element 40 a having a light-guiding unit 41 a and a lens unit 42 a.
  • the light-guiding unit 41 a can guide the red light emitted from the red LED 20 a for irradiating the reflection surface with a bright light.
  • the lens unit 42 a can converge a reflected light reflected by the reflection surface into a photodetector unit 30 a.
  • the image detected at the optical sensor 30 a is input into the printed circuit board 10 a through lead frames where it is converted to an electrical signal, thus enabling the cursor to be moved on the display screen by movement of the mouse.
  • the conventional optical mouse still has disadvantages as follows.
  • the optical mouse is designed to provide only one red light source carrying the red image on the green reflection surface
  • the light-reflection rate of the red image will be lower relative to the green reflection surface because red is the complementary color for green. Therefore, the red image is greatly absorbed by the green reflection surface, causing the detected quantity of the red light to be lower, so as to produce a “color blindness” phenomenon.
  • the sensitivity of the optical mouse will be greatly reduced to point of being nonfunctional.
  • a high sensitivity photodetector unit is provided, or a high power red LED, but this increases component costs and makes manufacturing difficult.
  • the present invention provides an optical mouse including a housing, a printed circuit board, a light source unit, a photodetector unit, a light-guiding unit and a lens unit.
  • the housing has an accommodation space formed therein.
  • the printed circuit board is arranged in the accommodation space of the housing.
  • the light source unit has different colors of image light sources and is disposed on the printed circuit board.
  • the photodetector unit is disposed on the printed circuit board and opposite the light sources.
  • the light-guiding unit is arranged in the accommodation space of the housing and adjacent to the light source unit for guiding a non-complementary color light relative to a reflection surface from one of the image light sources to the reflection surface.
  • the lens unit is arranged in the accommodation space of the housing and positioned below the photodetector unit for converging a reflected light reflected by the reflection surface into the photodetector unit.
  • FIG. 1 is a perspective view of an optical mouse according to prior art
  • FIG. 2 is a perspective exploded view of an optical mouse of the present invention
  • FIG. 3 is a perspective view of the optical mouse having image light sources with different colors according to the present invention.
  • FIG. 4 is a perspective view of the optical mouse having a LED with two different colors of light chips according to the present invention.
  • the present invention provides an optical mouse having image light sources with different colors, including a housing 10 , a printed circuit board 20 , a light source unit 30 , a light-guiding unit 40 , a lens unit 50 , a photodetector unit 60 .
  • the light source unit 30 and the photodetector unit 60 are disposed on the printed circuit board 20 arranged in an accommodation space 11 formed inside the housing 10 .
  • the light-guiding unit 40 can conduct a non-complementary color light relative to a work pad (or a reflection surface) from one of the light sources to the work pad. Therefore, it is required to arbitrarily choose and change as one of the image light sources of the light source unit 30 to avoid the image light and the reflection surface being complementary colors. The light-reflection rate is thus improved, and a “color blindness” phenomenon of the optical mouse is avoided.
  • the printed circuit board 20 has a light hole 21 for allowing the reflected light converged by the lens unit 50 to pass therethrough.
  • the light source unit 30 and the photodetector unit 60 are arranged on two opposite sides of the light hole 21 on the printed circuit board 20 .
  • the light source unit 30 has different colors of image light sources disposed on the printed circuit board 20 .
  • the light-guiding unit 40 is inclinedly arranged in the accommodation space 11 of the housing 10 , and has a portion upwardly extended through the light hole 21 of the printed circuit board 20 to face the light source unit 30 .
  • the light-guiding unit 40 has a plurality of light receiving surfaces 41 non-coplanarly connected to one another and in correspondence with the image light sources for mating different colors of incident lights emitted from the image light sources of the light source unit 30 , respectively.
  • the area of the light-receiving surface 41 of the light-guiding unit 40 is larger than that of a light-exiting surface opposite the light receiving surfaces 41 for enabling the light to carry a brightest image formed on the reflection surface.
  • the light emitted from one of the image light sources is received by one of the light receiving surfaces 41 of the light-guiding unit 40 , and then from the light-exiting surface to project on the reflection surface, thereby guiding the projecting light to be in the brightest image according to the detecting region of the photodetector unit 60 .
  • the lens unit 50 is upwardly extended through the light hole 21 of the printed circuit board 20 to face the photodetector unit 60 .
  • the lens unit 50 has a coupling portion 51 for coupling with an end of the light guiding unit 40 .
  • the optical mouse When the optical mouse is used, it can be required to choose or change as one of the image light sources for providing a non-complementary color light relative to the reflection surface. In operation, the non-complementary color light is emitted from one of the image light sources through the light-guiding unit 40 for guiding to the reflection surface.
  • the lens unit 50 is utilized to converge the reflected light reflected by the reflection surface into the photodetector unit 60 , thereby causing a cursor on an associated display screen to be moved in accordance with the movement of the optical mouse.
  • the light source unit 30 includes a red LED, a green LED and a blue LED.
  • the optical mouse When the optical mouse is operated on, for example, a green reflection surface, it is required to choose or change to a green light emitted by the green LED or a blue light emitted by the blue LED and avoid using the complementary color, red, which would reduce the light-reflection rate.
  • the present invention can raise the light-reflection rate due to the image light reflected by the reflection surface, and solve the light-detecting quantity reduction problem of the photodetector unit 60 , or “color blindness” phenomenon, of the optical mouse. Further, other complementary color problems, such as, for example, yellow and purple, or blue and orange, can be resolved as well.
  • the light source unit 30 also can be a LED with two different colors of light chips, so that the light-guiding unit 40 only needs one light-receiving surface 41 to face the light source unit 30 .
  • the light source unit 30 has an arcuate shape formed at a front end thereof.
  • the light-guiding unit 40 and the lens unit 50 are integrally formed to each other, which are arranged in the accommodation space 11 of the housing 10 , and the lens unit 50 is upwardly extended through the light hole 21 of the printed circuit board 20 to face the photodetector unit 60 .
  • the non-complementary color light can be provided to enable the computer system to recognize motion and speed of the optical mouse, thereby avoiding the “color blindness” phenomenon of the optical mouse.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

An optical mouse has a housing, a printed circuit board, a light source unit, a photodetector unit, a light-guiding unit and a lens unit. The light source unit has different colors of image light sources and is disposed on the printed circuit board. The light-guiding unit is arranged in the housing and adjacent to the light source unit for guiding a non-complementary color light relative to a reflection surface from one of the image light sources to the reflection surface. The lens unit is arranged in the housing and positioned below the photodetector unit for converging a reflected light reflected by the reflection surface into the photodetector unit. Furthermore, the optical mouse can be operated on various colors of reflection surfaces, and still retains better sensitivity.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an optical mouse and, more particularly to an optical mouse having image light sources with different colors.
2. Description of the Related Art
In general, an optical mouse is designed to detect movement of an image carried by a light reflected from a mouse pad (or a reflection surface) on which the optical mouse is moved, thereby causing a cursor on an associated display screen, to be moved in accordance with the movement of the mouse. Since such an optical mouse has advantages of the accuracy of its motion detection, and smoothness in its motion, as compared with the prior art ball-type mouse, its use is gradually increasing.
FIG. 1 is an illustration of a typical optical mouse. Such an optical mouse includes a printed circuit board 10 a, a red Light Emitting Diode (LED) 20 a disposed on the printed circuit board 10 a for emitting red light, a photodetector unit 30 a for detecting the image formed on the mouse pad (or the reflection surface) due to the red light emitted thereto, and an optical element 40 a having a light-guiding unit 41 a and a lens unit 42 a. The light-guiding unit 41 a can guide the red light emitted from the red LED 20 a for irradiating the reflection surface with a bright light. The lens unit 42 a can converge a reflected light reflected by the reflection surface into a photodetector unit 30 a. The image detected at the optical sensor 30 a is input into the printed circuit board 10 a through lead frames where it is converted to an electrical signal, thus enabling the cursor to be moved on the display screen by movement of the mouse.
However, the conventional optical mouse still has disadvantages as follows. When the optical mouse is designed to provide only one red light source carrying the red image on the green reflection surface, the light-reflection rate of the red image will be lower relative to the green reflection surface because red is the complementary color for green. Therefore, the red image is greatly absorbed by the green reflection surface, causing the detected quantity of the red light to be lower, so as to produce a “color blindness” phenomenon. As described above, the sensitivity of the optical mouse will be greatly reduced to point of being nonfunctional. In order to eliminate the aforesaid disadvantages, a high sensitivity photodetector unit is provided, or a high power red LED, but this increases component costs and makes manufacturing difficult.
SUMMARY OF THE INVENTION
It is therefore a principal object of the invention to provide an optical mouse having image light sources with different colors, which optical mouse can choose one of the image light sources with different colors to eliminate the complementary color problem between the image light and the reflection surface, so that the optical mouse can operate on any color of reflection surface, and still can retain the better sensitivity.
In order to accomplish the above object, the present invention provides an optical mouse including a housing, a printed circuit board, a light source unit, a photodetector unit, a light-guiding unit and a lens unit. The housing has an accommodation space formed therein. The printed circuit board is arranged in the accommodation space of the housing. The light source unit has different colors of image light sources and is disposed on the printed circuit board. The photodetector unit is disposed on the printed circuit board and opposite the light sources. The light-guiding unit is arranged in the accommodation space of the housing and adjacent to the light source unit for guiding a non-complementary color light relative to a reflection surface from one of the image light sources to the reflection surface. The lens unit is arranged in the accommodation space of the housing and positioned below the photodetector unit for converging a reflected light reflected by the reflection surface into the photodetector unit.
To provide a further understanding of the invention, the following detailed description illustrates embodiments and examples of the invention, this detailed description being provided only for illustration of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings included herein provide a further understanding of the invention. A brief introduction of the drawings is as follows:
FIG. 1 is a perspective view of an optical mouse according to prior art;
FIG. 2 is a perspective exploded view of an optical mouse of the present invention;
FIG. 3 is a perspective view of the optical mouse having image light sources with different colors according to the present invention; and
FIG. 4 is a perspective view of the optical mouse having a LED with two different colors of light chips according to the present invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS
Wherever possible in the following description, like reference numerals will refer to like elements and parts unless otherwise illustrated.
With reference to FIGS. 2 to 4, the present invention provides an optical mouse having image light sources with different colors, including a housing 10, a printed circuit board 20, a light source unit 30, a light-guiding unit 40, a lens unit 50, a photodetector unit 60. The light source unit 30 and the photodetector unit 60 are disposed on the printed circuit board 20 arranged in an accommodation space 11 formed inside the housing 10. The light-guiding unit 40 can conduct a non-complementary color light relative to a work pad (or a reflection surface) from one of the light sources to the work pad. Therefore, it is required to arbitrarily choose and change as one of the image light sources of the light source unit 30 to avoid the image light and the reflection surface being complementary colors. The light-reflection rate is thus improved, and a “color blindness” phenomenon of the optical mouse is avoided.
The printed circuit board 20 has a light hole 21 for allowing the reflected light converged by the lens unit 50 to pass therethrough. The light source unit 30 and the photodetector unit 60 are arranged on two opposite sides of the light hole 21 on the printed circuit board 20. The light source unit 30 has different colors of image light sources disposed on the printed circuit board 20.
The light-guiding unit 40 is inclinedly arranged in the accommodation space 11 of the housing 10, and has a portion upwardly extended through the light hole 21 of the printed circuit board 20 to face the light source unit 30. The light-guiding unit 40 has a plurality of light receiving surfaces 41 non-coplanarly connected to one another and in correspondence with the image light sources for mating different colors of incident lights emitted from the image light sources of the light source unit 30, respectively. The area of the light-receiving surface 41 of the light-guiding unit 40 is larger than that of a light-exiting surface opposite the light receiving surfaces 41 for enabling the light to carry a brightest image formed on the reflection surface.
Consequently, the light emitted from one of the image light sources is received by one of the light receiving surfaces 41 of the light-guiding unit 40, and then from the light-exiting surface to project on the reflection surface, thereby guiding the projecting light to be in the brightest image according to the detecting region of the photodetector unit 60.
The lens unit 50 is upwardly extended through the light hole 21 of the printed circuit board 20 to face the photodetector unit 60. The lens unit 50 has a coupling portion 51 for coupling with an end of the light guiding unit 40. When the optical mouse is used, it can be required to choose or change as one of the image light sources for providing a non-complementary color light relative to the reflection surface. In operation, the non-complementary color light is emitted from one of the image light sources through the light-guiding unit 40 for guiding to the reflection surface. The lens unit 50 is utilized to converge the reflected light reflected by the reflection surface into the photodetector unit 60, thereby causing a cursor on an associated display screen to be moved in accordance with the movement of the optical mouse.
With the arrangement of the optical mouse according to the present invention, the light source unit 30 includes a red LED, a green LED and a blue LED. When the optical mouse is operated on, for example, a green reflection surface, it is required to choose or change to a green light emitted by the green LED or a blue light emitted by the blue LED and avoid using the complementary color, red, which would reduce the light-reflection rate. As described above, the present invention can raise the light-reflection rate due to the image light reflected by the reflection surface, and solve the light-detecting quantity reduction problem of the photodetector unit 60, or “color blindness” phenomenon, of the optical mouse. Further, other complementary color problems, such as, for example, yellow and purple, or blue and orange, can be resolved as well.
As shown in FIG. 4, the light source unit 30 also can be a LED with two different colors of light chips, so that the light-guiding unit 40 only needs one light-receiving surface 41 to face the light source unit 30. The light source unit 30 has an arcuate shape formed at a front end thereof. The light-guiding unit 40 and the lens unit 50 are integrally formed to each other, which are arranged in the accommodation space 11 of the housing 10, and the lens unit 50 is upwardly extended through the light hole 21 of the printed circuit board 20 to face the photodetector unit 60. Hence, the non-complementary color light can be provided to enable the computer system to recognize motion and speed of the optical mouse, thereby avoiding the “color blindness” phenomenon of the optical mouse.
There has thus been described a new, novel and heretofore unobvious optical mouse which eliminates the aforesaid problem in the prior art. Furthermore, those skilled in the art will readily appreciate that the above description is only illustrative of specific embodiments and examples of the invention. The invention should therefore cover various modifications and variations made to the herein-described structure and operations of the invention, provided they fall within the scope of the invention as defined in the following appended claims.

Claims (16)

1. An optical mouse, comprising:
a housing having an accommodation space formed therein;
a printed circuit board arranged in the accommodation space of the housing;
a light source unit having different colors of image light sources, wherein the light source unit is disposed on the printed circuit board;
a photodetector unit disposed on the printed circuit board, wherein the photodetector unit is opposite to the light sources;
a light-guiding unit arranged in the accommodation space of the housing, wherein the light-guiding unit is adjacent to the light source unit for guiding a non-complementary color light relative to a reflection surface from one of the image light sources to the reflection surface, and the light-guiding unit further has a plurality of light receiving surfaces non-coplanarly connected to one another and in correspondence with the light sources, respectively; and
a lens unit arranged in the accommodation space of the housing, wherein the lens unit is positioned below the photodetector unit for converging a reflected light reflected by the reflection surface into the photodetector unit.
2. The optical mouse of claim 1, wherein the light source unit includes a red LED, a green LED and a blue LED.
3. The optical mouse of claim 1, wherein the light source unit is a LED with at least two different colors of light chips.
4. The optical mouse of claim 1, wherein the printed circuit board has a light hole for allowing reflected light converged by the lens unit to pass therethrough, the light source unit and the photodetector unit are respectively arranged on two opposite sides of the light hole on the printed circuit board, and the light guiding unit is upwardly extended through the light hole to face the light source unit.
5. The optical mouse of claim 1, wherein the printed circuit board has a light hole, and the lens unit is upwardly extended through the light hole to face the photodetector unit.
6. The optical mouse of claim 1, wherein the lens unit has a coupling portion for coupling with an end of the light-guiding unit.
7. The optical mouse of claim 1, wherein the light source unit has an arcuate shape formed at a front end thereof.
8. The optical mouse of claim 1, wherein the light-guiding unit has at least one light-receiving surface and a light-exiting surface positioned at an opposite end of the light-receiving surface, and an area of the light-receiving surface of the light-guiding unit is larger than that of the light-exiting surface for enabling light to carry a brightest image formed on the reflection surface.
9. An optical mouse, comprising:
a housing having an accommodation space formed therein;
a printed circuit board arranged in the accommodation space of the housing;
a light source unit having different colors of image light sources, wherein the light source unit is disposed on the printed circuit board;
a photodetector unit disposed on the printed circuit board, wherein the photodetector unit is opposite to the light sources;
a light-guiding unit arranged in the accommodation space of the housing, wherein the light-guiding unit is adjacent to the light source unit for guiding a non-complementary color light relative to a reflection surface from one of the image light sources to the reflection surface, and the light-guiding unit further has at least one light-receiving surface and a light-exiting surface positioned at an opposite end of the light-receiving surface, and an area of the light-receiving surface of the light-guiding unit is larger than that of the light-exiting surface for enabling light to carry a brightest image formed on the reflection surface; and
a lens unit arranged in the accommodation space of the housing, wherein the lens unit is positioned below the photodetector unit for converging a reflected light reflected by the reflection surface into the photodetector unit.
10. The optical mouse of claim 9, wherein the light source unit includes a red LED, a green LED and a blue LED.
11. The optical mouse of claim 9, wherein the light source unit is a LED with at least two different colors of light chips.
12. The optical mouse of claim 9, wherein the printed circuit board has a light hole for allowing reflected light converged by the lens unit to pass therethrough, the light source unit and the photodetector unit are respectively arranged on two opposite sides of the light hole on the printed circuit board, and the light guiding unit is upwardly extended through the light hole to face the light source unit.
13. The optical mouse of claim 9, wherein the printed circuit board has a light hole, and the lens unit is upwardly extended through the light hole to face the photodetector unit.
14. The optical mouse of claim 9, wherein the light-guiding unit has a plurality of light receiving surfaces non-coplanarly connected to one another and in correspondence with the light sources, respectively.
15. The optical mouse of claim 9, wherein the lens unit has a coupling portion for coupling with an end of the light-guiding unit.
16. The optical mouse of claim 9, wherein the light source unit has an arcuate shape formed at a front end thereof.
US10/814,147 2004-04-01 2004-04-01 Optical mouse having image lights source with different colors Expired - Fee Related US7301531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/814,147 US7301531B2 (en) 2004-04-01 2004-04-01 Optical mouse having image lights source with different colors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/814,147 US7301531B2 (en) 2004-04-01 2004-04-01 Optical mouse having image lights source with different colors

Publications (2)

Publication Number Publication Date
US20050219215A1 US20050219215A1 (en) 2005-10-06
US7301531B2 true US7301531B2 (en) 2007-11-27

Family

ID=35053732

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/814,147 Expired - Fee Related US7301531B2 (en) 2004-04-01 2004-04-01 Optical mouse having image lights source with different colors

Country Status (1)

Country Link
US (1) US7301531B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006990A1 (en) * 2008-04-07 2011-01-13 Benjamin Abraham Method and system for communicating a signal corresponding to a message to an input/output device
US20110074683A1 (en) * 2009-09-30 2011-03-31 Apple Inc. Incorporating chromatic sensors in computer mice
US8553235B1 (en) 2012-01-18 2013-10-08 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated touch sensing device using multiple color light sources
US10120460B2 (en) 2012-03-15 2018-11-06 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated motion detection device using multiple color light sources
US10845893B2 (en) 2013-06-04 2020-11-24 Wen-Chieh Geoffrey Lee High resolution and high sensitivity three-dimensional (3D) cursor maneuvering device
US11216150B2 (en) 2019-06-28 2022-01-04 Wen-Chieh Geoffrey Lee Pervasive 3D graphical user interface with vector field functionality
US11307730B2 (en) 2018-10-19 2022-04-19 Wen-Chieh Geoffrey Lee Pervasive 3D graphical user interface configured for machine learning

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2859654Y (en) * 2006-01-01 2007-01-17 官卫平 Water-proof and crash-proof mouse
US7355160B2 (en) * 2006-03-06 2008-04-08 Avago Technologies General Ip Pte Ltd Color enhanced optical mouse
TWI328763B (en) * 2006-06-07 2010-08-11 Darfon Electronics Corp Input device
US7626572B2 (en) * 2006-06-15 2009-12-01 Microsoft Corporation Soap mobile electronic human interface device
DE102007032818A1 (en) * 2006-07-18 2008-02-14 Samsung Electro-Mechanics Co., Ltd., Suwon Information input device and input method therefor
TWI461970B (en) 2013-01-25 2014-11-21 Dexin Corp Mouse with replaceable sensing unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111563A (en) * 1997-10-27 2000-08-29 Hines; Stephen P. Cordless retroreflective optical computer mouse
US6424337B1 (en) * 1999-02-25 2002-07-23 Lear Corporation Multi-function control device for vehicle
US6697053B2 (en) * 2000-12-08 2004-02-24 Hosiden Corporation Image sensor mouse
US6819314B2 (en) * 2002-11-08 2004-11-16 Agilent Technologies, Inc. Intensity flattener for optical mouse sensors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111563A (en) * 1997-10-27 2000-08-29 Hines; Stephen P. Cordless retroreflective optical computer mouse
US6424337B1 (en) * 1999-02-25 2002-07-23 Lear Corporation Multi-function control device for vehicle
US6697053B2 (en) * 2000-12-08 2004-02-24 Hosiden Corporation Image sensor mouse
US6819314B2 (en) * 2002-11-08 2004-11-16 Agilent Technologies, Inc. Intensity flattener for optical mouse sensors

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006990A1 (en) * 2008-04-07 2011-01-13 Benjamin Abraham Method and system for communicating a signal corresponding to a message to an input/output device
US20110074683A1 (en) * 2009-09-30 2011-03-31 Apple Inc. Incorporating chromatic sensors in computer mice
US8890815B2 (en) * 2009-09-30 2014-11-18 Apple Inc. Incorporating chromatic sensors in computer mice
US8553235B1 (en) 2012-01-18 2013-10-08 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated touch sensing device using multiple color light sources
US9304604B2 (en) 2012-01-18 2016-04-05 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated touch sensing device using multiple color light sources
US9423885B2 (en) 2012-01-18 2016-08-23 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated touch sensing device using multiple color light sources
US10120460B2 (en) 2012-03-15 2018-11-06 Wen-Chieh Geoffrey Lee High resolution and high sensitivity optically activated motion detection device using multiple color light sources
US11429202B2 (en) 2012-03-15 2022-08-30 Lee Wen Chieh Geoffrey High resolution and high sensitivity optically activated motion detection device using multiple color light sources
US10845893B2 (en) 2013-06-04 2020-11-24 Wen-Chieh Geoffrey Lee High resolution and high sensitivity three-dimensional (3D) cursor maneuvering device
US11307730B2 (en) 2018-10-19 2022-04-19 Wen-Chieh Geoffrey Lee Pervasive 3D graphical user interface configured for machine learning
US11216150B2 (en) 2019-06-28 2022-01-04 Wen-Chieh Geoffrey Lee Pervasive 3D graphical user interface with vector field functionality

Also Published As

Publication number Publication date
US20050219215A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
US7301531B2 (en) Optical mouse having image lights source with different colors
CN101073047B (en) Multi-light-source illumination system for optical pointing devices
US7394058B2 (en) Touch screen with light-enhancing layer
KR100427356B1 (en) Sub chip on board for optical mouse
JP5490410B2 (en) Illumination system, optical sensing plate and display device
US20020080120A1 (en) Optical mouse
US20110090702A1 (en) Light pen
US8987656B2 (en) Optical finger navigation device having an integrated ambient light sensor and electronic system comprising the same
US20130038535A1 (en) Optical pointing device
US9029756B2 (en) Optical displacement detection apparatus and optical displacement detection method
US20030098852A1 (en) Optical mouse
CN100527063C (en) Optical input mechanism of luminous chip fixed on sensing chip and manufacturing method therefor
US20110122092A1 (en) Electronic device with optical touch module
US20070146327A1 (en) Optical mouse and an optical structure of the optical mouse
CN102117151B (en) Optical touch-control display device
CN102419660A (en) Touch-control display device and operation method thereof
US6927759B2 (en) Optical mouse with uniform light projection
KR20200077175A (en) Display device
US11372255B2 (en) Optical mouse and light pipe thereof
CN202733691U (en) Transmission light source used for image reading device
CN104197979A (en) Multifunctional intelligent digital colour sensor
KR20030014480A (en) Chip on board for optical mouse
JP2006128896A (en) Illumination device and image input device
US20110221362A1 (en) Electronic device
CN100357867C (en) Optical mouse suitable to alien reflection planes

Legal Events

Date Code Title Description
AS Assignment

Owner name: LITE-ON TECHNOLOGY CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WU, YUNG FU;REEL/FRAME:015174/0215

Effective date: 20040322

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20191127