US7265437B2 - Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties - Google Patents

Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties Download PDF

Info

Publication number
US7265437B2
US7265437B2 US10/906,815 US90681505A US7265437B2 US 7265437 B2 US7265437 B2 US 7265437B2 US 90681505 A US90681505 A US 90681505A US 7265437 B2 US7265437 B2 US 7265437B2
Authority
US
United States
Prior art keywords
dielectric
layer
stack
nanolayer
dielectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/906,815
Other versions
US20060202311A1 (en
Inventor
Son V. Nguyen
Sarah L. Lane
Eric G. Liniger
Kensaku Ida
Darryl D. Restaino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
International Business Machines Corp
Original Assignee
Sony Corp
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, International Business Machines Corp filed Critical Sony Corp
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IDA, KENSAKU
Priority to US10/906,815 priority Critical patent/US7265437B2/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LANE, SARAH L., LINIGER, ERIC G., NGUYEN, SON V., RESTAINO, DARRYL D.
Priority to TW095107313A priority patent/TWI414623B/en
Priority to JP2008500925A priority patent/JP5398258B2/en
Priority to PCT/US2006/008449 priority patent/WO2006096813A2/en
Priority to CN2006800074066A priority patent/CN101138085B/en
Priority to EP06737610A priority patent/EP1856735A4/en
Publication of US20060202311A1 publication Critical patent/US20060202311A1/en
Priority to US11/830,425 priority patent/US7998880B2/en
Publication of US7265437B2 publication Critical patent/US7265437B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02351Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to corpuscular radiation, e.g. exposure to electrons, alpha-particles, protons or ions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31633Deposition of carbon doped silicon oxide, e.g. SiOC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a dielectric stack that is comprised of one or more dielectric materials, each having a low dielectric constant on the order of about 3.0 or less, preferably about 2.7 or less, in which one or more nanolayers are present in at least one of the dielectric materials. The presence of the nanolayer improves the mechanical properties of the dielectric materials within the stack.
  • the present invention also relates to semiconductor structures such as interconnect structures that include the inventive dielectric stack.
  • the present invention also relates to a method of fabricating the inventive dielectric stack.
  • interconnect structures for interconnecting regions within devices and for interconnecting one or more devices within integrated circuits.
  • forming interconnect structures begins with forming a lower level of wiring followed by the deposition of an interlevel dielectric layer and then a second level of wiring, where the first and second wiring levels may be connected by one or more metal filled vias.
  • Interlevel and/or intralevel dielectrics such as silicon dioxide (SiO 2 ) are used to electrically isolate active elements and different interconnect signal paths from each other.
  • the electrical connections between different interconnect levels are made through vias that are formed in the ILD layers.
  • the vias are filled with a metal, such as copper, aluminum or tungsten.
  • low k dielectric constant
  • a dielectric material organic or inorganic having a dielectric constant that is less than silicon dioxide (e.g., k of less than about 4.0, as measured in a vacuum).
  • low k materials include: organic dielectrics containing atoms of C, O and H such as thermosetting polyarylene ethers; and inorganic dielectrics containing atoms of Si, O and H, with C being optional. Examples of the latter include carbon doped oxides (also referred to as “SiCOH”), silsesquioxanes, organosilanes and other like Si-containing materials.
  • low k materials are insulators in interconnect structures because low k materials reduce the interconnect capacitance. Accordingly, low k materials increase the signal propagation speed, while reducing cross-talk noise and power dissipation in the interconnect structure.
  • low k materials lack mechanical rigidity and easily crack when subjected to thermal and mechanical stresses. That is, prior art low k dielectrics exhibit high crack velocity (on the order of about 1E-10 m/sec or greater at a film thickness of 1.2 ⁇ m) and stress (on the order of about 60 MPa or greater), while exhibiting low modulus (on the order of about 7.5 GPa or less) and hardness (on the order of about 1 GPa or less). These mechanical properties become poorer as the dielectric constant of the material is decreased. For instance, the crack velocity, stress, modulus and hardness of a porous low k material are worse than its corresponding nonporous low k material.
  • dielectric films that have a high crack velocity have a high tendency to form cracks within said film during further processing and use, which greatly reduces the reliability of the semiconductor device that includes such films.
  • the present invention provides a low k dielectric stack having an effective dielectric constant k, of about 3.0 or less, preferably about 2.7 or less, in which the mechanical properties of the stack are improved without significantly increasing the dielectric constant of the films within the stack.
  • the improvement in mechanical properties is achieved without the need of subjecting the inventive dielectric stack to any post treatment steps.
  • the present invention provides a low k dielectric stack that comprises at least one low k dielectric material and at least one nanolayer present within the at least one low k dielectric material.
  • nanolayer is used in the present invention to denote a layer whose thickness is in the nanometer range.
  • the nanolayers of the present invention are formed in-situ and they typically include atoms of at least Si and O, with atoms of C, H, and N being optional.
  • Illustrative examples of nanolayers of the present invention include, but are not limited to: SiCOH, SiCOHN, SiO 2 , SiCOH, SiON, SiCO x or multilayers thereof.
  • the present invention provides a dielectric stack that comprises at least one low k dielectric material having a dielectric constant of about 3.0 or less and at least one nanolayer comprising at least atoms of Si and O present within the at least one low k dielectric material.
  • the present invention also relates to electronic structures such as interconnect structures that include the inventive dielectric film as the interlevel or intralevel dielectric, a capping layer, and/or as a hardmask/polish stop layer.
  • the electronic structure of the present invention includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material, the second layer of insulating material being in intimate contact with the first layer of insulating material, the first region of conductor being in electrical communication with the first region of metal, and a second region of conductor being in electrical communication with the first region of conductor and being embedded in a third layer of insulating material, the third layer of insulating material being in intimate contact with the second layer of insulating material.
  • each of the insulating layers can comprise the inventive low k dielectric stack.
  • the electronic structure may further include a dielectric cap layer situated in-between the first layer of insulating material and the second layer of insulating material, and may further include a dielectric cap layer situated in-between the second layer of insulating material and the third layer of insulating material.
  • the electronic structure may further include a first dielectric cap layer between the second layer of insulating material and the third layer of insulating material, and a second dielectric cap layer on top of the third layer of insulating material.
  • the dielectric cap itself can comprise the inventive low k dielectric stack.
  • the electronic structure may further include a diffusion barrier layer of a dielectric material deposited on at least one of the second and third layer of insulating material.
  • the electronic structure may further include a dielectric layer on top of the second layer of insulating material for use as a RIE hard mask/polish-stop layer and a dielectric diffusion barrier layer on top of the dielectric RIE hard mask/polish-stop layer.
  • the electronic structure may further include a first dielectric RIE hard mask/polish-stop layer on top of the second layer of insulating material, a first dielectric RIE diffusion barrier layer on top of the first dielectric polish-stop layer a second dielectric RIE hard mask/polish-stop layer on top of the third layer of insulating material, and a second dielectric diffusion barrier layer on top of the second dielectric polish-stop layer.
  • the dielectric RIE hard mask/polish-stop layer may be comprised of the inventive low k dielectric stack as well.
  • the present invention also relates to a method of fabricating the inventive dielectric stack. Specifically, the method of the present invention includes:
  • the present invention also contemplates other material stacks besides those including low k dielectrics.
  • the present invention provides a material stack comprising one or more films that have a crack velocity of about 1E-10 m/sec or greater and at least one monolayer within said one or more films, said one at least one monolayer reduces said crack velocity of said one or more films to a value of less than 1E-10 m/sec.
  • the stack is made using the method described above except that the first dielectric precursor is replaced with a first material precursor.
  • a metal stack formed on a metal oxide substrate can be provided in which the metal stack is comprised of Au deposited from an Au-containing precursor.
  • FIG. 1 is a pictorial representation (through a cross sectional view) illustrating the dielectric stack of the present invention.
  • FIG. 2 is an enlarged, cross-sectional view of an electronic device of the present invention that includes the inventive low k dielectric stack as both the intralevel dielectric layer and the interlevel dielectric layer.
  • FIG. 3 is an enlarged, cross-sectional view of the electronic structure of FIG. 2 having an additional diffusion barrier dielectric cap layer deposited on top of the inventive dielectric stack.
  • FIG. 4 is an enlarged, cross-sectional view of the electronic structure of FIG. 3 having an additional RIE hard mask/polish-stop dielectric cap layer and a dielectric cap diffusion barrier layer deposited on top of the polish-stop layer.
  • FIG. 5 is an enlarged, cross-sectional view of the electronic structure of FIG. 4 having additional RIE hard mask/polish-stop dielectric layers deposited on top of the dielectric stack of the present invention.
  • the present invention which provides a dielectric stack comprising one or more low k dielectric materials with improved mechanical properties (including crack velocity, stress, elongation modulus and hardness) as well as a method of fabricating the same, will now be described in greater detail by referring to the drawings that accompany the present application.
  • the various drawings are provided for illustrative purposes and thus they are not drawn to scale.
  • dielectric stack formation includes nanolayers imbedded within one or more low k dielectric films.
  • dielectric stack formation is described and illustrated, the incorporation of nanolayers within other films that are highly susceptible to cracking is also contemplated herein.
  • the dielectric precursor described below is substituted with any conventional material precursor, such as a metal-containing precursor.
  • the material precursor is changed to a nanolayer precursor to form the nanolayer, and after nanolayer formation a material precursor (same or different from the first one) is again used.
  • FIG. 1 illustrates a structure that is provided after forming the inventive low k (dielectric constant of about 3.0 or less, preferably 2.7 or less) dielectric stack 12 on a surface of a substrate 10 .
  • substrate when used in conjunction with substrate 10 includes, a semiconducting material, an insulating material, a conductive material or any combination thereof, including multilayered structures.
  • substrate 10 can be a semiconducting material such as Si, SiGe, SiGeC, SiC, GaAs, InAs, InP and other III/V or II/VI compound semiconductors.
  • the semiconductor substrate 10 can also include a layered substrate such as, for example, Si/SiGe, Si/SiC, silicon-on-insulators (SOIs) or silicon germanium-on-insulators (SGOIs).
  • the insulating material can be an organic insulator, an inorganic insulator or a combination thereof including multilayers.
  • the substrate 10 may include, for example, polySi, an elemental metal, alloys of elemental metals, a metal silicide, a metal nitride and combinations thereof, including multilayers.
  • the substrate 10 includes a combination of a semiconducting material and an insulating material, a combination of a semiconducting material and a conductive material or a combination of a semiconducting material, an insulating material and a conductive material.
  • CMOS complementary metal oxide semiconductor
  • the low k dielectric stack 12 can comprise any dielectric material having a dielectric constant of about 3.0 or less.
  • the low k dielectric stack 12 includes dielectric materials that have a dielectric constant of about 2.7 or less, with a dielectric constant of about 2.5 or less being more highly preferred.
  • the term “dielectric stack” is used to denote a structure that includes at least one dielectric film (or material) having said low k value.
  • the dielectric stack 12 includes six film layers 14 wherein a nanolayer 16 separates each of the film layers. This illustration is exemplary and by no means restrictions the number of dielectric films or nanolayers that can be present within the inventive dielectric stack.
  • the dielectric materials within the film stack can comprise the same or different, preferably the same, low k dielectric material.
  • the low k dielectric films that can be present within the stack 12 can be porous, nonporous or a combination of porous and non-porous. When porous dielectric films are employed, the dielectric constant thereof is less than the nonporous version of the same dielectric film.
  • each of the low k dielectric films (or materials) within the stack are porous.
  • the pores are typically formed by introducing a porogen during the deposition process that are removed after deposition using a curing process.
  • one of the precursors employed can be a porogen material.
  • dielectric films examples include, but are not limited to: organic dielectrics containing atoms of C, O and H such as thermosetting polyarylene ethers; and/or inorganic dielectrics containing atoms of Si, O and H, with C being optional.
  • examples of the latter include carbon doped oxides (also referred to as “SiCOH”), silsesquioxanes, organosilanes and other like Si-containing materials.
  • polyarylene is used herein to denote aryl moieties or inertly substituted aryl moieties which are linked together by bonds, fused rings, or inert linking groups such as oxygen, sulfur, sulfone, sulfoxide, carbonyl, etc.
  • the above described as deposited materials, without the nanolayers have a crack velocity of about 1E-10 m/sec or greater at a film thickness of 1.2 ⁇ m, a stress of about 60 MPa or greater, a modulus of about 7.5 GPa or less and a hardness of about 1 GPa or less.
  • These mechanical properties become poorer as the dielectric of the material is decreased. For instance, the crack velocity, stress, modulus and hardness of a porous low k material are worse than its corresponding nonporous low k material.
  • the dielectric stack 12 is deposited by placing the substrate 10 into a reactor chamber such as a plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the present invention also contemplates that the dielectric stack 12 can be formed utilizing chemical vapor deposition (CVD), high-density plasma (HDP) deposition, pulsed PECVD, spin-on application, or other related methods.
  • a dielectric material having a low k, as defined above, is then deposited as will be described in more detail herein below.
  • the deposition of the dielectric film(s) 14 the conditions are changed so that at least one nanolayer 16 comprising atoms of at least Si and O is formed. This is achieved by stopping the precursor flow and replacing the same with a nanolayer precursor flow. After forming the nanolayer, the nanolayer precursor flow is halted and dielectric precursor can then be introduced into the reactor. It is possible to switch the dielectric precursor after forming the nanolayer to provide a composition that is different from that of the previously formed di
  • the thickness of the dielectric stack 12 deposited may vary; typical ranges for the deposited low k dielectric stacks 12 are from about 50 nm to about 5 ⁇ m, with a thickness from 100 to about 1.5 ⁇ m being more typical.
  • the nanolayers 16 that are introduced into the film stack have a thickness that is within the nanometer range. Typically, the nanolayers 16 have a thickness from about 1 to about 100 nm, with a thickness from about 2 to about 10 nm being more typical.
  • the nanolayers 16 of the present invention are in-situ nanolayers that include atoms of at least Si and O, with atoms of C, H, and N being optional.
  • Illustrative examples of nanolayers of the present invention include SiCOH, SiCOHN, SiO 2 , SiCO x , SiON or multilayers thereof.
  • the composition of each nanolayer within a given dielectric stack 12 may be the same or different.
  • the dielectric material within the inventive stack has a crack velocity of less than 1E-10 m/sec at 1.2 ⁇ m, typically from about 1E-8 to about 1E-10 m/sec, at a film thickness of 1.2 ⁇ m, a stress of less than 60 MPa, typically from about 30 to about 50 MPa, a modulus of greater than 7.5 GPa, typically from about 8 to about 13 GPa, and a hardness of greater than 1 GPa, typically from about 1.5 to about 2.0 GPa.
  • the aforementioned values are for the as deposited material prior to subjecting the inventive stack to any post treatment steps. These values for the inventive stack including the imbedded nanolayers are an improvement over prior art as deposited dielectric films that do not contain any imbedded nanolayers.
  • the low k dielectric material 14 is a SiCOH dielectric that is deposited using the processing techniques disclosed in co-assigned U.S. Pat. Nos. 6,147,009, 6,312,793, 6,441,491, 6,437,443, 6,541,398, 6,479,110 B2, and 6,497,963, the contents of which are incorporated herein by reference.
  • the SiCOH dielectric film is formed by providing at least a first precursor, e.g., the dielectric precursor, (liquid, gas or vapor) comprising atoms of Si, C, O, and H, and an inert carrier such as He or Ar, into a reactor, preferably the reactor is a PECVD reactor, and then depositing a film derived from said first precursor onto a suitable substrate utilizing conditions that are effective in forming a SiCOH dielectric material.
  • the present invention yet further provides for mixing the first precursor with an oxidizing agent such as O 2 , CO 2 or a combination thereof, thereby stabilizing the reactants in the reactor and improving the uniformity of the low k dielectric material deposited on the substrate 10 .
  • a second precursor gas, liquid or vapor
  • a third precursor gas, liquid or gas
  • Ge may also be used.
  • the first precursor is selected from organic molecules with ring structures comprising SiCOH components such as 1,3,5,7-tetramethylcyclotetrasiloxane (“TMCTS” or “C 4 H 16 O 4 Si 4 ”), octamethylcyclotetrasiloxane (OMCTS), diethoxymethylsilane (DEMS), dimethyidimethoxysilane (DMDMOS), diethylmethoxysilane (DEDMOS), and related cyclic and non-cyclic silanes, siloxanes and the like.
  • TCTS 1,3,5,7-tetramethylcyclotetrasiloxane
  • OMC octamethylcyclotetrasiloxane
  • DEMS dimethyidimethoxysilane
  • DEDMOS diethylmethoxysilane
  • related cyclic and non-cyclic silanes, siloxanes and the like such as 1,3,5,7-tetramethylcyclotetrasilox
  • the second precursor that may be used in forming a SiCOH low k dielectric is a hydrocarbon molecule.
  • any hydrocarbon molecule such as, for example, ethylene
  • the second precursor is selected from the group consisting of hydrocarbon molecules with ring structures, preferably with more than one ring present in the molecule or with branched chains attached to the ring.
  • species containing fused rings, at least one of which contains a heteroatom, preferentially oxygen are those that include a ring of a size that imparts significant ring strain, namely rings of 3 or 4 atoms and/or 7 or more atoms.
  • oxabicyclics such as cyclopentene oxide (“CPO” or “C 5 H 8 O”).
  • CPO cyclopentene oxide
  • the third precursor may be formed from germane hydride or any other reactant comprising a source Ge.
  • the SiCOH dielectric film, which is used as the low k dielectric within the inventive stack may be deposited using a method the includes the step of providing a parallel plate reactor, which has a conductive area of a substrate chuck between about 85 cm 2 and about 750 cm 2 , and a gap between the substrate and a top electrode between about 1 cm and about 12 cm.
  • a high frequency RF power is applied to one of the electrodes at a frequency between about 0.45 MHz and about 200 MHz.
  • an additional low frequency power can be applied to one of the electrodes.
  • the conditions used for the deposition step may vary depending on the desired final dielectric constant of the SiCOH dielectric film.
  • the conditions used for providing a stable dielectric material comprising elements of Si, C, O and H that has a dielectric constant of about 2.7 or less include: setting the substrate temperature at between about 200° C.
  • setting the high frequency RF power density at between about 0.1 W/cm 2 and about 2.5 W/cm 2 ; setting the first liquid precursor flow rate at between about 100 mg/min and about 5000 mg/min, optionally setting the second liquid precursor flow rate at between about 50 mg/min to about 10,000 mg/min; optionally setting the third liquid precursor flow rate at between about 25 mg/min to about 4000 mg/min; optionally setting the inert carrier gases such as helium (and/or argon) flow rate at between about 50 sccm to about 5000 sccm; setting the reactor pressure at a pressure between about 1000 mTorr and about 7000 mTorr; and setting the high frequency RF power between about 75 W and about 1000 W.
  • a low frequency power may be added to the plasma between about 30 W and about 400 W.
  • the RF power applied to the substrate chuck is also changed by a factor of X.
  • an oxidizing agent When employed in the present invention, it is flown into the PECVD reactor at a flow rate between about 10 sccm to about 1000 sccm.
  • organosilicon gas phase precursors such as trimethylsilane
  • a porogen can be included during the deposition of the low k dielectric film 12 that causes subsequent pore formation within the film 12 during a subsequent curing step.
  • the low k dielectric film within the stack is a hydrogenated oxidized silicon carbon material (e.g., SiCOH) comprising atoms of Si, C, O and H in a covalently bonded tri-dimensional network and having a dielectric constant of not more than about 2.8.
  • the tri-bonded network may include a covalently bonded tri-dimensional ring structure comprising Si—O, Si—C, Si—H, C—H and C—C bonds.
  • the term “tri-dimensional” is used to describe a polymeric structure in which the Si, C, O and H atoms are interconnected and interrelated in the x, y and z directions
  • the low k dielectric film 14 within the inventive stack 12 may comprise F and N and may optionally have the Si atoms partially substituted by Ge atoms.
  • the low k dielectric film 14 may contain molecular scale voids (i.e., nanometer-sized pores) of between about 0.3 to about 50 nanometers in diameter, and most preferably between about 0.4 and about 10 nanometers in diameter, further reducing the dielectric constant of the film to values below about 2.0.
  • the nanometer-sized pores of the low k dielectric film 14 occupy a volume of between about 0.5% and about 50% of a volume of the material.
  • the low k dielectric film 14 When the low k dielectric film 14 is a SiCOH dielectric, it typically comprises between about 5 and about 40 atomic percent of Si; between about 5 and about 45 atomic percent of C; between 0 and about 50 atomic percent of O; and between about 10 and about 55 atomic percent of H.
  • the nanolayers are introduced during the deposition of the low k dielectric film 14 by changing the precursor being introduced into the reactor chamber to one that is capable of forming the inventive nanolayer.
  • the nanolayer precursor comprises a solid, liquid or gas that includes atoms of at least, Si, or Si and O, with C, N and H being optional.
  • nanolayer precursors examples include 1,3,5,7-tetramethylcyclotetrasiloxane (“TMCTS” or “C 4 H 16 O 4 Si 4 ”), octamethylcyclotetrasiloxane (OMCTS), diethoxymethylsilane (DEMS), dimethyidimethoxysilane (DMDMOS), diethylmethoxysilane (DEDMOS), silane, hexamethyl disilazane (HMDS) or related cyclic and non-cyclic silanes and siloxanes.
  • TCTS 1,3,5,7-tetramethylcyclotetrasiloxane
  • OMC octamethylcyclotetrasiloxane
  • DEMS dimethyidimethoxysilane
  • DEDMOS diethylmethoxysilane
  • silane hexamethyl disilazane (HMDS) or related cyclic and non-cyclic silanes and siloxanes.
  • the nanolayer precursor may be used in conjunction with an inert gas and/or an oxidizing agent.
  • the inert gas and the oxidizing agent can be the same as described above.
  • the conditions used for forming the nanolayer include: setting the substrate temperature at between about 200° C. and about 425° C.; setting the high frequency RF power density at between about 0.1 W/cm 2 and about 2.5 W/cm 2 ; setting the nanolayer precursor flow rate at between about 600 mg/min and about 2500 mg/min; optionally setting the inert carrier gases such as helium (and/or argon) flow rate at between about 50 sccm to about 5000 sccm; optionally setting the oxidizing agent flow rate at about 600 to about 2500 sccm; setting the reactor pressure at a pressure between about 1000 mTorr and about 7000 mTorr; and setting the high frequency RF power between about 75 W and about 1000 W.
  • a low frequency power may be added to the plasma between about 30 W and about 400 W.
  • inventive (as deposited) dielectric stack has improved mechanical properties, in terms of crack velocity, stress, modulus and hardness as compared to an equivalent (as deposited) dielectric stack that does not include any nanolayers imbedded therein. Further improvement in mechanical properties can be achieved by subjecting the same to a post treatment step.
  • the post treatment step is optional and does not need to be performed with the inventive dielectric stack 12 .
  • post treatment of the inventive dielectric stack 12 may be performed by utilizing an energy source such as thermal, electron beam, plasma, microwave or optical radiation such as UV or laser. Combinations of the aforementioned energy sources can also be used in the present invention.
  • the thermal energy source includes any source such as, for example, a heating element or a lamp, that can heat the deposited dielectric stack 12 to a temperature up to 450° C. More preferably, the thermal energy source is capable of heating the SiCOH dielectric stack 12 to a temperature from about 200° to about 450° C., with a temperature from about 350° C. to about 425° C. being even more preferred.
  • This thermal treatment process can be carried out for various time periods, with a time period from about 0.5 minutes to about 300 minutes being typical.
  • the thermal treatment step is typically performed in the presence of an inert gas such as He, Ar, Ne, Xe, N 2 or a mixture thereof.
  • the thermal treatment step may be referred to as an anneal step in which rapid thermal anneal, furnace anneal, laser anneal or spike anneal conditions are employed.
  • the thermal treatment step can be performed in the presence of a gas mixture containing a hydrogen source gas such as, for example, H 2 or a hydrocarbon.
  • the thermal treatment step can be performed in the presence of a gas mixture containing a very low partial pressure of O 2 and H 2 O, in the range below 1000 parts per million.
  • the UV light treatment step is performed utilizing a source that can generate light having a wavelength from about 500 to about 150 nm, to irradiate the substrate while the wafer temperature is maintained at up to 450° C., with temperatures from 200° C.-450° C. being preferred and a temperature from 350° C. to 425° C. being even more highly preferred. Radiation with >370 nm is of insufficient energy to dissociate or activate important bonds, so the wavelength range 150-370 nm is a preferred range. Using literature data and absorbance spectra measured on as deposited films, it has been found that ⁇ 170 nm radiation may not be favored due to degradation of the dielectric material within the dielectric stack.
  • the UV light treatment step may be performed in an inert gas, a hydrogen source gas or a gas mixture of O 2 and H 2 O using the partial pressure range mentioned above.
  • the electron beam treatment step may be performed in an inert gas, a hydrogen source gas or a gas mixture of O 2 and H 2 O using the partial pressure range mentioned above.
  • the plasma treatment step is performed utilizing a source that is capable of generating atomic hydrogen (H), and optionally CH 3 or other hydrocarbon radicals. Downstream plasma sources are preferred over direct plasma exposure.
  • the wafer temperature is maintained at a temperature up to 450° C., with temperatures from 200° C.-450° C. being preferred and temperatures from 350° C. to 425° C. being more highly preferred.
  • the plasma treatment step is performed by introducing a gas into a reactor that can generate a plasma and thereafter it is converted into a plasma.
  • the gas that can be used for the plasma treatment includes inert gases such as Ar, N, He, Xe or Kr, with He being preferred; hydrogen or related sources of atomic hydrogen, methane, methylsilane, related sources of CH 3 groups, and mixtures thereof.
  • the flow rate of the plasma treatment gas may vary depending on the reactor system being used.
  • the chamber pressure can range anywhere from 0.05 to 20 Torr, but the preferred range of pressure operation is 1 to 10 Torr.
  • the plasma treatment step occurs for a period of time, which is typically from about 1 ⁇ 2 to about 10 minutes, although longer times may be used within the invention.
  • a deep ultra-violet (DUV) laser source can also be employed.
  • the laser source used to treat the deposited films is typically an excimer laser which operates at one of several DUV wavelengths depending on the laser gas mixture.
  • a XeF laser which produces 308 nm radiation can be employed.
  • a KrF laser that produces 248 nm radiation, or a ArF laser that produces 193 nm radiation can be employed in the present invention.
  • Excimer lasers can operate at several hundred pulses per second with pulse energies up to a joule (J) resulting in several hundred Watt (W) output.
  • the laser employed in treating the as deposited films preferably operates under a pulse mode.
  • the laser beam can be expanded to expose the entire sample. Alternatively, and for larger samples, the laser exposure area can be raster scanned across the sample to provide uniform dose.
  • the fluence is limited to less than 5 mJ/cm 2 per pulse to ensure ablation will not occur.
  • the short pulse duration of about 10 ns for the excimer laser can cause material ablation at fluence levels greater than 20 mJ/cm 2 .
  • laser fluence levels of 0.1-5 mJ/cm 2 per pulse are employed.
  • the total dose can vary from 1 to 10000 Joules/cm 2 , preferably 500-2000 J/cm 2 .
  • a dose of 1000 J/cm 2 can be obtained using a fluence of 1 mJ/cm 2 for duration of 10 6 pulses.
  • Excimer laser normally operates at a few hundreds pulses per second.
  • the overall exposure time period for the DUV laser treatment for a several seconds to hours.
  • a typical 500 J/cm 2 dose is achieved in less than 15 min using a 200 Hz laser operating at a fluence level of 3 mJ/cm 2 per pulse.
  • FIGS. 2-5 The electronic devices which can include the inventive dielectric stack are shown in FIGS. 2-5 . It should be noted that the devices shown in FIGS. 2-5 are merely illustrative examples of the present invention, while an infinite number of other devices may include the inventive dielectric stack. In the following drawings, the nanolayers are not specifically shown within the dielectric stack of the present invention, but nevertheless nanolayers are meant to be included with layers that are referred to as the inventive dielectric stack.
  • an electronic device 30 built on a silicon substrate 32 is shown.
  • an insulating material layer 34 is first formed with a first region of metal 36 embedded therein.
  • a dielectric stack 38 of the present invention is deposited on top of the first layer of insulating material 34 and the first region of metal 36 .
  • the first layer of insulating material 34 may be suitably formed of silicon oxide, silicon nitride, doped varieties of these materials, or any other suitable insulating materials.
  • the dielectric stack 38 is then patterned in a photolithography process followed by etching and a conductor layer 40 is deposited thereon.
  • a second layer of the inventive dielectric stack 44 is deposited by a plasma enhanced chemical vapor deposition process overlying the first dielectric stack 38 and the first conductor layer 40 .
  • the conductor layer 40 may be deposited of a metallic material or a nonmetallic conductive material. For instance, a metallic material of aluminum or copper, or a nonmetallic material of nitride or polysilicon.
  • the first conductor 40 is in electrical communication with the first region of metal 36 .
  • a second region of conductor 50 is then formed after a photolithographic process on the dielectric stack 44 is conducted followed by etching and then a deposition process for the second conductor material.
  • the second region of conductor 50 may also be deposited of either a metallic material or a nonmetallic material, similar to that used in depositing the first conductor layer 40 .
  • the second region of conductor 50 is in electrical communication with the first region of conductor 40 and is embedded in the second layer of the dielectric stack 44 .
  • the second layer of the dielectric stack 44 is in intimate contact with the first layer of the dielectric stack 38 .
  • the first layer of the dielectric stack 38 is an intralevel dielectric material
  • the second layer of the dielectric stack 44 is both an intralevel and an interlevel dielectric. Based on the low dielectric constant of the inventive dielectric stacks, superior insulating property can be achieved by the first insulating layer 38 and the second insulating layer 44 .
  • FIG. 3 shows a present invention electronic device 60 similar to that of electronic device 30 shown in FIG. 2 , but with an additional dielectric cap layer 62 deposited between the first insulating material layer 38 and the second insulating material layer 44 .
  • the dielectric cap layer 62 can be suitably formed of a material such as silicon oxide, silicon nitride, silicon oxynitride, refractory metal silicon nitride with the refractory metal being Ta, Zr, Hf or W, silicon carbide, silicon carbo-nitride (SiCN), silicon carbo-oxide (SiCO), and their hydrogenated compounds.
  • the additional dielectric cap layer 62 functions as a diffusion barrier layer for preventing diffusion of the first conductor layer 40 into the second insulating material layer 44 or into the lower layers, especially into layers 34 and 32 .
  • the polish stop layer 74 can be deposited of a suitable dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, refractory metal silicon nitride with the refractory metal being Ta, Zr, Hf or W, silicon carbide, silicon carbo-oxide (SiCO), and their hydrogenated compounds.
  • a preferred polish stop layer composition is SiCH or SiCOH for layers 72 or 74 .
  • a second dielectric layer 74 can be added on top of the second dielectric stack 44 for the same purposes.
  • FIG. 5 Still another alternate embodiment of the present invention electronic device 80 is shown in FIG. 5 .
  • an additional layer 82 of dielectric material is deposited and thus dividing the second insulating material layer 44 into two separate layers 84 and 86 .
  • the intralevel and interlevel dielectric layer 44 formed of the inventive dielectric stack is therefore divided into an interlayer dielectric layer 84 and an intralevel dielectric layer 86 at the boundary between via 92 and interconnect 94 .
  • An additional diffusion barrier layer 96 is further deposited on top of the upper dielectric layer 74 .
  • the additional benefit provided by this alternate embodiment electronic structure 80 is that dielectric layer 82 acts as an RIE etch stop providing superior interconnect depth control.
  • the composition of layer 82 is selected to provide etch selectivity with respect to layer 86 .
  • Still other alternate embodiments may include an electronic structure which has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate which has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of the insulating material wherein the second layer of insulating material is in intimate contact with the first layer of insulating material, and the first region of conductor is in electrical communication with the first region of metal, a second region of conductor in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, wherein the third layer of insulating material is in intimate contact with the second layer of insulating material, a first dielectric cap layer between the second layer of insulating material and the third layer of insulating material and a second dielectric cap layer on top of the third layer of insulating material, wherein the first and the second dielectric cap layers are formed of a material that includes the inventive dielectric stack of the present
  • Still other alternate embodiments of the present invention include an electronic structure which has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material which is in intimate contact with the first layer of insulating material, the first region of conductor is in electrical communication with the first region of metal, a second region of conductor that is in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, the third layer of insulating material is in intimate contact with the second layer of insulating material, and a diffusion barrier layer formed of the dielectric stack of the present invention deposited on at least one of the second and third layers of insulating material.
  • Still other alternate embodiments include an electronic structure which has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material which is in intimate contact with the first layer of insulating material, the first region of conductor is in electrical communication with the first region of metal, a second region of conductor in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, the third layer of insulating material is in intimate contact with the second layer of insulating material, a reactive ion etching (RIE) hard mask/polish stop layer on top of the second layer of insulating material, and a diffusion barrier layer on top of the RIE hard mask/polish stop layer, wherein the RIE hard mask/polish stop layer and the diffusion barrier layer are formed of the dielectric stack of the present invention.
  • RIE reactive
  • Still other alternate embodiments include an electronic structure which has layers of insulating materials as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material which is in intimate contact with the first layer of insulating material, the first region of conductor is in electrical communication with the first region of metal, a second region of conductor in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, the third layer of insulating material is in intimate contact with the second layer of insulating material, a first RIE hard mask, polish stop layer on top of the second layer of insulating material, a first diffusion barrier layer on top of the first RIE hard mask/polish stop layer, a second RIE hard mask/polish stop layer on top of the third layer of insulating material, and a second diffusion barrier layer on top of the second RIE hard mask/polis
  • Still other alternate embodiments of the present invention includes an electronic structure that has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure similar to that described immediately above but further includes a dielectric cap layer which is formed of the dielectric stack of the present invention situated between an interlevel dielectric layer and an intralevel dielectric layer.
  • the present invention also contemplates other material stacks besides those including low k dielectrics.
  • the present invention provides a material stack comprising one or more films that have a crack velocity of about 1E-10 m/sec or greater and at least one monolayer within said one or more films, said one at least one monolayer reduces said crack velocity of said one or more films to a value of less than 1E-10 m/sec.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Abstract

A low k dielectric stack having an effective dielectric constant k, of about 3.0 or less, in which the mechanical properties of the stack are improved by introducing at least one nanolayer into the dielectric stack. The improvement in mechanical properties is achieved without significantly increasing the dielectric constant of the films within the stack and without the need of subjecting the inventive dielectric stack to any post treatment steps. Specifically, the present invention provides a low k dielectric stack that comprises at least one low k dielectric material and at least one nanolayer present within the at least one low k dielectric material.

Description

FIELD OF THE INVENTION
The present invention relates to a dielectric stack that is comprised of one or more dielectric materials, each having a low dielectric constant on the order of about 3.0 or less, preferably about 2.7 or less, in which one or more nanolayers are present in at least one of the dielectric materials. The presence of the nanolayer improves the mechanical properties of the dielectric materials within the stack. The present invention also relates to semiconductor structures such as interconnect structures that include the inventive dielectric stack. The present invention also relates to a method of fabricating the inventive dielectric stack.
BACKGROUND OF THE INVENTION
In the production of microelectronic devices, integrated circuits utilize multilevel wiring structures for interconnecting regions within devices and for interconnecting one or more devices within integrated circuits. Conventionally, forming interconnect structures begins with forming a lower level of wiring followed by the deposition of an interlevel dielectric layer and then a second level of wiring, where the first and second wiring levels may be connected by one or more metal filled vias.
Interlevel and/or intralevel dielectrics (ILDs), such as silicon dioxide (SiO2), are used to electrically isolate active elements and different interconnect signal paths from each other. The electrical connections between different interconnect levels are made through vias that are formed in the ILD layers. Typically, the vias are filled with a metal, such as copper, aluminum or tungsten.
Recently, there has been great interest to replace SiO2 with low dielectric constant (“low k”) materials as the intralevel and/or interlevel dielectrics in interconnect structures. By “low k” it is meant a dielectric material (organic or inorganic) having a dielectric constant that is less than silicon dioxide (e.g., k of less than about 4.0, as measured in a vacuum). Examples of low k materials include: organic dielectrics containing atoms of C, O and H such as thermosetting polyarylene ethers; and inorganic dielectrics containing atoms of Si, O and H, with C being optional. Examples of the latter include carbon doped oxides (also referred to as “SiCOH”), silsesquioxanes, organosilanes and other like Si-containing materials.
It is desirable to employ low k materials as insulators in interconnect structures because low k materials reduce the interconnect capacitance. Accordingly, low k materials increase the signal propagation speed, while reducing cross-talk noise and power dissipation in the interconnect structure.
The main problem with low k materials is that they lack mechanical rigidity and easily crack when subjected to thermal and mechanical stresses. That is, prior art low k dielectrics exhibit high crack velocity (on the order of about 1E-10 m/sec or greater at a film thickness of 1.2 μm) and stress (on the order of about 60 MPa or greater), while exhibiting low modulus (on the order of about 7.5 GPa or less) and hardness (on the order of about 1 GPa or less). These mechanical properties become poorer as the dielectric constant of the material is decreased. For instance, the crack velocity, stress, modulus and hardness of a porous low k material are worse than its corresponding nonporous low k material.
Poor mechanical properties of low k dielectrics may lead to device failure or degradation over extended periods of time. For example, dielectric films that have a high crack velocity have a high tendency to form cracks within said film during further processing and use, which greatly reduces the reliability of the semiconductor device that includes such films.
Improved mechanical properties of low k dielectrics have been achieved in the prior art by treating the films post deposition. For example, curing or treatment using thermal, UV light, electron beam irradiation, chemical energy or a combination of these has been used to stabilize the low k dielectric material and to improve the mechanical properties of the same. While such post deposition treatments are possible, they add extra processing steps and thus cost to the manufacturing of the dielectric film.
The above problem with crack formation is not only limited to low k dielectrics, but instead it applies to other materials which become fragile when they are subjected to thermal and mechanical stresses.
In view of the above, there is a need for providing a dielectric stack wherein the mechanical properties such as crack velocity, stress, modulus and hardness are improved without the need of subjecting the dielectric stack to any post deposition treatments.
SUMMARY OF THE INVENTION
The present invention provides a low k dielectric stack having an effective dielectric constant k, of about 3.0 or less, preferably about 2.7 or less, in which the mechanical properties of the stack are improved without significantly increasing the dielectric constant of the films within the stack. The improvement in mechanical properties is achieved without the need of subjecting the inventive dielectric stack to any post treatment steps.
Specifically, the present invention provides a low k dielectric stack that comprises at least one low k dielectric material and at least one nanolayer present within the at least one low k dielectric material. The term “nanolayer” is used in the present invention to denote a layer whose thickness is in the nanometer range.
The nanolayers of the present invention are formed in-situ and they typically include atoms of at least Si and O, with atoms of C, H, and N being optional. Illustrative examples of nanolayers of the present invention include, but are not limited to: SiCOH, SiCOHN, SiO2, SiCOH, SiON, SiCOx or multilayers thereof.
In broad terms, the present invention provides a dielectric stack that comprises at least one low k dielectric material having a dielectric constant of about 3.0 or less and at least one nanolayer comprising at least atoms of Si and O present within the at least one low k dielectric material.
The present invention also relates to electronic structures such as interconnect structures that include the inventive dielectric film as the interlevel or intralevel dielectric, a capping layer, and/or as a hardmask/polish stop layer.
Specifically, the electronic structure of the present invention includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material, the second layer of insulating material being in intimate contact with the first layer of insulating material, the first region of conductor being in electrical communication with the first region of metal, and a second region of conductor being in electrical communication with the first region of conductor and being embedded in a third layer of insulating material, the third layer of insulating material being in intimate contact with the second layer of insulating material.
In the above structure, each of the insulating layers can comprise the inventive low k dielectric stack.
The electronic structure may further include a dielectric cap layer situated in-between the first layer of insulating material and the second layer of insulating material, and may further include a dielectric cap layer situated in-between the second layer of insulating material and the third layer of insulating material. The electronic structure may further include a first dielectric cap layer between the second layer of insulating material and the third layer of insulating material, and a second dielectric cap layer on top of the third layer of insulating material.
In some embodiments, the dielectric cap itself can comprise the inventive low k dielectric stack.
The electronic structure may further include a diffusion barrier layer of a dielectric material deposited on at least one of the second and third layer of insulating material. The electronic structure may further include a dielectric layer on top of the second layer of insulating material for use as a RIE hard mask/polish-stop layer and a dielectric diffusion barrier layer on top of the dielectric RIE hard mask/polish-stop layer. The electronic structure may further include a first dielectric RIE hard mask/polish-stop layer on top of the second layer of insulating material, a first dielectric RIE diffusion barrier layer on top of the first dielectric polish-stop layer a second dielectric RIE hard mask/polish-stop layer on top of the third layer of insulating material, and a second dielectric diffusion barrier layer on top of the second dielectric polish-stop layer. The dielectric RIE hard mask/polish-stop layer may be comprised of the inventive low k dielectric stack as well.
The present invention also relates to a method of fabricating the inventive dielectric stack. Specifically, the method of the present invention includes:
providing a substrate into a reactor chamber; and
depositing a low k dielectric film onto a surface of said substrate from at least a first dielectric precursor, wherein during said depositing said first dielectric precursor is changed into a nanolayer precursor whereby at least one nanolayer comprising atoms of at least Si and O is introduced to the low k dielectric film.
It should be noted that the present invention also contemplates other material stacks besides those including low k dielectrics. In that instance, the present invention provides a material stack comprising one or more films that have a crack velocity of about 1E-10 m/sec or greater and at least one monolayer within said one or more films, said one at least one monolayer reduces said crack velocity of said one or more films to a value of less than 1E-10 m/sec.
In this embodiment, the stack is made using the method described above except that the first dielectric precursor is replaced with a first material precursor. For example, a metal stack formed on a metal oxide substrate can be provided in which the metal stack is comprised of Au deposited from an Au-containing precursor.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a pictorial representation (through a cross sectional view) illustrating the dielectric stack of the present invention.
FIG. 2 is an enlarged, cross-sectional view of an electronic device of the present invention that includes the inventive low k dielectric stack as both the intralevel dielectric layer and the interlevel dielectric layer.
FIG. 3 is an enlarged, cross-sectional view of the electronic structure of FIG. 2 having an additional diffusion barrier dielectric cap layer deposited on top of the inventive dielectric stack.
FIG. 4 is an enlarged, cross-sectional view of the electronic structure of FIG. 3 having an additional RIE hard mask/polish-stop dielectric cap layer and a dielectric cap diffusion barrier layer deposited on top of the polish-stop layer.
FIG. 5 is an enlarged, cross-sectional view of the electronic structure of FIG. 4 having additional RIE hard mask/polish-stop dielectric layers deposited on top of the dielectric stack of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention, which provides a dielectric stack comprising one or more low k dielectric materials with improved mechanical properties (including crack velocity, stress, elongation modulus and hardness) as well as a method of fabricating the same, will now be described in greater detail by referring to the drawings that accompany the present application. The various drawings are provided for illustrative purposes and thus they are not drawn to scale.
It is noted that the description that follows discusses the formation of a dielectric stack including nanolayers imbedded within one or more low k dielectric films. Although dielectric stack formation is described and illustrated, the incorporation of nanolayers within other films that are highly susceptible to cracking is also contemplated herein. In that instance, the dielectric precursor described below is substituted with any conventional material precursor, such as a metal-containing precursor. During deposition of the other material, the material precursor is changed to a nanolayer precursor to form the nanolayer, and after nanolayer formation a material precursor (same or different from the first one) is again used.
Reference is made first to FIG. 1 which illustrates a structure that is provided after forming the inventive low k (dielectric constant of about 3.0 or less, preferably 2.7 or less) dielectric stack 12 on a surface of a substrate 10. The term “substrate” when used in conjunction with substrate 10 includes, a semiconducting material, an insulating material, a conductive material or any combination thereof, including multilayered structures. Thus, for example, substrate 10 can be a semiconducting material such as Si, SiGe, SiGeC, SiC, GaAs, InAs, InP and other III/V or II/VI compound semiconductors. The semiconductor substrate 10 can also include a layered substrate such as, for example, Si/SiGe, Si/SiC, silicon-on-insulators (SOIs) or silicon germanium-on-insulators (SGOIs).
When substrate 10 is an insulating material, the insulating material can be an organic insulator, an inorganic insulator or a combination thereof including multilayers. When the substrate 10 is a conductive material, the substrate 10 may include, for example, polySi, an elemental metal, alloys of elemental metals, a metal silicide, a metal nitride and combinations thereof, including multilayers.
In some embodiments, the substrate 10 includes a combination of a semiconducting material and an insulating material, a combination of a semiconducting material and a conductive material or a combination of a semiconducting material, an insulating material and a conductive material.
When the substrate 10 comprises a semiconductor material, one or more semiconductor devices such as complementary metal oxide semiconductor (CMOS) devices can be fabricated thereon. For clarity, the one or more semiconductor devices are not shown in the drawings of the present application.
The low k dielectric stack 12 can comprise any dielectric material having a dielectric constant of about 3.0 or less. Preferably, the low k dielectric stack 12 includes dielectric materials that have a dielectric constant of about 2.7 or less, with a dielectric constant of about 2.5 or less being more highly preferred. The term “dielectric stack” is used to denote a structure that includes at least one dielectric film (or material) having said low k value. In the illustration shown in FIG. 1, the dielectric stack 12 includes six film layers 14 wherein a nanolayer 16 separates each of the film layers. This illustration is exemplary and by no means restrictions the number of dielectric films or nanolayers that can be present within the inventive dielectric stack. The dielectric materials within the film stack can comprise the same or different, preferably the same, low k dielectric material.
The low k dielectric films that can be present within the stack 12 can be porous, nonporous or a combination of porous and non-porous. When porous dielectric films are employed, the dielectric constant thereof is less than the nonporous version of the same dielectric film. Preferably, each of the low k dielectric films (or materials) within the stack are porous. The pores are typically formed by introducing a porogen during the deposition process that are removed after deposition using a curing process. In some embodiment, one of the precursors employed can be a porogen material.
Examples of dielectric films (or materials) that can be employed in the present invention include, but are not limited to: organic dielectrics containing atoms of C, O and H such as thermosetting polyarylene ethers; and/or inorganic dielectrics containing atoms of Si, O and H, with C being optional. Examples of the latter include carbon doped oxides (also referred to as “SiCOH”), silsesquioxanes, organosilanes and other like Si-containing materials. The term “polyarylene” is used herein to denote aryl moieties or inertly substituted aryl moieties which are linked together by bonds, fused rings, or inert linking groups such as oxygen, sulfur, sulfone, sulfoxide, carbonyl, etc.
The as deposited dielectric materials described above, without the inventive nanolayers, typically have poor mechanical properties associated therein. Specifically, the above described as deposited materials, without the nanolayers, have a crack velocity of about 1E-10 m/sec or greater at a film thickness of 1.2 μm, a stress of about 60 MPa or greater, a modulus of about 7.5 GPa or less and a hardness of about 1 GPa or less. These mechanical properties become poorer as the dielectric of the material is decreased. For instance, the crack velocity, stress, modulus and hardness of a porous low k material are worse than its corresponding nonporous low k material.
The dielectric stack 12 is deposited by placing the substrate 10 into a reactor chamber such as a plasma enhanced chemical vapor deposition (PECVD). In addition to PECVD, the present invention also contemplates that the dielectric stack 12 can be formed utilizing chemical vapor deposition (CVD), high-density plasma (HDP) deposition, pulsed PECVD, spin-on application, or other related methods. A dielectric material having a low k, as defined above, is then deposited as will be described in more detail herein below. During the deposition of the dielectric film(s) 14, the conditions are changed so that at least one nanolayer 16 comprising atoms of at least Si and O is formed. This is achieved by stopping the precursor flow and replacing the same with a nanolayer precursor flow. After forming the nanolayer, the nanolayer precursor flow is halted and dielectric precursor can then be introduced into the reactor. It is possible to switch the dielectric precursor after forming the nanolayer to provide a composition that is different from that of the previously formed dielectric layer.
The thickness of the dielectric stack 12 deposited may vary; typical ranges for the deposited low k dielectric stacks 12 are from about 50 nm to about 5 μm, with a thickness from 100 to about 1.5 μm being more typical.
The nanolayers 16 that are introduced into the film stack have a thickness that is within the nanometer range. Typically, the nanolayers 16 have a thickness from about 1 to about 100 nm, with a thickness from about 2 to about 10 nm being more typical. The nanolayers 16 of the present invention are in-situ nanolayers that include atoms of at least Si and O, with atoms of C, H, and N being optional. Illustrative examples of nanolayers of the present invention include SiCOH, SiCOHN, SiO2, SiCOx, SiON or multilayers thereof. The composition of each nanolayer within a given dielectric stack 12 may be the same or different.
After incorporating the nanolayers 16 with the dielectric material 14, the dielectric material within the inventive stack has a crack velocity of less than 1E-10 m/sec at 1.2 μm, typically from about 1E-8 to about 1E-10 m/sec, at a film thickness of 1.2 μm, a stress of less than 60 MPa, typically from about 30 to about 50 MPa, a modulus of greater than 7.5 GPa, typically from about 8 to about 13 GPa, and a hardness of greater than 1 GPa, typically from about 1.5 to about 2.0 GPa. The aforementioned values are for the as deposited material prior to subjecting the inventive stack to any post treatment steps. These values for the inventive stack including the imbedded nanolayers are an improvement over prior art as deposited dielectric films that do not contain any imbedded nanolayers.
Typically, the low k dielectric material 14 is a SiCOH dielectric that is deposited using the processing techniques disclosed in co-assigned U.S. Pat. Nos. 6,147,009, 6,312,793, 6,441,491, 6,437,443, 6,541,398, 6,479,110 B2, and 6,497,963, the contents of which are incorporated herein by reference.
Specifically, the SiCOH dielectric film is formed by providing at least a first precursor, e.g., the dielectric precursor, (liquid, gas or vapor) comprising atoms of Si, C, O, and H, and an inert carrier such as He or Ar, into a reactor, preferably the reactor is a PECVD reactor, and then depositing a film derived from said first precursor onto a suitable substrate utilizing conditions that are effective in forming a SiCOH dielectric material. The present invention yet further provides for mixing the first precursor with an oxidizing agent such as O2, CO2 or a combination thereof, thereby stabilizing the reactants in the reactor and improving the uniformity of the low k dielectric material deposited on the substrate 10.
In addition to the first precursor, a second precursor (gas, liquid or vapor) comprising atoms of C, H, and optionally O, F and N can be used. Optionally, a third precursor (gas, liquid or gas) comprising Ge may also be used.
Preferably, the first precursor is selected from organic molecules with ring structures comprising SiCOH components such as 1,3,5,7-tetramethylcyclotetrasiloxane (“TMCTS” or “C4H16O4Si4”), octamethylcyclotetrasiloxane (OMCTS), diethoxymethylsilane (DEMS), dimethyidimethoxysilane (DMDMOS), diethylmethoxysilane (DEDMOS), and related cyclic and non-cyclic silanes, siloxanes and the like.
The second precursor that may be used in forming a SiCOH low k dielectric is a hydrocarbon molecule. Although any hydrocarbon molecule such as, for example, ethylene, may be used, preferably the second precursor is selected from the group consisting of hydrocarbon molecules with ring structures, preferably with more than one ring present in the molecule or with branched chains attached to the ring. Especially useful, are species containing fused rings, at least one of which contains a heteroatom, preferentially oxygen. Of these species, the most suitable are those that include a ring of a size that imparts significant ring strain, namely rings of 3 or 4 atoms and/or 7 or more atoms. Particularly attractive, are members of a class of compounds known as oxabicyclics, such as cyclopentene oxide (“CPO” or “C5H8O”). Also useful are molecules containing branched tertiary butyl (t-butyl) and isopropyl (i-propyl) groups attached to a hydrocarbon ring; the ring may be saturated or unsaturated (containing C═C double bonds). The third precursor may be formed from germane hydride or any other reactant comprising a source Ge.
In a preferred embodiment of the present invention, the SiCOH dielectric film, which is used as the low k dielectric within the inventive stack may be deposited using a method the includes the step of providing a parallel plate reactor, which has a conductive area of a substrate chuck between about 85 cm2 and about 750 cm2, and a gap between the substrate and a top electrode between about 1 cm and about 12 cm. A high frequency RF power is applied to one of the electrodes at a frequency between about 0.45 MHz and about 200 MHz. Optionally, an additional low frequency power can be applied to one of the electrodes.
The conditions used for the deposition step may vary depending on the desired final dielectric constant of the SiCOH dielectric film. Broadly, the conditions used for providing a stable dielectric material comprising elements of Si, C, O and H that has a dielectric constant of about 2.7 or less include: setting the substrate temperature at between about 200° C. and about 425° C.; setting the high frequency RF power density at between about 0.1 W/cm2 and about 2.5 W/cm2; setting the first liquid precursor flow rate at between about 100 mg/min and about 5000 mg/min, optionally setting the second liquid precursor flow rate at between about 50 mg/min to about 10,000 mg/min; optionally setting the third liquid precursor flow rate at between about 25 mg/min to about 4000 mg/min; optionally setting the inert carrier gases such as helium (and/or argon) flow rate at between about 50 sccm to about 5000 sccm; setting the reactor pressure at a pressure between about 1000 mTorr and about 7000 mTorr; and setting the high frequency RF power between about 75 W and about 1000 W. Optionally, a low frequency power may be added to the plasma between about 30 W and about 400 W. When the conductive area of the substrate chuck is changed by a factor of X, the RF power applied to the substrate chuck is also changed by a factor of X.
When an oxidizing agent is employed in the present invention, it is flown into the PECVD reactor at a flow rate between about 10 sccm to about 1000 sccm.
While liquid precursors are used in the above example, it is known in the art that the organosilicon gas phase precursors (such as trimethylsilane) can also be used for the deposition. A porogen can be included during the deposition of the low k dielectric film 12 that causes subsequent pore formation within the film 12 during a subsequent curing step.
In a preferred embodiment of the present invention, the low k dielectric film within the stack is a hydrogenated oxidized silicon carbon material (e.g., SiCOH) comprising atoms of Si, C, O and H in a covalently bonded tri-dimensional network and having a dielectric constant of not more than about 2.8. The tri-bonded network may include a covalently bonded tri-dimensional ring structure comprising Si—O, Si—C, Si—H, C—H and C—C bonds. The term “tri-dimensional” is used to describe a polymeric structure in which the Si, C, O and H atoms are interconnected and interrelated in the x, y and z directions
The low k dielectric film 14 within the inventive stack 12 may comprise F and N and may optionally have the Si atoms partially substituted by Ge atoms. The low k dielectric film 14 may contain molecular scale voids (i.e., nanometer-sized pores) of between about 0.3 to about 50 nanometers in diameter, and most preferably between about 0.4 and about 10 nanometers in diameter, further reducing the dielectric constant of the film to values below about 2.0. The nanometer-sized pores of the low k dielectric film 14 occupy a volume of between about 0.5% and about 50% of a volume of the material.
When the low k dielectric film 14 is a SiCOH dielectric, it typically comprises between about 5 and about 40 atomic percent of Si; between about 5 and about 45 atomic percent of C; between 0 and about 50 atomic percent of O; and between about 10 and about 55 atomic percent of H.
The nanolayers are introduced during the deposition of the low k dielectric film 14 by changing the precursor being introduced into the reactor chamber to one that is capable of forming the inventive nanolayer. Specifically, the nanolayer precursor comprises a solid, liquid or gas that includes atoms of at least, Si, or Si and O, with C, N and H being optional. Examples of nanolayer precursors include 1,3,5,7-tetramethylcyclotetrasiloxane (“TMCTS” or “C4H16O4Si4”), octamethylcyclotetrasiloxane (OMCTS), diethoxymethylsilane (DEMS), dimethyidimethoxysilane (DMDMOS), diethylmethoxysilane (DEDMOS), silane, hexamethyl disilazane (HMDS) or related cyclic and non-cyclic silanes and siloxanes.
The nanolayer precursor may be used in conjunction with an inert gas and/or an oxidizing agent. The inert gas and the oxidizing agent can be the same as described above.
The conditions used for forming the nanolayer include: setting the substrate temperature at between about 200° C. and about 425° C.; setting the high frequency RF power density at between about 0.1 W/cm2 and about 2.5 W/cm2; setting the nanolayer precursor flow rate at between about 600 mg/min and about 2500 mg/min; optionally setting the inert carrier gases such as helium (and/or argon) flow rate at between about 50 sccm to about 5000 sccm; optionally setting the oxidizing agent flow rate at about 600 to about 2500 sccm; setting the reactor pressure at a pressure between about 1000 mTorr and about 7000 mTorr; and setting the high frequency RF power between about 75 W and about 1000 W. Optionally, a low frequency power may be added to the plasma between about 30 W and about 400 W.
As indicated above the inventive (as deposited) dielectric stack has improved mechanical properties, in terms of crack velocity, stress, modulus and hardness as compared to an equivalent (as deposited) dielectric stack that does not include any nanolayers imbedded therein. Further improvement in mechanical properties can be achieved by subjecting the same to a post treatment step. The post treatment step is optional and does not need to be performed with the inventive dielectric stack 12.
If desired, post treatment of the inventive dielectric stack 12 may be performed by utilizing an energy source such as thermal, electron beam, plasma, microwave or optical radiation such as UV or laser. Combinations of the aforementioned energy sources can also be used in the present invention.
The thermal energy source includes any source such as, for example, a heating element or a lamp, that can heat the deposited dielectric stack 12 to a temperature up to 450° C. More preferably, the thermal energy source is capable of heating the SiCOH dielectric stack 12 to a temperature from about 200° to about 450° C., with a temperature from about 350° C. to about 425° C. being even more preferred. This thermal treatment process can be carried out for various time periods, with a time period from about 0.5 minutes to about 300 minutes being typical. The thermal treatment step is typically performed in the presence of an inert gas such as He, Ar, Ne, Xe, N2 or a mixture thereof. The thermal treatment step may be referred to as an anneal step in which rapid thermal anneal, furnace anneal, laser anneal or spike anneal conditions are employed.
In some embodiments, the thermal treatment step can be performed in the presence of a gas mixture containing a hydrogen source gas such as, for example, H2 or a hydrocarbon. In yet other embodiments, the thermal treatment step can be performed in the presence of a gas mixture containing a very low partial pressure of O2 and H2O, in the range below 1000 parts per million.
The UV light treatment step is performed utilizing a source that can generate light having a wavelength from about 500 to about 150 nm, to irradiate the substrate while the wafer temperature is maintained at up to 450° C., with temperatures from 200° C.-450° C. being preferred and a temperature from 350° C. to 425° C. being even more highly preferred. Radiation with >370 nm is of insufficient energy to dissociate or activate important bonds, so the wavelength range 150-370 nm is a preferred range. Using literature data and absorbance spectra measured on as deposited films, it has been found that <170 nm radiation may not be favored due to degradation of the dielectric material within the dielectric stack. Further, the energy range 310-370 nm is less useful than the range 150-310 nm, due to the relatively low energy per photon from 310-370 nm. Within the 150-310 nm range, optimum overlap with the absorbance spectrum of the as deposited stack and minimum degradation of the film properties within the stack (such as hydrophobicity) may be optionally used to select a most effective region of the UV spectrum for changing the dielectric's properties.
The UV light treatment step may be performed in an inert gas, a hydrogen source gas or a gas mixture of O2 and H2O using the partial pressure range mentioned above.
The electron beam treatment step is performed utilizing a source that is capable of generating a uniform electron flux over the wafer, with energies from 0.5 to 25 keV and current densities from 0.1 to 100 microAmp/cm2 (preferably 1 to 5 microAmp/cm2), while the wafer temperature is maintained at a temperature up to 450° C., with temperatures from 200°-450° C. being preferred, and temperature from 350° to 425° being even more highly preferred. The preferred dose of electrons used in the electron beam treatment step is from 50 to 500 microcoulombs/cm2, with 100 to 300 microcoulombs/cm2 range being preferred.
The electron beam treatment step may be performed in an inert gas, a hydrogen source gas or a gas mixture of O2 and H2O using the partial pressure range mentioned above.
The plasma treatment step is performed utilizing a source that is capable of generating atomic hydrogen (H), and optionally CH3 or other hydrocarbon radicals. Downstream plasma sources are preferred over direct plasma exposure. During plasma treatment the wafer temperature is maintained at a temperature up to 450° C., with temperatures from 200° C.-450° C. being preferred and temperatures from 350° C. to 425° C. being more highly preferred.
The plasma treatment step is performed by introducing a gas into a reactor that can generate a plasma and thereafter it is converted into a plasma. The gas that can be used for the plasma treatment includes inert gases such as Ar, N, He, Xe or Kr, with He being preferred; hydrogen or related sources of atomic hydrogen, methane, methylsilane, related sources of CH3 groups, and mixtures thereof. The flow rate of the plasma treatment gas may vary depending on the reactor system being used. The chamber pressure can range anywhere from 0.05 to 20 Torr, but the preferred range of pressure operation is 1 to 10 Torr. The plasma treatment step occurs for a period of time, which is typically from about ½ to about 10 minutes, although longer times may be used within the invention.
An RF or microwave power source is typically used to generate the above plasma. The RF power source may operate at either a high frequency range (on the order of about 100 W or greater); a low frequency range (less than 250 W) or a combination thereof may be employed. The high frequency power density can range anywhere from 0.1 to 2.0 W/cm2 but the preferred range of operation is 0.2 to 1.0 W/cm2. The low frequency power density can range anywhere from 0.1 to 1.0 W/cm2 but the preferred range of operation is 0.2 to 0.5 W/cm2. The chosen power levels must be low enough to avoid significant sputter etching of the exposed dielectric surface (<5 nanometers removal).
In addition to the above, a deep ultra-violet (DUV) laser source can also be employed. The laser source used to treat the deposited films is typically an excimer laser which operates at one of several DUV wavelengths depending on the laser gas mixture. For example, a XeF laser which produces 308 nm radiation can be employed. Also, a KrF laser that produces 248 nm radiation, or a ArF laser that produces 193 nm radiation can be employed in the present invention. Excimer lasers can operate at several hundred pulses per second with pulse energies up to a joule (J) resulting in several hundred Watt (W) output.
The laser employed in treating the as deposited films preferably operates under a pulse mode. The laser beam can be expanded to expose the entire sample. Alternatively, and for larger samples, the laser exposure area can be raster scanned across the sample to provide uniform dose. Using excimer lasers, the fluence is limited to less than 5 mJ/cm2 per pulse to ensure ablation will not occur. The short pulse duration of about 10 ns for the excimer laser can cause material ablation at fluence levels greater than 20 mJ/cm2. Typically, laser fluence levels of 0.1-5 mJ/cm2 per pulse are employed. The total dose can vary from 1 to 10000 Joules/cm2, preferably 500-2000 J/cm2. This is achieved by multiple laser pulse exposure. For example, a dose of 1000 J/cm2 can be obtained using a fluence of 1 mJ/cm2 for duration of 106 pulses. Excimer laser normally operates at a few hundreds pulses per second. Depending of the total dosage required, the overall exposure time period for the DUV laser treatment for a several seconds to hours. A typical 500 J/cm2 dose is achieved in less than 15 min using a 200 Hz laser operating at a fluence level of 3 mJ/cm2 per pulse.
The above described treatment steps are optional and need not be performed to achieve a dielectric film that has good electronic and mechanical properties. The above treatments however can be used with the inventive dielectric stack without significantly impacting the electrical and mechanical properties of the dielectric film.
The electronic devices which can include the inventive dielectric stack are shown in FIGS. 2-5. It should be noted that the devices shown in FIGS. 2-5 are merely illustrative examples of the present invention, while an infinite number of other devices may include the inventive dielectric stack. In the following drawings, the nanolayers are not specifically shown within the dielectric stack of the present invention, but nevertheless nanolayers are meant to be included with layers that are referred to as the inventive dielectric stack.
In FIG. 2, an electronic device 30 built on a silicon substrate 32 is shown. On top of the silicon substrate 32, an insulating material layer 34 is first formed with a first region of metal 36 embedded therein. After a CMP process is conducted on the first region of metal 36, a dielectric stack 38 of the present invention is deposited on top of the first layer of insulating material 34 and the first region of metal 36. The first layer of insulating material 34 may be suitably formed of silicon oxide, silicon nitride, doped varieties of these materials, or any other suitable insulating materials. The dielectric stack 38 is then patterned in a photolithography process followed by etching and a conductor layer 40 is deposited thereon. After a CMP process on the first conductor layer 40 is carried out, a second layer of the inventive dielectric stack 44 is deposited by a plasma enhanced chemical vapor deposition process overlying the first dielectric stack 38 and the first conductor layer 40. The conductor layer 40 may be deposited of a metallic material or a nonmetallic conductive material. For instance, a metallic material of aluminum or copper, or a nonmetallic material of nitride or polysilicon. The first conductor 40 is in electrical communication with the first region of metal 36.
A second region of conductor 50 is then formed after a photolithographic process on the dielectric stack 44 is conducted followed by etching and then a deposition process for the second conductor material. The second region of conductor 50 may also be deposited of either a metallic material or a nonmetallic material, similar to that used in depositing the first conductor layer 40. The second region of conductor 50 is in electrical communication with the first region of conductor 40 and is embedded in the second layer of the dielectric stack 44. The second layer of the dielectric stack 44 is in intimate contact with the first layer of the dielectric stack 38. In this example, the first layer of the dielectric stack 38 is an intralevel dielectric material, while the second layer of the dielectric stack 44 is both an intralevel and an interlevel dielectric. Based on the low dielectric constant of the inventive dielectric stacks, superior insulating property can be achieved by the first insulating layer 38 and the second insulating layer 44.
FIG. 3 shows a present invention electronic device 60 similar to that of electronic device 30 shown in FIG. 2, but with an additional dielectric cap layer 62 deposited between the first insulating material layer 38 and the second insulating material layer 44. The dielectric cap layer 62 can be suitably formed of a material such as silicon oxide, silicon nitride, silicon oxynitride, refractory metal silicon nitride with the refractory metal being Ta, Zr, Hf or W, silicon carbide, silicon carbo-nitride (SiCN), silicon carbo-oxide (SiCO), and their hydrogenated compounds. The additional dielectric cap layer 62 functions as a diffusion barrier layer for preventing diffusion of the first conductor layer 40 into the second insulating material layer 44 or into the lower layers, especially into layers 34 and 32.
Another alternate embodiment of the present invention electronic device 70 is shown in FIG. 4. In the electronic device 70, two additional dielectric cap layers 72 and 74 which act as a RIE mask and CMP (chemical mechanical polishing) polish stop layer are used. The first dielectric cap layer 72 is deposited on top of the first dielectric stack 38 and is used as a RIE mask and CMP stop, so the first conductor layer 40 and layer 72 are approximately co-planar after CMP. The function of the second dielectric layer 74 is similar to layer 72, however layer 74 is utilized in planarizing the second conductor layer 50. The polish stop layer 74 can be deposited of a suitable dielectric material such as silicon oxide, silicon nitride, silicon oxynitride, refractory metal silicon nitride with the refractory metal being Ta, Zr, Hf or W, silicon carbide, silicon carbo-oxide (SiCO), and their hydrogenated compounds. A preferred polish stop layer composition is SiCH or SiCOH for layers 72 or 74. A second dielectric layer 74 can be added on top of the second dielectric stack 44 for the same purposes.
Still another alternate embodiment of the present invention electronic device 80 is shown in FIG. 5. In this alternate embodiment, an additional layer 82 of dielectric material is deposited and thus dividing the second insulating material layer 44 into two separate layers 84 and 86. The intralevel and interlevel dielectric layer 44 formed of the inventive dielectric stack is therefore divided into an interlayer dielectric layer 84 and an intralevel dielectric layer 86 at the boundary between via 92 and interconnect 94. An additional diffusion barrier layer 96 is further deposited on top of the upper dielectric layer 74. The additional benefit provided by this alternate embodiment electronic structure 80 is that dielectric layer 82 acts as an RIE etch stop providing superior interconnect depth control. Thus, the composition of layer 82 is selected to provide etch selectivity with respect to layer 86.
Still other alternate embodiments may include an electronic structure which has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate which has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of the insulating material wherein the second layer of insulating material is in intimate contact with the first layer of insulating material, and the first region of conductor is in electrical communication with the first region of metal, a second region of conductor in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, wherein the third layer of insulating material is in intimate contact with the second layer of insulating material, a first dielectric cap layer between the second layer of insulating material and the third layer of insulating material and a second dielectric cap layer on top of the third layer of insulating material, wherein the first and the second dielectric cap layers are formed of a material that includes the inventive dielectric stack of the present invention.
Still other alternate embodiments of the present invention include an electronic structure which has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material which is in intimate contact with the first layer of insulating material, the first region of conductor is in electrical communication with the first region of metal, a second region of conductor that is in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, the third layer of insulating material is in intimate contact with the second layer of insulating material, and a diffusion barrier layer formed of the dielectric stack of the present invention deposited on at least one of the second and third layers of insulating material.
Still other alternate embodiments include an electronic structure which has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material which is in intimate contact with the first layer of insulating material, the first region of conductor is in electrical communication with the first region of metal, a second region of conductor in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, the third layer of insulating material is in intimate contact with the second layer of insulating material, a reactive ion etching (RIE) hard mask/polish stop layer on top of the second layer of insulating material, and a diffusion barrier layer on top of the RIE hard mask/polish stop layer, wherein the RIE hard mask/polish stop layer and the diffusion barrier layer are formed of the dielectric stack of the present invention.
Still other alternate embodiments include an electronic structure which has layers of insulating materials as intralevel or interlevel dielectrics in a wiring structure that includes a pre-processed semiconducting substrate that has a first region of metal embedded in a first layer of insulating material, a first region of conductor embedded in a second layer of insulating material which is in intimate contact with the first layer of insulating material, the first region of conductor is in electrical communication with the first region of metal, a second region of conductor in electrical communication with the first region of conductor and is embedded in a third layer of insulating material, the third layer of insulating material is in intimate contact with the second layer of insulating material, a first RIE hard mask, polish stop layer on top of the second layer of insulating material, a first diffusion barrier layer on top of the first RIE hard mask/polish stop layer, a second RIE hard mask/polish stop layer on top of the third layer of insulating material, and a second diffusion barrier layer on top of the second RIE hard mask/polish stop layer, wherein the RIE hard mask/polish stop layers and the diffusion barrier layers are formed of the dielectric stack of the present invention.
Still other alternate embodiments of the present invention includes an electronic structure that has layers of insulating material as intralevel or interlevel dielectrics in a wiring structure similar to that described immediately above but further includes a dielectric cap layer which is formed of the dielectric stack of the present invention situated between an interlevel dielectric layer and an intralevel dielectric layer.
It should be noted that the present invention also contemplates other material stacks besides those including low k dielectrics. In that instance, the present invention provides a material stack comprising one or more films that have a crack velocity of about 1E-10 m/sec or greater and at least one monolayer within said one or more films, said one at least one monolayer reduces said crack velocity of said one or more films to a value of less than 1E-10 m/sec.
In this embodiment, the stack is made as using the method described above except that the first dielectric precursor is replaced with a first material precursor. For example, a metal stack formed on a metal oxide substrate can be provided in which the metal stack is comprised of Au deposited from an Au-containing precursor.
While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.

Claims (16)

1. A dielectric stack comprising at least one dielectric material, having a dielectric constant of about 3.0 or less, said at least one dielectric material having at least one nanolayer including atoms of Si and O and having a thickness from about 2 to about 10 nm embedded within the at least one dielectric material wherein said at least one dielectric material including said at least one nanolayer has a lower crack velocity at a given thickness as compared to said at least one dielectric material not including said at least one nanolayer as said given thickness.
2. The dielectric stack of claim 1 wherein said at least one dielectric material is selected from the group consisting of an organic dielectric comprising at least atoms of C, O and H; an inorganic dielectric comprising atoms of Si, O, and H, with C being optional; and mixtures and multilayers thereof.
3. The dielectric stack of claim 1 wherein said at least one dielectric material comprises an inorganic dielectric comprising atoms of Si, C, O and H that are bonded within a tri-dimensional network structure.
4. The dielectric stack of claim 1 wherein said at least one dielectric material is porous, nonporous or a combination thereof.
5. The dielectric stack of claim 1 wherein said at least one nanolayer further comprises atoms of C, N and H.
6. The dielectric stack of claim 1 wherein said at least one nanolayer comprises SiCOH, SiCOHN, SiO2, SiCOx, or SiON.
7. The dielectric stack of claim 1 wherein said at least one dielectric material including said at least one nanolayer has a crack velocity of less than 1E−10 m/sec at 1.2 μm.
8. The dielectric stack of claim 1 wherein said at least one dielectric material including said at least one nanolayer has a stress of less than 60 MPa, a modulus of greater than 7.5 GPa and a hardness of greater than 1.0.
9. An interconnect structure located on a substrate comprising at least a dielectric stack including at least one dielectric material having a dielectric constant of about 3.0 or less, said at least one dielectric material comprising at least one nanolayer including atoms of Si and O and having a thickness of about 2 to about 10 nm embedded within the at least one dielectric material, wherein said at least one dielectric material including said at least one nanolayer has a lower crack velocity at a given thickness as compared to said at least one dielectric material not including said at least one nanolayer as said given thickness.
10. The interconnect structure of claim 9 wherein said dielectric stack is an interlevel dielectric, an intralevel dielectric, a capping layer, a hardmask/polish stop layer or any combination thereof.
11. The interconnect structure of claim 9 wherein said at least one dielectric material is selected from the group consisting of an organic dielectric comprising at least atoms of C, O and H; an inorganic dielectric comprising atoms of Si, O, and H, with C being optional; and mixtures and multilayers thereof.
12. The interconnect structure of claim 9 wherein said at least one dielectric material comprises an inorganic dielectric comprising atoms of Si, C, O and H that are bonded within a tri-dimensional network structure.
13. The interconnect structure of claim 9 wherein said at least one nanolayer further comprises atoms of C, N and H.
14. The interconnect structure of claim 9 wherein said at least one nanolayer comprises SiCOH, SiCOHN, SiO2, SiCOx or SiON.
15. The interconnect structure of claim 9 wherein said at least one dielectric material including said at least one nanolayer has a crack velocity of less than 1E-10 m/sec at 1.2 μm.
16. The interconnect structure of claim 9 wherein said at least one dielectric material including said at least one nanolayer has a stress of less than 60 MPa, a modulus of greater than 7.5 GPa and a hardness of greater than 1.0.
US10/906,815 2005-03-08 2005-03-08 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties Active 2025-08-05 US7265437B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/906,815 US7265437B2 (en) 2005-03-08 2005-03-08 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties
TW095107313A TWI414623B (en) 2005-03-08 2006-03-03 Low k dielectric cvd film formation process with in-situ imbedded nanolayers to improve mechanical properties
EP06737610A EP1856735A4 (en) 2005-03-08 2006-03-08 Low k dielectric cvd film formation process with in-situ imbedded nanolayers to improve mechanical properties
PCT/US2006/008449 WO2006096813A2 (en) 2005-03-08 2006-03-08 Low k dielectric cvd film formation process with in-situ imbedded nanolayers to improve mechanical properties
JP2008500925A JP5398258B2 (en) 2005-03-08 2006-03-08 Dielectric stack and interconnect structure comprising the same
CN2006800074066A CN101138085B (en) 2005-03-08 2006-03-08 Low k dielectric cvd film formation process with in-situ imbedded nanolayers to improve mechanical properties
US11/830,425 US7998880B2 (en) 2005-03-08 2007-07-30 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/906,815 US7265437B2 (en) 2005-03-08 2005-03-08 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/830,425 Division US7998880B2 (en) 2005-03-08 2007-07-30 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties

Publications (2)

Publication Number Publication Date
US20060202311A1 US20060202311A1 (en) 2006-09-14
US7265437B2 true US7265437B2 (en) 2007-09-04

Family

ID=36954026

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/906,815 Active 2025-08-05 US7265437B2 (en) 2005-03-08 2005-03-08 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties
US11/830,425 Expired - Fee Related US7998880B2 (en) 2005-03-08 2007-07-30 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/830,425 Expired - Fee Related US7998880B2 (en) 2005-03-08 2007-07-30 Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties

Country Status (6)

Country Link
US (2) US7265437B2 (en)
EP (1) EP1856735A4 (en)
JP (1) JP5398258B2 (en)
CN (1) CN101138085B (en)
TW (1) TWI414623B (en)
WO (1) WO2006096813A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080026203A1 (en) * 2003-03-18 2008-01-31 International Business Machines Corporation ULTRA LOW K (ULK) SiCOH FILM AND METHOD
WO2009158236A2 (en) * 2008-06-26 2009-12-30 Intel Corporation Forming ultra low dielectric constant porous dielectric films and structures formed thereby
US20100015816A1 (en) * 2008-07-15 2010-01-21 Kelvin Chan Methods to promote adhesion between barrier layer and porous low-k film deposited from multiple liquid precursors
US20110183525A1 (en) * 2010-01-27 2011-07-28 International Business Machines Corporation Homogeneous Porous Low Dielectric Constant Materials
US8492239B2 (en) 2010-01-27 2013-07-23 International Business Machines Corporation Homogeneous porous low dielectric constant materials
US8541301B2 (en) 2011-07-12 2013-09-24 International Business Machines Corporation Reduction of pore fill material dewetting
US8637412B2 (en) 2011-08-19 2014-01-28 International Business Machines Corporation Process to form an adhesion layer and multiphase ultra-low k dielectric material using PECVD
US8828489B2 (en) 2011-08-19 2014-09-09 International Business Machines Corporation Homogeneous modification of porous films
US8927430B2 (en) 2011-07-12 2015-01-06 International Business Machines Corporation Overburden removal for pore fill integration approach

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622378B2 (en) 2005-11-09 2009-11-24 Tokyo Electron Limited Multi-step system and method for curing a dielectric film
US20070210421A1 (en) * 2006-03-13 2007-09-13 Texas Instruments Inc. Semiconductor device fabricated using a carbon-containing film as a contact etch stop layer
US8956457B2 (en) * 2006-09-08 2015-02-17 Tokyo Electron Limited Thermal processing system for curing dielectric films
US20090061649A1 (en) 2007-08-28 2009-03-05 International Business Machines Corporation LOW k POROUS SiCOH DIELECTRIC AND INTEGRATION WITH POST FILM FORMATION TREATMENT
US20090061237A1 (en) * 2007-08-28 2009-03-05 International Business Machines Corporation LOW k POROUS SiCOH DIELECTRIC AND INTEGRATION WITH POST FILM FORMATION TREATMENT
US20090075491A1 (en) * 2007-09-13 2009-03-19 Tokyo Electron Limited Method for curing a dielectric film
US20090226694A1 (en) * 2008-03-06 2009-09-10 Tokyo Electron Limited POROUS SiCOH-CONTAINING DIELECTRIC FILM AND A METHOD OF PREPARING
US20090226695A1 (en) * 2008-03-06 2009-09-10 Tokyo Electron Limited Method for treating a dielectric film with infrared radiation
US7858533B2 (en) * 2008-03-06 2010-12-28 Tokyo Electron Limited Method for curing a porous low dielectric constant dielectric film
US7977256B2 (en) 2008-03-06 2011-07-12 Tokyo Electron Limited Method for removing a pore-generating material from an uncured low-k dielectric film
US8058183B2 (en) * 2008-06-23 2011-11-15 Applied Materials, Inc. Restoring low dielectric constant film properties
US8895942B2 (en) * 2008-09-16 2014-11-25 Tokyo Electron Limited Dielectric treatment module using scanning IR radiation source
US20100065758A1 (en) * 2008-09-16 2010-03-18 Tokyo Electron Limited Dielectric material treatment system and method of operating
JP5671220B2 (en) * 2009-08-25 2015-02-18 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
US20110232677A1 (en) * 2010-03-29 2011-09-29 Tokyo Electron Limited Method for cleaning low-k dielectrics
US8846528B2 (en) * 2011-11-29 2014-09-30 Taiwan Semiconductor Manufacturing Company, Ltd. Method of modifying a low k dielectric layer having etched features and the resulting product
US20130256894A1 (en) * 2012-03-29 2013-10-03 International Rectifier Corporation Porous Metallic Film as Die Attach and Interconnect
US9460997B2 (en) 2013-12-31 2016-10-04 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure for semiconductor devices
CN104752333B (en) * 2013-12-31 2018-07-03 中芯国际集成电路制造(上海)有限公司 The production method of first metal interconnecting layer
JP6929279B2 (en) * 2015-10-22 2021-09-01 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Method of depositing a fluid film containing SiO and SiN
WO2017161236A1 (en) 2016-03-17 2017-09-21 Applied Materials, Inc. Methods for gapfill in high aspect ratio structures
US11133178B2 (en) 2019-09-20 2021-09-28 Applied Materials, Inc. Seamless gapfill with dielectric ALD films

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004550A1 (en) * 1999-12-13 2001-06-21 Stmicroelectronics S.A. Damascene-type interconnection structure and its production process
US6316167B1 (en) 2000-01-10 2001-11-13 International Business Machines Corporation Tunabale vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and application thereof
US20020115285A1 (en) 2000-12-21 2002-08-22 Wong Lawrence D. Mechanically reinforced highly porous low dielectric constant films
US6518646B1 (en) 2001-03-29 2003-02-11 Advanced Micro Devices, Inc. Semiconductor device with variable composition low-k inter-layer dielectric and method of making
US20030234450A1 (en) * 2000-10-25 2003-12-25 Alfred Grill Ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device
US6713874B1 (en) 2001-03-27 2004-03-30 Advanced Micro Devices, Inc. Semiconductor devices with dual nature capping/arc layers on organic-doped silica glass inter-layer dielectrics
US20040137153A1 (en) * 2002-04-16 2004-07-15 Michael Thomas Layered stacks and methods of production thereof
US20050179135A1 (en) * 2002-10-31 2005-08-18 Asm Japan K.K. Semiconductor device having porous structure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858200A (en) * 1996-05-30 1999-01-12 Bridgestone Metalpha Corporation Method of and apparatus for manufacturing metallic fiber and the twine of metallic fibers, and method of coloring metallic fiber and the twine of metallic fibers
US6051321A (en) * 1997-10-24 2000-04-18 Quester Technology, Inc. Low dielectric constant materials and method
US6974766B1 (en) * 1998-10-01 2005-12-13 Applied Materials, Inc. In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application
US6953984B2 (en) * 2000-06-23 2005-10-11 International Business Machines Corporation Hydrogenated oxidized silicon carbon material
TW462085B (en) * 2000-10-26 2001-11-01 United Microelectronics Corp Planarization of organic silicon low dielectric constant material by chemical mechanical polishing
JP3545364B2 (en) * 2000-12-19 2004-07-21 キヤノン販売株式会社 Semiconductor device and manufacturing method thereof
TW477029B (en) * 2001-02-21 2002-02-21 Nat Science Council Method of reducing thick film stress of spin on dielectric and the resulting sandwich dielectric structure
US20020163062A1 (en) * 2001-02-26 2002-11-07 International Business Machines Corporation Multiple material stacks with a stress relief layer between a metal structure and a passivation layer
JP3749469B2 (en) * 2001-10-18 2006-03-01 富士通株式会社 Method for forming SiC: H film and method for manufacturing semiconductor device
US20030134495A1 (en) * 2002-01-15 2003-07-17 International Business Machines Corporation Integration scheme for advanced BEOL metallization including low-k cap layer and method thereof
US6815332B2 (en) * 2002-10-30 2004-11-09 Asm Japan K.K. Method for forming integrated dielectric layers
US7288292B2 (en) * 2003-03-18 2007-10-30 International Business Machines Corporation Ultra low k (ULK) SiCOH film and method
US7132374B2 (en) * 2004-08-17 2006-11-07 Cecilia Y. Mak Method for depositing porous films

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010004550A1 (en) * 1999-12-13 2001-06-21 Stmicroelectronics S.A. Damascene-type interconnection structure and its production process
US6316167B1 (en) 2000-01-10 2001-11-13 International Business Machines Corporation Tunabale vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and application thereof
US20030234450A1 (en) * 2000-10-25 2003-12-25 Alfred Grill Ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device
US20020115285A1 (en) 2000-12-21 2002-08-22 Wong Lawrence D. Mechanically reinforced highly porous low dielectric constant films
US6703324B2 (en) 2000-12-21 2004-03-09 Intel Corporation Mechanically reinforced highly porous low dielectric constant films
US20040157436A1 (en) 2000-12-21 2004-08-12 Wong Lawrence D. Mechanically reinforced highly porous low dielectric constant films
US6713874B1 (en) 2001-03-27 2004-03-30 Advanced Micro Devices, Inc. Semiconductor devices with dual nature capping/arc layers on organic-doped silica glass inter-layer dielectrics
US6518646B1 (en) 2001-03-29 2003-02-11 Advanced Micro Devices, Inc. Semiconductor device with variable composition low-k inter-layer dielectric and method of making
US20040137153A1 (en) * 2002-04-16 2004-07-15 Michael Thomas Layered stacks and methods of production thereof
US20050179135A1 (en) * 2002-10-31 2005-08-18 Asm Japan K.K. Semiconductor device having porous structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080026203A1 (en) * 2003-03-18 2008-01-31 International Business Machines Corporation ULTRA LOW K (ULK) SiCOH FILM AND METHOD
US20090297823A1 (en) * 2003-03-18 2009-12-03 International Business Machines Corporation ULTRA LOW K (ULK) SiCOH FILM AND METHOD
WO2009158236A2 (en) * 2008-06-26 2009-12-30 Intel Corporation Forming ultra low dielectric constant porous dielectric films and structures formed thereby
US20090324928A1 (en) * 2008-06-26 2009-12-31 Vijayakumar Ramachandrarao Forming ultra low dielectric constant porous dielectric films and structures formed thereby
WO2009158236A3 (en) * 2008-06-26 2010-04-22 Intel Corporation Forming ultra low dielectric constant porous dielectric films and structures formed thereby
US20100015816A1 (en) * 2008-07-15 2010-01-21 Kelvin Chan Methods to promote adhesion between barrier layer and porous low-k film deposited from multiple liquid precursors
US20110183525A1 (en) * 2010-01-27 2011-07-28 International Business Machines Corporation Homogeneous Porous Low Dielectric Constant Materials
US8314005B2 (en) 2010-01-27 2012-11-20 International Business Machines Corporation Homogeneous porous low dielectric constant materials
US8492239B2 (en) 2010-01-27 2013-07-23 International Business Machines Corporation Homogeneous porous low dielectric constant materials
US8623741B2 (en) 2010-01-27 2014-01-07 International Business Machines Corporation Homogeneous porous low dielectric constant materials
US8541301B2 (en) 2011-07-12 2013-09-24 International Business Machines Corporation Reduction of pore fill material dewetting
US8871632B2 (en) 2011-07-12 2014-10-28 International Business Machines Corporation Reduction of pore fill material dewetting
US8927430B2 (en) 2011-07-12 2015-01-06 International Business Machines Corporation Overburden removal for pore fill integration approach
US8637412B2 (en) 2011-08-19 2014-01-28 International Business Machines Corporation Process to form an adhesion layer and multiphase ultra-low k dielectric material using PECVD
US8828489B2 (en) 2011-08-19 2014-09-09 International Business Machines Corporation Homogeneous modification of porous films

Also Published As

Publication number Publication date
EP1856735A2 (en) 2007-11-21
US20100028695A1 (en) 2010-02-04
TW200641177A (en) 2006-12-01
TWI414623B (en) 2013-11-11
JP2008537639A (en) 2008-09-18
EP1856735A4 (en) 2009-07-15
WO2006096813A2 (en) 2006-09-14
CN101138085B (en) 2013-03-27
US7998880B2 (en) 2011-08-16
US20060202311A1 (en) 2006-09-14
WO2006096813A3 (en) 2006-12-28
JP5398258B2 (en) 2014-01-29
CN101138085A (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US7265437B2 (en) Low k dielectric CVD film formation process with in-situ imbedded nanolayers to improve mechanical properties
US7335980B2 (en) Hardmask for reliability of silicon based dielectrics
US7494938B2 (en) Advanced low dielectric constant organosilicon plasma chemical vapor deposition films
US8097932B2 (en) Ultra low κ plasma enhanced chemical vapor deposition processes using a single bifunctional precursor containing both a SiCOH matrix functionality and organic porogen functionality
US7560794B2 (en) DUV laser annealing and stabilization of SiCOH films
US7030468B2 (en) Low k and ultra low k SiCOH dielectric films and methods to form the same
US7948083B2 (en) Reliable BEOL integration process with direct CMP of porous SiCOH dielectric
US8664109B2 (en) Advanced low k cap film formation process for nano electronic devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NGUYEN, SON V.;LANE, SARAH L.;LINIGER, ERIC G.;AND OTHERS;REEL/FRAME:015742/0966;SIGNING DATES FROM 20050202 TO 20050203

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IDA, KENSAKU;REEL/FRAME:015743/0026

Effective date: 20050208

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12