US7232835B2 - 3,6-Disubstituted azabicyclo derivatives as muscarinic receptor antagonists - Google Patents

3,6-Disubstituted azabicyclo derivatives as muscarinic receptor antagonists Download PDF

Info

Publication number
US7232835B2
US7232835B2 US10/537,851 US53785102A US7232835B2 US 7232835 B2 US7232835 B2 US 7232835B2 US 53785102 A US53785102 A US 53785102A US 7232835 B2 US7232835 B2 US 7232835B2
Authority
US
United States
Prior art keywords
compound
azabicyclo
hexyl
hydroxy
cyclohexyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/537,851
Other languages
English (en)
Other versions
US20060217432A1 (en
Inventor
Anita Mehta
Arundutt Viswanatham Silamkoti
Bruhaspathy Miriyala
Sudershan Kumar Arora
Boju Srinivasulu
Bireshwar Mukherjee
Jang Bahadur Gupta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ranbaxy Laboratories Ltd
Original Assignee
Ranbaxy Laboratories Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ranbaxy Laboratories Ltd filed Critical Ranbaxy Laboratories Ltd
Assigned to RANBAXY LABORATORIES LIMITED reassignment RANBAXY LABORATORIES LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SILAMKOTI, ARUNDUTT VISWANATHAM, MUKHERJEE, BIRESHWAR, SRINIVASULU, BOJU, ARORA, SUNDERSHAN KUMAR, MEHTA, ANITA, BRUHASPATHY, MIRIYALA, GUPTA, JANG BAHADUR
Publication of US20060217432A1 publication Critical patent/US20060217432A1/en
Application granted granted Critical
Publication of US7232835B2 publication Critical patent/US7232835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/08Bronchodilators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/02Local antiseptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/52Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring condensed with a ring other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • This invention relates to the derivatives of 3,6-disubstituted azabicyclo compounds.
  • the compounds of this invention can function as muscarinic receptor antagonists, and can be used for the treatment of various diseases of the respiratory, urinary and gastrointestinal systems mediated through muscarinic receptors.
  • the invention also relates to pharmaceutical compositions containing the compounds of the present invention and the methods of treating the diseases mediated through muscarinic receptors.
  • Muscarinic receptors as members of the G Protein Coupled Receptors are composed of a family of 5 receptor sub-types (M 1 , M 2 , M 3 , M 4 and M 5 ) and are activated by the neurotransmitter acetylcholine. These receptors are widely distributed on multiple organs and tissues and are critical to the maintenance of central and peripheral cholinergic neurotransmission. The regional distribution of these receptor sub-types in the brain and other organs has been documented.
  • the M 1 subtype is located primarily in neuronal tissues such as cereberal cortex and autonomic ganglia
  • the M 2 subtype is present mainly in the heart where it mediates cholinergically induced bradycardia
  • the M 3 subtype is located predominantly on smooth muscle and salivary glands ( Nature , 1986; 323: 411; Science, 1987; 237: 527).
  • Muscarinic agonists such as muscarine and pilocarpine and antagonists such as atropine have been known for over a century, but little progress has been made in the discovery of receptor subtype-selective compounds making it difficult to assign specific functions to the individual receptors.
  • classical muscarinic antagonists such as atropine are potent bronchodilators, their clinical utility is limited due to high incidence of both peripheral and central adverse effects such as tachycardia, blurred vision, dryness of mouth, constipation, dementia, etc.
  • the present invention provides derivatives of 3,6-disubstituted azabicyclo compounds as muscarinic receptor antagonists and are useful for the safe and effective therapeutic or prophylactic agents for the treatment of various diseases of the respiratory, urinary and gastrointestinal systems, and process for the synthesis of the novel compounds.
  • the invention also provides pharmaceutical compositions containing the compounds, and which may also contain acceptable carriers, excipients or diluents which are useful for the treatment of various diseases of the respiratory, urinary and gastrointestinal systems.
  • the present invention also includes within its scope prodrugs of the compounds.
  • prodrugs are functionalized derivatives of these compounds which readily get converted in vivo into the defined compounds.
  • Conventional procedures for the selection and preparation of suitable prodrugs are known to the artisan of ordinary skill in the art.
  • the invention also includes the enantiomers, diastereomers, N-oxides, polymorphs, pharmaceutically acceptable salts, pharmaceutically acceptable solvates, esters and metabolites of these compounds having the same type of activity.
  • the invention further includes pharmaceutical compositions comprising the compounds of the present invention, their prodrugs, metabolites, enantiomers, diastereomers, N-oxides, polymorphs, pharmaceutically acceptable salts, pharmaceutically acceptable solvates or esters, in combination with a pharmaceutically acceptably carrier and optionally included excipients.
  • R 3 , R 4 and s are as defined for Formula V.
  • the compounds of the present invention may be prepared by the reaction sequence as shown in Scheme I
  • the preparation comprises condensing a compound of Formula VII with the compound of Formula VIII wherein
  • This compound was synthesized following the procedure of Example 10 by using 1,3-dibromopropane in step a instead of 1,4-dibromobutane.
  • This compound was synthesized following the procedure of Example 10 by reacting 2-propyloxy-2,2-diphenyl acetic acid as obtained in Example 5 and 6-[N- ⁇ -bromopropyl, N-tert-butyloxycarbonyl, N-3-benzyl-3-azabicyclo[3.1.0]hexane].
  • This compound was synthesized following the procedure of Example 10 by reacting 2-propyloxy-2,2-diphenyl acetic acid as obtained in Example 5 and 6-[N- ⁇ -bromobutyl, N-tert-butyloxycarbonyl, N-3-benzyl-3-azabicyclo[3.1.0]hexane].
  • This compound was synthesized following the procedure as described in Example 10 by reacting 2-(2-propenyloxy)-2,2-diphenyl acetic acid as obtained in Example 3 and 6-[N- ⁇ -bromobutyl, N-tert-butyloxycarbonyl, N-3-benzyl-3-azabicyclo [3.1.0]hexane].
  • Example 17 The title compound was synthesized following the procedure described in Example 17 using 2-propenyloxy-2,2-diphenyl acetic acid as obtained in Example 3 instead of 2-propyloxy-2,2-diphenyl acetic acid, and 6-N-chloromethylcarbonyl-3-N-benzyl-3-azabicyclo[3.1.0]hexane.
  • Example 17 The title compound was synthesized following the procedure as described in Example 17 by reacting 2-propenyloxy-2,2-diphenyl acetic acid as obtained in Example 3, with 6-N-chloromethylcarbonyl-3-N-benzyl-3-azabicyclo[3.1.0]hexane.
  • Example 17 The title compound was synthesized following the procedure of Example 17 by using 2-propyloxy-2,2-diphenyl acetic acid as obtained in Example 5.
  • step b was prepared following the procedure as described in step c of Example 1 using 2-hydroxy-2-cyclohexyl phenyl acetic acid instead of 2-hydroxy-2,2-diphenyl acetic acid.
  • Example 22 The compound obtained in Example 22 was debenzylated and then N-alkylated as given below:
  • This compound was synthesized following the procedure as in Example 23 but using 4-bromobenzyl bromide instead of 3,5-difluoro benzyl bromide.
  • step a of Example 23 The compound obtained in step a of Example 23 (300 mg; 1 mmol) was dissolved in acetonitrile (20 ml) and potassium carbonate (1.5 mmol), potassium iodide (catalytical amount) were added to it at room temperature. It was followed by the addition of 2-phenyl ethyl bromide to the reaction mixture and was stirred at reflux for 8 hrs. The reaction mixture was filtered and the filtrate was taken in ethyl acetate. The organic layer was washed with water, brine and dried over sodium sulphate. It was concentrated under reduced pressure and purified over silica gel (100–200 mesh) using ethyl acetate/hexane mixture.
  • This compound was synthesized following the procedure as described in step b of Example 23 but using n-propyl bromide instead of 3,5-difluoro benzyl bromide.
  • This compound was synthesized following the procedure as in Example 23 using propargyl bromide instead of 3,5-difluoro benzyl bromide.
  • This compound was synthesized following the procedure as described in Example 23 using allyl bromide instead of 3,5-difluoro benzyl bromide.
  • This compound was synthesized following the procedure as in Example 23 using propyl bromide instead of 3,5-difluoro benzyl bromide.
  • This compound was synthesized following the procedure as described in Example 23 but using cyclopropyl bromide instead of 3,5-difluoro benzyl bromide.
  • This compound was synthesized following the procedure as described in Example 23 using n-butyl bromide instead of 3,5-difluoro benzyl bromide.
  • This compound was synthesized following the procedure as in Example 23 using isopropenyl bromide instead of 3,5-difluoro benzyl bromide.
  • This compound was synthesized following the procedure as described in Example 46, using 4-methoxy-acetylphenylisocyanate instead of phenyl thiocyanate.
  • This compound was synthesized following the procedure as described in Example 46 using 4-methylphenyl-1-sulphonamide cyanate instead of phenyl thiocyanate.
  • This compound was synthesized following the procedure as in Example 50 using 2-(4-methoxyphenyl)-2-cyclohexyl-2-hydroxy acetic acid instead of 2-(4-methylphenyl)-2-cyclohexyl-2-hydroxy acetic acid.
  • This compound was synthesized following the procedure as described in Example 50 using 2-(4-phenoxyphenyl)-2-cyclohexyl-2-hydroxy acetic acid instead of 2-(4-methylphenyl)-2-cyclohexyl-2-hydroxy acetic acid.
  • This compound was synthesized following the procedure as described in Example 50 using 2-(4-fluorophenyl)-2-cyclohexyl-2-hydroxy acetic acid instead of 2-(4-methylphenyl)-2-cyclohexyl-2-hydroxy acetic acid.
  • This compound was synthesized following the procedure as described in Example 50 using 2-(3,4-methylenedioxyphenyl)-2-cyclohexyl-2-hydroxy acetic acid instead of 2-(4-methylphenyl)-2-cyclohexyl-2-hydroxy acetic acid.
  • This compound was synthesized following the procedure as described in Example 50 using 2-(4-tertbutylphenyl)-2-cyclohexyl-2-hydroxy acetic acid instead of 2-(4-methylphenyl)-2-cyclohexyl-2-hydroxy acetic acid.
  • Example 50 The compound from Example 50 was debenzylated following the procedure as given in Example 23 to afford 6-N-(3-azabicyclo[3.1.0]cyclohexyl)-2-hydroxy-2-cyclohexyl-2-(4-methylphenyl)acetamide.
  • This compound was synthesized following the procedure as described in Example 56 using 6-N-(3-azabicyclo[3.1.0]hexyl)-2-hydroxy-2-cyclohexyl-2-(4-fluorophenyl)acetamide instead of 6-N-(3-azabicyclo[3.1.0]hexyl)-2-hydroxy-2-cyclohexyl-2-(4-methylphenyl)acetamide.
  • This compound was synthesized following the procedure as described in Example 23, using 6-N-(3-azabicyclo[3.1.0]hexyl)-2-methoxy-2-cyclohexyl-2-phenyl acetamide instead of 6-N-(3-azabicyclo[3.1.0]hexyl)-2-hydroxy-2-cyclohexyl-2-phenyl acetamide in step a, and ethyl bromide instead of 3,5-difluoro benzyl bromide in step b of Example 23.
  • This compound was synthesized following the procedure as described in Example 3, using ethyl-2-hydroxy-2-cyclohexyl phenyl acetate instead of ethyl-2-hydroxy-2,2-diphenyl acetate in step (i) a, and ethyl-2-allyloxy-2-cyclohexyl-2-phenyl acetate instead of ethyl-2-allyloxy-2,2-diphenyl acetate in step (ii) a of Example 3.
  • This compound was synthesized following the procedure as described in Example 23 using 6-N-(3-azabicyclo[3.1.0]hexyl)-2-methoxy-2-cyclohexyl-2-phenyl acetamide instead of 6-N-(3-azabicyclo[3.1.0]hexyl)-2-hydroxy-2-cyclohexyl-2-phenyl acetamide in step a, and 4-methyl-3-pentenyl bromide instead of 3,5-difluoro benzyl bromide in step b of Example 23.
  • This compound was synthesized following the procedure as described in Example 23 using 6-N-(3-azabicyclo[3.1.0]hexyl)-2-methoxy-2-cyclohexyl-2-phenyl acetamide instead of 6-N-(3-azabicyclo[3.1.0]hexyl)-2-hydroxy-2-cyclohexyl-2-phenyl acetamide in step a, and 2,4-difluorobenzyl bromide instead of 3,5-difluoro benzyl bromide in step b of Example 23.
  • the compound was synthesized starting from Compound No. 64, which was debenzylated following the method as described in step a of Example 23, and then N-alkylated as given in Example 41.
  • the compound was synthesized starting from Compound No. 64, which was debenzylated following the method as described in step a of Example 23, and then N-alkylated as given in Example 29.
  • Example 28 The compound was synthesized starting from Compound No. 64 which was debenzylated following the method as described in step a of Example 23, and then N-alkylated as given in Example 28.
  • the compound was synthesized starting from Compound No. 64, which was debenzylated following the method as described in step a of Example 23, and then N-alkylated as given in Example 30.
  • the compound was synthesized starting from Compound No. 64, which was debenzylated following the method as described in step a of Example 23, and then N-alkylated as given in Example 31.
  • Step b The title compound was synthesized following the procedure as described in step c of Example 85 using 2-hydroxy-2-cycloheptyl-2-phenyl acetic acid instead of 2-hydroxy-2,2-diphenyl acetic acid.
  • the compound was synthesized starting from Compound No. 72, which was debenzylated following the method as described in step a of Example 23, and then N-alkylated as given in example 41.
  • Step a Preparation of 2-amino-(1 ⁇ ,5 ⁇ ,6 ⁇ )-6-N-(3-azabicyclo[3.1.0]hexyl-3-benzyl) propionamide: 2-(Boc-amino)propionic acid was condensed with (1 ⁇ ,5 ⁇ ,6 ⁇ )-6-amino-3-azabicyclo[3,1,0]hexane, following the procedure as described in step c of Example 85. The N-Boc compound thus obtained was deprotected with 10% trifluoro acetic acid in dichloromethane to afford the free amino compound.
  • This compound was synthesized following the procedure as described in Example 74 using 2-(Boc-amino)acetic acid in step a instead of 2-(Boc-amino)propionic acid.
  • This compound was synthesized following the procedure as described in Example 74, using 3-(Boc-amino)propionic acid in step a instead of 2-(Boc-amino)propionic acid.
  • This compound was synthesized following the procedure as described in Example 75, but using 3-hydroxy-3-phenyl-3-cyclohexyl-propionic acid in step b instead of 2-hydroxy-2-cyclohexyl-2-phenyl acetic acid.
  • This compound was synthesized following the procedure as described in Example 74, but using 3-hydroxy-3-phenyl-3-cyclohexyl-propionic acid in step b instead of 2-hydroxy-2-cyclohexyl-2-phenyl acetic acid.
  • step b To a solution of the compound of step b (0.3 g, 0.74 mmol) in methanol (10.0 ml), 10% Pd—C (0.3 g) was added and the reaction mixture was stirred at room temperature for 2 hours under an atmosphere of H 2 . The reaction mixture was filtered through a bed of hyflo and the bed was washed with methanol (10.0 ml). The filtrate was concentrated under vacuum to give the title compound in 77% (0.18 g, 0.57 mmol) yield.
  • This compound is prepared in 90% yield following a procedure directly analogous to that of step c of Example 85.
  • This compound is prepared in 90% yield following a procedure directly analogous to that of step c of Example 85.
  • This compound is prepared in 90% yield following a procedure directly analogous to that of step c of Example 85, using the product of step a here instead of that of Example 85.
  • This compound is prepared in 96% of yield following a procedure directly analogous to that of step c, of Example 85.
  • step a To a solution of compound of step a (0.304 g, 1.3 mmol) and the compound of step b (0.23 g, 0.87 mmol) in xylene (15 ml) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.2 g, 1.3 mmol) and the reaction mixture was refluxed for 3 hours. The reaction mixture was directly adsorbed over silicagel and purified by column chromatography using 60% ethylacetate in hexane to get the title compound in 95% yield.
  • DBU 1,8-diazabicyclo[5.4.0]undec-7-ene
  • This compound was synthesized in direct analogy to the procedure of Example 93 by using 2-chloropropionyl chloride in step b, Example 93 instead of chloroacetyl chloride.
  • Step c Preparation of (1 ⁇ ,5 ⁇ ,6 ⁇ )-4-[6-N-(3-azabicyclo-[3.1.0]hexyl-3-benzyl)]-N-(tert-butyloxycarbonyl)butyl-1-[2-hydroxy-2,2-bis-(4-fluorophenyl)]acetate
  • test compounds for M 2 and M 3 muscarinic receptor subtypes were determined by [ 3 H]-N-methylscopolamine binding studies using rat heart and submandibular gland respectively as described by Moriya et al., ( Life Sci, 1999, 64(25):2351–2358) with minor modifications.
  • Membrane preparation Submandibular glands and heart were isolated and placed in ice cold homogenising buffer (HEPES 20 mM, 10 mM EDTA, pH 7.4) immediately after sacrifice. The tissues were homogenised in 10 volumes of homogenising buffer and the homogenate was filtered through two layers of wet gauze and filtrate was centrifuged at 500 g for 10 min. The supernatant was subsequently centrifuged at 40,000 g for 20 min. The pellet thus obtained was resuspended in same volume of assay buffer (HEPES 20 mM, EDTA 5 mM, pH 7.4) and were stored at ⁇ 70° C. until the time of assay.
  • HEPES 20 mM, 10 mM EDTA, pH 7.4 ice cold homogenising buffer
  • Ligand binding assay The compounds were dissolved and diluted in DMSO. The membrane homogenates (150–250 ⁇ g protein) were incubated in 250 ⁇ l of assay buffer (HEPES 20 mM, pH 7.4) at 24–25° C. for 3 h. Non-specific binding was determined in the presence of 1 ⁇ M atropine. The incubation was terminated by vaccum filtration over GF/B fiber filters (Wallac). The filters were then washed with ice cold 50 mM Tris HCl buffer (pH 7.4). The filter mats were dried and bound radioactivity retained on filters was counted. The IC 50 & Kd were estimated by using the non-linear curve fitting program using G Pad Prism software.
  • Ki inhibition constant
  • the bladder was cut into longitudinal strips (3 mm wide and 5–6 mm long) and mounted in 10 ml organ baths at 30° C., with one end connected to the base of the tissue holder and the other end connected to a polygraph through a force displacement transducer. Each tissue was maintained at a constant basal tension of 2 g and allowed to equilibrate for 1 hour during which the PSS was changed every 15 min. At the end of equilibration period, the stabilization of the tissue contractile response was assessed with 1 ⁇ Mol/L of Carbachol consecutively for 2–3 times. Subsequently, a cumulative concentration response curve to carbachol (10 ⁇ 9 mol/L to 3 ⁇ 10 ⁇ 5 mol/L) was obtained. After several washes, once the baseline was achieved, cumulative concentration response curve was obtained in the presence of NCE (NCE added 20 min. prior to the second CRC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Endocrinology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Reproductive Health (AREA)
  • Urology & Nephrology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Indole Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
US10/537,851 2002-12-10 2002-12-10 3,6-Disubstituted azabicyclo derivatives as muscarinic receptor antagonists Expired - Fee Related US7232835B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2002/005220 WO2004052857A1 (fr) 2002-12-10 2002-12-10 Derives d'azabicyclo [3.1.0] hexane 3,6-disubstitues utilises comme antagonistes du recepteur muscarinique

Publications (2)

Publication Number Publication Date
US20060217432A1 US20060217432A1 (en) 2006-09-28
US7232835B2 true US7232835B2 (en) 2007-06-19

Family

ID=32500444

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/537,851 Expired - Fee Related US7232835B2 (en) 2002-12-10 2002-12-10 3,6-Disubstituted azabicyclo derivatives as muscarinic receptor antagonists

Country Status (8)

Country Link
US (1) US7232835B2 (fr)
EP (2) EP1572648B1 (fr)
JP (1) JP2006518707A (fr)
AT (1) ATE400553T1 (fr)
AU (1) AU2002353286A1 (fr)
DE (1) DE60227576D1 (fr)
HK (1) HK1085724A1 (fr)
WO (1) WO2004052857A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111425A1 (en) * 2002-07-08 2006-05-25 Mohammad Salman Azabicyclo derivatives as muscarinic receptor antagonists
US20060287380A1 (en) * 2003-04-11 2006-12-21 Mohammad Salman Azabicyclo Derivatives as Muscarinic Receptor Antagonists
US20070287732A1 (en) * 2003-04-10 2007-12-13 Ranbaxy Laboratories Limited Substituted Azabicyclo Hexane Derivatives as Muscarinic Receptor Antagonists
US20080319043A1 (en) * 2005-05-03 2008-12-25 Mohammad Salman 3,6-Disubstituted Azabicyclo (3.1.0) Hexane Derivatives as Muscarinic Receptor Antagonists
US20100035954A1 (en) * 2004-12-15 2010-02-11 Mohammad Salman Acid addition salts of muscarinic receptor antagonists
US11274082B2 (en) 2019-05-31 2022-03-15 Ikena Oncology, Inc. Tead inhibitors and uses thereof
US11458149B1 (en) 2019-05-31 2022-10-04 Ikena Oncology, Inc. TEAD inhibitors and uses thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517905B2 (en) 2003-04-09 2009-04-14 Ranbaxy Laboratories Limited Substituted azabicyclo hexane derivatives as muscarinic receptor antagonists
EP1794161A2 (fr) * 2004-09-24 2007-06-13 Ranbaxy Laboratories Limited Antagonistes des recepteurs muscariniques
US20090105221A1 (en) * 2004-09-29 2009-04-23 Ranbaxy Laboratories Limited Muscarinic receptor antagonists
EP1934184A1 (fr) 2005-10-05 2008-06-25 Ranbaxy Laboratories, Ltd. Dérivés de 3 -azabicyclooctane en tant qu antagonistes de récepteurs muscariniques
EP1968980A1 (fr) 2005-12-30 2008-09-17 Ranbaxy Laboratories, Ltd. Antagonistes des récepteurs muscariniques
AP2008004537A0 (en) 2005-12-30 2008-08-31 Ranbaxy Lab Ltd Muscarinic receptor antagonists
WO2008010061A2 (fr) * 2006-07-17 2008-01-24 Glenmark Pharmaceuticals S.A. 3-azabicyclo[3.1.0]hexanes ligands du récepteur vanilloïde, compositions pharmaceutiques les contenant et leurs procédés de préparation
US20100056496A1 (en) * 2006-09-04 2010-03-04 Naresh Kumar Muscarinic receptor antagonists
US20090326004A1 (en) 2008-06-03 2009-12-31 Ranbaxy Laboratories Limited Muscarinic receptor antagonists
FR2932479A1 (fr) * 2008-06-13 2009-12-18 Servier Lab Nouveaux derives azabicycliques, leur procede de preparation et les compositions pharmaceutiques qui les contiennent.
US8263623B2 (en) 2008-07-11 2012-09-11 Pfizer Inc. Triazol derivatives useful for the treatment of diseases

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB940540A (en) 1960-07-26 1963-10-30 Mead Johnson & Co Aminoacetylenes and process for preparing the same
EP0132130A2 (fr) 1983-07-14 1985-01-23 Syntex (U.S.A.) Inc. Acides aroylbenzofuranyl-acétiques et -propioniques, acides aroylbenzothiényl-acétiques et -propioniques, procédé pour leur préparation et composition pharmaceutiques les contenant
EP0325571A1 (fr) 1988-01-22 1989-07-26 Kabi Pharmacia AB Amines, leur utilisation et leur préparation
EP0388054A1 (fr) 1989-03-17 1990-09-19 Pfizer Limited Dérivés de la pyrrolidine
WO1991009013A1 (fr) 1989-12-12 1991-06-27 Pfizer Limited Antagonistes de recepteurs muscariniques
WO1993016018A1 (fr) 1992-02-18 1993-08-19 Favorit Oy Dispositif de compostage
WO1993016048A1 (fr) 1992-02-05 1993-08-19 Fujisawa Pharmaceutical Co., Ltd. Compose d'acetamide substitue
US5281601A (en) 1989-12-12 1994-01-25 Pfizer Inc. Muscarinic receptor antagonists
JPH0692921A (ja) 1992-07-27 1994-04-05 Kyorin Pharmaceut Co Ltd 新規なアリールグリシンアミド誘導体及びその製造法
JPH06135958A (ja) 1992-10-28 1994-05-17 Tanabe Seiyaku Co Ltd ベンゾシクロヘプテン誘導体及びその製法
US5397800A (en) 1990-09-13 1995-03-14 Pfizer Inc. Certain 1-azabicyclo[2.2.1]heptanes useful as muscarinic receptor antagonists
WO1996033973A1 (fr) 1995-04-28 1996-10-31 Banyu Pharmaceutical Co., Ltd. Derives disubstitues en position 1,4 de piperidine
WO1997036871A1 (fr) * 1996-03-29 1997-10-09 Pfizer Inc. Derives de 6-phenylpyridyl-2-amines
EP0801067A1 (fr) 1994-12-28 1997-10-15 Yamanouchi Pharmaceutical Co. Ltd. Nouveaux derives de quinuclidine et composition pharmaceutique les contenant
WO1997045414A1 (fr) 1996-05-31 1997-12-04 Banyu Pharmaceutical Co., Ltd. Derives de piperidine a disubstitution en positions 1,4
US5703091A (en) 1993-12-04 1997-12-30 Basf Aktiengesellschaft N-substituted azabicycloalkane derivatives, their preparation and use
WO1998005641A1 (fr) 1996-08-01 1998-02-12 Banyu Pharmaceutical Co., Ltd. Derives de piperidine fluores a disubstitution en position 1,4
WO1998029402A1 (fr) 1996-12-31 1998-07-09 Pharmacia & Upjohn Company Procede de preparation de la tolterodine
EP0863141A1 (fr) 1995-10-13 1998-09-09 Banyu Pharmaceutical Co., Ltd. Derives heteroaromatiques substitues
US5914338A (en) 1996-04-02 1999-06-22 Novo Nordisk Heterocyclic compounds and their preparation and use
US6174900B1 (en) 1995-06-26 2001-01-16 Ss Pharmaceutical Co., Ltd. Substituted piperidine derivative for treating urinary disturbance
WO2004005252A1 (fr) 2002-07-08 2004-01-15 Ranbaxy Laboratories Limited Derives azabicyclo utilises comme antagonistes des recepteur muscariniques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716019A (en) * 1970-11-23 1973-02-13 Inland Steel Co Roller coating system for one side strip coating

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176019A (en) 1960-07-26 1965-03-30 Mead Johnson & Co Substituted aminobutynyl acetates
GB940540A (en) 1960-07-26 1963-10-30 Mead Johnson & Co Aminoacetylenes and process for preparing the same
EP0132130A2 (fr) 1983-07-14 1985-01-23 Syntex (U.S.A.) Inc. Acides aroylbenzofuranyl-acétiques et -propioniques, acides aroylbenzothiényl-acétiques et -propioniques, procédé pour leur préparation et composition pharmaceutiques les contenant
EP0325571A1 (fr) 1988-01-22 1989-07-26 Kabi Pharmacia AB Amines, leur utilisation et leur préparation
EP0388054A1 (fr) 1989-03-17 1990-09-19 Pfizer Limited Dérivés de la pyrrolidine
WO1991009013A1 (fr) 1989-12-12 1991-06-27 Pfizer Limited Antagonistes de recepteurs muscariniques
US5281601A (en) 1989-12-12 1994-01-25 Pfizer Inc. Muscarinic receptor antagonists
US5397800A (en) 1990-09-13 1995-03-14 Pfizer Inc. Certain 1-azabicyclo[2.2.1]heptanes useful as muscarinic receptor antagonists
WO1993016048A1 (fr) 1992-02-05 1993-08-19 Fujisawa Pharmaceutical Co., Ltd. Compose d'acetamide substitue
WO1993016018A1 (fr) 1992-02-18 1993-08-19 Favorit Oy Dispositif de compostage
JPH0692921A (ja) 1992-07-27 1994-04-05 Kyorin Pharmaceut Co Ltd 新規なアリールグリシンアミド誘導体及びその製造法
JPH06135958A (ja) 1992-10-28 1994-05-17 Tanabe Seiyaku Co Ltd ベンゾシクロヘプテン誘導体及びその製法
US5703091A (en) 1993-12-04 1997-12-30 Basf Aktiengesellschaft N-substituted azabicycloalkane derivatives, their preparation and use
EP0801067A1 (fr) 1994-12-28 1997-10-15 Yamanouchi Pharmaceutical Co. Ltd. Nouveaux derives de quinuclidine et composition pharmaceutique les contenant
EP0823423A1 (fr) 1995-04-28 1998-02-11 Banyu Pharmaceutical Co., Ltd. Derives disubstitues en position 1,4 de piperidine
WO1996033973A1 (fr) 1995-04-28 1996-10-31 Banyu Pharmaceutical Co., Ltd. Derives disubstitues en position 1,4 de piperidine
US6174900B1 (en) 1995-06-26 2001-01-16 Ss Pharmaceutical Co., Ltd. Substituted piperidine derivative for treating urinary disturbance
EP0863141A1 (fr) 1995-10-13 1998-09-09 Banyu Pharmaceutical Co., Ltd. Derives heteroaromatiques substitues
US6130232A (en) 1995-10-13 2000-10-10 Banyu Pharmaceutical Coaltd Substituted piperidine derivatives as muscarinic M3 receptor antagonists
WO1997036871A1 (fr) * 1996-03-29 1997-10-09 Pfizer Inc. Derives de 6-phenylpyridyl-2-amines
US5914338A (en) 1996-04-02 1999-06-22 Novo Nordisk Heterocyclic compounds and their preparation and use
WO1997045414A1 (fr) 1996-05-31 1997-12-04 Banyu Pharmaceutical Co., Ltd. Derives de piperidine a disubstitution en positions 1,4
WO1998005641A1 (fr) 1996-08-01 1998-02-12 Banyu Pharmaceutical Co., Ltd. Derives de piperidine fluores a disubstitution en position 1,4
EP0930298A1 (fr) 1996-08-01 1999-07-21 Banyu Pharmaceutical Co., Ltd. Derives de piperidine fluores a disubstitution en position 1,4
US5948792A (en) 1996-08-01 1999-09-07 Banyu Pharmaceutical Co., Ltd. Fluorine-containing 1,4-disubstituted piperidine derivatives
WO1998029402A1 (fr) 1996-12-31 1998-07-09 Pharmacia & Upjohn Company Procede de preparation de la tolterodine
WO2004005252A1 (fr) 2002-07-08 2004-01-15 Ranbaxy Laboratories Limited Derives azabicyclo utilises comme antagonistes des recepteur muscariniques
WO2004004629A2 (fr) 2002-07-08 2004-01-15 Ranbaxy Laboratories Limited Derives d'azabicyclo[3.1.0]hexanes 3,6-disubstitues utiles comme antagonistes des recepteurs muscariniques

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
Birdsall et al., "Muscarinic receptors: it's a knockout", Trends in Pharmacological Sciences, 22(5):215-219 (2001).
Bonner et al., "Identification of a Family of Muscarinic Acetylcholine Receptor Genes", Science, 237:527-531 (1987).
Braish et al., "Construction of the (1alpha,5alpha,6alpha)-6-Amino-3-azabicyclo[3.1.0]hexane Ring System", Synlett, 1100-1102 (1996).
Broadley and Kelly, "Muscarinic Receptor Agonists and Antagonists",Molecules, 6:142-193 (2001).
Chang-Young Lim et al., Journal of Clinical Microbiology, "Detection of Helicobacter pylori in Gastric Mucosa of patients with Gastroduodenal Diseases by PRC-Restriction Analysis using the RNA Polymerase Gene (rpoB)", 2003, vol. 41, pp. 3387-3391. *
Chapple, "Muscarinic receptor antagonists in the treatment of overactive bladder", Urology, 55(Suppl. 5A):33-46 (2000).
Cheng and Prusoff, "Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction", Biochemical Pharmacology, 22:3099-3108 (1973).
Cornforth et al., "General Synthetic Routes to beta-Hydroxy-acids from t-Butyl Esters and the Reformatskii Reaction", Journal of the Chemical Society C, 20:2799-2805 (1969).
de Groat and Yoshimura, "Pharmacology of the Lower Urinary Tract", Annual Review of Pharmacology and Toxicology, 41:691-721 (2001).
Eglen et al., "Muscarinic receptor ligands and their theraputic potential", Current Opinion in Chemical Biology, 3:426-432 (1999).
Eglen et al., "Theraputic opportunities from muscarinic receptor research", Trends in Pharmacological Sciences, 22(8):409-414 (2001).
Felder et al., "Theraputic Opportunities for Muscarinic Receptors in the Central Nervous System", Journal of Medicinal Chemistry, 43(23):4333-4353 (2000).
Gotteland et al., "(Aryloxy)methylsilane Derivatives as New Cholesterol Biosynthesis Inhibitors: Synthesis and Hypocholesterolemic Activity of a New Class of Squalene Epoxidase Inhibitors", Journal of Medicinal Chemistry, 38:3207-3216 (1995).
Grover et al., "Chiral Mandelic Acid Template Provides a Highly Practical Solution for (S)-Oxybutynin Synthesis", Journal of Organic Chemistry, 65:6283-6287 (2000).
Kubo et al., "Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor", Nature, 323(2):411-416 (1986).
Messaoik et al., International Journal of Pharmaceutics, "Comparative study and optimisation of the administration mode of three proton pump inhibitors by nasogastric tube", 2005, vol. 299, pp. 65-72. *
Moriya et al., "Affintity Profiles of Various Muscarinic Antagonists for Cloned Human Muscarinic Acetylcholine Receptor (mAchR) Subtypes and mAChRs in Rat Heart and Submandibular Gland", Life Sciences, 64(25):2351-2358 (1999).
Sagara et al., "Cyclohexylmethylpiperidinyltriphenylpropioamide: A Selective Muscarinic M3 Antagonist Discriminating against the Other Receptor Subtypes", Journal of Medicinal Chemistry, 45:984-987 (2002).
Shacklett and Smith, "The Preparation of Substituted Benzilic Acids", Journal of the American Chemical Society, 75:2654-2657 (1953).
Steers, "The future direction of neuro-urology drug research", Current Opinion in CPNS Investigational Drugs, 2(3):268-282 (2000).
Steers, Barrot, Wein, "Voiding dysfunction: diagnosis classification and management", In: Adult and Pediatric Urology, ed. Gillenwater, Grayhack, Howards, Duckett. Mosby, St. Louis, MO; 1220-1325, 3rd edition (1996).
Vogel's textbook, "Practical Organic Chemistry" 1046-1047 (5th Ed.).
Vogel's textbook, "Practical Organic Chemistry" 1048-1051 (5th Ed.).
Weinstock et al., "A General, One-Step Synthesis of alpha-keto Esters", Synthetic Communications, 11(12):943-946 (1981).

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060111425A1 (en) * 2002-07-08 2006-05-25 Mohammad Salman Azabicyclo derivatives as muscarinic receptor antagonists
US7544708B2 (en) 2002-07-08 2009-06-09 Ranbaxy Laboratories Limited Azabicyclo derivatives as muscarinic receptor antagonists
US20070287732A1 (en) * 2003-04-10 2007-12-13 Ranbaxy Laboratories Limited Substituted Azabicyclo Hexane Derivatives as Muscarinic Receptor Antagonists
US7592359B2 (en) * 2003-04-10 2009-09-22 Ranbaxy Laboratories Limited Substituted azabicyclo hexane derivatives as muscarinic receptor antagonists
US20060287380A1 (en) * 2003-04-11 2006-12-21 Mohammad Salman Azabicyclo Derivatives as Muscarinic Receptor Antagonists
US7446123B2 (en) 2003-04-11 2008-11-04 Ranbaxy Laboratories Limited Azabicyclo derivatives as muscarinic receptor antagonists
US20100035954A1 (en) * 2004-12-15 2010-02-11 Mohammad Salman Acid addition salts of muscarinic receptor antagonists
US20080319043A1 (en) * 2005-05-03 2008-12-25 Mohammad Salman 3,6-Disubstituted Azabicyclo (3.1.0) Hexane Derivatives as Muscarinic Receptor Antagonists
US11274082B2 (en) 2019-05-31 2022-03-15 Ikena Oncology, Inc. Tead inhibitors and uses thereof
US11458149B1 (en) 2019-05-31 2022-10-04 Ikena Oncology, Inc. TEAD inhibitors and uses thereof
US11760728B2 (en) 2019-05-31 2023-09-19 Ikena Oncology, Inc. Tead inhibitors and uses thereof
US11925651B2 (en) 2019-05-31 2024-03-12 Ikena Oncology, Inc. TEAD inhibitors and uses thereof

Also Published As

Publication number Publication date
AU2002353286A1 (en) 2004-06-30
EP1572648A1 (fr) 2005-09-14
ATE400553T1 (de) 2008-07-15
EP2177511A2 (fr) 2010-04-21
EP1572648B1 (fr) 2008-07-09
WO2004052857A1 (fr) 2004-06-24
JP2006518707A (ja) 2006-08-17
DE60227576D1 (de) 2008-08-21
HK1085724A1 (en) 2006-09-01
US20060217432A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
US7232835B2 (en) 3,6-Disubstituted azabicyclo derivatives as muscarinic receptor antagonists
US7399779B2 (en) 3,6-disubstituted azabicyclo [3.1.0] hexane derivatives useful as muscarinic receptor antagonists
US20090176856A1 (en) Muscarinic receptor antagonists
US7446123B2 (en) Azabicyclo derivatives as muscarinic receptor antagonists
US7488748B2 (en) 3,6-Disubstituted azabicyclo hexane derivatives as muscarinic receptor antagonists
US20070010568A1 (en) Substituted azabicyclo hexane derivatives as muscarinic receptor antagonists
US7517905B2 (en) Substituted azabicyclo hexane derivatives as muscarinic receptor antagonists
US7592359B2 (en) Substituted azabicyclo hexane derivatives as muscarinic receptor antagonists
US7465751B2 (en) 1-substituted-3-pyrrolidine derivatives as muscarinic receptor antagonists
CA2511726A1 (fr) Derives de xanthine utilise en tant qu'antagonistes des recepteurs muscariniques
US7560479B2 (en) 3,6-Disubstituted azabicyclo hexane derivatives as muscarinic receptor antagonists
KR20060014373A (ko) 무스카린 수용체 길항제로서의 치환된 아자비시클로 헥산유도체

Legal Events

Date Code Title Description
AS Assignment

Owner name: RANBAXY LABORATORIES LIMITED, INDIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MEHTA, ANITA;SILAMKOTI, ARUNDUTT VISWANATHAM;BRUHASPATHY, MIRIYALA;AND OTHERS;REEL/FRAME:016491/0988;SIGNING DATES FROM 20021218 TO 20031003

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362