US6924034B2 - Coated polyamide molding products - Google Patents

Coated polyamide molding products Download PDF

Info

Publication number
US6924034B2
US6924034B2 US10/140,071 US14007102A US6924034B2 US 6924034 B2 US6924034 B2 US 6924034B2 US 14007102 A US14007102 A US 14007102A US 6924034 B2 US6924034 B2 US 6924034B2
Authority
US
United States
Prior art keywords
polyamide
resin
polyamide resin
weight
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/140,071
Other versions
US20030008147A1 (en
Inventor
Tsutomu Tamura
Yoshinobu Hanaoka
Tomohide Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001137743A external-priority patent/JP2002331627A/en
Priority claimed from JP2001167092A external-priority patent/JP2002363317A/en
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Assigned to TOYO BOSEKI KABUSHIKI KAISHA reassignment TOYO BOSEKI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HANAOKA, YOSHINOBU, NAKAGAWA, TOMOHIDE, TAMURA, TSUTOMU
Publication of US20030008147A1 publication Critical patent/US20030008147A1/en
Application granted granted Critical
Publication of US6924034B2 publication Critical patent/US6924034B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/101Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/12Mixture of at least two particles made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2421/00Characterised by the use of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide

Definitions

  • the present invention relates to a coated polyamide molding product in which strength, rigidity, gripping property, packing and sealing characteristics and vibration cushioning property are compatible by means of coating a soft thermoplastic resin elastomer on the surface of a molding product of polyamide resin having good strength, rigidity and shock resistance.
  • a compounded molding product by a hard material and a soft material a compounded molding has been carried out by a combination of materials of the same quality such as hard olefin material and soft olefin material followed by subjecting to a thermal fusion whereby various commercial products have been developed (e.g., Nippon Gomu Kyokai Shi , vol. 69, no. 9, p. 631 (1996) and Purasuchikkusu , vol. 48, no. 3, p. 30 (1997)).
  • the compatibility between/among the different materials is quite important and, in the case of a combination of the materials of the same quality, the thermal fusion can be done relatively easily.
  • there is a disadvantage in a combination of such materials of the same quality that only very limited materials are able to be used and that the field of use is limited as well.
  • thermoplastic elastomer of a styrene type and thermoplastic elastomer of an olefin type is blended with an engineering elastomer having polar groups such as thermoplastic polyester elastomer and thermoplastic polyamide elastomer comprising polyether block amide and the resulting soft material is subjected to a thermal fusion with a hard material such as ABS, polycarbonate, Nylon and PBT (e.g., Japanese Patent Laid-Open No. 9878/1994, No. 11662/1995, etc.).
  • thermoplastic elastomer a general-purpose thermoplastic elastomer is blended with a very expensive thermoplastic elastomer of a polyamide type or thermoplastic elastomer of a polyester type. Therefore, the product is an expensive specially-coated molding product and, in addition, a phase separation of the soft material may take place depending upon a combination of blending resulting in a defective part in the molding product and that is not preferred.
  • the present invention has been achieved on the background of such problems in the prior art and the object thereof is to manufacture a coated polyamide molding product having good thermally fusing property and good molding ability at a low cost by a combination of entirely different types of hard and soft materials comprising a polyamide resin having good strength and rigidity and a thermoplastic resin elastomer having a softness.
  • the present invention relates to ⁇ circle around (1) ⁇ a coated polyamide molding product, characterized in that, a polyamide molding product obtained from a polyamide resin composition containing a polyamide resin (A), a thermoplastic resin composition (B) having functional groups reacting with the polyamide resin and, if necessary, an inorganic filler (C) is coated with a thermoplastic resin elastomer (D) which is compatible with the thermoplastic resin composition which is the above-mentioned component (B); ⁇ circle around (2) ⁇ the coated polyamide molding product mentioned in the above ⁇ circle around (1) ⁇ , wherein the polyamide resin (A) is a polyamide resin containing crystalline polyamide resin (a) and amorphous polyamide resin (b); ⁇ circle around (3) ⁇ the coated polyamide molding product mentioned in the above ⁇ circle around (1) ⁇ , wherein the polyamide molding product obtained from a polyamide resin
  • FIG. 1 is an oblique view of a sample for evaluation of the coated polyamide molding product according to the present invention.
  • 1 is a thermoplastic resin elastomer (injection molding of the secondary side) and 2 is a polyamide resin (injection molding of the primary side).
  • the polyamide resin (A) which is used in the present invention is that which has an acid amide bond (—CONH—) in a molecule.
  • polyamide resins those having a number-average molecular weight of 7,000 ⁇ 30,000 are preferably used in the present invention.
  • the polyamide resin (A) contains the crystalline polyamide resin (a) and the amorphous polyamide resin (b).
  • the said crystalline polyamide resin (a) means a resin which has melting point and glass transition point and there may be exemplified a resin having a crystal fusing calorie of 4 J/g or more upon rising at 20° C./minute by a differential scanning calorimeter (DSC) after the resin is heated at 160° C. for 1 hour.
  • the above-mentioned amorphous polyamide resin (b) means a resin which has glass transition point and there may be exemplified a resin having a crystal fusing calorie of 3 J/g or less upon rising at 20° C./minute by a differential scanning calorimeter (DSC) after the resin is heated at 160° C. for 1 hour in which the resin having a number-average molecular weight is 7,000 ⁇ 30,000 is preferably used.
  • DSC differential scanning calorimeter
  • Nylon 6T/Nylon 66 copolymer is preferred and a blend with various Nylon copolymers is preferred as well.
  • the preferred blending ratio of the crystalline polyamide resin (a) to the amorphous polyamide resin (b) is 90 ⁇ 50% by weight of the crystalline polyamide (a) and 10 ⁇ 50% by weight of the amorphous polyamide (b) and, more preferably, it is 85 ⁇ 65% by weight of the crystalline polyamide (a) and 15 ⁇ 35% by weight of the amorphous polyamide (b) to the polyamide resin composition although the present invention is not limited thereto.
  • thermoplastic resin composition (B) used in the present invention is prepared by kneading a single resin or a blend of two or more kinds of resins selected from general-purpose resin, engineering plastic, soft resin, thermoplastic elastomer and the like.
  • general-purpose resin of an olefin type such as various kinds of polyethylene, isotactic polypropylene, syndiotactic polypropylene, polybutene-1,4-methylpentene-1, etc.;
  • general-purpose resin of a styrene type such as polystyrene, syndiotactic polystyrene, AS resin, ABS resin, polystyrene-modified polyphenylene ether resin, etc.;
  • engineering plastic such as PMMA resin, PET resin, PBT resin, polycarbonate, polyarylate, polyacetal resin, etc.
  • soft resin such as ethylene copolymer (e.g., ethylene/propylene copolymer, ethylene/butene-1 copolymer, ethylene/octane-1 copolymer, ethylene/hexene-1 copolymer, ethylene/4-methylpentene-1 copolymer, ethylene/cyclic olefin copolymer, etc.), propylene copolymer (e.g., propylene/ethylene copolymer, propylene/butene-1 copolymer, etc.), butene-1 copolymer (e.g., butene-1/ethylene copolymer, butene-1/propylene copolymer, etc.), acrylic copolymer (e.g., ethylene/acrylic acid copolymer, ethylene/ethyl acrylate copolymer, ethylene/methacrylic acid copolymer, ethylene/methyl methacrylate copolymer, etc.), ionomer resin, ethylene/
  • thermoplastic elastomers of an olefin type such as thermoplastic elastomer of an olefin type (TPO) in a dynamic cross-linking type, TPO of a blended type, TPO of a polymerized type, etc.;
  • thermoplastic elastomer such as various kinds of thermoplastic elastomers of a styrene type (to be more specific, SBS, SIS, SEBS, SEPS, vinyl SEPS, hydrogenated SBR, etc.), thermoplastic elastomer of an urethane type, thermoplastic elastomer of a polyester type, thermoplastic elastomer of a polyamide type, etc.;
  • thermoplastic resin composition of the present invention is not limited thereto.
  • the compounding amount of the above thermoplastic resin composition is 10 ⁇ 50% by weight, preferably 10 ⁇ 40% by weight or, particularly preferably, 15 ⁇ 35% by weight.
  • the compounding amount is less than 10% by weight, thermally fusing property with a thermoplastic resin is poor while, when it is more than 50% by weight, there is a possibility of resulting in a phase inversion with a polyamide resin whereby they are not preferred.
  • the above-mentioned thermoplastic resin composition (B) has a functional group which reacts with the polyamide resin.
  • the functional group reacting with the polyamide resin are carboxylic acid group, acid anhydride group, epoxy group, oxazoline group, amino group and isocyanate group and, among them, acid anhydride group is most reactive and is particularly preferred.
  • thermoplastic resin composition which is the component (B) and has a functional group which is reactive with the polyamide resin
  • a method for the manufacture of the thermoplastic resin composition which is the component (B) and has a functional group which is reactive with the polyamide resin
  • a method where a compound having the above-mentioned functional group is compounded during the manufacture of the thermoplastic resin composition and is made to react with the constituting component of the thermoplastic resin composition
  • a method where pellets of the thermoplastic resin composition and a compound having the above functional group are mixed and the mixture is kneaded in an extruder or the like so as to react with the constituting component of the thermoplastic resin composition, etc. and, in the present invention, any of the methods may be adopted.
  • inorganic filler (C) used in the present invention its specific examples are fibrous inorganic reinforcing agent such as glass fiber, carbon fiber, ceramic fiber, various kinds of whiskers, needle-like wollastonite, etc. and powdery inorganic filler such as silica, alumina, talc, kaolin, quartz, powdery glass, mica, graphite, etc.
  • fibrous inorganic reinforcing agent such as glass fiber, carbon fiber, ceramic fiber, various kinds of whiskers, needle-like wollastonite, etc.
  • powdery inorganic filler such as silica, alumina, talc, kaolin, quartz, powdery glass, mica, graphite, etc.
  • Each of those inorganic fillers may be used solely or two or more thereof may be used jointly.
  • such an inorganic filler may be treated with a silane coupling agent as a surface-treating agent and aminosilane is particularly preferred.
  • Compounding amount of the above inorganic filler (C) is 0 ⁇ 200 part(s) by weight to 100 parts by weight of the composition comprising the polyamide resin (A), the polyolefin resin (B) and/or the modified polyolefin resin and is preferably 0 ⁇ 160 part(s) by weight or, particularly preferably, 0 ⁇ 150 part(s) by weight.
  • the above inorganic filler is more than 200 part(s) by weight, luster spots are resulted on the appearance of the molding product and the appearance becomes bad whereby that is not preferred.
  • thermoplastic resin elastomer (D) used in the present invention is a resin having a good recovery of elasticity which is compatible with the thermoplastic resin composition (B) being mainly composed of hard segment and soft segment and includes block copolymer, graft copolymer, partially cross-linked polymer, blend of homopolymer having a good compatibility, etc.
  • thermoplastic resin composition (B) and the thermoplastic resin elastomer (D) are compatible and, with regard to a compatible combination, it may be one of the criteria that their solubility parameters (SP values) are 0.5 or less although, finally, it is necessary to knead both resins for confirming their compatibility.
  • thermoplastic elastomer such as thermoplastic elastomer of an olefin type (TPO) (e.g., dynamically cross-linked thermoplastic elastomer, TPO in a blended type, TPO in a polymerized type, etc.), a thermoplastic elastomer of a styrene type (e.g., SBS, SIS, SEBS, SEPS, vinyl SEPS, hydrogenated SBR, etc.), a thermoplastic elastomer of a urethane type, a thermoplastic elastomer of a polyester type, a thermoplastic elastomer of a polyamide type, etc.; and
  • an ethylenic copolymer having much copolymer component such as ethylene/propylene copolymer, ethylene/butene-1 copolymer and ethylene/octene-1 copolymer and a blend of such a copolymer with a homopolymer which is compatible therewith.
  • component (D) in the present invention it is preferred that hardness of the component (D) is low so that it is coated by thermal fusion on the surface of a polyamide molding product having a high rigidity whereby gripping property, packing/sealing property and vibration cushioning property are achieved.
  • Preferred surface hardness in terms of the JIS-A hardness is 90 ⁇ 30° or, more preferably, 80 ⁇ 35°.
  • gripping property and sealing property are poor while, when it is less than 30°, heat resistance and molding ability of the thermoplastic resin is elastomer (D) are poor whereby its coating and molding on the polyamide resin is difficult. Such a thing is not preferred.
  • thermoplastic resin elastomer (D) is coated or layered on the polyamide molding product followed by subjecting to a thermal fusion are included.
  • thermoplastic injection molding method where, after the polyamide resin is subjected to an injection molding, the metal mold is immediately rotated and the thermoplastic resin elastomer (D) is further subjected to an injection molding on the whole or partial surface of the polyamide molding product; an “outsert or insert molding method” where a previously molded polyamide resin molding product is placed in a cavity of a metal mold and an additional molding is carried out on the whole or partial surface of the molding product; a “bilayer extrusion method” where the polyamide resin and the thermoplastic resin elastomer (D) are extruded at the same time using a two-layer extrusion molding machine to carry out a thermal fusion; a “thermal lamination method” where a sheet or a molding product of a previously molded thermoplastic resin elastomer (D) is laminated on the surface of a previously molded polyamide molding product and then thermally fused by an ultrasonic fusing
  • the polyamide molding product having high strength and rigidity is layered on and thermally fused with the soft resin which has good gripping property, sealing property and vibration cushioning property and shows an entirely difference from the polyamide resin in the characteristics without the use of special adhesives whereupon it is now possible to manufacture a compounded molding product having many functions at a low cost.
  • the present invention will be specifically illustrated by way of the following Examples and Comparative Examples although the present invention is not limited to those examples.
  • the compatibility of the component (B) with the component (D) and the fusing strength (adhesive strength) of the coated molding product were measured and evaluated by the following release test.
  • Releasing strength In the following samples for the evaluation by the dichromatic molding method and the outsert molding method, the polyamide resin and the styrene soft resin were pulled in a direction of 90° and the releasing strength was measured. In the case of the samples for the evaluation manufactured by a thermal lamination molding method, the polyamide resin and the thermoplastic resin elastomer (D) were pulled in a direction of 180° and the releasing strength was measured. In both cases, the tensile speed was 100 mm/minute.
  • releasing strength being 1.0 kg/15 mm or more
  • x releasing strength being about 0 kg/15 mm or less
  • polyamide resin 70% by weight of Ny-6 (Nylon T-803 manufactured by Toyo Boseki Kabushiki Kaisha; number-average molecular weight: 12,000) and 30% by weight of acid-modified polypropylene (MMP-006 manufactured by Grand Polymer K. K.) were mixed, kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
  • Ny-6 Nylon T-803 manufactured by Toyo Boseki Kabushiki Kaisha; number-average molecular weight: 12,000
  • MMP-006 acid-modified polypropylene
  • polyamide resin 50% by weight of Ny-6 (Nylon T-803 manufactured by Toyo Boseki Kabushiki Kaisha; number-average molecular weight: 12,000), 20% by weight of acid-modified polypropylene and 30% by weight of glass fiber (RES-03-TP64 manufactured by Nippon Glass Fiber K. K.) were mixed, kneaded by a biaxial extruder at the cylinder temperature of 260° C. and made into pellets.
  • Ny-6 Nylon T-803 manufactured by Toyo Boseki Kabushiki Kaisha; number-average molecular weight: 12,000
  • glass fiber RES-03-TP64 manufactured by Nippon Glass Fiber K. K.
  • Ethylene/octene-1 copolymer (Engage 8402; manufactured by Dow Chemical) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 220° C. to manufacture an acid-modified ethylene/octene-1 copolymer.
  • This acid-modified product (30% by weight) and 70% by weight of Ny-6 were mixed, kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
  • Polybutylene terephthalate (PBT; Tufpet N-1000 manufactured by Mitsubishi Rayon) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 250° C. to manufacture an acid-modified PBT.
  • This acid-modified PBT (30% by weight) and 70% by weight of Ny-6 were mixed, kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
  • polyamide resin 70% by weight of Ny-6 and 30% by weight of acid-modified styrene/ethylene/butylene/styrene copolymer (SEBS; Tuftec M-1943 manufactured by Asahi Kasei), kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
  • SEBS acid-modified styrene/ethylene/butylene/styrene copolymer
  • Thermoplastic resin elastomers EP-1 ⁇ EP-5 are as follows.
  • EP-1 Hydrogenated styrene/butadiene copolymer (HSBR; Dynaron 1320P manufactured by JSR K. K.; hardness: 39 A);
  • EP-2 Thermoplastic elastomer of an olefin type (TPO; Santoprene 101-55 manufactured by AES K. K.; hardness: 55 A);
  • EP-3 Ethylene/octene-1 copolymer (Engage 8180 manufactured by Dow Chemical; hardness: 66 A);
  • EP-4 Thermoplastic elastomer of a polyester type (TPEE; Pelprene P-30B manufactured by Toyo Boseki Kabushiki Kaisha; hardness: 85 A); and
  • EP-5 Styrene/ethylene/propylene/styrene copolymer (SEPS; Septon 2062 manufactured by Kuraray Co., Ltd.; hardness: 39 A).
  • a metal mold having a shape as shown in FIG. 1 was used and each of the above-mentioned polyamide resins was molded using a dichromatic molding machine of a core rotation system (Type KS-2C300 manufactured by K. K. Takahashi Seiki Kogyosho) at the metal mold temperature of 40° C. where the cylinder temperature in the injection molding at the primary side was 260° C. and various thermoplastic resin elastomers as shown in Table 1 were molded by the injection molding machine at the secondary side at the cylinder temperature of 230° C. whereupon molding products for evaluation were prepared.
  • a dichromatic molding machine of a core rotation system Type KS-2C300 manufactured by K. K. Takahashi Seiki Kogyosho
  • An injection molding at the primary side was carried out using the above-mentioned dichromatic molding machine, the injection molding product at the primary side was molded using a polyamide resin and the product was taken out from the metal mold and subjected to keeping the warmth and preventing the moisture absorption in a drier of about 100° C. Then, a previously-molded polyamide molding product was attached to the cavity of the primary side of the metal mold of the injection molding machine of the secondary side and a layered molding of the thermoplastic resin elastomer was carried out to prepare a molding product for evaluation. Conditions for the molding are as same as those in the dichromatic molding method.
  • the interlayer of the coated polyamide molding product of the present invention has a good thermal adherence and is strongly bonded giving a durable coated polyamide molding product.
  • Comparative Examples 1 ⁇ 2 there is no thermal fusion at all in the interlayer between the thermoplastic resin elastomer and the polyamide resin composition where no thermoplastic resin composition having a polar group reacting with polyamide resin is compounded.
  • Comparative Examples 3 ⁇ 4 when the compatibility of the thermoplastic resin composition with the thermoplastic resin elastomer is poor, the thermal fusion in the interlayer is bad and it is not possible to manufacture a durable coated polyamide molding product.
  • Ethylene/octene-1 copolymer (Engage 8402; manufactured by Dow Chemical) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 220° C. to manufacture an acid-modified ethylene/octene-1 copolymer.
  • This acid-modified product (30% by weight) was mixed with 55% by weight of Ny-6 as a crystalline polyamide and 15% by weight of G 21 manufactured by EMS which was as same as that in Manufacturing Example 8 as an amorphous polyamide resin and kneaded by a biaxial extruder at the cylinder temperature of 250° C. whereupon pellets were prepared.
  • Polybutylene terephthalate (PBT; Tufpet N-1000 manufactured by Mitsubishi Rayon) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 250° C. to manufacture an acid-modified PBT.
  • This acid-modified PBT (30% by weight) was mixed with 50% by weight of Nylon 6 as a crystalline polyamide resin and 20% by weight of G 21 manufactured by EMS which was as same as that in Manufacturing Example 8 as an amorphous polyamide resin and kneaded by a biaxial extruder at the cylinder temperature of 250° C. whereupon pellets were prepared.
  • a metal mold in a shape as shown in FIG. 1 was used and each of the above-mentioned polyamide resins was molded using a dichromatic molding machine of a core rotation system (Type KS-2C300 manufactured by K. K. Takahashi Seiki Kogyosho) at the metal mold temperature of 40° C. where the cylinder temperature in the injection molding at the primary side was 260° C. and various thermoplastic resin elastomers as shown in Table 2 were molded by the injection molding machine at the secondary side at the cylinder temperature of 230° C. whereupon molding products for evaluation were prepared.
  • a dichromatic molding machine of a core rotation system Type KS-2C300 manufactured by K. K. Takahashi Seiki Kogyosho
  • An injection molding at the primary side was carried out using the above-mentioned dichromatic molding machine, the injection molding product at the primary side was molded using a polyamide resin and the product was taken out from the metal mold and subjected to keeping the warmth and preventing the moisture absorption in a drier of about 100° C. Then, a previously-molded polyamide molding product was attached to the cavity of the primary side of the metal mold of the injection molding machine of the secondary side and a layered molding of the thermoplastic resin elastomer was carried out to prepare a molding product for evaluation. Conditions for the molding are as same as those in the dichromatic molding method.
  • the interlayer of the coated polyamide molding product of the present invention has a good thermal adherence and is strongly bonded giving a durable coated polyamide molding product. Further, when compatibility of the thermoplastic resin composition with the thermoplastic resin elastomer is poor as shown in Comparative Examples 5 and 6, the thermal fusion property of the interlayer is bad and it is not possible to manufacture a durable coated polyamide molding product.
  • the coated polyamide molding product of the present invention has good strength, rigidity and shock resistance and is able to give a layered molding product having the surface characteristics such as gripping property and packing/sealing property at a low cost whereby the product can be utilized in broad fields of use such as electric tools, fishing tackles, sporting and amusement goods, auto parts and office supplies and greatly contributes in industry.

Abstract

It is disclosed that a coated polyamide molding product, characterized in that, a polyamide molding product obtained from a polyamide resin composition containing a polyamide resin (A), a thermoplastic resin composition (B) having functional groups reacting with the polyamide resin and, if necessary, an inorganic filler (C) is coated with a thermoplastic resin elastomer (D) which is compatible with the thermoplastic resin composition which is the above-mentioned component (B).

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a coated polyamide molding product in which strength, rigidity, gripping property, packing and sealing characteristics and vibration cushioning property are compatible by means of coating a soft thermoplastic resin elastomer on the surface of a molding product of polyamide resin having good strength, rigidity and shock resistance.
2. Description of the Related Art
With regard to a compounded molding product by a hard material and a soft material, a compounded molding has been carried out by a combination of materials of the same quality such as hard olefin material and soft olefin material followed by subjecting to a thermal fusion whereby various commercial products have been developed (e.g., Nippon Gomu Kyokai Shi, vol. 69, no. 9, p. 631 (1996) and Purasuchikkusu, vol. 48, no. 3, p. 30 (1997)). In a thermal fusion of different materials, the compatibility between/among the different materials is quite important and, in the case of a combination of the materials of the same quality, the thermal fusion can be done relatively easily. However, there is a disadvantage in a combination of such materials of the same quality that only very limited materials are able to be used and that the field of use is limited as well.
In the meanwhile, there has been a report where a general-purpose elastomer such as thermoplastic elastomer of a styrene type and thermoplastic elastomer of an olefin type is blended with an engineering elastomer having polar groups such as thermoplastic polyester elastomer and thermoplastic polyamide elastomer comprising polyether block amide and the resulting soft material is subjected to a thermal fusion with a hard material such as ABS, polycarbonate, Nylon and PBT (e.g., Japanese Patent Laid-Open No. 9878/1994, No. 11662/1995, etc.).
In such a method, however, there is used a specific soft material where a general-purpose thermoplastic elastomer is blended with a very expensive thermoplastic elastomer of a polyamide type or thermoplastic elastomer of a polyester type. Therefore, the product is an expensive specially-coated molding product and, in addition, a phase separation of the soft material may take place depending upon a combination of blending resulting in a defective part in the molding product and that is not preferred.
SUMMARY OF THE INVENTION
The present invention has been achieved on the background of such problems in the prior art and the object thereof is to manufacture a coated polyamide molding product having good thermally fusing property and good molding ability at a low cost by a combination of entirely different types of hard and soft materials comprising a polyamide resin having good strength and rigidity and a thermoplastic resin elastomer having a softness.
In order to solve the above-mentioned problems, the present inventors have carried out an intensive investigation and at last achieved the present invention. Thus, the present invention relates to {circle around (1)} a coated polyamide molding product, characterized in that, a polyamide molding product obtained from a polyamide resin composition containing a polyamide resin (A), a thermoplastic resin composition (B) having functional groups reacting with the polyamide resin and, if necessary, an inorganic filler (C) is coated with a thermoplastic resin elastomer (D) which is compatible with the thermoplastic resin composition which is the above-mentioned component (B); {circle around (2)} the coated polyamide molding product mentioned in the above {circle around (1)}, wherein the polyamide resin (A) is a polyamide resin containing crystalline polyamide resin (a) and amorphous polyamide resin (b); {circle around (3)} the coated polyamide molding product mentioned in the above {circle around (1)}, wherein the polyamide molding product obtained from a polyamide resin composition containing 0˜200 part(s) by weight of the inorganic filler (C) to 100 parts by weight of the composition comprising 90˜50% by weight of the polyamide resin (A) and 10˜50% by weight of the thermoplastic resin composition (B) having functional groups reacting with the polyamide resin is coated with the thermoplastic resin elastomer (D) which is compatible with the thermoplastic resin composition which is the above-mentioned component (B); {circle around (4)} the coated polyamide molding product mentioned in the above {circle around (1)}, wherein the thermoplastic resin composition (B) is a single resin or a blend of two or more kinds of resins selected from general-purpose resin, engineering plastic, soft resin and thermoplastic elastomer; and {circle around (5)} the coated polyamide molding product mentioned in the above {circle around (1)}, wherein the thermoplastic resin elastomer (D) has a hardness of 90˜30° according to the JIS-A hardness.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 is an oblique view of a sample for evaluation of the coated polyamide molding product according to the present invention. In the drawing, 1 is a thermoplastic resin elastomer (injection molding of the secondary side) and 2 is a polyamide resin (injection molding of the primary side).
DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS
Hereinafter, the present invention will be illustrated in detail.
The polyamide resin (A) which is used in the present invention is that which has an acid amide bond (—CONH—) in a molecule. To be more specific, there may be exemplified polymer or copolymer obtained from ε-caprolactam, 6-aminocaproic acid, ω-enantholactam, 7-aminoheptanoic acid, 11-aminoundecanoic acid, α-aminononanoic acid, α-pyrrolidone, α-piperidone, etc.; polymer or copolymer obtained by polycondensation of a diamine such as hexamethylenediamine, nonamethylenediamine, undecamethylenediamine, dodecamethylenediamine, m-xylylenediamine, etc. with a dicarboxylic acid such as terephthalic acid, isophthalic acid, adipic acid, sebacic acid, etc.; and a blended product thereof although the present invention is not limited thereto. Among the above-mentioned polyamide resins, those having a number-average molecular weight of 7,000˜30,000 are preferably used in the present invention.
In the present invention, it is preferred that the polyamide resin (A) contains the crystalline polyamide resin (a) and the amorphous polyamide resin (b). The said crystalline polyamide resin (a) means a resin which has melting point and glass transition point and there may be exemplified a resin having a crystal fusing calorie of 4 J/g or more upon rising at 20° C./minute by a differential scanning calorimeter (DSC) after the resin is heated at 160° C. for 1 hour. To be specific, there may be exemplified Nylon 6 (calorie=52 J/g), Nylon 66 (calorie=65 J/g), Nylon 6/Nylon 66 copolymer (calorie=40 J/g), Nylon 46 (calorie=90 J/g), Nylon 12 (calorie=38 J/g), Nylon 6T/Nylon 66 copolymer (calorie=48 J/g) and Nylon MXD-6 (calorie=40 J/g) and, in the present invention, Nylon 6 and Nylon 66 are preferred.
The above-mentioned amorphous polyamide resin (b) means a resin which has glass transition point and there may be exemplified a resin having a crystal fusing calorie of 3 J/g or less upon rising at 20° C./minute by a differential scanning calorimeter (DSC) after the resin is heated at 160° C. for 1 hour in which the resin having a number-average molecular weight is 7,000˜30,000 is preferably used.
With regard to the above amorphous polyamide resin, there may be specifically exemplified Nylon 6T/Nylon 66 copolymer (calorie=2 J/g), Nylon 6T/Nylon 6I copolymer (calorie=0.5 J/g) and Nylon TMD-T/Nylon 6 copolymer (calorie=0.7 J/g) and, in the present invention, Nylon 6T/Nylon 66 copolymer is preferred and a blend with various Nylon copolymers is preferred as well.
The preferred blending ratio of the crystalline polyamide resin (a) to the amorphous polyamide resin (b) is 90˜50% by weight of the crystalline polyamide (a) and 10˜50% by weight of the amorphous polyamide (b) and, more preferably, it is 85˜65% by weight of the crystalline polyamide (a) and 15˜35% by weight of the amorphous polyamide (b) to the polyamide resin composition although the present invention is not limited thereto.
The thermoplastic resin composition (B) used in the present invention is prepared by kneading a single resin or a blend of two or more kinds of resins selected from general-purpose resin, engineering plastic, soft resin, thermoplastic elastomer and the like.
To be more specific, there may be exemplified various general-purpose resins, engineering plastics, soft resins and thermoplastic elastomers including:
general-purpose resin of an olefin type such as various kinds of polyethylene, isotactic polypropylene, syndiotactic polypropylene, polybutene-1,4-methylpentene-1, etc.;
general-purpose resin of a styrene type such as polystyrene, syndiotactic polystyrene, AS resin, ABS resin, polystyrene-modified polyphenylene ether resin, etc.;
engineering plastic such as PMMA resin, PET resin, PBT resin, polycarbonate, polyarylate, polyacetal resin, etc.;
soft resin such as ethylene copolymer (e.g., ethylene/propylene copolymer, ethylene/butene-1 copolymer, ethylene/octane-1 copolymer, ethylene/hexene-1 copolymer, ethylene/4-methylpentene-1 copolymer, ethylene/cyclic olefin copolymer, etc.), propylene copolymer (e.g., propylene/ethylene copolymer, propylene/butene-1 copolymer, etc.), butene-1 copolymer (e.g., butene-1/ethylene copolymer, butene-1/propylene copolymer, etc.), acrylic copolymer (e.g., ethylene/acrylic acid copolymer, ethylene/ethyl acrylate copolymer, ethylene/methacrylic acid copolymer, ethylene/methyl methacrylate copolymer, etc.), ionomer resin, ethylene/vinyl acetate copolymer, etc.;
various kind of thermoplastic elastomers of an olefin type such as thermoplastic elastomer of an olefin type (TPO) in a dynamic cross-linking type, TPO of a blended type, TPO of a polymerized type, etc.;
thermoplastic elastomer such as various kinds of thermoplastic elastomers of a styrene type (to be more specific, SBS, SIS, SEBS, SEPS, vinyl SEPS, hydrogenated SBR, etc.), thermoplastic elastomer of an urethane type, thermoplastic elastomer of a polyester type, thermoplastic elastomer of a polyamide type, etc.;
and the like although the thermoplastic resin composition of the present invention is not limited thereto.
It is desirable that the compounding amount of the above thermoplastic resin composition is 10˜50% by weight, preferably 10˜40% by weight or, particularly preferably, 15˜35% by weight. When the compounding amount is less than 10% by weight, thermally fusing property with a thermoplastic resin is poor while, when it is more than 50% by weight, there is a possibility of resulting in a phase inversion with a polyamide resin whereby they are not preferred.
In order to enhance the compatibility with the polyamide resin (A), the above-mentioned thermoplastic resin composition (B) has a functional group which reacts with the polyamide resin. Specific examples of the functional group reacting with the polyamide resin are carboxylic acid group, acid anhydride group, epoxy group, oxazoline group, amino group and isocyanate group and, among them, acid anhydride group is most reactive and is particularly preferred.
With regard to a method for the manufacture of the thermoplastic resin composition which is the component (B) and has a functional group which is reactive with the polyamide resin, there are available a method where a compound having the above-mentioned functional group is compounded during the manufacture of the thermoplastic resin composition and is made to react with the constituting component of the thermoplastic resin composition, a method where pellets of the thermoplastic resin composition and a compound having the above functional group are mixed and the mixture is kneaded in an extruder or the like so as to react with the constituting component of the thermoplastic resin composition, etc. and, in the present invention, any of the methods may be adopted.
With regard to the inorganic filler (C) used in the present invention, its specific examples are fibrous inorganic reinforcing agent such as glass fiber, carbon fiber, ceramic fiber, various kinds of whiskers, needle-like wollastonite, etc. and powdery inorganic filler such as silica, alumina, talc, kaolin, quartz, powdery glass, mica, graphite, etc. Each of those inorganic fillers may be used solely or two or more thereof may be used jointly. Further, such an inorganic filler may be treated with a silane coupling agent as a surface-treating agent and aminosilane is particularly preferred.
Compounding amount of the above inorganic filler (C) is 0˜200 part(s) by weight to 100 parts by weight of the composition comprising the polyamide resin (A), the polyolefin resin (B) and/or the modified polyolefin resin and is preferably 0˜160 part(s) by weight or, particularly preferably, 0˜150 part(s) by weight. When the above inorganic filler is more than 200 part(s) by weight, luster spots are resulted on the appearance of the molding product and the appearance becomes bad whereby that is not preferred.
The thermoplastic resin elastomer (D) used in the present invention is a resin having a good recovery of elasticity which is compatible with the thermoplastic resin composition (B) being mainly composed of hard segment and soft segment and includes block copolymer, graft copolymer, partially cross-linked polymer, blend of homopolymer having a good compatibility, etc.
Incidentally, it is important in the present invention to select a combination where the thermoplastic resin composition (B) and the thermoplastic resin elastomer (D) are compatible and, with regard to a compatible combination, it may be one of the criteria that their solubility parameters (SP values) are 0.5 or less although, finally, it is necessary to knead both resins for confirming their compatibility.
Specific examples of the component (D) are a thermoplastic elastomer such as thermoplastic elastomer of an olefin type (TPO) (e.g., dynamically cross-linked thermoplastic elastomer, TPO in a blended type, TPO in a polymerized type, etc.), a thermoplastic elastomer of a styrene type (e.g., SBS, SIS, SEBS, SEPS, vinyl SEPS, hydrogenated SBR, etc.), a thermoplastic elastomer of a urethane type, a thermoplastic elastomer of a polyester type, a thermoplastic elastomer of a polyamide type, etc.; and
an ethylenic copolymer having much copolymer component such as ethylene/propylene copolymer, ethylene/butene-1 copolymer and ethylene/octene-1 copolymer and a blend of such a copolymer with a homopolymer which is compatible therewith.
With regard to the above component (D) in the present invention, it is preferred that hardness of the component (D) is low so that it is coated by thermal fusion on the surface of a polyamide molding product having a high rigidity whereby gripping property, packing/sealing property and vibration cushioning property are achieved.
Preferred surface hardness in terms of the JIS-A hardness is 90˜30° or, more preferably, 80˜35°. When the hardness is more than 90°, gripping property and sealing property are poor while, when it is less than 30°, heat resistance and molding ability of the thermoplastic resin is elastomer (D) are poor whereby its coating and molding on the polyamide resin is difficult. Such a thing is not preferred.
There is no particular limitation in a method for the manufacture of the coated polyamide molding product in accordance with the present invention but all of the known methods where the thermoplastic resin elastomer (D) is coated or layered on the polyamide molding product followed by subjecting to a thermal fusion are included. With regard to specific examples of the manufacturing methods, there are a “dichromatic injection molding method” where, after the polyamide resin is subjected to an injection molding, the metal mold is immediately rotated and the thermoplastic resin elastomer (D) is further subjected to an injection molding on the whole or partial surface of the polyamide molding product; an “outsert or insert molding method” where a previously molded polyamide resin molding product is placed in a cavity of a metal mold and an additional molding is carried out on the whole or partial surface of the molding product; a “bilayer extrusion method” where the polyamide resin and the thermoplastic resin elastomer (D) are extruded at the same time using a two-layer extrusion molding machine to carry out a thermal fusion; a “thermal lamination method” where a sheet or a molding product of a previously molded thermoplastic resin elastomer (D) is laminated on the surface of a previously molded polyamide molding product and then thermally fused by an ultrasonic fusing machine or a vibration fusing machine; and the like although the present invention is not limited thereto.
In the coated polyamide molding product of the present invention, the polyamide molding product having high strength and rigidity is layered on and thermally fused with the soft resin which has good gripping property, sealing property and vibration cushioning property and shows an entirely difference from the polyamide resin in the characteristics without the use of special adhesives whereupon it is now possible to manufacture a compounded molding product having many functions at a low cost.
EXAMPLES
Now the present invention will be specifically illustrated by way of the following Examples and Comparative Examples although the present invention is not limited to those examples. Incidentally, the compatibility of the component (B) with the component (D) and the fusing strength (adhesive strength) of the coated molding product were measured and evaluated by the following release test.
Compatibility of the component (B) with the component (D): Resins of the both components were mixed in a ratio of 50/50, kneaded and made into pellets. They were subjected to an injection molding to manufacture a flat plate of 1 mm and the release phenomenon when the molding product was bent was evaluated by naked eye.
o: released; x: not released
Releasing strength: In the following samples for the evaluation by the dichromatic molding method and the outsert molding method, the polyamide resin and the styrene soft resin were pulled in a direction of 90° and the releasing strength was measured. In the case of the samples for the evaluation manufactured by a thermal lamination molding method, the polyamide resin and the thermoplastic resin elastomer (D) were pulled in a direction of 180° and the releasing strength was measured. In both cases, the tensile speed was 100 mm/minute.
o: releasing strength being 1.0 kg/15 mm or more
x: releasing strength being about 0 kg/15 mm or less
Manufacturing Example 1
(Manufacture of Polyamide Resin Ny-1)
As the polyamide resin, 70% by weight of Ny-6 (Nylon T-803 manufactured by Toyo Boseki Kabushiki Kaisha; number-average molecular weight: 12,000) and 30% by weight of acid-modified polypropylene (MMP-006 manufactured by Grand Polymer K. K.) were mixed, kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
Manufacturing Example 2
(Manufacture of Polyamide Resin Ny-2)
As the polyamide resin, 50% by weight of Ny-6 (Nylon T-803 manufactured by Toyo Boseki Kabushiki Kaisha; number-average molecular weight: 12,000), 20% by weight of acid-modified polypropylene and 30% by weight of glass fiber (RES-03-TP64 manufactured by Nippon Glass Fiber K. K.) were mixed, kneaded by a biaxial extruder at the cylinder temperature of 260° C. and made into pellets.
Manufacturing Example 3
(Manufacture of Polyamide Resin Ny-3)
Ethylene/octene-1 copolymer (Engage 8402; manufactured by Dow Chemical) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 220° C. to manufacture an acid-modified ethylene/octene-1 copolymer. This acid-modified product (30% by weight) and 70% by weight of Ny-6 were mixed, kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
Manufacturing Example 4
(Manufacture of Polyamide Resin Ny-4)
Polybutylene terephthalate (PBT; Tufpet N-1000 manufactured by Mitsubishi Rayon) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 250° C. to manufacture an acid-modified PBT. This acid-modified PBT (30% by weight) and 70% by weight of Ny-6 were mixed, kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
Manufacturing Example 5
(Manufacture of Polyamide Resin Ny-5)
As the polyamide resin, 70% by weight of Ny-6 and 30% by weight of acid-modified styrene/ethylene/butylene/styrene copolymer (SEBS; Tuftec M-1943 manufactured by Asahi Kasei), kneaded by a biaxial extruder at the cylinder temperature of 250° C. and made into pellets.
Manufacturing Example 6
(Manufacture of Polyamide Resin Ny-6)
The same operation as in Manufacturing Example 1 was carried out using only Ny-6 (Toyobo Nylon manufactured by Toyo Boseki Kabushiki Kaisha; T-803) to give pellets.
Manufacturing Example 7
Thermoplastic resin elastomers EP-1˜EP-5 are as follows.
EP-1: Hydrogenated styrene/butadiene copolymer (HSBR; Dynaron 1320P manufactured by JSR K. K.; hardness: 39 A);
EP-2: Thermoplastic elastomer of an olefin type (TPO; Santoprene 101-55 manufactured by AES K. K.; hardness: 55 A);
EP-3: Ethylene/octene-1 copolymer (Engage 8180 manufactured by Dow Chemical; hardness: 66 A);
EP-4: Thermoplastic elastomer of a polyester type (TPEE; Pelprene P-30B manufactured by Toyo Boseki Kabushiki Kaisha; hardness: 85 A); and
EP-5: Styrene/ethylene/propylene/styrene copolymer (SEPS; Septon 2062 manufactured by Kuraray Co., Ltd.; hardness: 39 A).
Examples 1, 2, 4 and 5 and Comparative Examples 1, 3 and 4 (Dichromatic molding method)
A metal mold having a shape as shown in FIG. 1 was used and each of the above-mentioned polyamide resins was molded using a dichromatic molding machine of a core rotation system (Type KS-2C300 manufactured by K. K. Takahashi Seiki Kogyosho) at the metal mold temperature of 40° C. where the cylinder temperature in the injection molding at the primary side was 260° C. and various thermoplastic resin elastomers as shown in Table 1 were molded by the injection molding machine at the secondary side at the cylinder temperature of 230° C. whereupon molding products for evaluation were prepared.
Examples 3, 6 and 7 and Comparative Example 2 (Outsert molding method)
An injection molding at the primary side was carried out using the above-mentioned dichromatic molding machine, the injection molding product at the primary side was molded using a polyamide resin and the product was taken out from the metal mold and subjected to keeping the warmth and preventing the moisture absorption in a drier of about 100° C. Then, a previously-molded polyamide molding product was attached to the cavity of the primary side of the metal mold of the injection molding machine of the secondary side and a layered molding of the thermoplastic resin elastomer was carried out to prepare a molding product for evaluation. Conditions for the molding are as same as those in the dichromatic molding method.
Result of the evaluation of Examples 1˜7 and Comparative Examples 1˜4 is shown in Table 1.
TABLE 1
Comparative
Examples Examples
1 2 3 4 5 6 7 1 2 3 4
Polyamide Resin Compositions
Ny-1
Ny-2
Ny-3
Ny-4
Ny-5
Ny-6
Thermoplastic Resin Elastomers
EP-1
EP-2
EP-3
EP-4
EP-5
Molding Methods
Dichromatic
Molding
Outsert Molding
Compatibility x x
Adhesive Strength x x x x
As will be apparent from Examples 1˜7, it is noted that the interlayer of the coated polyamide molding product of the present invention has a good thermal adherence and is strongly bonded giving a durable coated polyamide molding product. On the other hand, in Comparative Examples 1˜2, there is no thermal fusion at all in the interlayer between the thermoplastic resin elastomer and the polyamide resin composition where no thermoplastic resin composition having a polar group reacting with polyamide resin is compounded. Further, as shown in Comparative Examples 3˜4, when the compatibility of the thermoplastic resin composition with the thermoplastic resin elastomer is poor, the thermal fusion in the interlayer is bad and it is not possible to manufacture a durable coated polyamide molding product.
Manufacturing Example 8
(Manufacture of Polyamide Resin Ny-7)
There were mixed 50% by weight of Ny-6 (Nylon T-803 manufacture by Toyo Boseki Kabushiki Kaisha; number-average molecular weight: 12,000) as the crystalline polyamide resin, 15% by weight of Grivory G 21 (6T/6I copolymerized Nylon manufactured by EMS) as the amorphous polyamide resin and 35% by weight of an acid-modified polypropylene (MMP-006 manufactured by Grand Polymer K. K.) followed by kneading using a biaxial extruder at the cylinder temperature of 250° C. whereupon pellets were prepared.
Manufacturing Example 9
(Manufacture of Polyamide Resin Ny-8)
There were mixed 55% by weight of Ny-6 (Nylon T-803 manufacture by Toyo Boseki Kabushiki Kaisha) as the crystalline polyamide resin, 15% by weight of G 21 manufactured by EMS which was the same one as in Manufacturing Example 8 as the amorphous polyamide resin and 30% by weight of an acid-modified polypropylene (MMP-006 manufactured by Grand Polymer K. K.) followed by kneading using a biaxial extruder at the cylinder temperature of 250° C. whereupon pellets were prepared.
Manufacturing Example 10
(Manufacture of Polyamide Resin Ny-9)
There were mixed 35% by weight of Ny-6 (Nylon T-803 manufacture by Toyo Boseki Kabushiki Kaisha) as the crystalline polyamide resin, 15% by weight of G 21 manufactured by EMS which was the same one as in Manufacturing Example 8 as the amorphous polyamide resin, 20% by weight of an acid-modified polypropylene and 30% by weight of glass fiber (RES-03-TP64 manufactured by Nippon Glass Fiber K. K.) followed by kneading using a biaxial extruder at the cylinder temperature of 260° C. whereupon pellets were prepared.
Manufacturing Example 11
(Manufacture of Polyamide Resin Ny-10)
Ethylene/octene-1 copolymer (Engage 8402; manufactured by Dow Chemical) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 220° C. to manufacture an acid-modified ethylene/octene-1 copolymer. This acid-modified product (30% by weight) was mixed with 55% by weight of Ny-6 as a crystalline polyamide and 15% by weight of G 21 manufactured by EMS which was as same as that in Manufacturing Example 8 as an amorphous polyamide resin and kneaded by a biaxial extruder at the cylinder temperature of 250° C. whereupon pellets were prepared.
Manufacturing Example 12
(Manufacture of Polyamide Resin Ny-11)
Polybutylene terephthalate (PBT; Tufpet N-1000 manufactured by Mitsubishi Rayon) was mixed with 0.5 part by weight of maleic acid anhydride and 0.2 part by weight of dicumyl peroxide and kneaded by a biaxial extruder at the cylinder temperature of 250° C. to manufacture an acid-modified PBT. This acid-modified PBT (30% by weight) was mixed with 50% by weight of Nylon 6 as a crystalline polyamide resin and 20% by weight of G 21 manufactured by EMS which was as same as that in Manufacturing Example 8 as an amorphous polyamide resin and kneaded by a biaxial extruder at the cylinder temperature of 250° C. whereupon pellets were prepared.
Manufacturing Example 13
(Manufacture of Polyamide Resin Ny-12)
There were mixed 60% by weight of Ny-6 as a crystalline polyamide resin, 10% by weight of G 21 of EMS which was as same as that in Manufacturing Example 8 as an amorphous polyamide resin and 30% by weight of an acid-modified styrene/ethylene/butylene/styrene copolymer (SEBS manufactured by Asahi Kasei; Taftec M-1943) and the mixture was kneaded by a biaxial extruder at the cylinder temperature of 250° C. whereupon pellets were prepared.
Examples 8, 9, 10, 12 and 13 and Comparative Examples 5 and 6 (Dichromatic Molding Method)
A metal mold in a shape as shown in FIG. 1 was used and each of the above-mentioned polyamide resins was molded using a dichromatic molding machine of a core rotation system (Type KS-2C300 manufactured by K. K. Takahashi Seiki Kogyosho) at the metal mold temperature of 40° C. where the cylinder temperature in the injection molding at the primary side was 260° C. and various thermoplastic resin elastomers as shown in Table 2 were molded by the injection molding machine at the secondary side at the cylinder temperature of 230° C. whereupon molding products for evaluation were prepared.
Examples 11, 14 and 15 (Outsert Molding Method)
An injection molding at the primary side was carried out using the above-mentioned dichromatic molding machine, the injection molding product at the primary side was molded using a polyamide resin and the product was taken out from the metal mold and subjected to keeping the warmth and preventing the moisture absorption in a drier of about 100° C. Then, a previously-molded polyamide molding product was attached to the cavity of the primary side of the metal mold of the injection molding machine of the secondary side and a layered molding of the thermoplastic resin elastomer was carried out to prepare a molding product for evaluation. Conditions for the molding are as same as those in the dichromatic molding method.
Result of the evaluation of Examples 8˜15 and Comparative Examples 5 and 6 is shown in Table 2.
TABLE 2
Com-
parative
Examples Examples
8 9 10 11 12 13 14 15 5 6
Polyamide Resin Compositions
Ny-7
Ny-8
Ny-9
Ny-10
Ny-11
Ny-12
Thermoplastic Resin Elastomers
EP-1
EP-2
EP-3
EP-4
EP-5
Molding Methods
Dichromatic Molding
Outsert Molding
Compatibility x x
Adhesive Strength x x
As will be apparent from Examples 8˜15, it is noted that the interlayer of the coated polyamide molding product of the present invention has a good thermal adherence and is strongly bonded giving a durable coated polyamide molding product. Further, when compatibility of the thermoplastic resin composition with the thermoplastic resin elastomer is poor as shown in Comparative Examples 5 and 6, the thermal fusion property of the interlayer is bad and it is not possible to manufacture a durable coated polyamide molding product.
The coated polyamide molding product of the present invention has good strength, rigidity and shock resistance and is able to give a layered molding product having the surface characteristics such as gripping property and packing/sealing property at a low cost whereby the product can be utilized in broad fields of use such as electric tools, fishing tackles, sporting and amusement goods, auto parts and office supplies and greatly contributes in industry.

Claims (5)

1. A polyamide molding product coated with a thermoplastic elastomer, wherein a polyamide molding product is obtained from a polyamide resin composition comprising (A) a polyamide resin, (B) a thermoplastic resin composition having functional groups which react with a polyamide resin, and, if necessary, (c) an inorganic filler, and the polyamide molding product is coated with (D) a thermoplastic elastomer which is compatible with the thermoplastic resin composition (b).
2. A polyamide molding product coated with a thermoplastic elastomer as defined in claim 1, wherein the polyamide resin (A) is comprising (a) crystalline polyamide resin and (b) amorphous polyamide resin.
3. A polyamide molding product coated with a thermoplastic elastomer as defined in claim 1, wherein the polyamide molding product obtained from a polyamide resin composition containing 0-200 part(s) by weight of the inorganic filler (C) to 100 parts by weight of the polyamide resin composition, and the polyamide resin composition is comprising 90-50 wt % of the polyamide resin (A) and 10 to 50 wt % of the thermoplastic resin composition (B).
4. A polyamide molding product coated with a thermoplastic elastomer as defined in claim 1, wherein (B) the thermoplastic resin composition is a single resin or a blend of two or more kinds of resins selected from a olefin type resin, styrene type resin, engineering plastic, soft resin and thermoplastic elastomer.
5. A polyamide molding product coated with a thermoplastic elastomer as defined in claim 1, wherein the thermoplastic resin elastomer (D) has a hardness of 90-30-degree according to the JIS-A hardness.
US10/140,071 2001-05-08 2002-05-08 Coated polyamide molding products Expired - Lifetime US6924034B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001137743A JP2002331627A (en) 2001-05-08 2001-05-08 Polyamide type coated molded object
JP2001-137743 2001-05-08
JP2001167092A JP2002363317A (en) 2001-06-01 2001-06-01 Coated polyamide molding
JP2001-167092 2001-06-01

Publications (2)

Publication Number Publication Date
US20030008147A1 US20030008147A1 (en) 2003-01-09
US6924034B2 true US6924034B2 (en) 2005-08-02

Family

ID=26614757

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/140,071 Expired - Lifetime US6924034B2 (en) 2001-05-08 2002-05-08 Coated polyamide molding products

Country Status (2)

Country Link
US (1) US6924034B2 (en)
CN (1) CN1255474C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412921B2 (en) 2012-11-20 2016-08-09 Industrial Technology Research Institute Module structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009040921A1 (en) * 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. Epoxy resin composition and, produced therewith, prepreg and metal clad laminate
DE202014010030U1 (en) * 2014-12-22 2016-03-23 Lanxess Deutschland Gmbh composite
CN111253888A (en) * 2020-03-30 2020-06-09 广东生益科技股份有限公司 Circuit material and circuit board comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069878A (en) 1992-06-25 1994-01-18 Showa Shell Sekiyu Kk Asphalt composition for waterproofing work
JPH0711662A (en) 1993-06-23 1995-01-13 Kajima Corp Vibration insulating structure for underground outer wall
US6534583B1 (en) * 1999-09-29 2003-03-18 Toyo Boseki Kabushiki Kaisha Inorganic reinforced polyamide resin compositions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069878A (en) 1992-06-25 1994-01-18 Showa Shell Sekiyu Kk Asphalt composition for waterproofing work
JPH0711662A (en) 1993-06-23 1995-01-13 Kajima Corp Vibration insulating structure for underground outer wall
US6534583B1 (en) * 1999-09-29 2003-03-18 Toyo Boseki Kabushiki Kaisha Inorganic reinforced polyamide resin compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9412921B2 (en) 2012-11-20 2016-08-09 Industrial Technology Research Institute Module structure

Also Published As

Publication number Publication date
US20030008147A1 (en) 2003-01-09
CN1255474C (en) 2006-05-10
CN1388181A (en) 2003-01-01

Similar Documents

Publication Publication Date Title
KR101675654B1 (en) Thermoplastic resin composition, method for producing same, and molded body
JP5072167B2 (en) Thermoplastic resin composition and multilayer laminate
EP3480260B1 (en) Resin composition and molded resin object
KR20190109557A (en) Thermoplastic Sheets, Laminated Sheets, and Molded Articles
KR20180116432A (en) Method of adjusting dispersion diameter and thermoplastic resin composition
US6924034B2 (en) Coated polyamide molding products
JPH0258543A (en) Production of impact-resistant polyamide resin composition
JP2008106249A (en) Thermoplastic resin composition and composite molded article
JP2002363317A (en) Coated polyamide molding
US9663646B2 (en) Resin composition, resin molded article, and method of preparing resin composition
JP2006117818A (en) Polyamide resin composition and composite molded article
JP6957849B2 (en) Resin composition and resin molded product
JP7384176B2 (en) vibration absorber
JP4655177B2 (en) Polyamide-based coated molding
JP2002331627A (en) Polyamide type coated molded object
JP2002240199A (en) Polyamide coated molded object
JP4894088B2 (en) Polyamide-based coated molding
JP6868182B2 (en) Resin composition and resin molded product
JP6957850B2 (en) Resin composition and resin molded product
JP4792637B2 (en) Polyamide-based coated molding
JPH0726091A (en) Polymer composition
JP2005002202A (en) Fiber-reinforced resin composition and its molding
JP2002283503A (en) Polyamide-coated molded object
WO2005100471A2 (en) Thermoplastic elastomer resin composition
JP4437528B2 (en) Composite molded body made of polyamide resin and polyester elastomer

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYO BOSEKI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAMURA, TSUTOMU;HANAOKA, YOSHINOBU;NAKAGAWA, TOMOHIDE;REEL/FRAME:012892/0140

Effective date: 20020507

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12