US6898836B2 - Method of securing a sleeve in a tubular member - Google Patents
Method of securing a sleeve in a tubular member Download PDFInfo
- Publication number
- US6898836B2 US6898836B2 US10/203,902 US20390202A US6898836B2 US 6898836 B2 US6898836 B2 US 6898836B2 US 20390202 A US20390202 A US 20390202A US 6898836 B2 US6898836 B2 US 6898836B2
- Authority
- US
- United States
- Prior art keywords
- wall
- hole
- deforming
- connecting sleeve
- open end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/155—Making tubes with non circular section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
- B21C23/085—Making tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/16—Making tubes with varying diameter in longitudinal direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/28—Making tube fittings for connecting pipes, e.g. U-pieces
- B21C37/29—Making branched pieces, e.g. T-pieces
- B21C37/292—Forming collars by drawing or pushing a rigid forming tool through an opening in the tube wall
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/04—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods
- B21D39/044—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes with tubes; of tubes with rods perpendicular
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49915—Overedge assembling of seated part
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49915—Overedge assembling of seated part
- Y10T29/49917—Overedge assembling of seated part by necking in cup or tube wall
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49908—Joining by deforming
- Y10T29/49925—Inward deformation of aperture or hollow body wall
Definitions
- This invention relates generally to the field of motor vehicle frames, and more specifically to the hydroforming of hollow parts for use in motor vehicle frames.
- Hollow parts for auto body construction may ideally require a varying cross-sectional shape and/or perimeter along their length.
- Conventional hollow parts having varying cross-section may, for example, be stamped from two pieces of sheet metal, each piece forming two longitudinal halves of the completed tube. The two pieces are then welded together with two welded seams, each weld running the length of the part. This requires a relatively large amount of labor and welding to produce the finished hollow member, thus resulting in large processing expense.
- hydroforming One method for producing hollow parts with varying cross section is hydroforming.
- the process of hydroforming metal structural components is well known. See, for example, U.S. Pat. Nos. 4,567,743, 5,070,717, 5,107,693, 5,233,854, 5,239,852, 5,333,775, and 5,339,667, the disclosures of which are hereby incorporated by reference.
- a tubular metal blank member is placed into a die cavity of a hydroforming die. Opposite ends of the tube are sealed, and fluid is injected under pressure internally to the tubular blank so as to expand the blank outwardly into conformance with the interior surfaces defining the die cavity.
- An advantage to hydroforming hollow parts is that high-strength parts having irregular cross-sectional configurations can be made easily and cost-effectively, in a manner which would be extremely difficult if not impossible to accomplish using stamping or roll-forming techniques.
- the cross-section diameter of the uniform cross-sectioned blank (typically cylindrical in shape) is typically chosen to be somewhat less than the smallest dimension of the part to be formed.
- the blank is then expanded as determined by the size of the die cavity. Where portions of the tube blank are to be expanded to very large extents (e.g., greater than 30%), the wall thickness of the tube at such locations may become overly thin to the detriment of the part.
- extended portions of the part can be provided with a generally constant cross-sectional shape (e.g., as would be produced by extrusion) there is no need to subject the entire part to a hydroforming process.
- the present invention is a method for forming a hollow part.
- a first hollow member which has a first open end and a second open end, the first end having a predetermined structural dimension and shape.
- a second hollow member is provided which also has a first open end and a second open end, the first end having a predetermined structural dimension and shape.
- the first end of the first hollow member differs from the first end of the second hollow member in dimension or shape or both.
- a third hollow member is formed, such that it has a first open end with a structural dimension and shape generally the same as the structural dimension and shape of the first end of the first hollow member and it has a second open end with a structural dimension and shape generally the same as the structural dimension and shape of the first end of the second hollow member.
- the forming of the third hollow member includes placing it into a die cavity of a hydroforming die assembly and expanding it into conformity with surfaces defining the die cavity so as to provide a portion thereof which is to constitute the first end with generally the same structural dimension and shape as the first end of the first hollow member upon expansion.
- the die cavity is further shaped such that another portion of the third hollow member, which constitutes the second end, will have substantially the same structural dimension and shape as the first end of the second hollow member.
- the first end of the third hollow member is welded to the first end of the first hollow member and the second end of the third hollow member is welded to the first end of the second hollow member.
- a method for securing a fastener connecting sleeve into a pre-fabricated hollow member comprises inserting the connecting sleeve into the interior of the hollow member through one end of the hollow member so that the connecting sleeve has its first and second opposing open ends disposed adjacent to the first and second walls of the hollow member.
- the first wall is then deformed to form a first flange that surrounds the first hole and projects into the first open end of the connecting sleeve.
- the second wall is deformed to form a second flange that surrounds the second hole and projects into the second open end of the connecting sleeve.
- the first flange and second flange thus secure the first and second open ends of the connecting sleeve in alignment with the first and second hole to permit a fastener to pass therethrough.
- FIG. 1 is an exploded, isometric view of a hollow part formed in accordance with the present invention
- FIG. 2 is a sectional view of a tubular blank in a hydroforming cavity in accordance with the invention
- FIG. 3 is a sectional view of the hollow member having been expanded in the hydroforming cavity in accordance with the invention.
- FIG. 4 is sectional view of a generally conical tubular blank in a hydroforming cavity in accordance with another embodiment of the invention.
- FIG. 5 is an isometric view of a reinforcing tube being inserted into a hollow member in accordance with another aspect of the invention.
- FIG. 6 is a sectional view of a hollow member and a reinforcing tube with flanging punches in accordance with the invention.
- the first of the two hollow members 10 has a first open end 14 with a predetermined structural dimension and shape and a second open end 15 .
- the second of the two hollow members 12 also has a first open end 16 with a predetermined structural dimension and shape and a second open end 17 .
- One or both of the dimension and shape of the first end 16 of the second hollow member 12 differ from that of the first end 14 of the first hollow member 10 .
- the two hollow members 10 , 12 may be of any metallic material and may be formed in any manner appropriate to the material and desired application, but most preferably extruded, and preferably made from aluminum.
- the members 10 , 12 preferably have a multi-sided, non-cylindrical cross-section shape (e.g., triangular, quadrilateral, pentagonal).
- each of the two hollow members 10 , 12 may be hydroformed tubes.
- a third hollow member 18 which acts as an adapter or transition member is formed which has a first open end 20 with generally the same structural dimension and shape as that of the first end 14 of the first hollow member 10 , and which also has a second open end 22 with generally the same structural dimension and shape as that of the first end 16 of the second hollow member 12 .
- Shown schematically in FIG. 1 are the weld lines 24 used to connect the third hollow member 18 to the first and second hollow members 10 , 12 .
- the adapter 18 is formed by hydroforming. More particularly, referring now to FIGS. 2 and 3 , a tubular metal blank 30 is hydroformed into a component having differing transverse (cross-sectional) dimensions and/or shapes at the opposite ends 20 , 22 thereof. As shown in FIG. 2 , the blank 30 is placed into a hydroforming die 32 which has an upper portion 34 having an upper die surface 36 and a lower portion 38 having a lower die surface 40 . When the upper and lower die portions 34 , 38 are placed together, the upper die surface 36 and lower die surface 40 together define a die cavity 42 .
- the die cavity 42 includes a first expanding portion 44 that is constructed and arranged to expand a first portion of the blank 46 to a first predetermined shape and dimension, and a second expanding portion 48 that is constructed and arranged to expand a second portion of the blank 50 to a second predetermined shape and dimension. At least one of the shape and dimension of the first portion is different from that of the second portion.
- a conical tubular blank 60 may be used instead of the conventional cylindrical tubular blank (see FIG. 4 ).
- the conical tubular blank 60 is formed by rolling sheet metal into a generally conical tubular configuration.
- Such a conical blank 60 helps to overcome potential problems with excessive thinning of the tube where it must expand to a greater degree to conform to the die cavity surfaces 36 , 40 . That is, each end of the blank has a perimeter that corresponds more closely with the associated portions of the die into which it is to be expanded.
- the shape and size of opposing portions of the die cavity are constructed to have the dimension required for the hydroformed part to have opposite ends 20 , 22 thereof align geometrically and dimensionally with the ends 14 and 16 of the extruded tubes to be mated (welded) therewith.
- the present invention appreciates that after the hydroformed adapter is removed from the hydroforming die, it may be necessary to cut off end portions of the hydroformed part that have been deformed in order to mate with the opposing sealing rams. This cutting-off step is known in the hydroforming art, but is not always required.
- the portions of the hydroforming die cavity which are constructed to provide the adapter member 18 with the desired shape and dimension at said opposite end portions are spaced inwardly from the end portions of the blank, and are located (aligned with) at the areas at which the part pulled out of the hydroforming die are to be cut. These cut ends 20 , 22 are then welded to the ends 14 , 16 , respectively.
- the finished hollow part is to be secured to another structural component, it may be desirable to punch a hole in the part and pass a fastener, such as a bolt, therethrough.
- a fastener such as a bolt
- tubes are formed from two longitudinal stamped halves which are subsequently welded longitudinally, it is relatively simple to include additional processing steps to include reinforcing members in the finished tube because access to the interior of the tube is available prior to welding.
- the tube is integrally formed as a one-piece member, such as by hydroforming or extrusion, however, the process becomes more difficult.
- FIG. 6 shows a cross-section of a hollow member 100 with the reinforcing connecting sleeve 102 affixed therein.
- the connecting sleeve 102 is inserted into the hollow member 100 through an open end 103 thereof as shown in FIG. 5 .
- opposing flanging punches 104 are forced through opposite walls 106 of the hollow member, into open ends of the sleeve 102 .
- pre-punched holes are provided in the opposite walls 106 , such holes having a smaller diameter than the diameter of the punches 104 and aligned with the open ends of sleeve 102 .
- the pre-punched holes may, for example, be formed in a hydropiercing operation, in the instance where the tube 100 is a tube section formed by hydroforming.
- no pre-punched hole is formed in the opposing tube walls 106 , and the flanging punches 104 themselves form holes in opposite walls 106 of the hollow member.
- Material from the opposite walls 106 of the hollow member is deformed to form flanges 108 .
- the flanges 108 are disposed around the circumference of the holes formed in the hollow member and extend into the opposite ends of the sleeve 102 . In either embodiment, the flanges 108 fix the ends of the sleeve relative to the hollow member 100 .
- a computer numeric controlled hydraulic system is used to insert the sleeve 102 into the tube 100 , to ensure that the punches 104 are aligned with the opened ends of the sleeve prior to the punching operation, and to force punches 104 inwardly.
- a fixture can be used and the sleeve 102 inserted by hand. While the ends of the sleeve 102 can then be welded to the opposite tube walls 106 (e.g., by laser welding, projection welding, etc.), it is contemplated that the mechanical interlocking relationship of the flanges 108 within the sleeves 102 can be the sole means for securing the sleeve 102 to the tube 100 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Body Structure For Vehicles (AREA)
- Dowels (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/203,902 US6898836B2 (en) | 2000-02-18 | 2001-02-13 | Method of securing a sleeve in a tubular member |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18335000P | 2000-02-18 | 2000-02-18 | |
PCT/CA2001/000212 WO2001060544A2 (fr) | 2000-02-18 | 2001-02-13 | Element tubulaire comprenant un composant de raccord hydroforme et procede de fabrication de ce dernier |
US10/203,902 US6898836B2 (en) | 2000-02-18 | 2001-02-13 | Method of securing a sleeve in a tubular member |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030126730A1 US20030126730A1 (en) | 2003-07-10 |
US6898836B2 true US6898836B2 (en) | 2005-05-31 |
Family
ID=22672446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/203,902 Expired - Lifetime US6898836B2 (en) | 2000-02-18 | 2001-02-13 | Method of securing a sleeve in a tubular member |
Country Status (11)
Country | Link |
---|---|
US (1) | US6898836B2 (fr) |
EP (1) | EP1268097B1 (fr) |
JP (1) | JP2003522646A (fr) |
KR (1) | KR20020086547A (fr) |
CN (1) | CN1418136A (fr) |
AU (1) | AU2001233551A1 (fr) |
BR (1) | BR0108465A (fr) |
CA (1) | CA2400227C (fr) |
DE (1) | DE60104829T2 (fr) |
MX (1) | MXPA02008003A (fr) |
WO (1) | WO2001060544A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060087153A1 (en) * | 2004-10-25 | 2006-04-27 | Lendway Joseph M Iv | Structural assembly for vehicles and method of making same |
US20060138764A1 (en) * | 2002-11-23 | 2006-06-29 | Hagemann Georg S | Front-end vehicle structure |
US20210155294A1 (en) * | 2018-07-11 | 2021-05-27 | Nippon Steel Corporation | Automobile structural member and vehicle body |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MXPA02008003A (es) | 2000-02-18 | 2003-05-23 | Cosma Int Inc | Montaje tubular que tiene un miembro de interconexion hidroconformado y metodo para fabricar el mismo. |
DE10330886B4 (de) * | 2003-07-09 | 2005-04-21 | Daimlerchrysler Ag | Verfahren zur Herstellung eines Durchzuges an Hohlprofilen |
DE10337383B4 (de) * | 2003-08-13 | 2005-12-08 | Thyssenkrupp Drauz Gmbh | Verfahren zum Innenhochdruckumformen von konischen Rohren aus Metall |
US7275296B2 (en) * | 2004-10-29 | 2007-10-02 | Magna Structural Systems, Inc. | Method for forming a frame assembly |
JP4993898B2 (ja) * | 2004-11-08 | 2012-08-08 | フォード グローバル テクノロジーズ、リミテッド ライアビリティ カンパニー | バルクヘッド部材を持つハイドロフォーム部材 |
WO2007090187A2 (fr) * | 2006-02-01 | 2007-08-09 | Am General Llc | Cadre de rails |
JP5112886B2 (ja) * | 2008-01-07 | 2013-01-09 | 本田技研工業株式会社 | 車体フレーム部材 |
DE102009010490A1 (de) * | 2009-02-25 | 2010-09-02 | Amborn, Peter, Dr. Ing. | Verfahren zur Herstellung eines Hohlkörpers durch Beaufschlagung eines solchen in einer Kavität einliegenden Hohlkörperrohlings mit Innendruck unter erhöhter Temperatur |
WO2010105341A1 (fr) * | 2009-03-19 | 2010-09-23 | Magna International Inc. | Procédé de production de tubes taillés sur mesure |
CN107878564A (zh) * | 2016-09-30 | 2018-04-06 | 比亚迪股份有限公司 | 一种管材及其制造方法 |
CN107221881B (zh) * | 2017-06-15 | 2021-09-17 | 中国电力科学研究院有限公司 | 导线紧线装置及工艺 |
CN109175901A (zh) * | 2018-09-20 | 2019-01-11 | 无锡诚优专用器材股份有限公司 | 一种含转角框架结构的制作工艺 |
DE102019000032A1 (de) | 2019-01-02 | 2019-08-08 | Daimler Ag | Verfahren zum Ausbilden mindestens einer Öffnung an einer Hohlprofil, Vorrichtung zum Ausführen eines solchen Verfahrens |
CN112620468A (zh) * | 2020-11-17 | 2021-04-09 | 浙江青山钢管有限公司 | 无缝锥管生产装置 |
US11654975B2 (en) | 2020-12-21 | 2023-05-23 | Am General Llc | Vehicle frame rails and methods of assembling vehicle frame rails |
DE102022110734A1 (de) * | 2022-05-02 | 2023-11-02 | Meleghy Automotive GmbH & Co.KG | Verfahren zur Befestigung eines Buchsenkörpers in einem Rohrkörper |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2228740A (en) | 1935-05-04 | 1941-01-14 | Daimler Benz Ag | Motor driven vehicle |
US3344370A (en) | 1965-06-03 | 1967-09-26 | Dielectric Products Engineerin | Coaxial transmission lines |
US3412825A (en) | 1967-08-11 | 1968-11-26 | Oldberg Mfg Company | Silencer or muffler and method of producing same |
US3742673A (en) | 1971-03-22 | 1973-07-03 | Rex Chainbelt Inc | Panel edge fastening means |
EP0620056A1 (fr) | 1993-04-16 | 1994-10-19 | General Motors Corporation | Procédé de formage d'une pièce tubulaire de structure |
DE19526398A1 (de) | 1994-07-19 | 1996-01-25 | Nissan Motor | Konstruktionsteil für eine Fahrzeugkarosserie |
US5491883A (en) * | 1994-12-19 | 1996-02-20 | Ap Parts Manufacturing Co. | Method of manufacturing a non-linear composite tube |
US5725247A (en) | 1993-10-12 | 1998-03-10 | Ab Volvo | End section of frame member |
WO1998029207A1 (fr) | 1996-12-31 | 1998-07-09 | Vallourec Composants Automobiles Vitry | Procede pour l'emmanchement en croix d'une piece cylindrique dans une piece tubulaire, outillage propre a sa mise en oeuvre, et ensemble de deux pieces correspondant |
US5913565A (en) | 1995-09-22 | 1999-06-22 | Nissan Motor | Vehicle member |
US6010155A (en) | 1996-12-31 | 2000-01-04 | Dana Corporation | Vehicle frame assembly and method for manufacturing same |
US6070445A (en) * | 1997-10-29 | 2000-06-06 | Trw Inc. | Method of manufacturing the control arm |
US6138358A (en) * | 1999-02-18 | 2000-10-31 | Dana Corporation | Method of manufacturing a vehicle body and frame assembly |
US6216509B1 (en) * | 1998-08-25 | 2001-04-17 | R.J. Tower Corporation | Hydroformed tubular member and method of hydroforming tubular members |
WO2001060544A2 (fr) | 2000-02-18 | 2001-08-23 | Cosma International Inc. | Element tubulaire comprenant un composant de raccord hydroforme et procede de fabrication de ce dernier |
US6324758B1 (en) * | 2000-01-13 | 2001-12-04 | Visteon Global Tech., Inc. | Method for making a catalytic converter canister |
US6408515B1 (en) * | 1998-08-20 | 2002-06-25 | Dana Corporation | Method for manufacturing an engine cradle for a vehicle frame assembly |
US20030159289A1 (en) * | 2000-04-03 | 2003-08-28 | Van Giezen Maurice Gerardus Maria | Process for producing a tubular component |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4567743A (en) * | 1985-03-19 | 1986-02-04 | Standard Tube Canada Inc. | Method of forming box-section frame members |
DE4017072A1 (de) * | 1990-05-26 | 1991-11-28 | Benteler Werke Ag | Verfahren zum hydraulischen umformen eines rohrfoermigen hohlkoerpers und vorrichtung zur durchfuehrung des verfahrens |
US5070717A (en) * | 1991-01-22 | 1991-12-10 | General Motors Corporation | Method of forming a tubular member with flange |
-
2001
- 2001-02-13 MX MXPA02008003A patent/MXPA02008003A/es unknown
- 2001-02-13 US US10/203,902 patent/US6898836B2/en not_active Expired - Lifetime
- 2001-02-13 EP EP01905557A patent/EP1268097B1/fr not_active Expired - Lifetime
- 2001-02-13 JP JP2001559627A patent/JP2003522646A/ja active Pending
- 2001-02-13 BR BR0108465-8A patent/BR0108465A/pt not_active Application Discontinuation
- 2001-02-13 WO PCT/CA2001/000212 patent/WO2001060544A2/fr active IP Right Grant
- 2001-02-13 DE DE60104829T patent/DE60104829T2/de not_active Expired - Lifetime
- 2001-02-13 CA CA002400227A patent/CA2400227C/fr not_active Expired - Lifetime
- 2001-02-13 AU AU2001233551A patent/AU2001233551A1/en not_active Abandoned
- 2001-02-13 KR KR1020027010739A patent/KR20020086547A/ko not_active Application Discontinuation
- 2001-02-13 CN CN01806803A patent/CN1418136A/zh active Pending
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2228740A (en) | 1935-05-04 | 1941-01-14 | Daimler Benz Ag | Motor driven vehicle |
US3344370A (en) | 1965-06-03 | 1967-09-26 | Dielectric Products Engineerin | Coaxial transmission lines |
US3412825A (en) | 1967-08-11 | 1968-11-26 | Oldberg Mfg Company | Silencer or muffler and method of producing same |
US3742673A (en) | 1971-03-22 | 1973-07-03 | Rex Chainbelt Inc | Panel edge fastening means |
EP0620056A1 (fr) | 1993-04-16 | 1994-10-19 | General Motors Corporation | Procédé de formage d'une pièce tubulaire de structure |
US5725247A (en) | 1993-10-12 | 1998-03-10 | Ab Volvo | End section of frame member |
US5868457A (en) | 1994-07-19 | 1999-02-09 | Nissan Motor Co., Ltd. | Structural member of vehicle body |
DE19526398A1 (de) | 1994-07-19 | 1996-01-25 | Nissan Motor | Konstruktionsteil für eine Fahrzeugkarosserie |
US5491883A (en) * | 1994-12-19 | 1996-02-20 | Ap Parts Manufacturing Co. | Method of manufacturing a non-linear composite tube |
US5913565A (en) | 1995-09-22 | 1999-06-22 | Nissan Motor | Vehicle member |
WO1998029207A1 (fr) | 1996-12-31 | 1998-07-09 | Vallourec Composants Automobiles Vitry | Procede pour l'emmanchement en croix d'une piece cylindrique dans une piece tubulaire, outillage propre a sa mise en oeuvre, et ensemble de deux pieces correspondant |
US6010155A (en) | 1996-12-31 | 2000-01-04 | Dana Corporation | Vehicle frame assembly and method for manufacturing same |
US6186696B1 (en) | 1996-12-31 | 2001-02-13 | Vallourec Composants Automobiles Vitry | Method for the crosswise shrinking of a cylindrical part in a tubular part, tool kit for its implementation, and assembly of two corresponding parts |
US6070445A (en) * | 1997-10-29 | 2000-06-06 | Trw Inc. | Method of manufacturing the control arm |
US6408515B1 (en) * | 1998-08-20 | 2002-06-25 | Dana Corporation | Method for manufacturing an engine cradle for a vehicle frame assembly |
US6216509B1 (en) * | 1998-08-25 | 2001-04-17 | R.J. Tower Corporation | Hydroformed tubular member and method of hydroforming tubular members |
US6138358A (en) * | 1999-02-18 | 2000-10-31 | Dana Corporation | Method of manufacturing a vehicle body and frame assembly |
US6324758B1 (en) * | 2000-01-13 | 2001-12-04 | Visteon Global Tech., Inc. | Method for making a catalytic converter canister |
WO2001060544A2 (fr) | 2000-02-18 | 2001-08-23 | Cosma International Inc. | Element tubulaire comprenant un composant de raccord hydroforme et procede de fabrication de ce dernier |
US20030159289A1 (en) * | 2000-04-03 | 2003-08-28 | Van Giezen Maurice Gerardus Maria | Process for producing a tubular component |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060138764A1 (en) * | 2002-11-23 | 2006-06-29 | Hagemann Georg S | Front-end vehicle structure |
US20060087153A1 (en) * | 2004-10-25 | 2006-04-27 | Lendway Joseph M Iv | Structural assembly for vehicles and method of making same |
US7229113B2 (en) * | 2004-10-25 | 2007-06-12 | General Motors Corporation | Structural assembly for vehicles and method of making same |
US20210155294A1 (en) * | 2018-07-11 | 2021-05-27 | Nippon Steel Corporation | Automobile structural member and vehicle body |
US11718351B2 (en) * | 2018-07-11 | 2023-08-08 | Nippon Steel Corporation | Automobile structural member and vehicle body |
Also Published As
Publication number | Publication date |
---|---|
DE60104829D1 (de) | 2004-09-16 |
US20030126730A1 (en) | 2003-07-10 |
EP1268097A2 (fr) | 2003-01-02 |
WO2001060544A3 (fr) | 2002-08-01 |
MXPA02008003A (es) | 2003-05-23 |
CA2400227C (fr) | 2009-06-30 |
JP2003522646A (ja) | 2003-07-29 |
CN1418136A (zh) | 2003-05-14 |
AU2001233551A1 (en) | 2001-08-27 |
KR20020086547A (ko) | 2002-11-18 |
BR0108465A (pt) | 2002-12-03 |
CA2400227A1 (fr) | 2001-08-23 |
EP1268097B1 (fr) | 2004-08-11 |
WO2001060544A2 (fr) | 2001-08-23 |
DE60104829T2 (de) | 2005-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6898836B2 (en) | Method of securing a sleeve in a tubular member | |
EP1210189B1 (fr) | Elements obtenus par hydroformage et procedes de fabrication | |
US5333775A (en) | Hydroforming of compound tubes | |
US5884722A (en) | Engine cradle for vehicle body and frame assembly and method of manufacturing same | |
US6302478B1 (en) | Hydroformed space frame joints therefor | |
US6216509B1 (en) | Hydroformed tubular member and method of hydroforming tubular members | |
US20020162224A1 (en) | Hydroformed vehicle frame assembly and method | |
US6739166B1 (en) | Method of forming tubular member with flange | |
US20060108783A1 (en) | Structural assembly for vehicles and method of making same | |
EP0078551B1 (fr) | Tube et cadre pour une bicyclette | |
US6467146B1 (en) | Method of forming of a tubular metal section | |
US20060096099A1 (en) | Automotive crush tip and method of manufacturing | |
US20030192185A1 (en) | Tubular axle beam | |
US7293442B1 (en) | Method for hydroforming a ring-shaped tubular structure | |
EP1814771A2 (fr) | Point d'ecrasement pour vehicules automobiles et procede de production correspondant | |
US6922882B2 (en) | Method of joining tubular members | |
US6361244B1 (en) | Hydroformed tubular structures and methods of making | |
US20050160783A1 (en) | Method of making pre-formed tubular members | |
EP0737818A1 (fr) | Rivet | |
JP3160647B2 (ja) | 完全な外部突出部を有する管状部材を製造する方法 | |
US6532639B2 (en) | Hydroformed tubular structures and methods of making | |
US20020063145A1 (en) | Reinforced hydroform tube | |
US6662422B2 (en) | Method for attaching a headrest guide to a seat frame | |
US20050071975A1 (en) | Method of forming vehicle body side structure assembly | |
US20030201663A1 (en) | Seat frame structure and method for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COSMA INTERNATIONAL INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARBER, MARK;DICESARE, JOHN;REEL/FRAME:013801/0428 Effective date: 20020211 Owner name: MAGNA INTERNATIONAL INC., CANADA Free format text: MERGER;ASSIGNOR:COSMA INTERNATIONAL, INC.;REEL/FRAME:013801/0391 Effective date: 20001218 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |