US6880521B2 - Fuel injection control apparatus for in-cylinder injection type internal combustion engine and fuel injection control method - Google Patents

Fuel injection control apparatus for in-cylinder injection type internal combustion engine and fuel injection control method Download PDF

Info

Publication number
US6880521B2
US6880521B2 US10/692,723 US69272303A US6880521B2 US 6880521 B2 US6880521 B2 US 6880521B2 US 69272303 A US69272303 A US 69272303A US 6880521 B2 US6880521 B2 US 6880521B2
Authority
US
United States
Prior art keywords
fuel injection
internal combustion
combustion engine
fuel
crank angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/692,723
Other versions
US20040154583A1 (en
Inventor
Jun Maemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAEMURA, JUN
Publication of US20040154583A1 publication Critical patent/US20040154583A1/en
Application granted granted Critical
Publication of US6880521B2 publication Critical patent/US6880521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0848Circuits or control means specially adapted for starting of engines with means for detecting successful engine start, e.g. to stop starter actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a fuel injection control apparatus and method for an in-cylinder injection type internal combustion engine, and particularly, to an improvement in a fuel injection control mechanism operated upon start-up of the internal combustion engine.
  • JP-A-8-319865 Conventionally the fuel injection control apparatus of the aforementioned type has been disclosed in JP-A-8-319865.
  • the apparatus disclosed in JP-A-8-319865 is structured to obtain a fuel injection start timing that allows the required fuel injection time period to be secured upon start-up of the engine based on the injection completion timing set in accordance with the operating state of the engine.
  • the apparatus Upon cold start of the engine, the apparatus allows to set the injection start timing during an exhaust stroke such that the quantity of the fuel required for the cold start is injected into the cylinder.
  • the fuel injection valve is forcibly closed to interrupt the fuel injection so as to prevent the reverse flow of the residual gas in the cylinder to pass through the fuel injection valve.
  • the aforementioned apparatus disclosed in JP-A-8-319865 is capable of setting the injection start timing during the exhaust stroke upon cold start of the internal combustion engine so as to inject the fuel by the quantity required for the start-up.
  • the fuel injection completion timing deviates from the crank angle range that allows the fuel injection, the fuel injection is forcibly interrupted. This may cause the failure in injection of the required quantity of the fuel.
  • the injection start timing can be set during the exhaust stroke at the cold start of the engine, the quantity of the fuel required for the start-up cannot always be injected.
  • a fuel injection control apparatus for an in-cylinder injection type internal combustion engine for controlling a quantity of fuel to be directly injected into a cylinder upon start-up of the internal combustion engine is provided with a controller that extends an allowable crank angle range that allows the fuel injection within a predetermined period of time subsequent to an initial combustion of the fuel injected upon the start-up of the internal combustion engine. Accordingly the extended allowable crank angle range after passage of the predetermined period of time becomes larger than the allowable crank angle range within the predetermined period of time.
  • the allowable crank angle range is reduced for a predetermined period of time so as to be shorter than the range after passage of the predetermined period of time.
  • the aforementioned reduction in the crank angle range for the predetermined period of time may restrain the fuel injection quantity. This makes it possible to avoid the excessive increase in the fuel concentration within the cylinder as well as avoid the fuel injection at a crank angle at which the aforementioned covering or smoldering of the spark plug is likely to occur.
  • the temperature within the cylinder is increased in the heat of combustion of the fuel.
  • the fuel is likely to be atomized, which may prevent the spark plug from being covered nor smoldered.
  • the allowable crank angle range is expanded after passage of the predetermined period of time such that injection of the fuel sufficient for start-up of the engine can be promoted. This makes it possible to secure good startability of the engine.
  • the controller may set a fuel injection period within the predetermined period of time to the allowable crank angle range within the predetermined period of time.
  • the fuel injection period within the predetermined period of time corresponds to the allowable crank angle range. This makes it possible to simplify the fuel injection control compared with the case where the fuel injection period is set based on calculation of the fuel injection quantity under the limitation of the allowable crank angle range. This makes it possible to effectively utilize the allowable crank angle range.
  • the controller may set a fuel injection period after passage of the predetermined period of time to the extended allowable crank angle range.
  • the longest possible period of time is set as the fuel injection period after passage of the predetermined period of time. Therefore, the allowable crank angle range can be effectively utilized.
  • the fuel injection control may be simplified compared with the case where the fuel injection period is set based on the calculation of the fuel injection quantity under the limitation of the allowable crank angle range.
  • the controller may set the predetermined period of time to a period that is taken for an engine speed of the internal combustion engine to exceed a predetermined engine speed.
  • the engine speed after the initial combustion can be used as a parameter indicating the temperature of the cylinder.
  • the period of time supposed to be taken for reaching the temperature at which the aforementioned covering or smoldering is unlikely to occur can be obtained without detecting the temperature of the cylinder directly. Then the obtained period is set to the predetermined period of time.
  • the controller may make the allowable crank angle range within the predetermined period of time variable in accordance with at least one of an operating environment and an operating state of the internal combustion engine upon the start-up thereof.
  • the aforementioned aspect makes it possible to determine the allowable crank angle range to be set in the predetermined period of time as an appropriate range based on at least one of an operating environment and an operating state of the engine at start-up.
  • the controller may make the extended allowable crank angle range variable in accordance with at least one of the operating environment and the operating state of the internal combustion engine upon the start-up thereof.
  • the controller may extend the allowable crank angle range prior to the predetermined period of time so as to be larger than the allowable crank angle range within the predetermined period of time.
  • the allowable crank angle range prior to the predetermined period of time is expanded to be larger than the allowable crank angle range to be set within the predetermined period of time. Therefore, this makes it possible to promote combustion of the injected fuel upon start-up of the engine.
  • a fuel injection control apparatus for an in-cylinder injection type internal combustion engine for controlling a fuel injection quantity upon start-up of the internal combustion engine is provided with a calculating device that calculates a command value for controlling the fuel injection quantity into a cylinder of the internal combustion engine, and a controller that executes a fuel injection control based on the calculated command value.
  • the controller forcibly decreases the command value for controlling the fuel injection quantity for a predetermined period of time after an initial combustion of the fuel injected upon the start-up of the internal combustion engine, and stops the forcible decrease in the command value after passage of the predetermined period of time.
  • the aforementioned second aspect makes it possible to avoid the excessive increase in concentration of the fuel within the cylinder by controlling the command value indicating the fuel quantity so as to be forcibly decreased within the predetermined period of time.
  • the aforementioned control makes it possible to perform the fuel injection at the crank angle other than the crank angle that is likely to cause the covering or smoldering of the spark plug.
  • the control of the command value to decrease the fuel injection quantity is stopped after passage of the predetermined period of time so as to promote sufficient fuel injection for start-up of the engine. This makes it possible to secure good startability of the engine.
  • a fuel injection control method for an in-cylinder injection type internal combustion engine for controlling a quantity of fuel to be directly injected into a cylinder upon start-up of the internal combustion engine comprises the step of extending an allowable crank angle range that allows the fuel injection within a predetermined period of time subsequent to an initial combustion of the fuel injected upon the start-up of the internal combustion engine such that the extended allowable crank angle range after passage of the predetermined period of time becomes larger than the allowable crank angle range within the predetermined period of time.
  • a fuel injection control method for an in-cylinder injection type internal combustion engine for controlling a fuel injection quantity upon start-up of the internal combustion engine including steps of calculating a command value for controlling the fuel injection quantity into a cylinder of the internal combustion engine, and executing a fuel injection control based on the calculated command value.
  • the command value for controlling the fuel injection quantity is forcibly decreased for a predetermined period of time after an initial combustion of the fuel injected upon the start-up of the internal combustion engine.
  • the forcible decrease in the command value is stopped after passage of the predetermined period of time.
  • FIG. 1 is a schematic view of an embodiment of the fuel injection control apparatus for an in-cylinder injection type internal combustion engine according to the invention
  • FIG. 2 is a flowchart representing a routine of a fuel injection control at start-up of the engine of an embodiment
  • FIG. 3 is a flowchart representing a routine of the fuel injection control at start-up of the engine of the embodiment
  • FIG. 4 is a chart representing setting of a fuel injection timing upon start-up of the engine of the embodiment:
  • FIGS. 5A to 5 C are timing charts each representing setting of the fuel-injection timing upon start-up of the engine of the embodiment.
  • an internal combustion engine 1 is formed as a spark ignition type internal combustion engine for directly injecting the fuel to each combustion chamber of 6 cylinders (#1 to #6).
  • the internal combustion engine 1 includes a mechanism for supplying the fuel, that is, a fuel tank 10 , a high pressure fuel pump 20 for increasing the pressure of the fuel that has been pumped up by the fuel tank 10 , a delivery pipe 30 for storing the fuel pressurized by the high pressure fuel pump 20 , and an injector 40 for directly injecting the fuel stored in the delivery pipe 30 into the combustion chamber.
  • the fuel tank 10 is connected to the high pressure fuel pump 20 via a low pressure side fuel passage 11 .
  • the fuel tank 10 is provided with a feed pump 10 f and a pressure regulator 10 p .
  • the fuel in the fuel tank 10 that has been pumped up by the feed pump 10 f is supplied as a low pressure fuel to the high pressure fuel pump 20 while being maintained at a predetermined pressure via the pressure regulator 10 p . If the fuel pressure within the low pressure side fuel passage 11 exceeds a predetermined pressure, the low pressure fuel within the passage 11 is relieved into the fuel tank 10 by the pressure regulator 10 p so as to maintain the pressure of the fuel to be discharged into the low pressure side fuel passage 11 at a predetermined pressure.
  • the high pressure fuel pump 20 is provided with a cylinder 21 and a plunger 22 which define a pressurization chamber 23 of the high pressure fuel pump 20 .
  • the pressurization chamber 23 is communicated with/cut off from the low pressure side fuel passage 11 under the control of an electromagnetic spill valve 24 of the high pressure fuel pump 20 .
  • the electromagnetic spill valve 24 is provided with an electromagnetic solenoid 24 s , a coil spring 24 c , and a valve body 24 v .
  • the coil spring 24 c serves to urge the valve body 24 v of the electromagnetic spill valve 24 toward the valve opening direction.
  • the urging force of the coil spring 24 c makes the valve body 24 v to an open state when electric current is not applied to the electromagnetic solenoid 24 s such that the low pressure side fuel passage 11 is communicated with the pressurization chamber 23 . Meanwhile, when electric current is applied to the electromagnetic solenoid 24 s , the valve body 24 v is brought into the open state, the communication between the low pressure fuel passage 11 and the pressurization chamber 23 is interrupted.
  • the pressurization chamber 23 of the high pressure fuel pump 20 is connected to the delivery pipe 30 via a high pressure side fuel passage 12 .
  • a check valve 13 is provided in the middle of the high pressure side fuel passage 12 . The check valve 13 serves to prevent the reverse flow of the fuel from the delivery pipe 30 to the pressurization chamber 23 .
  • the delivery pipe 30 is connected to the low pressure side fuel passage 11 via a relief valve 14 and a relief passage 15 such that the fuel pressure within the delivery pipe 30 is not excessively increased.
  • the relief valve 14 opens when the fuel pressure within the delivery pipe 30 exceeds the set valve-opening pressure. The opening of the relief valve 14 returns the fuel within the delivery pipe 30 to the fuel tank 10 via the relief passage 15 and the low pressure side fuel passage 11 .
  • the high pressure fuel pump 20 driven by the internal combustion engine 1 , is mechanically connected to a crankshaft 2 as an output shaft thereof. More specifically, a cam 25 is mounted on a cam shaft 26 at the exhaust side, which is mechanically connected to the crankshaft 2 . As the cam 25 rotates, the plunger 22 reciprocates within the cylinder 21 .
  • control system that executes various types of control with respect to the internal combustion engine 1 , the high pressure fuel pump 20 and the like will be described.
  • the control system is formed of an electronic control unit (ECU) 50 that receives inputs of detection signals from various sensors for detecting operating states of the internal combustion engine 1 .
  • the sensors include a water temperature sensor 61 for detecting a temperature of a cooling water for the internal combustion engine, a crank angle sensor 62 for detecting a rotational speed of the crankshaft 2 , a cam angle sensor 63 for detecting a rotating angle of the camshaft 2 and the like.
  • the ECU 50 executes a pressurization control of the fuel through the high pressure fuel pump 20 and a valve-opening control through the injector 40 based on the detection signals of the aforementioned sensors.
  • the pressurization control of the fuel and the injection control of the pressurized fuel to be supplied to the internal combustion engine 1 executed by the ECU 50 through the high pressure fuel pump 20 will be described.
  • the ECU 50 serves to execute the pressurization control for the fuel supplied to the delivery pipe 30 by controlling the electromagnetic spill valve 24 using the high pressure fuel pump 20 that brings the plunger 22 into reciprocating movement within the cylinder 21 while operating the internal combustion engine 1 such that the capacity of the pressurization chamber 23 varies.
  • the electromagnetic spill valve 24 is opened such that the fuel pumped up from the fuel tank 10 is admitted into the pressurization chamber 23 .
  • the electromagnetic spill valve 24 is closed at a predetermined timing. This makes it possible to interrupt the communication between the pressurization chamber 23 and the low pressure side fuel passage 11 such that the fuel pressure within the pressurization chamber 23 is increased.
  • the fuel at the increased pressure is supplied to the delivery pipe 30 via the check valve 13 .
  • the fuel held at a set pressure stored in the delivery pipe 30 is directly injected into each of the cylinders (#1 to #6) of the internal combustion engine 1 through the injector 40 .
  • the period from start-up of the internal combustion engine 1 to completion of the start-up is divided into three sections of the period, that is, an initial combustion section, a warm-up section, and a start-up promotion section.
  • Each control executed within the aforementioned three sections of the period is different with one another.
  • the initial combustion section of the period is taken until the moment just before the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 .
  • the warm-up section of the period is taken from the moment when the fuel injected into the cylinder of the engine 1 is initially combusted to the moment when the internal combustion engine 1 is warmed up for at least a predetermined period of time.
  • the start-up promotion section of the period is taken from the warm-up of the internal combustion engine for a predetermined period to the completion of the start-up.
  • FIG. 2 is a flowchart indicating the process of setting one of those sections of the period as aforementioned, which is executed by the ECU 50 repeatedly at a predetermined cycle.
  • step 100 of the flowchart shown in FIG. 1 it is determined whether the internal combustion engine 1 is at a start-up timing.
  • the start-up timing refers to the period that allows the internal combustion engine 1 to autonomously operate from the start of cranking of the internal combustion engine 1 in response to driving of the starter via an ignition switch (not shown).
  • the timing that allows the internal combustion engine 1 to be autonomously operated corresponds to the timing taken until the rotating speed of the crankshaft 2 detected by the crank angle sensor 62 reaches the predetermined rotating speed.
  • step 110 it is determined whether a rotational speed of the crankshaft 2 detected by the crank angle sensor 62 once becomes higher than a rotational speed NE 1 from the start of cranking.
  • the rotational speed NE 1 is used for detecting the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 . It may be set to a value that is larger than the rotational speed of the crankshaft 2 resulting from cranking of the internal combustion engine 1 through the starter by a predetermined amount.
  • step 110 If YES is obtained in step 110 , that is, it is determined that the rotational speed of the crank shaft 2 becomes larger than the rotational speed NE 1 , the process proceeds to step 120 .
  • step 120 an initial combustion detection flag f 1 is set to 1. The initial combustion detection flag f 1 is set to 1 when the initial combustion of the fuel injected upon start-up of the internal combustion engine 1 is detected.
  • step 130 it is determined whether the rotational speed of the crankshaft 2 once becomes higher than a rotational speed NE 2 upon start of cranking.
  • the rotational speed NE 2 is used for determining whether the internal combustion engine 1 has been sufficiently in the warm-up state where no covering nor smoldering of the spark plug occurs in spite of extension of the fuel injection period. If YES is obtained in step 130 , that is, it is determined that the rotational speed of the crankshaft 2 becomes higher than the rotational speed NE 2 , which indicates that the engine is in the start-up promotion section of the period, the process proceeds to step 140 .
  • a start-up promotion flag f 2 is set to a value 1. This flag f 2 is set to 1 when it is detected that the rotational speed of the crankshaft 2 exceeds the rotational speed NE 2 .
  • step 150 If NO is obtained in step 100 , that is, it is determined that the internal combustion engine is not in the start-up timing, the process proceeds to step 150 where the initial combustion detection flag f 1 and the start-up promotion flag f 2 are set to 0, respectively.
  • Each value of the initial combustion detection flag f 1 and the start-up promotion flag f 2 set in the aforementioned course of process may set the aforementioned three sections of period. If the flag f 1 is set to 0, and the flag f 2 is set to 0, this means that the engine is not in the initial combustion section of the period, nor in the start-up timing. If the flag f 1 is set to 1, and the flag f 2 is set to 0, this means that the engine is in the warm-up period. If the flag f 1 is set to 1, and the flag f 2 is also set to 1, this means that the engine is in the start-up promotion section of the period.
  • FIG. 3 is a flowchart of the control routine of the above-identified processes.
  • the ECU 50 may also executes this process repeatedly at a predetermined cycle.
  • step 200 it is determined whether the internal combustion engine 1 is in the start-up timing like in step 100 of the flowchart of FIG. 2 . If YES is obtained in step 200 , that is, the internal combustion engine 1 is at the start-up timing, the process proceeds to step 210 .
  • step 210 the control mode of the high pressure fuel pump 20 is determined prior to execution of the fuel injection control of the internal combustion engine 1 . It is determined whether execution of a fuel pressurization control by controlling the electromagnetic spill valve 24 upon start-up of the internal combustion engine 1 is required based on the detection results of the water temperature sensor 61 . That is, a selection is made between the direct supply of the fuel pressurized by the feed pump 10 f to the delivery pipe 30 , and the supply of the fuel pressurized by the high pressure pump 20 to the delivery pipe 30 .
  • the aforementioned determination is made based on a result of determination whether the temperature of the cooling water is equal to or lower than a predetermined temperature. If the cooling water temperature is equal to or lower than the predetermined temperature, the control of the electromagnetic spill valve 24 is not executed.
  • the electromagnetic spill valve 24 is not controlled, the fuel cannot be supplied from the fuel tank 10 to the delivery pipe 30 during closed state of the valve body 24 v . Accordingly the supply quantity of the fuel to the delivery pipe 30 per rotation at a predetermined crank angle becomes larger than the quantity in the case where the electromagnetic spill valve 24 is not controlled.
  • step 220 it is determined whether both the flag f 1 and the flag f 2 are set to 0. If YES is obtained in step 220 , that is, both the flags f 1 and f 2 are set to 0, it is determined that the start-up time is in the initial combustion section in which the initial combustion of the fuel injected at the start-up of the internal combustion engine 1 is not detected. The process then proceeds to step 230 .
  • step 230 the fuel injection quantity and the fuel injection timing at start-up are set.
  • the aforementioned setting will be performed in the manner shown by FIG. 4 .
  • First the crank angle with respect to the Top Dead Center (TDC) of the piston (not shown) in each cylinder is obtained based on the detection signals of the crank angle sensor 62 and the cam angle sensor 63 .
  • the fuel injection quantity and the fuel injection timing in the cylinder into which the fuel is applied are calculated at a point when the piston advances at 450° CA with respect to the TDC thereof.
  • the fuel injection quantity is calculated in accordance with the warm-up state of the internal combustion engine 1 (state of cold start). More specifically, the fuel injection quantity is calculated in accordance with the detection signal of the water temperature sensor 61 . The calculation of the fuel injection quantity may be performed once at start-up of the engine rather than the calculation at every advancement at 450° CA in the cylinder into which the fuel is injected.
  • the fuel injection timing is set such that the calculated fuel injection quantity is established within the allowable crank angle range that allows a predetermined fuel injection.
  • An end of the advancement side of the allowable crank angle range is set to a point in the latter stage of the exhaust stroke as the limit point at which a predetermined or larger quantity of the injected fuel is not discharged to the exhaust system for the internal combustion engine 1 prior to the combustion.
  • an end of the retard side of the allowable crank angle range is set to a point in the earlier stage of the compression stroke as the limit point at which fuel injection to the cylinder of the internal combustion engine 1 is allowed.
  • the advancement from 390° CA to 60° CA is set as the allowable crank angle range.
  • the allowable crank angle range may be variable based on the detection signal of the water temperature sensor 1 .
  • the fuel injection timing is set based on the rotational speed of the crankshaft 2 detected by the crank angle sensor 62 within the allowable crank angle range. Although the crank angle range is identical, the corresponding time may vary with the rotational speed of the crankshaft 2 . It is preferable to avoid the fuel injection timing at the most advanced angle side or the most retarded angle side but at the middle section of the allowable crank angle range so as to prevent covering and smoldering of the spark plug.
  • the fuel injection control is executed based on the fuel injection quantity and the fuel injection timing which have been set. Then the ignition control is executed by the spark plug of the internal combustion engine 1 at a predetermined timing.
  • step 240 it is determined whether the flag f 1 is set to 1, and the flag f 2 is set to 0. If YES is obtained in step 240 , it is determined that the engine is in the warm-up section. The process then proceeds to step 250 .
  • step 250 the control for reducing the fuel injection period is executed according to the time chart shown in FIGS. 5A to 5 C.
  • the solid line of the time chart shown in FIG. 5A represents the change in the crank rotational speed according to the embodiment.
  • FIG. 5B represents the period at which the fuel injection starts, and
  • FIG. 5C represents the period of completion of the fuel injection.
  • the fuel injection start timing is delayed with respect to the advancement limit of the allowable crank angle range shown in FIG. 4 .
  • the fuel injection completion timing is advanced with respect to the retard limit of the allowable crank angle range shown in FIG. 4 .
  • the fuel injection quantity is not calculated.
  • the period taken from the start of the fuel injection to the completion of the fuel injection as being set in FIGS. 5B and 5C is set as the fuel injection period.
  • the reduction in the fuel injection period makes it possible to execute the fuel injection control during the period other than the period at which the covering or smoldering of the spark plug is unlikely to occur.
  • the period from 300° CA to 90° CA is exemplified as the fuel injection period as shown in FIGS. 5B and 5C .
  • the fuel injection period may be set to be variable based on the detection signal of the water temperature sensor 61 .
  • the fuel injection period is variable in consideration with at least one of a condition where probability in causing covering or smoldering of the spark plug varies with the warm-up state (state of cold start) of the internal combustion engine, and a condition where the quantity of the fuel required to start-up varies with the warm-up state (state of cold start) of the internal combustion engine.
  • the fuel injection start timing or the fuel injection completion timing prior to the moment when the rotational speed of the crankshaft 2 becomes a predetermined rotational speed NE 1 is set to be variable in accordance with the rotational speed of the crankshaft 2 . Therefore, the allowable crank angle range is shown by a chain line in FIGS. 5B and 5C .
  • Each of the fuel injection start timing and the fuel injection completion timing shown by a solid line in FIGS. 5B and 5C represents the command value, which does not necessarily correspond with the value indicating the actual fuel injection period. Even if the signal instructing to set the fuel injection period to “300° CA to 90° CA”, the fuel injection control is executed in the fuel injection period in accordance with the instruction based on the fuel injection period calculated in the manner as shown in FIG. 4 prior to the time point t 1 .
  • step 260 it is determined whether the flag f 2 is set to 1. If YES is obtained in step 260 , that is, the flag f 2 is set to 1, it is determined that the start-up time is in the start-up promotion section. The process then proceeds to step 270 .
  • step 270 the fuel injection period is extended in the manner as shown in FIGS. 5A to 5 C. That is, the fuel injection start timing is shifted to the advancement side as shown in FIG. 5B , and the fuel injection completion timing is shifted to the retarded side as shown in FIG. 5 C. Then the fuel injection quantity is not calculated under the aforementioned control.
  • the period from the fuel injection start timing to the fuel injection completion timing as being set in FIGS. 5B and 5C is set to the fuel injection period.
  • the fuel injection period is extended after the determination is made with respect to the sufficient warm-up state of the internal combustion engine to effectively avoid the covering or smoldering of the spark plug, the fuel injection can be sufficiently performed while preventing the covering nor smoldering of the spark plug.
  • the period from 390° CA to 60° CA is exemplified as the fuel injection period shown in FIGS. 5B and 5C .
  • the fuel injection period may be set to be variable based on the detection signal of the water temperature sensor 61 .
  • step 200 If NO is obtained in step 200 , that is, it is determined that the internal combustion engine is not at the start-up timing, or each process in steps 230 , 250 , and 270 is completed, the control routine ends.
  • the control for reducing the fuel injection period is executed (see FIGS. 5A to 5 C, time point t 1 ).
  • the fuel injection control while reducing the fuel injection period makes it possible to warm up the internal combustion engine 1 .
  • the crank rotational speed exceeds the rotational speed NE 2 , the internal combustion engine 1 is warmed up, and the fuel can be easily atomized. If it is determined that the covering or smoldering of the spark plug hardly occurs, the fuel injection period is extended (see FIG. 5A to 5 C, time point t 2 ). This makes it possible to promote the injection of the fuel sufficient to promote the start-up of the internal combustion engine 1 .
  • the crank rotational speed becomes as shown by the chain line of FIG. 5A , that is, the start-up may fail.
  • the start-up of the engine is tried at an excessively low temperature, for example, at ⁇ 15° C., it is difficult to succeed in the start-up operation.
  • the actual time period corresponding to the allowable crank angle range (390° CA to 60° CA) is reduced resulting from the increase in the rotational speed of the crankshaft 2 .
  • the fuel injection control is executed whole through the allowable crank angle range. Then the fuel injection may be continued even at the crank angle at which the covering or moldering of the spark plug is likely to occur. Accordingly, the concentration of the fuel that is not subjected to the combustion in the internal combustion engine 1 is increased. This may cause misfire in the internal combustion engine, interfering with the start-up operation.
  • the fuel injection timing is set in accordance with the crank rotational speed within the allowable crank angle range until the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 occurs. This makes it possible to inject the appropriate quantity of the fuel at the appropriate timing determined in accordance with the crank rotational speed.
  • the embodiment may be modified in the following way.
  • the control for reducing the fuel injection period is executed by a predetermined time period (warm-up period) from the detection of the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 to the moment when the crank rotational speed exceeds the rotational speed NE 2 .
  • the starting point at which the fuel injection period is reduced is not limited, but may be set to an appropriate point after the detection of the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 .
  • the starting point may be set to the one after the detection of the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 , and the fuel injection timing is set for each of the cylinders in the manner as shown in FIG. 4 .
  • the fuel injection period is extended after the crank rotational speed exceeds the predetermined rotational speed NE 2 .
  • the control is not limited to the aforementioned mode.
  • the frequency of the combustion within each of cylinders in the internal combustion engine is obtained through monitoring of the crank rotational speed.
  • the control for extending the fuel injection period may be executed when the obtained frequency becomes equal to or lower than the predetermined value. More specifically, the determination as to whether the internal combustion engine 1 is warmed up to the degree where the covering or smoldering of the spark plug hardly occurs may be made based on an appropriate parameter even under the control for extending the fuel injection period.
  • the control for reducing the fuel injection period immediately after the initial combustion may be executed so as to restrain the covering or smoldering of the spark plug.
  • the fuel injection control mode executed until detection of the initial ignition of the fuel injected into the cylinder of the internal combustion engine 1 is not limited to the example as shown in FIG. 4 .
  • the allowable crank angle range as indicated in FIG. 4 may be set as the fuel injection timing.
  • the fuel injection quantity does not have to be calculated at an advanced crank angle of 450° CA.
  • the control for reducing the fuel injection timing is executed for a predetermined period (warm-up period).
  • the allowable crank angle range where the fuel injection is allowed may be reduced in place of reducing the fuel injection period.
  • the fuel injection quantity is calculated in the manner as shown in FIG. 4 .
  • the control for extending the fuel injection period is executed after passage of the predetermined period (warm-up period) in which the fuel injection period is reduced.
  • the allowable crank angle range where the fuel injection is allowed may be extended in place of extending the fuel injection period.
  • the fuel injection quantity is calculated in the manner as shown in FIG. 4 .
  • control routine for the fuel injection shown in FIGS. 2 and 3 is always executed at the start-up operation.
  • the control routine may be executed upon establishment of at least one of the operating environment and the operating state of the internal combustion engine.
  • the control routine may be executed when the temperature of the cooling water is equal to or lower than a predetermined temperature.
  • the process for making the fuel injection period to be reduced or extended variable is executed based on the cooling water temperature in the aforementioned embodiment. However, such process may be executed arbitrarily so long as it is executed based on at least one of the operating state and the operating environment of the internal combustion engine.
  • the determination is made as to whether the high pressure fuel pump 20 is controlled based on the cooling water temperature upon the start-up control.
  • determination may be made based on the operating state or the operating environment of the internal combustion engine 1 , which is derived from appropriate parameters.
  • control of the high pressure fuel pump 20 may be interrupted upon the start-up control irrespective of the operating state or the operating environment of the internal combustion engine 1 .
  • the fuel injection period or the allowable crank angle range is reduced in the predetermined period (warm-up period) to be set after the initial combustion of the fuel injected into the cylinder of the internal combustion engine.
  • the instructing value used to control the fuel injection quantity may be forcibly reduced within the predetermined period. This makes it possible to avoid the excessive increase in the concentration of the fuel in the cylinder.
  • the decrease in the command value of the fuel injection quantity makes it possible to perform the fuel injection at the crank angle other than the one at which the covering or the smoldering of the spark plug is likely to occur.
  • the ECU 50 serves to execute the control for extending the allowable crank angle range after passage of the predetermined (warm-up) period, or calculate the fuel injection quantity.
  • an arbitrary hardware exclusively used for executing the above-described control may be employed in place of the ECU 50 .
  • the fuel injection period or the timing for calculating the fuel injection period is not limited to the one as being exemplified in the embodiment. Further the structure of the high pressure fuel pump or the internal combustion engine is not limited to the one as shown in FIG. 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

In response to start of cranking in an internal combustion engine by a starter, a fuel injection control starts. When an initial combustion of the fuel injected into the internal combustion engine is detected based on a rotational speed of a crankshaft, it is determined that the internal combustion engine in a warm-up period, and a control for reducing a fuel injection period is executed. When it is detected that the rotational speed of the crankshaft exceeds a predetermined rotational speed, it is determined that the internal combustion engine is in a start-up promotion period, and a control for extending the fuel injection period is executed.

Description

INCORPORATION BY REFERENCE
The disclosure of Japanese Patent Application No. 2002-315864 filed on Oct. 30, 2002, including the specification, drawings and abstract are incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a fuel injection control apparatus and method for an in-cylinder injection type internal combustion engine, and particularly, to an improvement in a fuel injection control mechanism operated upon start-up of the internal combustion engine.
2. Description of Related Art
Conventionally the fuel injection control apparatus of the aforementioned type has been disclosed in JP-A-8-319865. The apparatus disclosed in JP-A-8-319865 is structured to obtain a fuel injection start timing that allows the required fuel injection time period to be secured upon start-up of the engine based on the injection completion timing set in accordance with the operating state of the engine. Upon cold start of the engine, the apparatus allows to set the injection start timing during an exhaust stroke such that the quantity of the fuel required for the cold start is injected into the cylinder.
In the apparatus disclosed in JP-A-8-319865, if the fuel injection completion timing deviates from the crank angle range that allows injection of the fuel owing to the increase in the engine speed, the fuel injection valve is forcibly closed to interrupt the fuel injection so as to prevent the reverse flow of the residual gas in the cylinder to pass through the fuel injection valve.
The aforementioned apparatus disclosed in JP-A-8-319865 is capable of setting the injection start timing during the exhaust stroke upon cold start of the internal combustion engine so as to inject the fuel by the quantity required for the start-up. In this case, however, when the fuel injection completion timing deviates from the crank angle range that allows the fuel injection, the fuel injection is forcibly interrupted. This may cause the failure in injection of the required quantity of the fuel. In this apparatus, even if the injection start timing can be set during the exhaust stroke at the cold start of the engine, the quantity of the fuel required for the start-up cannot always be injected.
In the aforementioned case, it is difficult to complete the start-up of the engine at the cold state. The fuel injection for the start-up of the engine will be repeatedly performed. Especially in the start-up of the engine, the rate of the fuel subjected to the combustion to the fuel subjected to the injection into the cylinder becomes small. So the concentration of the fuel that is not combusted in the cylinder of the engine is increased. This may cause the spark plug to be covered with the fuel or smoldered with high possibility. Accordingly it becomes further difficult to start the engine.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a fuel injection control apparatus and method for an in-cylinder injection type internal combustion engine, which allows good startability of the engine.
According to a first aspect of the invention, a fuel injection control apparatus for an in-cylinder injection type internal combustion engine for controlling a quantity of fuel to be directly injected into a cylinder upon start-up of the internal combustion engine is provided with a controller that extends an allowable crank angle range that allows the fuel injection within a predetermined period of time subsequent to an initial combustion of the fuel injected upon the start-up of the internal combustion engine. Accordingly the extended allowable crank angle range after passage of the predetermined period of time becomes larger than the allowable crank angle range within the predetermined period of time.
In the aforementioned aspect, the allowable crank angle range is reduced for a predetermined period of time so as to be shorter than the range after passage of the predetermined period of time. The aforementioned reduction in the crank angle range for the predetermined period of time may restrain the fuel injection quantity. This makes it possible to avoid the excessive increase in the fuel concentration within the cylinder as well as avoid the fuel injection at a crank angle at which the aforementioned covering or smoldering of the spark plug is likely to occur.
Within the aforementioned predetermined period of time, the temperature within the cylinder is increased in the heat of combustion of the fuel. After passage of the predetermined period of time, the fuel is likely to be atomized, which may prevent the spark plug from being covered nor smoldered. In the above-described structure, the allowable crank angle range is expanded after passage of the predetermined period of time such that injection of the fuel sufficient for start-up of the engine can be promoted. This makes it possible to secure good startability of the engine.
In accordance with the first aspect, the controller may set a fuel injection period within the predetermined period of time to the allowable crank angle range within the predetermined period of time.
In the aforementioned aspect, the fuel injection period within the predetermined period of time corresponds to the allowable crank angle range. This makes it possible to simplify the fuel injection control compared with the case where the fuel injection period is set based on calculation of the fuel injection quantity under the limitation of the allowable crank angle range. This makes it possible to effectively utilize the allowable crank angle range.
In accordance with the first aspect, the controller may set a fuel injection period after passage of the predetermined period of time to the extended allowable crank angle range.
In the aforementioned aspect, the longest possible period of time is set as the fuel injection period after passage of the predetermined period of time. Therefore, the allowable crank angle range can be effectively utilized. As the fuel injection period after passage of the predetermined period corresponds to the allowable crank angle range, the fuel injection control may be simplified compared with the case where the fuel injection period is set based on the calculation of the fuel injection quantity under the limitation of the allowable crank angle range.
In accordance with the first aspect, the controller may set the predetermined period of time to a period that is taken for an engine speed of the internal combustion engine to exceed a predetermined engine speed.
As the temperature within the cylinder increases after the initial combustion, the engine speed increases. Therefore, the engine speed after the initial combustion can be used as a parameter indicating the temperature of the cylinder.
According to the above-described aspect, the period of time supposed to be taken for reaching the temperature at which the aforementioned covering or smoldering is unlikely to occur can be obtained without detecting the temperature of the cylinder directly. Then the obtained period is set to the predetermined period of time.
In accordance with the above aspect, the controller may make the allowable crank angle range within the predetermined period of time variable in accordance with at least one of an operating environment and an operating state of the internal combustion engine upon the start-up thereof.
The aforementioned aspect makes it possible to determine the allowable crank angle range to be set in the predetermined period of time as an appropriate range based on at least one of an operating environment and an operating state of the engine at start-up.
In accordance with the above aspect, the controller may make the extended allowable crank angle range variable in accordance with at least one of the operating environment and the operating state of the internal combustion engine upon the start-up thereof.
Accordingly this makes it possible to set the expanded allowable crank angle range to an appropriate range based on at least one of the operating environment and the operating state of the engine at start-up.
In accordance with the above aspect, the controller may extend the allowable crank angle range prior to the predetermined period of time so as to be larger than the allowable crank angle range within the predetermined period of time.
In the aforementioned aspect, the allowable crank angle range prior to the predetermined period of time is expanded to be larger than the allowable crank angle range to be set within the predetermined period of time. Therefore, this makes it possible to promote combustion of the injected fuel upon start-up of the engine.
In accordance with a second aspect of the invention, a fuel injection control apparatus for an in-cylinder injection type internal combustion engine for controlling a fuel injection quantity upon start-up of the internal combustion engine is provided with a calculating device that calculates a command value for controlling the fuel injection quantity into a cylinder of the internal combustion engine, and a controller that executes a fuel injection control based on the calculated command value. The controller forcibly decreases the command value for controlling the fuel injection quantity for a predetermined period of time after an initial combustion of the fuel injected upon the start-up of the internal combustion engine, and stops the forcible decrease in the command value after passage of the predetermined period of time.
The aforementioned second aspect makes it possible to avoid the excessive increase in concentration of the fuel within the cylinder by controlling the command value indicating the fuel quantity so as to be forcibly decreased within the predetermined period of time. The aforementioned control makes it possible to perform the fuel injection at the crank angle other than the crank angle that is likely to cause the covering or smoldering of the spark plug.
Within the predetermined period of time, the temperature of the cylinder is increased in the heat of the fuel combustion. Therefore, the fuel is likely to be atomized after passage of the predetermined period of time, avoiding the covering and smoldering of the ignition plug. According to the aforementioned aspect, the control of the command value to decrease the fuel injection quantity is stopped after passage of the predetermined period of time so as to promote sufficient fuel injection for start-up of the engine. This makes it possible to secure good startability of the engine.
In accordance with a third aspect of the invention, a fuel injection control method for an in-cylinder injection type internal combustion engine for controlling a quantity of fuel to be directly injected into a cylinder upon start-up of the internal combustion engine, comprises the step of extending an allowable crank angle range that allows the fuel injection within a predetermined period of time subsequent to an initial combustion of the fuel injected upon the start-up of the internal combustion engine such that the extended allowable crank angle range after passage of the predetermined period of time becomes larger than the allowable crank angle range within the predetermined period of time.
In accordance with a fourth aspect of the invention, a fuel injection control method for an in-cylinder injection type internal combustion engine for controlling a fuel injection quantity upon start-up of the internal combustion engine, including steps of calculating a command value for controlling the fuel injection quantity into a cylinder of the internal combustion engine, and executing a fuel injection control based on the calculated command value. The command value for controlling the fuel injection quantity is forcibly decreased for a predetermined period of time after an initial combustion of the fuel injected upon the start-up of the internal combustion engine. The forcible decrease in the command value is stopped after passage of the predetermined period of time.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic view of an embodiment of the fuel injection control apparatus for an in-cylinder injection type internal combustion engine according to the invention;
FIG. 2 is a flowchart representing a routine of a fuel injection control at start-up of the engine of an embodiment;
FIG. 3 is a flowchart representing a routine of the fuel injection control at start-up of the engine of the embodiment;
FIG. 4 is a chart representing setting of a fuel injection timing upon start-up of the engine of the embodiment: and
FIGS. 5A to 5C are timing charts each representing setting of the fuel-injection timing upon start-up of the engine of the embodiment.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
An embodiment of a fuel injection control apparatus for an in-cylinder injection type internal combustion engine which is applied to a spark-ignition type internal combustion engine will be described referring to the drawings.
Referring to FIG. 1 showing a schematic view of the fuel injection control apparatus of the embodiment, an internal combustion engine 1 is formed as a spark ignition type internal combustion engine for directly injecting the fuel to each combustion chamber of 6 cylinders (#1 to #6). The internal combustion engine 1 includes a mechanism for supplying the fuel, that is, a fuel tank 10, a high pressure fuel pump 20 for increasing the pressure of the fuel that has been pumped up by the fuel tank 10, a delivery pipe 30 for storing the fuel pressurized by the high pressure fuel pump 20, and an injector 40 for directly injecting the fuel stored in the delivery pipe 30 into the combustion chamber.
The fuel tank 10 is connected to the high pressure fuel pump 20 via a low pressure side fuel passage 11. The fuel tank 10 is provided with a feed pump 10 f and a pressure regulator 10 p. The fuel in the fuel tank 10 that has been pumped up by the feed pump 10 f is supplied as a low pressure fuel to the high pressure fuel pump 20 while being maintained at a predetermined pressure via the pressure regulator 10 p. If the fuel pressure within the low pressure side fuel passage 11 exceeds a predetermined pressure, the low pressure fuel within the passage 11 is relieved into the fuel tank 10 by the pressure regulator 10 p so as to maintain the pressure of the fuel to be discharged into the low pressure side fuel passage 11 at a predetermined pressure.
The high pressure fuel pump 20 is provided with a cylinder 21 and a plunger 22 which define a pressurization chamber 23 of the high pressure fuel pump 20. The pressurization chamber 23 is communicated with/cut off from the low pressure side fuel passage 11 under the control of an electromagnetic spill valve 24 of the high pressure fuel pump 20. The electromagnetic spill valve 24 is provided with an electromagnetic solenoid 24 s, a coil spring 24 c, and a valve body 24 v. The coil spring 24 c serves to urge the valve body 24 v of the electromagnetic spill valve 24 toward the valve opening direction. The urging force of the coil spring 24 c makes the valve body 24 v to an open state when electric current is not applied to the electromagnetic solenoid 24 s such that the low pressure side fuel passage 11 is communicated with the pressurization chamber 23. Meanwhile, when electric current is applied to the electromagnetic solenoid 24 s, the valve body 24 v is brought into the open state, the communication between the low pressure fuel passage 11 and the pressurization chamber 23 is interrupted.
The pressurization chamber 23 of the high pressure fuel pump 20 is connected to the delivery pipe 30 via a high pressure side fuel passage 12. A check valve 13 is provided in the middle of the high pressure side fuel passage 12. The check valve 13 serves to prevent the reverse flow of the fuel from the delivery pipe 30 to the pressurization chamber 23.
Referring to FIG. 1, the delivery pipe 30 is connected to the low pressure side fuel passage 11 via a relief valve 14 and a relief passage 15 such that the fuel pressure within the delivery pipe 30 is not excessively increased. The relief valve 14 opens when the fuel pressure within the delivery pipe 30 exceeds the set valve-opening pressure. The opening of the relief valve 14 returns the fuel within the delivery pipe 30 to the fuel tank 10 via the relief passage 15 and the low pressure side fuel passage 11.
The high pressure fuel pump 20, driven by the internal combustion engine 1, is mechanically connected to a crankshaft 2 as an output shaft thereof. More specifically, a cam 25 is mounted on a cam shaft 26 at the exhaust side, which is mechanically connected to the crankshaft 2. As the cam 25 rotates, the plunger 22 reciprocates within the cylinder 21.
The control system that executes various types of control with respect to the internal combustion engine 1, the high pressure fuel pump 20 and the like will be described.
The control system is formed of an electronic control unit (ECU) 50 that receives inputs of detection signals from various sensors for detecting operating states of the internal combustion engine 1. The sensors include a water temperature sensor 61 for detecting a temperature of a cooling water for the internal combustion engine, a crank angle sensor 62 for detecting a rotational speed of the crankshaft 2, a cam angle sensor 63 for detecting a rotating angle of the camshaft 2 and the like.
The ECU 50 executes a pressurization control of the fuel through the high pressure fuel pump 20 and a valve-opening control through the injector 40 based on the detection signals of the aforementioned sensors.
The pressurization control of the fuel and the injection control of the pressurized fuel to be supplied to the internal combustion engine 1 executed by the ECU 50 through the high pressure fuel pump 20 will be described.
The ECU 50 serves to execute the pressurization control for the fuel supplied to the delivery pipe 30 by controlling the electromagnetic spill valve 24 using the high pressure fuel pump 20 that brings the plunger 22 into reciprocating movement within the cylinder 21 while operating the internal combustion engine 1 such that the capacity of the pressurization chamber 23 varies. When the plunger 22 is moved by the rotating motion of the cam 25 in the direction to which the capacity of the pressurization chamber 23 is increased, the electromagnetic spill valve 24 is opened such that the fuel pumped up from the fuel tank 10 is admitted into the pressurization chamber 23. Meanwhile when the plunger 22 is moved by the rotating motion of the cam 25 in the direction to which the capacity of the pressurization chamber 23 is decreased, the electromagnetic spill valve 24 is closed at a predetermined timing. This makes it possible to interrupt the communication between the pressurization chamber 23 and the low pressure side fuel passage 11 such that the fuel pressure within the pressurization chamber 23 is increased. The fuel at the increased pressure is supplied to the delivery pipe 30 via the check valve 13.
The fuel held at a set pressure stored in the delivery pipe 30 is directly injected into each of the cylinders (#1 to #6) of the internal combustion engine 1 through the injector 40.
The fuel injection control at start-up of the engine of the embodiment will be described.
In the embodiment, the period from start-up of the internal combustion engine 1 to completion of the start-up is divided into three sections of the period, that is, an initial combustion section, a warm-up section, and a start-up promotion section. Each control executed within the aforementioned three sections of the period is different with one another. The initial combustion section of the period is taken until the moment just before the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1. The warm-up section of the period is taken from the moment when the fuel injected into the cylinder of the engine 1 is initially combusted to the moment when the internal combustion engine 1 is warmed up for at least a predetermined period of time. The start-up promotion section of the period is taken from the warm-up of the internal combustion engine for a predetermined period to the completion of the start-up.
Referring to FIG. 2, described is a control routine for determining one of the aforementioned sections of the period executed in accordance with the operating state of the internal combustion engine. FIG. 2 is a flowchart indicating the process of setting one of those sections of the period as aforementioned, which is executed by the ECU 50 repeatedly at a predetermined cycle.
First in step 100 of the flowchart shown in FIG. 1, it is determined whether the internal combustion engine 1 is at a start-up timing. The start-up timing refers to the period that allows the internal combustion engine 1 to autonomously operate from the start of cranking of the internal combustion engine 1 in response to driving of the starter via an ignition switch (not shown). The timing that allows the internal combustion engine 1 to be autonomously operated corresponds to the timing taken until the rotating speed of the crankshaft 2 detected by the crank angle sensor 62 reaches the predetermined rotating speed.
If YES is obtained in step 100, that is, the engine is at the start-up timing, the process proceeds to step 110. In step 110, it is determined whether a rotational speed of the crankshaft 2 detected by the crank angle sensor 62 once becomes higher than a rotational speed NE1 from the start of cranking.
The rotational speed NE1 is used for detecting the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1. It may be set to a value that is larger than the rotational speed of the crankshaft 2 resulting from cranking of the internal combustion engine 1 through the starter by a predetermined amount.
If YES is obtained in step 110, that is, it is determined that the rotational speed of the crank shaft 2 becomes larger than the rotational speed NE1, the process proceeds to step 120. In step 120, an initial combustion detection flag f1 is set to 1. The initial combustion detection flag f1 is set to 1 when the initial combustion of the fuel injected upon start-up of the internal combustion engine 1 is detected.
In step 130, it is determined whether the rotational speed of the crankshaft 2 once becomes higher than a rotational speed NE2 upon start of cranking. The rotational speed NE2 is used for determining whether the internal combustion engine 1 has been sufficiently in the warm-up state where no covering nor smoldering of the spark plug occurs in spite of extension of the fuel injection period. If YES is obtained in step 130, that is, it is determined that the rotational speed of the crankshaft 2 becomes higher than the rotational speed NE2, which indicates that the engine is in the start-up promotion section of the period, the process proceeds to step 140.
In step 140, a start-up promotion flag f2 is set to a value 1. This flag f2 is set to 1 when it is detected that the rotational speed of the crankshaft 2 exceeds the rotational speed NE2.
If NO is obtained in step 100, that is, it is determined that the internal combustion engine is not in the start-up timing, the process proceeds to step 150 where the initial combustion detection flag f1 and the start-up promotion flag f2 are set to 0, respectively.
When each process of steps 140, 150 is completed, or NO is obtained in each process of steps 110, 130, the routine ends. Each value of the initial combustion detection flag f1 and the start-up promotion flag f2 set in the aforementioned course of process may set the aforementioned three sections of period. If the flag f1 is set to 0, and the flag f2 is set to 0, this means that the engine is not in the initial combustion section of the period, nor in the start-up timing. If the flag f1 is set to 1, and the flag f2 is set to 0, this means that the engine is in the warm-up period. If the flag f1 is set to 1, and the flag f2 is also set to 1, this means that the engine is in the start-up promotion section of the period.
The control routine for executing the start-up control of the internal combustion engine for each of the above-described sections of the period will be described referring to FIG. 3. FIG. 3 is a flowchart of the control routine of the above-identified processes. The ECU 50 may also executes this process repeatedly at a predetermined cycle.
Referring to the flowchart of FIG. 3, in step 200, it is determined whether the internal combustion engine 1 is in the start-up timing like in step 100 of the flowchart of FIG. 2. If YES is obtained in step 200, that is, the internal combustion engine 1 is at the start-up timing, the process proceeds to step 210.
In step 210, the control mode of the high pressure fuel pump 20 is determined prior to execution of the fuel injection control of the internal combustion engine 1. It is determined whether execution of a fuel pressurization control by controlling the electromagnetic spill valve 24 upon start-up of the internal combustion engine 1 is required based on the detection results of the water temperature sensor 61. That is, a selection is made between the direct supply of the fuel pressurized by the feed pump 10 f to the delivery pipe 30, and the supply of the fuel pressurized by the high pressure pump 20 to the delivery pipe 30.
The aforementioned determination is made based on a result of determination whether the temperature of the cooling water is equal to or lower than a predetermined temperature. If the cooling water temperature is equal to or lower than the predetermined temperature, the control of the electromagnetic spill valve 24 is not executed. When the electromagnetic spill valve 24 is not controlled, the fuel cannot be supplied from the fuel tank 10 to the delivery pipe 30 during closed state of the valve body 24 v. Accordingly the supply quantity of the fuel to the delivery pipe 30 per rotation at a predetermined crank angle becomes larger than the quantity in the case where the electromagnetic spill valve 24 is not controlled.
The process then proceeds to step 220 and subsequent steps where the fuel injection control of the internal combustion engine 1 at start-up is executed. In step 220, it is determined whether both the flag f1 and the flag f2 are set to 0. If YES is obtained in step 220, that is, both the flags f1 and f2 are set to 0, it is determined that the start-up time is in the initial combustion section in which the initial combustion of the fuel injected at the start-up of the internal combustion engine 1 is not detected. The process then proceeds to step 230.
In step 230, the fuel injection quantity and the fuel injection timing at start-up are set. The aforementioned setting will be performed in the manner shown by FIG. 4. First the crank angle with respect to the Top Dead Center (TDC) of the piston (not shown) in each cylinder is obtained based on the detection signals of the crank angle sensor 62 and the cam angle sensor 63. The fuel injection quantity and the fuel injection timing in the cylinder into which the fuel is applied are calculated at a point when the piston advances at 450° CA with respect to the TDC thereof.
The fuel injection quantity is calculated in accordance with the warm-up state of the internal combustion engine 1 (state of cold start). More specifically, the fuel injection quantity is calculated in accordance with the detection signal of the water temperature sensor 61. The calculation of the fuel injection quantity may be performed once at start-up of the engine rather than the calculation at every advancement at 450° CA in the cylinder into which the fuel is injected.
The fuel injection timing is set such that the calculated fuel injection quantity is established within the allowable crank angle range that allows a predetermined fuel injection. An end of the advancement side of the allowable crank angle range is set to a point in the latter stage of the exhaust stroke as the limit point at which a predetermined or larger quantity of the injected fuel is not discharged to the exhaust system for the internal combustion engine 1 prior to the combustion. Meanwhile an end of the retard side of the allowable crank angle range is set to a point in the earlier stage of the compression stroke as the limit point at which fuel injection to the cylinder of the internal combustion engine 1 is allowed. In this case, the advancement from 390° CA to 60° CA is set as the allowable crank angle range. However, the allowable crank angle range may be variable based on the detection signal of the water temperature sensor 1.
The fuel injection timing is set based on the rotational speed of the crankshaft 2 detected by the crank angle sensor 62 within the allowable crank angle range. Although the crank angle range is identical, the corresponding time may vary with the rotational speed of the crankshaft 2. It is preferable to avoid the fuel injection timing at the most advanced angle side or the most retarded angle side but at the middle section of the allowable crank angle range so as to prevent covering and smoldering of the spark plug.
The fuel injection control is executed based on the fuel injection quantity and the fuel injection timing which have been set. Then the ignition control is executed by the spark plug of the internal combustion engine 1 at a predetermined timing.
In step 240, it is determined whether the flag f1 is set to 1, and the flag f2 is set to 0. If YES is obtained in step 240, it is determined that the engine is in the warm-up section. The process then proceeds to step 250.
In step 250, the control for reducing the fuel injection period is executed according to the time chart shown in FIGS. 5A to 5C. The solid line of the time chart shown in FIG. 5A represents the change in the crank rotational speed according to the embodiment. FIG. 5B represents the period at which the fuel injection starts, and FIG. 5C represents the period of completion of the fuel injection.
As FIG. 5B shows, the fuel injection start timing is delayed with respect to the advancement limit of the allowable crank angle range shown in FIG. 4. As FIG. 5C shows, the fuel injection completion timing is advanced with respect to the retard limit of the allowable crank angle range shown in FIG. 4. Under the aforementioned control, the fuel injection quantity is not calculated. The period taken from the start of the fuel injection to the completion of the fuel injection as being set in FIGS. 5B and 5C is set as the fuel injection period.
The reduction in the fuel injection period makes it possible to execute the fuel injection control during the period other than the period at which the covering or smoldering of the spark plug is unlikely to occur. The period from 300° CA to 90° CA is exemplified as the fuel injection period as shown in FIGS. 5B and 5C. However, the fuel injection period may be set to be variable based on the detection signal of the water temperature sensor 61. In this case, it is preferable to set the fuel injection period to be variable in consideration with at least one of a condition where probability in causing covering or smoldering of the spark plug varies with the warm-up state (state of cold start) of the internal combustion engine, and a condition where the quantity of the fuel required to start-up varies with the warm-up state (state of cold start) of the internal combustion engine.
The fuel injection start timing or the fuel injection completion timing prior to the moment when the rotational speed of the crankshaft 2 becomes a predetermined rotational speed NE1 is set to be variable in accordance with the rotational speed of the crankshaft 2. Therefore, the allowable crank angle range is shown by a chain line in FIGS. 5B and 5C. Each of the fuel injection start timing and the fuel injection completion timing shown by a solid line in FIGS. 5B and 5C represents the command value, which does not necessarily correspond with the value indicating the actual fuel injection period. Even if the signal instructing to set the fuel injection period to “300° CA to 90° CA”, the fuel injection control is executed in the fuel injection period in accordance with the instruction based on the fuel injection period calculated in the manner as shown in FIG. 4 prior to the time point t1.
In step 260, it is determined whether the flag f2 is set to 1. If YES is obtained in step 260, that is, the flag f2 is set to 1, it is determined that the start-up time is in the start-up promotion section. The process then proceeds to step 270.
In step 270, the fuel injection period is extended in the manner as shown in FIGS. 5A to 5C. That is, the fuel injection start timing is shifted to the advancement side as shown in FIG. 5B, and the fuel injection completion timing is shifted to the retarded side as shown in FIG. 5C. Then the fuel injection quantity is not calculated under the aforementioned control. The period from the fuel injection start timing to the fuel injection completion timing as being set in FIGS. 5B and 5C is set to the fuel injection period.
As the fuel injection period is extended after the determination is made with respect to the sufficient warm-up state of the internal combustion engine to effectively avoid the covering or smoldering of the spark plug, the fuel injection can be sufficiently performed while preventing the covering nor smoldering of the spark plug.
The period from 390° CA to 60° CA is exemplified as the fuel injection period shown in FIGS. 5B and 5C. However, the fuel injection period may be set to be variable based on the detection signal of the water temperature sensor 61. In this case, it is preferable to set the fuel injection period to be variable in consideration with at least one of a condition where probability of the covering or smoldering of the spark plug varies with the warm-up state (state of cold start) of the internal combustion engine, and a condition where the quantity of the fuel required to start-up varies with the warm-up state (state of cold start) of the internal combustion engine.
If NO is obtained in step 200, that is, it is determined that the internal combustion engine is not at the start-up timing, or each process in steps 230, 250, and 270 is completed, the control routine ends.
In this embodiment, when the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 is detected, the control for reducing the fuel injection period is executed (see FIGS. 5A to 5C, time point t1). This makes it possible to avoid excessive increase in the fuel concentration within the cylinder and avoid the fuel injection at the crank angle at which the covering or smoldering is likely to occur. The fuel injection control while reducing the fuel injection period makes it possible to warm up the internal combustion engine 1. When the crank rotational speed exceeds the rotational speed NE2, the internal combustion engine 1 is warmed up, and the fuel can be easily atomized. If it is determined that the covering or smoldering of the spark plug hardly occurs, the fuel injection period is extended (see FIG. 5A to 5C, time point t2). This makes it possible to promote the injection of the fuel sufficient to promote the start-up of the internal combustion engine 1.
In the case where the fuel injection control is executed in the manner as shown in FIG. 4 without reducing the fuel injection period, the crank rotational speed becomes as shown by the chain line of FIG. 5A, that is, the start-up may fail. Especially when the start-up of the engine is tried at an excessively low temperature, for example, at −15° C., it is difficult to succeed in the start-up operation. In this case, at the time point t1 and thereafter at which the initial combustion of the fuel injected into the cylinder of the engine 1 occurs, the actual time period corresponding to the allowable crank angle range (390° CA to 60° CA) is reduced resulting from the increase in the rotational speed of the crankshaft 2. When the actual time period is reduced, the fuel injection control is executed whole through the allowable crank angle range. Then the fuel injection may be continued even at the crank angle at which the covering or moldering of the spark plug is likely to occur. Accordingly, the concentration of the fuel that is not subjected to the combustion in the internal combustion engine 1 is increased. This may cause misfire in the internal combustion engine, interfering with the start-up operation.
According to the embodiment, the following advantageous effects may be obtained.
(1) When the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 is detected, the control for reducing the fuel injection period is executed. This makes it possible to avoid the excessive increase in the fuel concentration in the cylinder as well as avoid the fuel injection at the crank angle at which the covering or moldering of the spark plug is likely to occur.
(2) When the crank rotational speed exceeds the predetermined rotational speed NE2, the internal combustion engine 1 is warmed up. This makes it possible to atomize the fuel. When it is determined that the covering or smoldering of the spark plug hardly occurs, the fuel injection period is extended. Thereafter, sufficient quantity of the fuel can be injected for the start-up operation of the internal combustion engine.
(3) The fuel injection timing is set in accordance with the crank rotational speed within the allowable crank angle range until the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 occurs. This makes it possible to inject the appropriate quantity of the fuel at the appropriate timing determined in accordance with the crank rotational speed.
The embodiment may be modified in the following way.
In the aforementioned embodiment, the control for reducing the fuel injection period is executed by a predetermined time period (warm-up period) from the detection of the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1 to the moment when the crank rotational speed exceeds the rotational speed NE2. The starting point at which the fuel injection period is reduced is not limited, but may be set to an appropriate point after the detection of the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1. For example, the starting point may be set to the one after the detection of the initial combustion of the fuel injected into the cylinder of the internal combustion engine 1, and the fuel injection timing is set for each of the cylinders in the manner as shown in FIG. 4.
In the aforementioned embodiment, the fuel injection period is extended after the crank rotational speed exceeds the predetermined rotational speed NE2. However, it is understood that the control is not limited to the aforementioned mode. The frequency of the combustion within each of cylinders in the internal combustion engine is obtained through monitoring of the crank rotational speed. The control for extending the fuel injection period may be executed when the obtained frequency becomes equal to or lower than the predetermined value. More specifically, the determination as to whether the internal combustion engine 1 is warmed up to the degree where the covering or smoldering of the spark plug hardly occurs may be made based on an appropriate parameter even under the control for extending the fuel injection period.
The control for reducing the fuel injection period immediately after the initial combustion (compared with the case after passage of a predetermined period) may be executed so as to restrain the covering or smoldering of the spark plug.
The fuel injection control mode executed until detection of the initial ignition of the fuel injected into the cylinder of the internal combustion engine 1 is not limited to the example as shown in FIG. 4. For example, the allowable crank angle range as indicated in FIG. 4 may be set as the fuel injection timing. In this case, the fuel injection quantity does not have to be calculated at an advanced crank angle of 450° CA.
In the aforementioned embodiment, the control for reducing the fuel injection timing is executed for a predetermined period (warm-up period). However, the allowable crank angle range where the fuel injection is allowed may be reduced in place of reducing the fuel injection period. In this case, the fuel injection quantity is calculated in the manner as shown in FIG. 4.
In the aforementioned embodiment, the control for extending the fuel injection period is executed after passage of the predetermined period (warm-up period) in which the fuel injection period is reduced. However, the allowable crank angle range where the fuel injection is allowed may be extended in place of extending the fuel injection period. In this case, the fuel injection quantity is calculated in the manner as shown in FIG. 4.
In the aforementioned embodiment, the control routine for the fuel injection shown in FIGS. 2 and 3 is always executed at the start-up operation. The control routine, however, may be executed upon establishment of at least one of the operating environment and the operating state of the internal combustion engine. For example, the control routine may be executed when the temperature of the cooling water is equal to or lower than a predetermined temperature.
The process for making the fuel injection period to be reduced or extended variable is executed based on the cooling water temperature in the aforementioned embodiment. However, such process may be executed arbitrarily so long as it is executed based on at least one of the operating state and the operating environment of the internal combustion engine.
In the aforementioned embodiment, the determination is made as to whether the high pressure fuel pump 20 is controlled based on the cooling water temperature upon the start-up control. However, such determination may be made based on the operating state or the operating environment of the internal combustion engine 1, which is derived from appropriate parameters. Alternatively the control of the high pressure fuel pump 20 may be interrupted upon the start-up control irrespective of the operating state or the operating environment of the internal combustion engine 1.
In the aforementioned embodiment, the fuel injection period or the allowable crank angle range is reduced in the predetermined period (warm-up period) to be set after the initial combustion of the fuel injected into the cylinder of the internal combustion engine. However, the instructing value used to control the fuel injection quantity may be forcibly reduced within the predetermined period. This makes it possible to avoid the excessive increase in the concentration of the fuel in the cylinder. The decrease in the command value of the fuel injection quantity makes it possible to perform the fuel injection at the crank angle other than the one at which the covering or the smoldering of the spark plug is likely to occur.
In the aforementioned embodiment, the ECU 50 serves to execute the control for extending the allowable crank angle range after passage of the predetermined (warm-up) period, or calculate the fuel injection quantity. However, an arbitrary hardware exclusively used for executing the above-described control may be employed in place of the ECU 50.
The fuel injection period or the timing for calculating the fuel injection period is not limited to the one as being exemplified in the embodiment. Further the structure of the high pressure fuel pump or the internal combustion engine is not limited to the one as shown in FIG. 1.

Claims (16)

1. A fuel injection control apparatus for an in-cylinder injection type internal combustion engine for controlling a quantity of fuel to be directly injected into a cylinder upon start-up of the internal combustion engine, the fuel injection control apparatus comprising:
a controller that sets an allowable crank angle range that allows the fuel injection within a time period running from an initial combustion of the fuel injected upon the start-up of the internal combustion engine for a predetermined period of time, and sets an extended allowable crank angle range after passage of the predetermined period of time until the completion of start-up, the extended allowable crank angle range being larger than the allowable crank angle range.
2. The fuel injection control apparatus according to claim 1, wherein the controller sets a fuel injection period within the predetermined period of time to the allowable crank angle range within the predetermined period of time.
3. The fuel injection control apparatus according to claim 1, wherein the controller sets a fuel injection period after passage of the predetermined period of time to the extended allowable crank angle range.
4. The fuel injection control apparatus according to claim 1, wherein the controller sets the predetermined period of time to a period that is taken for an engine speed of the internal combustion engine to exceed a predetermined engine speed.
5. The fuel injection control apparatus according to claim 1, wherein the controller makes the allowable crank angle range within the predetermined period of time variable in accordance with at least one of an operating environment and an operating state of the internal combustion engine upon the start-up thereof.
6. The fuel injection control apparatus according to claim 1, wherein the controller makes the extended allowable crank angle range variable in accordance with at least one of an operating environment and an operating state of the internal combustion engine upon the start-up thereof.
7. The fuel injection control apparatus according to claim 1, wherein the controller extends the allowable crank angle range prior to the predetermined period of time so as to be larger than the allowable crank angle range within the predetermined period of time.
8. A fuel injection control apparatus for an in-cylinder injection type internal combustion engine for controlling a fuel injection quantity upon start-up of the internal combustion engine, the fuel injection control apparatus comprising:
a calculating device that calculates a command value for controlling the fuel injection quantity into a cylinder of the internal combustion engine; and
a controller that executes a fuel injection control based on the calculated command value, wherein the controller:
forcibly decreases the command value for controlling the fuel injection quantity for a predetermined period of time running from an initial combustion of the fuel injected upon the start-up of the internal combustion engine until a completion of start-up; and
stops the forcible decrease in the command value after passage of the predetermined period of time.
9. A fuel injection control method for an in-cylinder injection type internal combustion engine for controlling a quantity of fuel to be directly injected into a cylinder upon start-up of the internal combustion engine, the fuel injection control method comprising the step of:
setting an allowable crank angle range that allows the fuel injection within a time period running from an initial combustion of the fuel injected upon the start-up of the internal combustion engine for a predetermined time period, and sets an extended allowable crank angle range after passage of the predetermined period of time until the completion of start-up, the extended allowable crank angle range being larger than the allowable crank angle range.
10. The fuel injection control method according to claim 9, wherein a fuel injection period within the predetermined period of time is set to the allowable crank angle range within the predetermined period of time.
11. The fuel injection control method according to claim 9, wherein a fuel injection period after passage of the predetermined period of time is set to the extended allowable crank angle range.
12. The fuel injection control method according to claim 9, wherein the predetermined period of time is set to a period that is taken for an engine speed of the internal combustion engine to exceed a predetermined engine speed.
13. The fuel injection control method according to claim 9, wherein the allowable crank angle range within the predetermined period of time is made variable in accordance with at least one of an operating environment and an operating state of the internal combustion engine upon the start-up thereof.
14. The fuel injection control method according to claim 9, wherein the extended allowable crank angle range is made variable in accordance with at least one of an operating environment and an operating state of the internal combustion engine upon the start-up thereof.
15. The fuel injection control method according to claim 9, wherein the allowable crank angle range prior to the predetermined period of time is extended so as to be larger than the allowable crank angle range within the predetermined period of time.
16. A fuel injection control method for an in-cylinder injection type internal combustion engine for controlling a fuel injection quantity upon start-up of the internal combustion engine, the fuel injection control method comprising the steps of:
calculating a command value for controlling the fuel injection quantity into a cylinder of the internal combustion engine; and
executing a fuel injection control based on the calculated command value, wherein:
the command value for controlling the fuel injection quantity is forcibly decreased for a predetermined period of time running from an initial combustion of the fuel injected upon the start-up of the internal combustion engine until a completion of start-up; and
the forcible decrease in the command value is stopped after passage of the predetermined period of time.
US10/692,723 2002-10-30 2003-10-27 Fuel injection control apparatus for in-cylinder injection type internal combustion engine and fuel injection control method Expired - Fee Related US6880521B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-315864 2002-10-30
JP2002315864A JP3772824B2 (en) 2002-10-30 2002-10-30 Fuel injection control device for in-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
US20040154583A1 US20040154583A1 (en) 2004-08-12
US6880521B2 true US6880521B2 (en) 2005-04-19

Family

ID=32171200

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/692,723 Expired - Fee Related US6880521B2 (en) 2002-10-30 2003-10-27 Fuel injection control apparatus for in-cylinder injection type internal combustion engine and fuel injection control method

Country Status (4)

Country Link
US (1) US6880521B2 (en)
JP (1) JP3772824B2 (en)
DE (1) DE10350661B4 (en)
FR (1) FR2847002B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050005900A1 (en) * 2003-07-08 2005-01-13 Nissan Motor Co., Ltd. Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
US20080114524A1 (en) * 2004-12-27 2008-05-15 Masanao Idogawa Fuel Injection Control Apparatus and Method For Direct Injection Internal Combustion Engine
US20100256893A1 (en) * 2009-04-06 2010-10-07 Yamaha Hatsudoki Kabushiki Kaisha Water jet propulsion watercraft

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100746817B1 (en) 2006-09-26 2007-08-06 지멘스 오토모티브 주식회사 Method for controlling pre- injection of fuel of car
US8584650B2 (en) * 2007-11-07 2013-11-19 Ford Global Technologies, Llc Ignition energy control for mixed fuel engine
DE102011075876A1 (en) * 2011-05-16 2012-11-22 Robert Bosch Gmbh Method for operating injection nozzle of injection system for internal combustion engine, involves increasing speed of internal combustion engine at reference idling speed by injection which is carried out through injection nozzle
US9435288B2 (en) 2012-12-07 2016-09-06 Ethanol Boosting Systems, Llc Port injection system for reduction of particulates from turbocharged direct injection gasoline engines
EP3516195A4 (en) * 2016-09-26 2020-11-18 Ethanol Boosting Systems LLC Gasoline particulate reduction using optimized port fuel injection plus direct injection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319865A (en) 1995-05-26 1996-12-03 Mitsubishi Motors Corp Fuel injection control device for internal combustion engine of intra-cylinder injection type
US5979400A (en) * 1996-09-10 1999-11-09 Nissan Motor Co., Ltd. Fuel injection control method and system in a direct injection type gasoline internal combustion engine
US6209515B1 (en) * 1998-07-15 2001-04-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine, controller and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013428A (en) * 2000-06-30 2002-01-18 Mitsubishi Motors Corp Cylinder injection internal combustion engine
DE10042551A1 (en) * 2000-08-30 2002-03-14 Volkswagen Ag Method for controlling direct fuel injection
FR2821122B1 (en) * 2001-02-20 2003-05-02 Siemens Automotive Sa PROCESS FOR CONTROLLING THE FUEL SUPPLY OF AN INTERNAL COMBUSTION ENGINE, DIRECT INJECTION

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08319865A (en) 1995-05-26 1996-12-03 Mitsubishi Motors Corp Fuel injection control device for internal combustion engine of intra-cylinder injection type
US5979400A (en) * 1996-09-10 1999-11-09 Nissan Motor Co., Ltd. Fuel injection control method and system in a direct injection type gasoline internal combustion engine
US6209515B1 (en) * 1998-07-15 2001-04-03 Toyota Jidosha Kabushiki Kaisha Internal combustion engine, controller and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050005900A1 (en) * 2003-07-08 2005-01-13 Nissan Motor Co., Ltd. Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
US6978759B2 (en) * 2003-07-08 2005-12-27 Nissan Motor Co., Ltd. Start-up control of in-cylinder fuel injection spark ignition internal combustion engine
US20080114524A1 (en) * 2004-12-27 2008-05-15 Masanao Idogawa Fuel Injection Control Apparatus and Method For Direct Injection Internal Combustion Engine
US7650875B2 (en) * 2004-12-27 2010-01-26 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and method for direct injection internal combustion engine
US20100256893A1 (en) * 2009-04-06 2010-10-07 Yamaha Hatsudoki Kabushiki Kaisha Water jet propulsion watercraft
US8886442B2 (en) * 2009-04-06 2014-11-11 Yamaha Hatsudoki Kabushiki Kaisha Water jet propulsion watercraft

Also Published As

Publication number Publication date
FR2847002A1 (en) 2004-05-14
DE10350661B4 (en) 2010-05-12
JP3772824B2 (en) 2006-05-10
JP2004150338A (en) 2004-05-27
FR2847002B1 (en) 2011-05-20
DE10350661A1 (en) 2004-05-19
US20040154583A1 (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US7706961B2 (en) Diesel engine system and method of controlling diesel engine
US8924136B2 (en) Device and method for controlling start of compression self-ignition engine
US8991347B2 (en) Starting device of spark-ignition multi-cylinder engine
US7040304B2 (en) Method for operating an internal combustion engine
US20090271095A1 (en) Starting System and Method of Internal Combustion Engine
US7801672B2 (en) After-stop fuel pressure control device of direct injection engine
US9903332B2 (en) Control device of multi-cylinder internal combustion engine
US7308887B2 (en) Controller for direct-injection internal combustion engine and method of controlling the direct-injection internal combustion engine
US8965667B2 (en) Engine startup method
JP2003514186A (en) Method of controlling starting of a direct injection internal combustion engine
JP3090073B2 (en) Fuel injection control device for in-cylinder injection internal combustion engine
JP5900150B2 (en) Start control device for in-cylinder internal combustion engine
US6880521B2 (en) Fuel injection control apparatus for in-cylinder injection type internal combustion engine and fuel injection control method
US20160245196A1 (en) Control device of vehicle
EP1840369A1 (en) Engine starting system
JP2010203414A (en) Control device for internal combustion engine
US9869260B2 (en) Control device of multi-cylinder internal combustion engine
EP2570649A1 (en) Control device for diesel engine
JP2007113521A (en) Control apparatus of variable valve system
JP2005147019A (en) Fuel pressure control device for cylinder injection type internal combustion engine
JP2009222002A (en) Automatic stop device for diesel engine
JP5994653B2 (en) Spark ignition multi-cylinder engine starter
JPH04246259A (en) Fuel injection controller for diesel engine
US11629659B2 (en) Methods and system to shutdown an engine
JP2008297949A (en) Start control device of internal combustion engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAEMURA, JUN;REEL/FRAME:014645/0838

Effective date: 20031006

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20170419