US6872439B2 - Adhesive microstructure and method of forming same - Google Patents

Adhesive microstructure and method of forming same Download PDF

Info

Publication number
US6872439B2
US6872439B2 US10/197,763 US19776302A US6872439B2 US 6872439 B2 US6872439 B2 US 6872439B2 US 19776302 A US19776302 A US 19776302A US 6872439 B2 US6872439 B2 US 6872439B2
Authority
US
United States
Prior art keywords
stalks
surface
protrusion
microns
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US10/197,763
Other versions
US20030208888A1 (en
Inventor
Ronald S. Fearing
Metin Sitti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US38059502P priority Critical
Application filed by University of California filed Critical University of California
Priority to US10/197,763 priority patent/US6872439B2/en
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SITTI, METIN, FEARING, RONALD S.
Publication of US20030208888A1 publication Critical patent/US20030208888A1/en
Publication of US6872439B2 publication Critical patent/US6872439B2/en
Application granted granted Critical
Assigned to NAVY, UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF, THE reassignment NAVY, UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF, THE CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: REGENTS OF THE UNIVERTIY OF CALIFORNIA, THE
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B18/00Fasteners of the touch-and-close type; Making such fasteners
    • A44B18/0003Fastener constructions
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B18/00Fasteners of the touch-and-close type; Making such fasteners
    • A44B18/0046Fasteners made integrally of plastics
    • A44B18/0049Fasteners made integrally of plastics obtained by moulding processes
    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44BBUTTONS, PINS, BUCKLES, SLIDE FASTENERS, OR THE LIKE
    • A44B18/00Fasteners of the touch-and-close type; Making such fasteners
    • A44B18/0046Fasteners made integrally of plastics
    • A44B18/0061Male or hook elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools, brushes, or analogous members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0028Cleaning by methods not provided for in a single other subclass or a single group in this subclass by adhesive surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0059Constitution or structural means for controlling the movement not provided for in groups B81B3/0037 - B81B3/0056
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS, WEDGES, JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/005Means to increase the friction-coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS, WEDGES, JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/07Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of multiple interengaging protrusions on the surfaces, e.g. hooks, coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09J2201/60Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups by other properties
    • C09J2201/626Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups by other properties the adhesive effect being based on a so-called Gecko structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/27Buckles, buttons, clasps, etc. including readily dissociable fastener having numerous, protruding, unitary filaments randomly interlocking with, and simultaneously moving towards, mating structure [e.g., hook-loop type fastener]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T24/00Buckles, buttons, clasps, etc.
    • Y10T24/27Buckles, buttons, clasps, etc. including readily dissociable fastener having numerous, protruding, unitary filaments randomly interlocking with, and simultaneously moving towards, mating structure [e.g., hook-loop type fastener]
    • Y10T24/2742Buckles, buttons, clasps, etc. including readily dissociable fastener having numerous, protruding, unitary filaments randomly interlocking with, and simultaneously moving towards, mating structure [e.g., hook-loop type fastener] having filaments of varied shape or size on same mounting surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/23943Flock surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24008Structurally defined web or sheet [e.g., overall dimension, etc.] including fastener for attaching to external surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24174Structurally defined web or sheet [e.g., overall dimension, etc.] including sheet or component perpendicular to plane of web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2978Surface characteristic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Abstract

A fabricated microstructure comprising at least one protrusion capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons. A stalk supports the protrusion at an oblique angle relative to a supporting surface. The microstructure can adhere to different surfaces.

Description

RELATED APPLICATIONS

This application claims the benefit of the earlier filing date of U.S. Provisional Application No. 60/380,595, filed May 13, 2002, which is incorporated herein by reference.

TECHNICAL FIELD

This invention was made with Government support under Grant (Contract) No. N66001-01-C-8072 awarded by DARPA. The Government has certain rights to this invention.

BRIEF DESCRIPTION OF THE INVENTION

This invention relates generally to the fabrication and use of micro- and nano-scale structures. More particularly, this invention relates to a fabricated adhesive microstructure.

BACKGROUND

There is an ongoing need for improved adhesives. Improved adhesives have applications ranging from everyday aspects of life (e.g., tape, fasteners, and toys) to high technology (e.g., removal of microscopic particles from semiconductor wafers, transporting fiber optic devices, and assembly of sub-mm mechanisms, particularly those including micro-fabricated components, or components that cannot tolerate regular grippers, adhesives, or vacuum manipulators).

Adhesive mechanisms in nature have been studied, but have not been fully understood or exploited. For example, geckos are exceptional in their ability to rapidly climb up smooth vertical surfaces. The mechanism of adhesion used in geckos, Anolis lizards, some skinks, and some insects, has been debated for nearly a century.

It would be highly desirable to identify and exploit the adhesive force mechanism utilized by geckos and other insects. Such information could result in the use of new adhesive microstructures and the fabrication of such structures.

SUMMARY

In one aspect, an embodiment of the invention features a fabricated microstructure. The microstructure comprises at least one protrusion capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons. The stalk supports the protrusion at an oblique angle relative to a supporting surface, whereby the microstructure can adhere to different surfaces.

In another aspect, an embodiment of the invention features a microstructure comprising a plurality of protrusions. Each protrusion is capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons. A stalk supports each of the protrusions at an oblique angle relative to a supporting structure.

Various implementations of the invention may include one or more of the following features. The stalk has a length of between about 0.5 and 20 microns, and a diameter of between about 50 nanometers and 2.0 microns. The protrusions adhere to the surface by intermolecular forces. The oblique angle is between about 50 and 75 degrees, between about 30 and 60 degrees, or is about 30 degrees.

In yet another aspect, an embodiment of the invention features a fabricated microstructure comprising an array of protrusions. The array has a width less than about 10 microns and each protrusion of the array is capable of providing an adhesive force at a surface by intermolecular forces. Stalks support each of the protrusions at an oblique angle relative to a supporting shaft.

Various implementations of the invention may include one or more of the following features. The stalk has a length of between about 0.5 and 20 microns, and a diameter of between about 50 nanometers and 2.0 microns. The shaft has a length of between about 1 and 500 microns, and a diameter of between about 1 and 10 microns.

In still another aspect, an embodiment of the invention features a fabricated microstructure comprising an array of members. Each member supports an protrusion at an oblique angle relative to the supporting surface. Each protrusion is capable of providing adhesive force at a surface of between about 60 and 2,000 nano-Newtons.

Various implementations of the invention may include one or more of the following features. A terminal end of the protrusion may have a shape selected from the group consisting of a curved segment of a sphere, a flattened segment of a sphere, a sphere, a flattened surface, and an end of a cylinder.

In still another aspect, an embodiment of the invention features a fabricated microstructure comprising an array of stalks. The stalks have a diameter of between about 50 nanometers and 2.0 microns, and a length of between about 0.5 microns and 20 microns. Each stalk supports a spatula at an oblique angle relative to a supporting surface. The spatula has a terminal end that provides an adhesive force.

In a further aspect, an embodiment of the invention features a fabricated microstructure comprising a plurality of shafts extending at an oblique angle from a supporting surface. A plurality of stalks extend at an oblique angle from an end of the shafts opposite the shaft ends adjacent to the supporting surface. At least one protrusion is formed at the end of the stalk ends opposite the stalk ends adjacent to the shafts. The protrusion is capable of providing an adhesive force at a surface by intermolecular forces.

Various implementations of the invention may include one or more of the following features. The diameter of the shaft is between about 1 and 10 microns, and the length of the shaft is between about 1 and 500 microns. The diameter of the stalks is between about 50 nanometers and 2.0 microns, and the length of the stalks is between about 0.5 and 20 microns. The angle at which the stalks extend from the shafts is between about 50 and 75 degrees, 30 and 60 degrees, or is about 30 degrees. The supporting surface is flexible. A terminal end of the protrusion is capable of providing an adhesive force of between about 60 and 2,000 nano-Newtons. The protrusion has a Young's modulus of between about 0.1 and 20 giga-Pascals. The protrusion is hydrophobic.

In yet another aspect, an embodiment of the invention features a method of fabricating an adhesive microstructure. The method comprises fabricating an array of stalks and forming said array of stalks such that the stalks support a protrusion obliquely relative to a supporting surface wherein the protrusion can provide an adhesive force at a surface.

Various implementations of the invention may include one or more of the following features. The array of stalks is constructed using a template. The template is molded with a polymer. The template is sheared under stress and a temperature to deform it. The template is polished at an angle. The array of shafts are constructed using an imprinting technique.

In another aspect, an embodiment of the invention features a method of fabricating an adhesive microstructure comprising molding a structure having shafts supporting a plurality of stalks at an oblique angle. The structure is removed to provide a template. The template is molded with a polymer, and the template is separated from the polymer to form the microstructure.

Various implementations of the invention may include one or more of the following features. The shafts comprise micro-scale, high aspect ratio members and the stalks comprise nano-scale, high aspect ratio members. The polymer is a liquid polymer or sputtered polymer.

In yet another aspect, an embodiment of the invention features a method of fabricating an adhesive microstructure comprising joining a first template having a first set of pores that have a first diameter and that are at an oblique angle relative to a surface of the first template to a second template. The second template has a second set of pores that have a second diameter less than the first diameter, and the second set of pores form an oblique angle relative to the first set of pores. The first and second templates are molded, and the templates are removed to form the microstructure.

Various implementations of the invention may include one or more of the following features. The first set of pores have a diameter between about 1 and 10 microns, and a length between about 1 and 500 microns. The second set of pores have a diameter between about 50 nanometers and 2.0 microns, and a length between about 0.50 and 20 microns. The first and second templates are molded with a polymer. The first and second templates are joined by bonding.

In still another aspect, an embodiment of the invention features a method of fabricating an adhesive microstructure comprising self-assembling a nano-pore array including two different polymers. The array is sheared and one of the polymers is removed to form a microstructure having an array of stalks with the stalks able to support at least one protrusion at an oblique angle. The protrusion provides an adhesive force at a surface by intermolecular forces.

Certain embodiments of the invention can include one or more of the following advantages. A fabricated microstructure provides improved adhesion to rough surfaces, while being relatively easy to disengage by peeling or pushing. The so-called “hairs” of the fabricated microstructure can be packed in a relatively dense array, while not matting to each other.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects and advantages of the invention will be apparent from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

For a better understanding of the invention, reference should be made to the following detailed description taken in conjunction with the accompanying drawings, in which:

FIG. 1A is an enlarged schematic view of a single extended surface of a fabricated spatula or protrusion on a stalk, in accordance with an embodiment of the invention.

FIG. 1B is an enlarged schematic view of a single extended surface of a fabricated spatula or protrusion on a stalk, in accordance with another embodiment of the invention.

FIG. 2 is an enlarged view of a single gecko seta.

FIG. 3 schematically illustrates a pair of stalks with a spatula or protrusion at their ends.

FIG. 4 graphically illustrates maximum stalk length for a given stalk radius to avoid matting.

FIG. 5 schematically illustrates a Coulomb friction model with adhesion.

FIG. 6A is a cantilever model for an adhesive microstructure in accordance with an embodiment of the invention.

FIG. 6B schematically illustrates the forces on the spatula or protrusion of the microstructure of FIG. 6A.

FIGS. 7A and 7B schematically illustrate contact friction force dependence on spatula or protrusion sliding direction.

FIG. 8 graphically illustrates maximum displacement Δn dependence on cantilever angle.

FIG. 9 schematically illustrates different cantilever angles for a fabricated adhesive microstructure.

FIG. 10 graphically illustrates predicted normal force at a spatula or protrusion, in accordance with an embodiment of the invention, for quasi-static sliding contact.

FIG. 11 schematically illustrates a compounded cantilever fabricated adhesive microstructure under tension and release, in accordance with an embodiment of the invention.

FIG. 12 schematically illustrates a single layer patch or array design of a fabricated adhesive microstructure, in accordance with an embodiment of the invention.

FIGS. 13A-13C schematically illustrate a template fabricated by molding already existing or fabricated high aspect ratio micro/nano-structures, in accordance with an embodiment of the invention.

FIGS. 14A-14C schematically illustrate a technique for forming a template by mechanically indenting a surface at an angle and then molding it.

FIG. 15 schematically illustrates forming a fabricated adhesive microstructure by shearing a template molded with a polymer.

FIG. 16 schematically illustrates polishing both sides of a template to produce a fabricated adhesive microstructure.

FIG. 17 schematically illustrates bonding micro- and nano-hair templates and molding them to form a fabricated adhesive microstructure.

Like reference numerals refer to corresponding parts throughout the drawings.

DETAILED DESCRIPTION

The invention is directed toward the use of microfabricated structures to achieve adhesion. In particular, the invention uses a fabricated seta-like structure. As shown in FIGS. 1A and 1B, a seta-like structure 10 includes a stalk 12. Positioned at an end of the member or stalk 12 is a spatula or protrusion 14. An array of spatulae or protrusions may also be located at the end of the stalk. The stalk supports the spatula, or an array of spatulae, at an oblique angle (neither perpendicular nor parallel) relative to a supporting surface 16. This angle may be between about 15 and 75 degrees (°), and more preferably between about 30° and 60°. This angle, in one embodiment, is 30°.

The supporting surface 16, for instance, may be a shaft or substrate. As shown in FIGS. 1A and 1B, the supporting surface 16 is a flexible or compliant substrate. This substrate may be made from such materials as polymers, for example, polyester, polyurethane and polyimide.

Ideally, each spatula 14 or each spatula of the array of spatulae has an extended surface 18 at its terminal end. The extended surface may be in the form of a paddle or flattened surface (FIG. 1A), a flattened segment of a sphere, a sphere, an end of a cylinder, or a curved segment of a sphere (FIG. 1B). Adhesion is produced as the spatula or array of spatulae produce intimate contact with a surface.

In general, the stalk 12 is between about 0.5 microns (μm) and 20 μm in length. The diameter of the stalk is between about 50 nanometers (nm) and 2.0 μm. A supporting shaft (See FIG. 11), which can form a supporting surface as discussed in more detail below, may be about 1 and 500 μm long, preferably approximately 10 to 150 μm long. The diameter of the shaft is between about 1 and 10 μm.

The terminal end of the stalk has, as noted, at least one spatula or protrusion. A protrusion can provide an adhesive force at a surface of between about 60 and 2,000 nano-Newtons. As noted, a stalk may include an array of spatulae including, for instance, 100 protrusions. The seta structure 10 may have between 1 and 1,000 spatulae. An array of spatulae of the structure 10 is preferably less than 10 μm wide, preferably approximately 1 μm wide.

The force produced by a single seta of the invention can vary from approximately 60 nano-Newtons to 200 micro-Newtons (μN). As noted, a seta may include between 1 and 1,000 spatulae. Thus, the average force provided by each spatula or protrusion is between about 0.06 to 0.20 μN, or between about 60 and 200 nano-Newtons. The worst case performance would be a single spatula on a stalk with 60 nano-Newtons adhesion. A better case performance would be 1,000 spatulae on a stalk, each with 2 μN adhesion, with 10% sticking, so a net of 200 μN.

The adhesive force of a seta from a Tokay gecko (Gecko gecko) depends upon its three-dimensional orientation (spatulae pointing toward or away from the surface) and the extent to which the seta is preloaded (pushed into and pulled along the surface) during initial contact. A pull parallel to the surface shows that the force produced by the inactive, non-spatular region increases with a normal or perpendicular force, typical of a material with a coefficient of friction equal to 0.2. By contrast, when the active spatular region is projecting toward the surface, the force increases by 20 to 60-fold. The force resulting from pulling the seta parallel to the surface during attachment increases when setae are first pushed toward the surface, providing a perpendicular preloading force. This initial perpendicular force need not be maintained during the subsequent pull. Setal force parallel to the surface increases linearly with the perpendicular preloading force.

Experiments in which naturally occurring seta were pulled away from the surface of a wire demonstrated that perpendicular preloading alone is insufficient to prevent the seta from being dislodged easily. Seta that were first pushed into the surface and then pulled parallel to it developed over ten times the force (13.6 μN±2.6 SD; N=17) upon being pulled away from the surface than those having only a perpendicular preload (0.6 μN±0.7 SD; N=17). The largest parallel forces were observed only following a few microns of sliding. The results of preloading on setal force production suggest that a small perpendicular preloading force in concert with a rearward displacement or parallel preload may be necessary to “engage” adhesion. Preloading is believed to increase the number of spatulae contacting the surface.

The orientation of the setae is also important in detachment. The force produced when a naturally occurring seta was pulled away from the surface was not significantly differently from the force measured during a pull parallel to the surface if the same perpendicular preload was given. However, it has been identified that setae detached at a similar angle (30.6°±1.8 SD; N=17) and force when pulled away from a sensor's surface. To check for the presence of a critical angle of detachment, the perpendicular force was held constant, while the setal angle was progressively increased until detachment. Setal angle at detachment changed by only 15% over a range of perpendicular forces. Thus, the detachment angle may be between about 25° and 35°. The detachment angle values are based upon the seta structure in which the shaft of the naturally occurring seta is roughly perpendicular to the spatular surface, as shown in FIG. 2, which is an enlarged view of a single gecko seta 20. This figure illustrates that a shaft 22 of the seta is roughly perpendicular to a naturally occurring spatulae 24 positioned at the end of the shaft 22. Change in the orientation of the setae and perhaps even the geometry of the spatulae may facilitate detachment.

The foot of a Tokay gecko (Gekko gecko) holds approximately 5000 setae mm−2 and can produce 10 N of adhesive force with approximately 100 mm2 of pad area. Therefore, each seta should produce an average force of 20 μN and an avenge stress of 0.1 N mm−2 (˜1 atm). The actual magnitudes are probably greater, since it is unlikely that all setae adhere simultaneously.

Single-seta force measurements suggest that if all setae were simultaneously and maximally attached, a single foot of a gecko could produce 100 N of adhesive force (−10 arm). Stated another way, the foot of a gecko could generate maximum observed force (10 N) with only 10% of its setae maximally attached.

A further discussion of the forces and characteristics of gecko seta is found in U.S. application Ser. No. 09/644,936, filed Aug. 23, 2000 now U.S. Pat. No. 6,787,160 B1, entitled ADHESIVE MICROSTRUCTURE AND METHOD OF FORMING SAME, assigned to the assignee of the subject application, and the entire disclosure of which is hereby incorporated by reference.

Recent results with real gecko hairs and artificial nano-bumps are consistent with a van der Waals hypothesis for adhesion. Artificial nano-bumps have shown adhesion forces of on the order of 100-300 nN for PDMS (silicone rubber) and polyester bumps with tip radius of 300 nm. Thus, with a bump density of 108 cm−2, an adhesion pressure of ≈3×105 N·m−2 could theoretically be obtained, which is sufficient for artificial wall-climbing. However, an array of artificial bumps, even with a compliant backing, will have difficulty adhering to a non-smooth surface. In fact, it is reasonable to assume that two rigid non-smooth planar surfaces will contact at only three points; thus, the adhesion of an array of nano-bumps will be quite minimal. Each nano-bump must be able to adapt to surface height variations. By making the bumps long and skinny, rough surfaces can be adhered to. The problem with long skinny bumps is that they are as likely to stick to each other as to a contacting surface, becoming hopelessly matted and tangled. Thus, they need to be made in such a way that they do not stick to each other. The present invention describes the design and fabrication of “hairs” which adhere well to surfaces yet do not stick to each other.

An end terminal 18 of the seta-like structure 10 is assumed to have a constant adhesion force of Fo=200 nN normal to a contacting surface, independent of contact angle. (This could correspond to the spherical spatula of FIG. 1B.) The end terminal is assumed to have dry Coulumb friction with a friction coefficient μ. Thus, the spatula 14 will slide if the tangential force at the spatula Ft is greater than μ(Fo−Fn), where Fn is the normal force component pulling the spatula off the surface. Quasi-static conditions (neglecting acceleration and dynamics) are also assumed, that is, Ft≈μ(Fo−Fn).

To prevent the setal stalks 12, which are assumed to be perfectly elastic, from sticking to each other, they need be spaced far enough apart and be made stiff enough. The adhesive force between the stalks is assumed to be equal to the adhesive force at the contacting surface. The adhesive force is also considered to be independent of stalk diameter, as the true contact radius at the terminal end of the stalk will be hard to control. A point load Fo is assumed to be present at the end of a cantilever where Fo is the adhesive force of a spatula 14 (≈200 nN), as shown in FIG. 3.

First, make sure the stalk is long enough that the extension of the stalk does not need to be considered. A springy stalk might be possible; however, this requires a different set of equations. Let stalk length and radius be l and r, respectively. Choose l, r such that the stiffness kx is much greater than the stiffness ky. For a cylindrical cantilever with modulus EPE, and moment of inertia I=πr4/4, Δ y = F y l 3 3 E PE I ( 1 )
Thus, the lateral stiffness is: k y = F y Δ y = 3 π r 4 E PE 4 l 3 ( 2 )
The stiffness along the beam axis is: k x = π r 2 E PE l ( 3 ) k x k y = 4 l 2 3 r 2 ( 4 )
Then the ratio of axial to lateral stiffness is:
To obtain a 100:1 ratio in stiffnesses, simply use l>9 r.

Second, the stalks must be spaced far enough apart that the spatula would prefer to stick to another surface rather than to each other. As shown in FIG. 3, the stalks 12 are Δ apart, hence Fo must be less than kyΔ/2. Now given the adhesion force of a single spatula 14, the modulus of elasticity, the stalk length and radius, the minimum spacing can be determined: Δ 8 F o l 3 3 π r 4 EpE ( 5 )
Of course, Equation (5) only makes sense for Δ>2 r, the spacing greater than the stalk diameter, for approximately square lattice or array packing. This equation should also keep the stalks from buckling, since they are stiff enough to overcome the adhesion force.

Now the adhesion pressure Padh can be calculated based on the force of each spatula and the area taken by each spatula stalk: P adh = F o Δ 2 = 9 π 2 E PE 2 64 F o ( r 8 l 6 ) ( 6 )

Equation (6) provides the following interesting observations:

    • 1. Smaller Fo gives higher pressure. (With lower Fo stalks can have a smaller radius and be closer.);
    • 2. Stiffer stalks allow greater packing density; and
    • 3. Short, fat stalks give higher adhesion pressure. (However, short fat stalks are bad for adhering to rough surface.)
      All of these observations depend on the assumption of avoiding sticking between stalks.

For the last step, a relationship between l and r is fixed to obtain a desired Padh. A maximum stalk radius for a square lattice can be found from: r max = 1 2 F o P adh ( 7 )
using minimum area of 4 r2. Solving Equation (6) for r, l gives: r 4 l 3 = 64 P adh F o 9 π 2 E PE 2 = 8 3 π E PE P adh F o = l o ( 8 )
where lo is a constant with units of length. Thus, for a desired contact pressure, and stalk length 1, the following is given: r = l o 1 4 l 3 4 or l = l o - 1 3 r 4 3 ( 9 )

The parameters for polyester and PDMS stalks are shown in Table 1. Note that the PDMS stalk is basically a bump, so it will not provide very useful adhesion except to a perfectly planar surface.

TABLE 1
Parameter Polyimide Polyester PDMS
Young's modulus 2 GPa 850 MPa 600 kPa
adhesion force F0 200 nN (?) 200 nN 200 nN
lmax (Padh = 50 kPa, rmax = 1 μm) 28 μm 20 μm 1.9 μm
lmax (Padh = 100 kPa, rmax = 0.7 μm) 16 μm 12 μm 1.1 μm

FIG. 4 shows the maximum stalk length for a given stalk radius to avoid stalks sticking together. It is interesting to note that with r=0.15 μm, the stalk length is only 1 μm. Hence, a two level structure of longer, stiffer base shafts may be used with fine terminal stalks (spatular hairs) to match rough surfaces.

During preload, the stalks may contact a rough surface at different heights, with a height variation Δn. The stiffness of the stalks should be set such that the pull-off force Fn=knΔn of a stalk is less than the adhesion force Fo. Otherwise, the stalks will pull off when the array is loaded.

The stalks may also be subject to normal displacement during station keeping. When the stalks initially make contact with a surface, the local surface normals may be pointing such that the stalks slide. During station keeping, there may be local sliding within an array, also causing height variation Δn.

Referring to FIG. 5, the limiting friction force Ft is assumed to be proportional to the normal force Fn. Any difference between sliding and static coefficients of friction is ignored. An applied normal force less than the adhesive force (Fn<Fo) attempts to pull the spatula 14 off the surface 18. For quasi-static sliding, the tangential force Ft is balanced by the friction force μ(Fo−Fn). Note that as the normal force Fn increases, the tangential force Ft required to slide the spatula decreases. For sliding without acceleration (the quasi-static assumption), Ft exactly balances the friction force. At pull off, the friction force drops to zero, and hence Ft→0.

The seta structure 10 is formed as a cantilever-like structure as shown in FIGS. 1A-1B and 6A-6B. As shown in FIG. 6B, Fr is the bending tension force pulling the spatula 14 away from the surface 18. Fθ is the axial reaction force of the stalk 12 in the compression direction. The axial stiffness is assumed orders of magnitude stiffer than the bending stiffness. Thus, the seta structure 10 has only one degree of freedom (motion Δr), with Δθ=0. It is permissible for multiple stalks in a patch or an array to slip on a surface. As long as contact is not broken, the stalks still contribute to net adhesive force.

As shown in FIGS. 7A AND 7B, if the 14 spatula slides (under quasi-static conditions), the force on the spatula is on either edge of the contact friction cone (angle±θs from the surface normal, where θs=tan−1 μ is the friction angle).

Using these assumptions, the maximum normal displacement Δn can be solved when contact breaks. For quasi-static equilibrium, the normal force Fn is equal to the pull-off force:
F n =F r cos θ+F θ sin θF o  (10)
At pull-off, since the friction force μ(Fo−Fn)=0,
F t =−F r sin θ+F θ cos θ=μ(F o −F n)=0  (11)
For quasi-static equilibrium, Equation (10) can be solved for Fθ:
Fθ=Fr tan θ  (12)
Thus, the maximum radial force (due to the cantilever spring) at pull-off is:
Fr=Fo cos θ  (13)
Now with bending stiffness kr, Fr=krΔr, and Δr=Δn/cos θ, the maximum stalk displacement before contact is broken is obtained: Δ n = F o k r cos 2 θ ( 14 )

Equation (14) has some interesting implications. Clearly if the stalks are normal to the surface, no surface roughness is allowed. If they are parallel to the surface, close to maximal compliance would be obtained, but there would not be room for many stalks. If there is significant contact friction, the friction allows a greater Δn, as would be expected, since then the adhesive contact has both normal and tangential components. The normal displacement Δn as a function of cantilever angle θ is shown in FIG. 8. It appears that θ=30° will give a reasonable compromise between surface roughness compatibility and spatula density. (Assumptions: Fo=100 nN, l=10 μm, r=0.25 μm for a polyimide stalk. A long stalk which gives Δn>5 μm violates conservative matting conditions.) Note that the large displacement violates the cantilever assumptions, but is still qualitatively appealing.

As shown in FIG. 9, a stalk 12 can be attached to a supporting surface 16 at various angles θ of 0°, 30° and 60°. Due to the compliance of the cantilever, the force in the {circumflex over (r)} direction Fr is controlled by the displacement Δr. The axial force along the stalk axis Fθ is a reaction force dependent on the applied force, adhesive force, friction coefficient and contact angle. For static contact, the net force Fr{circumflex over (r)}+Fθ{circumflex over (θ)} is inside the friction cone. For quasi-static sliding, the force is at either the left or right edge of the friction cone, depending on sliding direction. By changing the sliding direction (pushing or pulling the cantilever parallel to the surface), the reaction force Fθ changes. Thus, the normal force may increase, leading to breaking contact without explicitly pulling the spatula 14 away from the surface 18.

For quasi-static sliding (no acceleration), the tangential force Ft exactly balances the sliding friction force μ(Fo−Fn). For the spatula sliding left as in FIG. 7A, the normal force Fn and tangential force Ft are:
F n =F r cos θ+F θ sin θ  (15)
and
F t =−F r sin θ+F θ cos θ=μ(F o −F n)  (16)

For the spatula sliding right as in FIG. 7B, the normal force Fn and tangential force Ft are:
F n =F r cos θ−F θ sin θ  (17)
and
F t =F r sin θ+F θ cos θ=μ(F o −F n)  (18)

Solving for the normal force Fn, gives F n = F r ± μ F o sin θ cos θ ± μ sin θ ( 19 )
where + and − correspond to sliding left and right, respectively.

The normal force Equation (19) when sliding to the right has several possible implications. First, if Fr<μFo sin θ, the contact will need to be pushed into the surface to slide right since Fn<0. Perhaps this is helpful for preloading as the spatula will be encouraged to make contact. Second, the normal force is higher for sliding to the left, possibly increasing the tendency for the contact to pull off (See FIG. 10). (Assumptions: stalk is mounted at θ=30°, Fo=200 nN, μ=0.5). However, note that at pull-off, since the normal force exactly balances the adhesion force, the tangential force vanishes. Thus, friction should have no effect at pull-off. A third observation is that if the angle of the cantilevered stalk is changed while maintaining a constant Fr, the normal force becomes singular when θ=tan−11/μ. It is interesting to speculate that the spatular/setal stalk structure could act as a compound cantilever, thus changing angle when pushing compared to pulling.

As illustrated in FIG. 11, another embodiment of the invention is a multiple level or compound cantilever structure 30. Structure 30 includes a number of stalks 12 each supporting at least one protrusion or spatula 14 at the angle θ. The stalks are, in turn, supported by a larger shaft 32 at an angle θ1 relative to a supporting surface 34. Like the surface 16, the supporting surface 34 may be flexible or compliant. As noted, the length of the shaft is between about 1 and 500 μm, and the diameter of the shaft is between about 1 and 10 μm. The angle θ1, like θ, may be between about 15 and 75°.

For a non-matting cantilever structure, the stalks should be made of a relatively hard material and be less sticky, fatter and shorter to provide a high adhesive pressure. The stalks, as noted, are oblique to the supporting surface. They should also be compliant. Since friction modifies adhesive effect, changing contact shear loading may provide a partial quick release mechanism. Stalk attachment is quite robust to tangential displacement, but not to normal displacement.

For potential ease of fabrication, a single level design with long stalks as shown in FIG. 12 could be used. Here, the stalks 12 are mounted at angle θ of about 30° with l equal to about 10 μm, and r equal to about 0.25 μm. The stalks are made from polyimide. Due to the high aspect ratio and close packing, it may actually be easier to fabricate a two layer structure (FIG. 11), with thick shafts 32 stalks topped with branching small diameter stalks 12. With center-to-center spacing of about 1 μm between the shafts 32, a peak adhesive pressure of 105 Nm−2, with all hairs in contact, can be produced. With l=10 μm, local surface roughness of 2.5-5 μm depending on sliding direction can be tolerated. Thus, this structure could stick to relatively smooth surfaces such as cold-rolled steel sheet.

A goal is to fabricate biomimetric gecko foot hairs according to the design criteria discussed above. The difficulty of fabrication is that the hairs must be at an angle. With straight hairs, there is no tolerance for surface roughness. If hairs are very sticky and very compliant, they could bend over and stick on their side, but this would violate the matting condition.

Here, the shafts 32, the micro-scale part of the synthetic hairs, will be termed micro-hairs, and the stalks 12, supporting the spatulae 14, will be termed nanohairs.

The basic parameters of the synthetic hair fabrication can be summarized as follows: high aspect ratio micro (1:10-30) and nano (1:20-50) scale structure fabrication with diameters of 5-10 μm and 100-500 nm, respectively; as high as possible micro/nano hair density (number of micro and nano scale hairs in a given area, e.g. 1 cm2) for high adhesion; as stiff as possible nanohairs for holding the non-matting condition while as soft as possible hairs for maximum contact area and adhesion; material properties of synthetic hairs: Young's modulus: 0.1-20 giga-Pascals (GPa), hydrophobic, and high tensile strength; and micro/nano hairs oriented at an angle (15°-75°) for non-symmetric friction behavior and less buckling instability potential, and tolerance of rough surfaces.

Micro/nanohairs can be fabricated by two methods: nano-molding of fabricated templates and polymer self-assembly or synthetic growth (like in nature).

In the nano-molding based methods, a template that has micro and nano scale high aspect ratio holes representing the negative of the foot hairs can be molded with polymers. The following liquid polymers could be used: polyurethane, polyimide, silicone rubber (Dow Corning Inc., HS II), and polyester resin (TAP Plastics, Inc.). These polymers can be cured at room temperature with UV light or at high temperatures. Also, sputtered polymers, such as Parylene C and N, could be used.

There are a number of design parameters for the template. The template should have oriented or perpendicular holes with a very high aspect ratio (around 1:10-50). The hole diameter should be on the order of 100 nm to 10 μm. The hole length should be between about 3 and 200 μm.

Material properties of the template include resistance to high temperatures if high temperature curable polymers, such as polyimide, are used. The template should also be etchable by chemicals that do not etch polymers. The template should also have smooth top and bottom surfaces (roughness in the order of 1-10 nm) for possible bonding of different templates.

There are two main types of templates. The first is negative template that comprises a substrate with fabricated or self-organized high aspect ratio holes (partially or all along the thickness of the substrate), or printed micro/nano-structures.

Examples include Alumina (Nanopore, Whatman Inc.), polycarbonate (Poretics, Osmonics' Lab Inc.), and other porous material based self-organized membranes. Such templates have different pore diameters, densities and thicknesses of micro/nano-pores, Young's moduli, maximum possible temperatures before plastically deforming, and etching properties as given in Table 2.

TABLE 2
Pore Diameter Thickness Max. Temp. Pore Density
Material (μm) (μm) (° C.) (pores/cm2)
Alumina 0.02-02 60 200 109
Polycarbon- 0.02-10 7-14 140 105-108
ate

The first type of template can also be fabricated, for example, by imprinting the desired shape of the micro/nano-hairs using a single sharp probe such as AFM, STM, or glass pipette. An array of such probes or some other high aspect ratio micro/nano-structure array could also be used. Imprinting can be achieved by mechanically indenting a soft surface in a serial robotic process by automatic XYZ position control under an optical microscope or using force feedback in the AFM probe case; melting wax to fill the gaps of the structures; or filling gaps by a curable liquid (UV, high or room temperature curable).

Also, this first type of template may include substrates with micro/nano-holes fabricated using optical lithography, deep reactive ion etching (DRIE) with thermal oxidization processing, black silicon etching, laser micro/nano-machining, electron-beam lithography, nano-imprinting, or solf-lithography.

The second type of template is a positive template that is fabricated by molding already existing or fabricated high aspect ratio stiff micro/nano-structures that are not appropriate to use directly as a synthetic hair (Young's Modulus not in the range of 0.1-20 GPa). These micro/nano-structures, for instance, would be carbon nanotubes, nanowires, or nanorods. Molding of these structures is the same as the imprinting technique discussed above: mechanically indenting a soft surface; melting wax to fill the gaps of the structures; or filling gaps by a curable liquid, rubber or polymer (UV or high or room temperature curable).

As shown in FIGS. 13A-13C, micro/nano-structures can be molded by a melted wax or a liquid 48 (FIG. 13A). The original structure 50, as shown in FIG. 13B, is then removed, for example, by etching, to obtain the template 52. The template is then molded by a polymer 54, and the template is removed (FIG. 13C).

More specifically, the basic steps of this approach may be as follows. First, as discussed, fabricate the template 52 with micro and nano-scale high aspect ratio holes (FIGS. 13A and 13B). Next, mold the template with a polymer 54 and block the bottom layer by temporarily attaching a substrate 56 to it (FIG. 13C).

A liquid polymer can be poured under vacuum or in air over to the open side of the template. Electrokinetics type of electrostatic principle can be also used if a conductive polymer is chosen as the filling material. Alternatively, if the permittivity of the polymer is higher than the surrounding mold, an applied electric field could promote filling. Alternatively, for sputtered polymers, deposit the polymer, such as Parylene C or N, into the pores conformally. Finally, peel off the polymer or remove the template, for example, by etching. If wet etching is used, hydrophobic polymers in the etchant solution would stick to each other due to the hydrophobic attraction. Therefore, external excitation, such as ultrasonic vibration or proper surfactants for the given etchant, should be used during this process to minimize the self-sticking problem.

For another fabrication technique, nanohairs can be grown as organic carbon nanotubes or other synthetic nanotubes or nanowires that have Young's modulus and aspect ratio close to the required synthetic gecko hairs using CVD or other chemical synthesis methods. Additionally, block co-polymer self-assembly can be used to grow the synthetic hairs directly. In the block co-polymer method, a nano-pore array including two different polymers would be self-assembled. The array would then be sheared and one of the polymers removed to form an adhesive microstructure. For example, one of the polymer materials could be dissolved in an appropriate solvent, leaving the other material in a self-assembled hair structure.

Still another fabrication technique involves duplicating the biological gecko foot hairs directly. Biological hairs can be bonded to a substrate and then molded using wax or silicone rubber type of materials that can fill very small gaps and that can be cured at room or low temperatures, or using UV light. After curing, biological hairs can be peeled off or etched away using acids. Thus, a duplicate template of the hairs can be formed, and then this template is molded with polymers to get synthetic hairs with almost the exact shape as the real ones. Since gecko foot lamella can be peeled easily and be replaced by the animal with regular intervals, this process would be feasible, and also the template can be used many times before contamination.

As noted, the spatula or array of spatulae are supported obliquely by the stalks of the synthetic gecko hairs. The correct orientation of the spatula or array of spatulae may be achieved in a number of different ways.

For instance, as shown in FIGS. 14A-14C, a soft surface 40, such as a wax, may be indented by a sharp probe 42 at an angle and then molded with a polymer 44. Also, a molded template 60, as shown in FIG. 15, can be sheared under stress (arrow A) and at a specific temperature to plastically deform it to a desired angle θ. Alternatively, as shown in FIG. 16, a template 62 may be polished at each side at an angle to form the proper orientation of the hairs.

Another technique for orienting the spatula or protrusions is the dry etching (e.g. DRIE) of an inclined silicon wafer. Other techniques include: magnetic, electrostatic, (di) electrophoresis type of external force based orientation of magnetic, conductive, or dielectric nanorod, nanowire, nanotube micro/nano-structures on a substrate wherein oriented structures are molded with a wax or silicone rubber kind of materials to provide the template. The template is then molded with a polymer.

The above processes are focused on fabricating micro- or nano-scale synthetic oriented hairs. However, the nanohairs need to be integrated with microhairs to get the desired overall configuration.

Therefore, for instance, as shown in FIG. 17, micro and nanohair templates 64 and 66, respectively, with proper thickness and pore size and density, are fabricated separately and bonded to each other to get one template. For example, a polycarbonate Nucleopore membrane with 200 nm hole diameter can be bonded to another polycarbonate membrane or a silicon substrate with 6 μm hole diameter fabricated, for example, by DRIE.

Also, it is possible to fabricate oriented silicon or any other material microstructures with the same dimensions with synthetic gecko micro-hairs using micro-fabrication techniques. Then, grow oriented carbon nanotubes, nanowires or nanorods oriented with external magnetic or electric fields, directly on these microstructures. After this deposition or growth process, everything can be molded with wax or silicone rubber, for instance, to get the overall template.

After getting the overall template using the above techniques, both templates can be molded simultaneously with a polymer, deforming them under shear stress to get angles (FIG. 15), and then the template can be etched away to get the polymer hairs. Alternatively, the two micro and nano templates can be sheared at elevated temperatures before bonding them together.

The templates may be bonded, for example, under a vacuum or a compressive load. As noted, the templates may then be removed by etching with an etchant that removes the template material but not the material from which the hair structure is made.

Self-assembled oriented nanohairs can also be grown on a polymer substrate. Afterwards, the polymer substrate can be patterned using micro-fabrication techniques to provide microhairs under nanohairs directly.

Those skilled in the art will recognize that the adhesive microstructures of the invention may be used in a variety of ways. For example, the microstructures can be used in pick and place micromanufacturing, micromanipulation, and microsurgery applications. For example, a seta-like structure can be attached to a micromanipulator to pick up a fiber optic, move it, and put it down again. Other uses include manipulating retinal prosthesis implants/explants, attaching to nerves during surgery, and pick and place of silicon wafers or disk drive components.

The microstructures may also be used as clutch mechanisms in micromachines. Since they adhere in a directional manner, a microstructure could be used as a clutch mechanism similar to a ratchet, but on a smooth surface.

Other applications include: insect trapping, tape, robot feet or treads, gloves/pads for climbing, gripping, clean room processing tools, micro-optical manipulation that does not scar a surface and leaves no residue or scratches, micro-brooms, micro-vacuums, flake removal from wafers, optical location and removal of individual particles, climbing, throwing, and sticker toys, press-on fingernails, silent fasteners, a substrate to prevent adhesion on specific locations, a broom to clean disk drives, post-it notes, band aids, semiconductor transport, clothes fasteners, and the like. In many of these applications, patches of spatula on a planar substrate are used, as opposed to patches of spatula positioned on a shaft.

The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, obviously many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best use the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims (29)

1. A fabricated microstructure comprising:
at least one protrusion capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons;
a stalk to support said protrusion at an oblique angle relative to a supporting surface; and
wherein the microstructure is capable of adhering to different surfaces.
2. A fabricated microstructure comprising:
a plurality of protrusions, each protrusion capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons; and
a stalk to support each of said protrusions at an oblique angle relative to a supporting structure.
3. The fabricated microstructure of claim 2 wherein the stalk has a length of between about 0.5 and 20 microns, and a diameter of between about 50 nanometers and 2.0 microns.
4. The fabricated microstructure of claim 2 wherein said protrusions adhere to the surface by intermolecular forces.
5. The fabricated microstructure of claim 2 wherein the oblique angle is between about 15 and 75 degrees.
6. The fabricated microstructure of claim 5 wherein the oblique angle is between about 30 and 60 degrees.
7. The fabricated microstructure of claim 5 wherein the oblique angle is about 30 degrees.
8. A fabricated microstructure comprising:
an array of protrusions, said array having a width less than about ten microns and each protrusion of said array capable of providing an adhesive force at a surface by intermolecular forces; and
a stalk to support each of said protrusions at an oblique angle relative to a supporting shaft.
9. The fabricated microstructure of claim 8 wherein the stalk has a length of between about 0.5 and 20 microns, and a diameter of between about 50 nanometers and 2.0 microns.
10. The fabricated microstructure of claim 9 wherein the shaft has a length of between about 1 and 500 microns, and a diameter of between about 1 and 10 microns.
11. A fabricated microstructure comprising: an array of members;
each member supporting a protrusion at an oblique angle relative to a supporting surface; and
wherein each protrusion is capable of providing an adhesive force at a surface of between about 60 and 2,000 nano-Newtons.
12. The fabricated microstructure of claim 11 wherein a terminal end of the protrusion has a shape selected from the group consisting of a curved segment of a sphere, a flattened segment of a sphere, a sphere, a flattened surface, and an end of a cylinder.
13. A fabricated microstructure comprising: an array of stalks;
said stalks having a diameter of between about 50 nanometers and 2.0 microns, and a length of between about 0.5 microns and 20 microns;
each stalk supporting a spatula at an oblique angle relative to a supporting surface; and
the spatula having a terminal end that provides an adhesive force.
14. A fabricated microstructure comprising:
a plurality of shafts extending at an oblique angle from a supporting surface;
a plurality of stalks extending at an oblique angle from an end of the shafts opposite the shaft ends adjacent the supporting surface;
at least one protrusion formed at an end of the stalks opposite the stalk ends adjacent the shafts; and
wherein the protrusion is capable of providing an adhesive force at a surface by intermolecular forces.
15. The fabricated microstructure of claim 14 wherein the diameter of the shafts is between about 1 and 10 microns, and the length of the shafts is between about 1 and 500 microns.
16. The fabricated microstructure of claim 15 wherein the diameter of the stalks is between about 50 nanometers and 2.0 microns, and the length of the stalks is between about 0.5 and 20 microns.
17. The fabricated microstructure of claim 14 wherein the angle from which the stalks extend from the shafts is between about 15 and 75 degrees.
18. The fabricated microstructure of claim 17 wherein the angle from which the stalks extend from the shafts is between about 30 and 60 degrees.
19. The fabricated microstructure of claim 17 wherein the angle from which the stalks extend from the shafts is about 30 degrees.
20. The fabricated microstructure of claim 14 wherein the supporting surface is flexible.
21. The fabricated microstructure of claim 14 wherein a terminal end of the protrusion is capable of providing an adhesive force of between 60 and 2,000 nano-Newtons.
22. The fabricated microstructure of claim 14 wherein the protrusion has a Young's modulus of between about 0.1 and 20 giga-Pascals.
23. The fabricated microstructure of claim 14 wherein the protrusion is hydrophobic.
24. A method of fabricating an adhesive microstructure, said method comprising the steps of:
fabricating an array of stalks; and
said array of stalks formed such that the stalks support a protrusion obliquely relative to a supporting surface wherein the protrusion can provide an adhesive force of between about 60 and 2,000 nano-Newtons at a surface.
25. The method of claim 24 wherein said fabricating step includes the step of constructing said array of stalks using a template.
26. The method of claim 25 wherein said fabricating step includes molding said template with a polymer.
27. The method of claim 26 wherein said template is sheared under stress and a temperature to deform it.
28. The method of claim 26 wherein each side of said template is polished at an angle.
29. The method of claim 24 wherein said fabricating step includes the step of constructing said array of shafts using an imprinting technique.
US10/197,763 2002-05-13 2002-07-17 Adhesive microstructure and method of forming same Active US6872439B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US38059502P true 2002-05-13 2002-05-13
US10/197,763 US6872439B2 (en) 2002-05-13 2002-07-17 Adhesive microstructure and method of forming same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US10/197,763 US6872439B2 (en) 2002-05-13 2002-07-17 Adhesive microstructure and method of forming same
EP20030724578 EP1511618A4 (en) 2002-05-13 2003-05-13 An improved adhesive microstructure and method of forming same
AU2003230396A AU2003230396A1 (en) 2002-05-13 2003-05-13 An improved adhesive microstructure and method of forming same.
CA 2485717 CA2485717A1 (en) 2002-05-13 2003-05-13 An improved adhesive microstructure and method of forming same
JP2004503249A JP2006505414A (en) 2002-05-13 2003-05-13 Improved adhesion microstructures and methods of forming the same
PCT/US2003/015218 WO2003095190A1 (en) 2002-05-13 2003-05-13 An improved adhesive microstructure and method of forming same
US11/080,037 US7691307B2 (en) 2002-05-13 2005-03-14 Adhesive microstructure and method of forming same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/080,037 Division US7691307B2 (en) 2002-05-13 2005-03-14 Adhesive microstructure and method of forming same

Publications (2)

Publication Number Publication Date
US20030208888A1 US20030208888A1 (en) 2003-11-13
US6872439B2 true US6872439B2 (en) 2005-03-29

Family

ID=29406385

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/197,763 Active US6872439B2 (en) 2002-05-13 2002-07-17 Adhesive microstructure and method of forming same
US11/080,037 Active 2025-05-12 US7691307B2 (en) 2002-05-13 2005-03-14 Adhesive microstructure and method of forming same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/080,037 Active 2025-05-12 US7691307B2 (en) 2002-05-13 2005-03-14 Adhesive microstructure and method of forming same

Country Status (6)

Country Link
US (2) US6872439B2 (en)
EP (1) EP1511618A4 (en)
JP (1) JP2006505414A (en)
AU (1) AU2003230396A1 (en)
CA (1) CA2485717A1 (en)
WO (1) WO2003095190A1 (en)

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020100581A1 (en) * 1999-06-14 2002-08-01 Knowles Timothy R. Thermal interface
US20030209314A1 (en) * 2002-05-13 2003-11-13 Guo Lingjie J. Method of forming nanofluidic channels
US20040009353A1 (en) * 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US20040071870A1 (en) * 1999-06-14 2004-04-15 Knowles Timothy R. Fiber adhesive material
US20040076822A1 (en) * 2002-05-29 2004-04-22 Anand Jagota Fibrillar microstructure for conformal contact and adhesion
US20040250950A1 (en) * 2003-04-17 2004-12-16 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US20050092414A1 (en) * 2003-10-03 2005-05-05 Regents Of The University Of California Apparatus for friction enhancement of curved surfaces
US20050119640A1 (en) * 2003-10-03 2005-06-02 The Regents Of The University Of California Surgical instrument for adhering to tissues
US20050148984A1 (en) * 2003-12-29 2005-07-07 Lindsay Jeffrey D. Gecko-like fasteners for disposable articles
US20050172462A1 (en) * 2002-06-19 2005-08-11 Dickory Rudduck Fixing and release systems and fastener networks
US20050181629A1 (en) * 2003-09-08 2005-08-18 Anand Jagota Fibrillar microstructure and processes for the production thereof
US20050271870A1 (en) * 2004-06-07 2005-12-08 Jackson Warren B Hierarchically-dimensioned-microfiber-based dry adhesive materials
US20060005362A1 (en) * 2002-05-24 2006-01-12 Eduard Arzt Methods for modifying the surfaces of a solid and microstructured surfaces with encreased adherence produced with said methods
US20060078725A1 (en) * 1999-12-20 2006-04-13 The Regents Of University Of California Controlling peel strength of micron-scale structures
US20060122596A1 (en) * 2003-04-17 2006-06-08 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US20060144398A1 (en) * 2004-12-08 2006-07-06 Rajiv Doshi Respiratory devices
US20060163767A1 (en) * 2005-01-21 2006-07-27 Wisconsin Alumni Research Foundation Plastic cantilevers for force microscopy
US20060202355A1 (en) * 2004-11-19 2006-09-14 The Regents Of The University Of California Nanostructured friction enhancement using fabricated microstructure
US20060204738A1 (en) * 2003-04-17 2006-09-14 Nanosys, Inc. Medical device applications of nanostructured surfaces
US20060237126A1 (en) * 2005-04-07 2006-10-26 Erik Guffrey Methods for forming nanofiber adhesive structures
US20070064841A1 (en) * 2003-05-27 2007-03-22 Jan Tuma Method for producing a contact-fastening part
US20070063375A1 (en) * 2004-03-12 2007-03-22 Jan Tuma Process for creating adhesion elements on a substrate material
US7217059B1 (en) 1998-03-18 2007-05-15 Telezygology Pty Limited Fixing and release systems
WO2007061854A2 (en) * 2005-11-18 2007-05-31 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
US20070118951A1 (en) * 2005-11-14 2007-05-31 Brigitte Schwenner Massaging clothing
US20070235238A1 (en) * 2006-04-07 2007-10-11 Research Foundation Of The City University Of New York Modular wall climbing robot with transition capability
WO2007121450A2 (en) * 2006-04-17 2007-10-25 Arom Technologies, Inc. Device and method for handling an object of interest using a directional adhesive structure
US20070283962A1 (en) * 2006-06-07 2007-12-13 Ventus Medical, Inc. Layered nasal devices
US20070290387A1 (en) * 2004-10-08 2007-12-20 Wei Chen Lithography Processes Using Phase Change Compositions
US20070289786A1 (en) * 2006-04-17 2007-12-20 Cutkosky Mark R Climbing with dry adhesives
US20080014465A1 (en) * 2004-11-10 2008-01-17 The Regents Of The University Of California Actively switchable nano-structured adhesive
US20080070002A1 (en) * 2006-08-23 2008-03-20 The Regents Of The University Of California Symmetric, spatular attachments for enhanced adhesion of micro-and nano-fibers
US20080073323A1 (en) * 1999-12-20 2008-03-27 Full Robert J Adhesive microstructure and method of forming same
US20080142018A1 (en) * 2006-11-16 2008-06-19 Ventus Medical, Inc. Nasal device applicators
US20080142709A1 (en) * 2006-03-21 2008-06-19 Anirudha Vishwanath Sumant MONOLITHIC ta-C NANOPROBES AND ta-C COATED NANOPROBES
US20080169003A1 (en) * 2007-01-17 2008-07-17 Nasa Headquarters Field reactive amplification controlling total adhesion loading
US20080178436A1 (en) * 2007-01-25 2008-07-31 3M Innovative Properties Company Fastener webs with microstructured particles and methods of making same
US20080206641A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
US20080206631A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
US20080221470A1 (en) * 2007-03-07 2008-09-11 Elliot Sather Respiratory sensor adapters for nasal devices
US20080247214A1 (en) * 2007-04-03 2008-10-09 Klaus Ufert Integrated memory
US20080279659A1 (en) * 2007-05-07 2008-11-13 Lintec Corporation Transferring device and transferring method
US20080280085A1 (en) * 2006-06-25 2008-11-13 Oren Livne Dynamically Tunable Fibrillar Structures
US20080308953A1 (en) * 2005-02-28 2008-12-18 The Regents Of The University Of California Fabricated adhesive microstructures for making an electrical connection
US20080315459A1 (en) * 2007-06-21 2008-12-25 3M Innovative Properties Company Articles and methods for replication of microstructures and nanofeatures
EP2010959A1 (en) * 2006-02-28 2009-01-07 Hewlett-Packard Development Company, L.P. Method of forming a display
US20090041986A1 (en) * 2007-06-21 2009-02-12 3M Innovative Properties Company Method of making hierarchical articles
US20090050144A1 (en) * 2004-12-08 2009-02-26 Ryan Kendall Pierce Adhesive nasal respiratory devices
US20090097261A1 (en) * 2007-10-15 2009-04-16 Chunghwa Picture Tubes, Ltd. Multi-function optical film and polarizer
US20090114618A1 (en) * 2007-06-21 2009-05-07 3M Innovative Properties Company Method of making hierarchical articles
US20090145441A1 (en) * 2007-12-06 2009-06-11 Rajiv Doshi Delayed resistance nasal devices and methods of use
US20090145788A1 (en) * 2007-12-05 2009-06-11 Rajiv Doshi Packaging and dispensing nasal devices
US20090194109A1 (en) * 2008-02-01 2009-08-06 Rajiv Doshi Cpap interface and backup devices
US20090308398A1 (en) * 2008-06-16 2009-12-17 Arthur Ferdinand Adjustable resistance nasal devices
WO2009158631A1 (en) * 2008-06-26 2009-12-30 President And Fellows Of Harvard College Versatile high aspect ratio actuatable nanostructured materials through replication
US20100021647A1 (en) * 2006-12-14 2010-01-28 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US20100043814A1 (en) * 2008-08-20 2010-02-25 Hamano Miles M System and method for applying and removing cosmetic hair using biomimetic microstructure adhesive layer
US20100136281A1 (en) * 2006-12-14 2010-06-03 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US20100170533A1 (en) * 2006-08-11 2010-07-08 Nitto Denko Corporation Cleaning Member, Carrying Member with Cleaning Function, and Method of Cleaning Substrate Processing Equipment
US20100170524A1 (en) * 2007-05-29 2010-07-08 Harumi Kimura Apparatus for wearing a wig
US20100175716A1 (en) * 2006-08-11 2010-07-15 Nitto Denko Corporation Cleaning Member, Delivery Member with Cleaning Function, and Method of Cleaning Substrate Processing Apparatus
WO2010083554A1 (en) * 2009-01-20 2010-07-29 Cochlear Limited Medical device and fixation
US20100203323A1 (en) * 2007-09-11 2010-08-12 Nitto Denko Corporation Pressure-sensitive adhesive tape and method of producing the tape
US7803574B2 (en) 2003-05-05 2010-09-28 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7806120B2 (en) 2004-12-08 2010-10-05 Ventus Medical, Inc. Nasal respiratory devices for positive end-expiratory pressure
US20100319111A1 (en) * 2009-06-19 2010-12-23 Under Armour, Inc. Nanoadhesion structures for sporting gear
US7856979B2 (en) 2006-05-23 2010-12-28 Ventus Medical, Inc. Nasal respiratory devices
US20110021965A1 (en) * 2007-11-19 2011-01-27 Massachusetts Institute Of Technology Adhesive articles
US20110064785A1 (en) * 2007-12-06 2011-03-17 Nanosys, Inc. Nanostructure-Enhanced Platelet Binding and Hemostatic Structures
US20110107473A1 (en) * 2006-03-15 2011-05-05 Wisconsin Alumni Research Foundation Diamond-like carbon coated nanoprobes
US20110108041A1 (en) * 2009-11-06 2011-05-12 Elliot Sather Nasal devices having a safe failure mode and remotely activatable
US20110111178A1 (en) * 2008-04-02 2011-05-12 The Trustees of Columbia University in theCity of Structures having an adjusted mechanical property
US20110117321A1 (en) * 2009-10-14 2011-05-19 Carlo Menon Biomimetic dry adhesives and methods of production therefor
US20110143080A1 (en) * 2009-12-01 2011-06-16 Massachusetts Institute Of Technology Protective articles for resisting mechanical loads and related methods
US20110203598A1 (en) * 2006-06-07 2011-08-25 Favet Michael L Nasal devices including layered nasal devices and delayed resistance adapters for use with nasal devices
US20110218050A1 (en) * 2009-02-27 2011-09-08 Diamondback Group Golf Club with High Friction Striking Surface
US8025960B2 (en) 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US20120052234A1 (en) * 2010-08-30 2012-03-01 Sriram Natarajan Adhesive structure with stiff protrusions on adhesive surface
US8166836B2 (en) 2000-07-06 2012-05-01 Telezygology, Inc. Multi-function tool
US20120143228A1 (en) * 2010-08-30 2012-06-07 Agency For Science Technology And Research Adhesive structure with stiff protrusions on adhesive surface
US20120152628A1 (en) * 2010-12-21 2012-06-21 Stmicroelectronics S.R.L. Rolling means of a moving device and related moving device
US8206631B1 (en) 2008-09-18 2012-06-26 Carnegie Mellon University Methods of making dry adhesives
US8304595B2 (en) 2007-12-06 2012-11-06 Nanosys, Inc. Resorbable nanoenhanced hemostatic structures and bandage materials
US20130074240A1 (en) * 2005-10-19 2013-03-28 Nike, Inc. Article of Apparel with Material Elements Having a Reversible Structure
US20130268063A1 (en) * 2012-04-06 2013-10-10 Boston Scientific Scimed, Inc. Anti-migration Micropatterned Stent Coating
US8703267B2 (en) 2010-11-03 2014-04-22 Kimberly-Clark Worldwide, Inc. Synthetic gecko adhesive attachments
US8728602B2 (en) 2008-04-28 2014-05-20 The Charles Stark Draper Laboratory, Inc. Multi-component adhesive system
US8783634B2 (en) 2011-09-30 2014-07-22 Adam P. Summers Suction device
US20140225391A1 (en) * 2011-09-07 2014-08-14 J. Schmalz Gmbh Gripping or clamping device and method for handling articles
US20140245584A1 (en) * 2013-03-01 2014-09-04 The Boeing Company Frictional Coupling
US8875711B2 (en) 2010-05-27 2014-11-04 Theravent, Inc. Layered nasal respiratory devices
US8926881B2 (en) 2012-04-06 2015-01-06 DePuy Synthes Products, LLC Super-hydrophobic hierarchical structures, method of forming them and medical devices incorporating them
US8969648B2 (en) 2012-04-06 2015-03-03 Ethicon, Inc. Blood clotting substrate and medical device
US9003615B1 (en) * 2012-09-13 2015-04-14 Marion Harlan Cates, Jr. Silent hook and loop fastener system
US20150252936A1 (en) * 2012-09-07 2015-09-10 Christian Krantz Device for holding a sheet of paper, a holder for a mobile device and software program for use with such holder
US9182075B2 (en) 2013-03-14 2015-11-10 University Of Massachusetts Devices for application and load bearing and method of using the same
US20160017902A1 (en) * 2013-03-12 2016-01-21 Texas Tech University System Fibrillar structures to reduce viscous drag on aerodynamic and hydrodynamic wall surfaces
US20160046043A1 (en) * 2011-04-20 2016-02-18 The Board Of Trustees Of The Leland Stanford Junior University Synthetic Dry Adhesives
US9395038B2 (en) 2012-01-19 2016-07-19 University Of Massachusetts Double- and multi-sided adhesive devices
US9440416B2 (en) 2013-02-06 2016-09-13 University Of Massachusetts Weight-bearing adhesives with adjustable angles
US9492952B2 (en) 2010-08-30 2016-11-15 Endo-Surgery, Inc. Super-hydrophilic structures
US9511528B2 (en) 2012-08-06 2016-12-06 The University Of Akron Fabrication of nanofibers as dry adhesives and applications of the same
US9574113B2 (en) 2010-10-21 2017-02-21 Alfred J. Crosby High capacity easy release extended use adhesive devices
US9603419B2 (en) 2013-03-15 2017-03-28 University Of Massachusetts High capacity easy release extended use adhesive closure devices
US9615962B2 (en) 2006-05-23 2017-04-11 Jean-Pierre Robitaille Nasal cannula
US9704126B1 (en) 2016-08-22 2017-07-11 Amazon Technologies, Inc. Inventory handling by anisotropically adhesive gripping
US9730830B2 (en) 2011-09-29 2017-08-15 Trudell Medical International Nasal insert and cannula and methods for the use thereof
US9833354B2 (en) 2004-12-08 2017-12-05 Theravent, Inc. Nasal respiratory devices
WO2018031813A1 (en) * 2016-08-10 2018-02-15 Hoowaki, Llc Microstructure arrangement for gripping low coefficient of friction materials
US10081891B2 (en) 2012-08-06 2018-09-25 The University Of Akron Electrospun aligned nanofiber adhesives with mechanical interlocks
US10279341B2 (en) 2004-02-02 2019-05-07 Oned Material Llc Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US10278701B2 (en) 2011-12-29 2019-05-07 Ethicon, Inc. Adhesive structure with tissue piercing protrusions on its surface
US10335322B2 (en) 2013-08-26 2019-07-02 Lightside Md, Llc Adhesive support devices and methods of making and using them

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852494B2 (en) * 1999-10-08 2014-10-07 Princeton University Method and apparatus of electrical field assisted imprinting
US7618937B2 (en) * 2001-07-20 2009-11-17 Northwestern University Peptidomimetic polymers for antifouling surfaces
US7858679B2 (en) * 2001-07-20 2010-12-28 Northwestern University Polymeric compositions and related methods of use
US8911831B2 (en) * 2002-07-19 2014-12-16 Northwestern University Surface independent, surface-modifying, multifunctional coatings and applications thereof
US8815793B2 (en) * 2001-07-20 2014-08-26 Northwestern University Polymeric compositions and related methods of use
US6872439B2 (en) 2002-05-13 2005-03-29 The Regents Of The University Of California Adhesive microstructure and method of forming same
US20050221072A1 (en) * 2003-04-17 2005-10-06 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7056409B2 (en) * 2003-04-17 2006-06-06 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7985475B2 (en) 2003-04-28 2011-07-26 Nanosys, Inc. Super-hydrophobic surfaces, methods of their construction and uses therefor
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
US7331087B2 (en) 2003-12-22 2008-02-19 Kimberly-Clark Worldwide, Inc. Activatable fastening system and web having elevated regions and functional material members
US7327037B2 (en) * 2004-04-01 2008-02-05 Lucent Technologies Inc. High density nanostructured interconnection
US20060029697A1 (en) * 2004-08-05 2006-02-09 Bruce Robbins Food wraps and bags with cling properties and method of manufacture
DE102004048201B4 (en) * 2004-09-30 2009-05-20 Infineon Technologies Ag Semiconductor device with adhesive layer, and methods for their preparation
US20060131265A1 (en) * 2004-12-17 2006-06-22 Samper Victor D Method of forming branched structures
US7668325B2 (en) 2005-05-03 2010-02-23 Earlens Corporation Hearing system having an open chamber for housing components and reducing the occlusion effect
US7372549B2 (en) * 2005-06-24 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070228606A1 (en) * 2005-07-07 2007-10-04 Specialty Coating Systems, Inc. Nanoscale structures and methods of preparation
US7387813B2 (en) * 2005-07-07 2008-06-17 Specialty Coating Systems, Inc. Methods of preparation of hollow microstructures and nanostructures
CA2621411A1 (en) 2005-09-12 2007-03-22 Nissan Motor Co., Ltd. Joinable structure and process for producing the same
US20070173973A1 (en) * 2006-01-24 2007-07-26 Wagner Richard J Sticky-footed space walking robot & gaiting method
JP2007209729A (en) * 2006-02-13 2007-08-23 Oriol Lopez Berengueres Jose Magnetic attraction/release mechanism for gait producing mobile body
US7732539B2 (en) * 2006-02-16 2010-06-08 National Science Foundation Modified acrylic block copolymers for hydrogels and pressure sensitive wet adhesives
US8383092B2 (en) 2007-02-16 2013-02-26 Knc Ner Acquisition Sub, Inc. Bioadhesive constructs
GB2435719A (en) * 2006-03-03 2007-09-05 Darrell Lee Mann Gripping device with a multitude of small fibres using van der Waals forces
JP4884050B2 (en) * 2006-03-30 2012-02-22 富士フイルム株式会社 The driving device
JP5597836B2 (en) 2006-08-04 2014-10-01 ケンジー ナッシュ コーポレイション Biomimetic compounds and methods for their synthesis
WO2008091386A2 (en) * 2006-08-04 2008-07-31 Northwestern University Biomimetic modular adhesive complex: material, methods and applications therefore
US20120237730A1 (en) * 2006-12-14 2012-09-20 Metin Sitti Dry adhesives and methods for making dry adhesives
US7791708B2 (en) * 2006-12-27 2010-09-07 Asml Netherlands B.V. Lithographic apparatus, substrate table, and method for enhancing substrate release properties
US20080171012A1 (en) * 2007-01-11 2008-07-17 Phillip Messersmith Fouling Resistant Coatings and Methods of Making Same
JP2008201883A (en) * 2007-02-20 2008-09-04 Nitto Denko Corp Adhesive member having ridge-like fine structure
JP2008200793A (en) * 2007-02-20 2008-09-04 Nitto Denko Corp Method for manufacturing columnar structure having two-stage layer
US8673286B2 (en) 2007-04-09 2014-03-18 Northwestern University DOPA-functionalized, branched, poly(aklylene oxide) adhesives
WO2008152940A1 (en) * 2007-06-13 2008-12-18 Ulvac, Inc. Substrate supporting mechanism
JP5116412B2 (en) * 2007-09-11 2013-01-09 日東電工株式会社 The cleaning method of a substrate processing apparatus
JP5153271B2 (en) * 2007-09-11 2013-02-27 日東電工株式会社 Adhesive tape
US8401212B2 (en) 2007-10-12 2013-03-19 Earlens Corporation Multifunction system and method for integrated hearing and communication with noise cancellation and feedback management
WO2009053714A1 (en) * 2007-10-26 2009-04-30 Bae Systems Plc Adhesive microstructures
US9061892B2 (en) * 2008-03-17 2015-06-23 Avery Dennison Corporation Functional micro- and/or nano-structure bearing constructions and/or methods for fabricating same
WO2009128343A1 (en) * 2008-04-16 2009-10-22 日東電工株式会社 Fibrous rod-like structure aggregates and adhesive members wherein same are used
EP2301261B1 (en) 2008-06-17 2019-02-06 Earlens Corporation Optical electro-mechanical hearing devices with separate power and signal components
BRPI0918994A2 (en) 2008-09-22 2017-06-13 SoundBeam LLC device and method for transmitting an audio signal to a user.
WO2010042502A2 (en) * 2008-10-06 2010-04-15 University Of Florida Research Foundation, Inc. Active fixturing for micro/mesoscale machine tool systems
US8540889B1 (en) 2008-11-19 2013-09-24 Nanosys, Inc. Methods of generating liquidphobic surfaces
US8506473B2 (en) * 2008-12-16 2013-08-13 SoundBeam LLC Hearing-aid transducer having an engineered surface
KR101025696B1 (en) * 2009-11-30 2011-03-30 서울대학교산학협력단 Fine ciliary structure for vacuum adhesion, method of using the same and method of manufacturing the same
US8499764B2 (en) 2010-05-26 2013-08-06 The Invention Science Fund I, Llc Portable apparatus for establishing an isolation field
CN102958473A (en) * 2010-09-22 2013-03-06 泰尔茂株式会社 Biological adhesive sheet and device for bonding sheet
EP2637707A4 (en) 2010-11-09 2014-10-01 Kensey Nash Corp Adhesive compounds and methods use for hernia repair
EP2656639A4 (en) 2010-12-20 2016-08-10 Earlens Corp Anatomically customized ear canal hearing apparatus
US20120245663A1 (en) * 2011-03-24 2012-09-27 Zarembo Paul E Implantable medical device having an adhesive surface portion
MX346029B (en) * 2011-05-13 2017-03-01 Mylan Group Dry adhesives.
US20150056406A1 (en) * 2011-11-08 2015-02-26 Technion R&D Foundation Ltd. Adhesive microstructure
EP2804919A4 (en) * 2012-01-19 2015-09-09 Univ Tulane Use of shear to incorporate tilt into the microstructure of reversible gecko-inspired adhesives
JP2014107319A (en) * 2012-11-26 2014-06-09 Canon Inc Member for adhesion having controllable adhesive strength
JP5480956B2 (en) * 2012-12-04 2014-04-23 日東電工株式会社 Adhesive tape
CN103654764B (en) * 2013-09-12 2016-06-01 上海交通大学 Dry adhesive medical tape and a preparation method
US10034103B2 (en) 2014-03-18 2018-07-24 Earlens Corporation High fidelity and reduced feedback contact hearing apparatus and methods
KR20150138913A (en) 2014-05-30 2015-12-11 한국전자통신연구원 An electronic device and the method for fabricating the same
WO2016011044A1 (en) 2014-07-14 2016-01-21 Earlens Corporation Sliding bias and peak limiting for optical hearing devices
US9924276B2 (en) 2014-11-26 2018-03-20 Earlens Corporation Adjustable venting for hearing instruments
WO2016094306A1 (en) * 2014-12-08 2016-06-16 Bloomfield Louis A Compositions and methods for bonding glues, adhesives, and coatings to surfaces
EP3355801A4 (en) 2015-10-02 2019-05-22 Earlens Corporation Drug delivery customized ear canal apparatus
US20170195806A1 (en) 2015-12-30 2017-07-06 Earlens Corporation Battery coating for rechargable hearing systems
US10240070B1 (en) * 2017-09-15 2019-03-26 The Boeing Company Electronically reversible adhesive systems

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545831A (en) 1982-09-13 1985-10-08 The Mount Sinai School Of Medicine Method for transferring a thin tissue section
US5264722A (en) 1992-06-12 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Nanochannel glass matrix used in making mesoscopic structures
US5392498A (en) 1992-12-10 1995-02-28 The Proctor & Gamble Company Non-abrasive skin friendly mechanical fastening system
US5843767A (en) 1993-10-28 1998-12-01 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
US5843657A (en) 1994-03-01 1998-12-01 The United States Of America As Represented By The Department Of Health And Human Services Isolation of cellular material under microscopic visualization
US5951931A (en) 1995-11-06 1999-09-14 Ykk Corporation Molded surface fastener and method for manufacturing the same
US5959200A (en) 1997-08-27 1999-09-28 The Board Of Trustees Of The Leland Stanford Junior University Micromachined cantilever structure providing for independent multidimensional force sensing using high aspect ratio beams
WO2001049776A2 (en) 1999-12-20 2001-07-12 The Regents Of The University Of California Adhesive microstructure and method of forming same
US6393327B1 (en) 2000-08-09 2002-05-21 The United States Of America As Represented By The Secretary Of The Navy Microelectronic stimulator array
US20020100581A1 (en) 1999-06-14 2002-08-01 Knowles Timothy R. Thermal interface
US20030124312A1 (en) * 2002-01-02 2003-07-03 Kellar Autumn Adhesive microstructure and method of forming same
US20040009353A1 (en) 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US6713151B1 (en) 1998-06-24 2004-03-30 Honeywell International Inc. Compliant fibrous thermal interface
US20040071870A1 (en) 1999-06-14 2004-04-15 Knowles Timothy R. Fiber adhesive material
US20040076822A1 (en) * 2002-05-29 2004-04-22 Anand Jagota Fibrillar microstructure for conformal contact and adhesion

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704745A (en) 1987-02-09 1987-11-10 Reaver Phyllis E Garment fastener attachment for brassiere strap
US5071597A (en) * 1989-06-02 1991-12-10 American Bank Note Holographics, Inc. Plastic molding of articles including a hologram or other microstructure
US5077870A (en) * 1990-09-21 1992-01-07 Minnesota Mining And Manufacturing Company Mushroom-type hook strip for a mechanical fastener
US5657516A (en) * 1995-10-12 1997-08-19 Minnesota Mining And Manufacturing Company Dual structured fastener elements
US6159596A (en) 1997-12-23 2000-12-12 3M Innovative Properties Company Self mating adhesive fastener element articles including a self mating adhesive fastener element and methods for producing and using
US6159398A (en) * 1998-03-31 2000-12-12 Physical Optics Corporation Method of making replicas while preserving master
US6055680A (en) 1998-10-21 2000-05-02 Tolbert; Gerard C. Collapsible toilet plunger
JP2002307398A (en) 2001-04-18 2002-10-23 Mitsui Chemicals Inc Method for manufacturing micro structure
US20020188310A1 (en) * 2001-06-08 2002-12-12 Seward Kirk Partick Microfabricated surgical device
US6872439B2 (en) 2002-05-13 2005-03-29 The Regents Of The University Of California Adhesive microstructure and method of forming same
US20040078170A1 (en) * 2002-10-17 2004-04-22 Don Di Marzio System and method for monitoring a structure

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545831A (en) 1982-09-13 1985-10-08 The Mount Sinai School Of Medicine Method for transferring a thin tissue section
US5264722A (en) 1992-06-12 1993-11-23 The United States Of America As Represented By The Secretary Of The Navy Nanochannel glass matrix used in making mesoscopic structures
US5392498A (en) 1992-12-10 1995-02-28 The Proctor & Gamble Company Non-abrasive skin friendly mechanical fastening system
US5843767A (en) 1993-10-28 1998-12-01 Houston Advanced Research Center Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
US5843657A (en) 1994-03-01 1998-12-01 The United States Of America As Represented By The Department Of Health And Human Services Isolation of cellular material under microscopic visualization
US5951931A (en) 1995-11-06 1999-09-14 Ykk Corporation Molded surface fastener and method for manufacturing the same
US5959200A (en) 1997-08-27 1999-09-28 The Board Of Trustees Of The Leland Stanford Junior University Micromachined cantilever structure providing for independent multidimensional force sensing using high aspect ratio beams
US6713151B1 (en) 1998-06-24 2004-03-30 Honeywell International Inc. Compliant fibrous thermal interface
US20040009353A1 (en) 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US20020100581A1 (en) 1999-06-14 2002-08-01 Knowles Timothy R. Thermal interface
US20040071870A1 (en) 1999-06-14 2004-04-15 Knowles Timothy R. Fiber adhesive material
US6737160B1 (en) 1999-12-20 2004-05-18 The Regents Of The University Of California Adhesive microstructure and method of forming same
US20040005454A1 (en) * 1999-12-20 2004-01-08 The Regents Of The University Of California, A California Corporation Adhesive microstructure and method of forming same
WO2001049776A2 (en) 1999-12-20 2001-07-12 The Regents Of The University Of California Adhesive microstructure and method of forming same
US6393327B1 (en) 2000-08-09 2002-05-21 The United States Of America As Represented By The Secretary Of The Navy Microelectronic stimulator array
US20030124312A1 (en) * 2002-01-02 2003-07-03 Kellar Autumn Adhesive microstructure and method of forming same
US20040076822A1 (en) * 2002-05-29 2004-04-22 Anand Jagota Fibrillar microstructure for conformal contact and adhesion

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
Anthony P. Russell,"Contributing to the functional analysis of the foot of the Tokay, Gekko gecko," Zool., Lond. (1975), 176, 437-476.
Beni Charan Mahendra, "Contributions to the Bionomics, Anatomy, Reproduction and Development of the Indian House-Gecko, Hemidactylus Flaviviridis Ruppel," pp. 288-306, Dec. 19, 1940.
Duncan J. Irschick, et al., "A comparative analysis of clinging ability among pad-bearing lizards," Biological Journal of the Linnean Society, (1996) 59:21-35.
E. E. Williams, "Convergent and Alternative Designs in the Digital Adhesive Pads of Scincid Lizards," Sciences, vol. 215, pp. 1509-1511 Mar. 19, 1982.
Edwards, J.S., "Observations on the development and predatory habit of two reduviid heteroptera, phinocoris carmelita stal and platymeris rhadamanthus gerst," Proc. R. Ent. Soc. Lond. (1962) 89-98.
John S. Edwards, et al., "The adhesive pads of Heteroptera: a re-examination," Proc. R. ent. Socl. Lond. (A), 45 pp. (1-5) 1970.
K. Autumn, et al., "Adhesive force of a single gecko foot-hair," Nature, vol. 405 (2000) 681-658.
Matt Cartmill, "Climbing"; Functional Vertebrate Morphology, Chapter 5; 1985.
P.F.A. Maderson, "Keratinized Epidermal Derivatives as an Aid to Climbing in Gekkonid Lizards," vol. 203, pp. 780-781, Aug. 15, 1964.
Peterson, J.A. and E.E. Williams, "A case study in retrograde evolution: the onca lineage in anoline lizards. II. Subdigital fine structure," Bulletin of the Museum of Comparative Zoology (1981) 149: 215-268.
Rodolfo Ruibal, et al., "The Structure of the Digital Setae of Lizards," Department of Life Sciences, University of California, Riverside, California, Journal of Morphology, 117:271-294, Nov. 1965.
Stork, N.E., "A scanning electron microscope study of tarsal adhesive setae in the coleoptera" Zoological Journal of the Linnean Society (1980) 68: 173-306.
Stork, N.E., "Experimental analysis of adhesion of chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces," Journal of Experimental Biology (1980) 88: 91-107.
Sunder Lal Hora, "The Adhesive Apparatus on the Toes of certain Geckos and Tree-frogs," Journal of the Proceedings of the Asiatic Society 9:137 (1923).
T. Thurn-Albrecht, et al., "Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates," Science (2000) 290: 2126-2129.
U.S. Appl. No. 10/338,104, filed Jan. 6, 2003, Full et al.
U.S. Appl. No. 10/655,271, filed Sep. 3, 2003, Full et al.
Y.A. Liang et al., "Adhesion Force Measurements on Single Gecko Setae," Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC (2000).

Cited By (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212166A1 (en) * 1998-03-18 2007-09-13 Telezygology Pty Limited Fixing and release systems
US7217059B1 (en) 1998-03-18 2007-05-15 Telezygology Pty Limited Fixing and release systems
US7132161B2 (en) * 1999-06-14 2006-11-07 Energy Science Laboratories, Inc. Fiber adhesive material
US20040009353A1 (en) * 1999-06-14 2004-01-15 Knowles Timothy R. PCM/aligned fiber composite thermal interface
US7144624B2 (en) * 1999-06-14 2006-12-05 Energy Science Laboratories, Inc. Dendritic fiber material
US20020100581A1 (en) * 1999-06-14 2002-08-01 Knowles Timothy R. Thermal interface
US20060213599A1 (en) * 1999-06-14 2006-09-28 Knowles Timothy R Fiber adhesive material
US20040071870A1 (en) * 1999-06-14 2004-04-15 Knowles Timothy R. Fiber adhesive material
US8815385B2 (en) 1999-12-20 2014-08-26 The Regents Of The University Of California Controlling peel strength of micron-scale structures
US20060078725A1 (en) * 1999-12-20 2006-04-13 The Regents Of University Of California Controlling peel strength of micron-scale structures
US7828982B2 (en) 1999-12-20 2010-11-09 The Regents Of The University Of California Adhesive microstructure and method of forming same
US20080073323A1 (en) * 1999-12-20 2008-03-27 Full Robert J Adhesive microstructure and method of forming same
US8166836B2 (en) 2000-07-06 2012-05-01 Telezygology, Inc. Multi-function tool
US20030209314A1 (en) * 2002-05-13 2003-11-13 Guo Lingjie J. Method of forming nanofluidic channels
US7169251B2 (en) * 2002-05-13 2007-01-30 The Regents Of The University Of Michigan Method of forming nanofluidic channels
US20060005362A1 (en) * 2002-05-24 2006-01-12 Eduard Arzt Methods for modifying the surfaces of a solid and microstructured surfaces with encreased adherence produced with said methods
US8153254B2 (en) 2002-05-24 2012-04-10 Max-Planck-Gesellschaft zur Foerdurung der Wissenschafter E.V. Methods for modifying the surfaces of a solid and microstructured surfaces with increased adherence produced with said methods
US7700173B2 (en) 2002-05-29 2010-04-20 E.I. Du Pont De Nemours And Company Fibrillar microstructure for conformal contact and adhesion
US20080113147A1 (en) * 2002-05-29 2008-05-15 Anand Jagota Fibrillar microstructure for conformal contact and adhesion
US7294397B2 (en) 2002-05-29 2007-11-13 E.I. Du Pont De Nemors And Company Fibrillar microstructure for conformal contact and adhesion
US20040076822A1 (en) * 2002-05-29 2004-04-22 Anand Jagota Fibrillar microstructure for conformal contact and adhesion
US7600301B2 (en) * 2002-06-19 2009-10-13 Telezygology, Inc. Fixing and release systems and fastener networks
US20050172462A1 (en) * 2002-06-19 2005-08-11 Dickory Rudduck Fixing and release systems and fastener networks
US8956637B2 (en) 2003-04-17 2015-02-17 Nanosys, Inc. Medical device applications of nanostructured surfaces
US20040250950A1 (en) * 2003-04-17 2004-12-16 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US20060204738A1 (en) * 2003-04-17 2006-09-14 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7074294B2 (en) * 2003-04-17 2006-07-11 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US20060122596A1 (en) * 2003-04-17 2006-06-08 Nanosys, Inc. Structures, systems and methods for joining articles and materials and uses therefor
US7972616B2 (en) 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7803574B2 (en) 2003-05-05 2010-09-28 Nanosys, Inc. Medical device applications of nanostructured surfaces
US20070064841A1 (en) * 2003-05-27 2007-03-22 Jan Tuma Method for producing a contact-fastening part
US7479318B2 (en) * 2003-09-08 2009-01-20 E.I. Du Pont De Nemours And Company Fibrillar microstructure and processes for the production thereof
US20090121383A1 (en) * 2003-09-08 2009-05-14 E. I. Du Pont De Nemours And Company Fibrillar Microstructure and Processes for the Production Thereof
US20050181629A1 (en) * 2003-09-08 2005-08-18 Anand Jagota Fibrillar microstructure and processes for the production thereof
US7175723B2 (en) * 2003-10-03 2007-02-13 The Regents Of The University Of California Structure having nano-fibers on annular curved surface, method of making same and method of using same to adhere to a surface
US20050092414A1 (en) * 2003-10-03 2005-05-05 Regents Of The University Of California Apparatus for friction enhancement of curved surfaces
US20050119640A1 (en) * 2003-10-03 2005-06-02 The Regents Of The University Of California Surgical instrument for adhering to tissues
US20070289696A1 (en) * 2003-10-03 2007-12-20 The Regents Of The University Of California Apparatus for friction enhancement of curved surfaces
US20050148984A1 (en) * 2003-12-29 2005-07-07 Lindsay Jeffrey D. Gecko-like fasteners for disposable articles
US7811272B2 (en) * 2003-12-29 2010-10-12 Kimberly-Clark Worldwide, Inc. Nanofabricated gecko-like fasteners with adhesive hairs for disposable absorbent articles
US10279341B2 (en) 2004-02-02 2019-05-07 Oned Material Llc Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US8025960B2 (en) 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US20070063375A1 (en) * 2004-03-12 2007-03-22 Jan Tuma Process for creating adhesion elements on a substrate material
US20050271870A1 (en) * 2004-06-07 2005-12-08 Jackson Warren B Hierarchically-dimensioned-microfiber-based dry adhesive materials
US20070290387A1 (en) * 2004-10-08 2007-12-20 Wei Chen Lithography Processes Using Phase Change Compositions
US8147742B2 (en) * 2004-10-08 2012-04-03 Dow Corning Corporation Lithography processes using phase change compositions
US20080014465A1 (en) * 2004-11-10 2008-01-17 The Regents Of The University Of California Actively switchable nano-structured adhesive
US7914912B2 (en) 2004-11-10 2011-03-29 The Regents Of The University Of California Actively switchable nano-structured adhesive
US20060202355A1 (en) * 2004-11-19 2006-09-14 The Regents Of The University Of California Nanostructured friction enhancement using fabricated microstructure
US7799423B2 (en) 2004-11-19 2010-09-21 The Regents Of The University Of California Nanostructured friction enhancement using fabricated microstructure
US9238113B2 (en) 2004-12-08 2016-01-19 Theravent, Inc. Nasal respiratory devices for positive end-expiratory pressure
US20060144398A1 (en) * 2004-12-08 2006-07-06 Rajiv Doshi Respiratory devices
US20060150978A1 (en) * 2004-12-08 2006-07-13 Ventus Medical, Inc. Methods of treating respiratory disorders
US20110067708A1 (en) * 2004-12-08 2011-03-24 Rajiv Doshi Nasal devices for use while sleeping
US20110056499A1 (en) * 2004-12-08 2011-03-10 Rajiv Doshi Sealing nasal devices for use while sleeping
US8215308B2 (en) 2004-12-08 2012-07-10 Ventus Medical, Inc. Sealing nasal devices for use while sleeping
US20110005520A1 (en) * 2004-12-08 2011-01-13 Rajiv Doshi Quiet nasal respiratory devices
US20110005528A1 (en) * 2004-12-08 2011-01-13 Rajiv Doshi Nasal devices with respiratory gas source
US20110005529A1 (en) * 2004-12-08 2011-01-13 Rajiv Doshi Methods of treating a sleeping subject
US20100326447A1 (en) * 2004-12-08 2010-12-30 Bryan Loomas Nasal respiratory devices for positive end-expiratory pressure
US8235046B2 (en) 2004-12-08 2012-08-07 Ventus Medical, Inc. Nasal devices for use while sleeping
US7992564B2 (en) 2004-12-08 2011-08-09 Ventus Medical, Inc. Respiratory devices
US7806120B2 (en) 2004-12-08 2010-10-05 Ventus Medical, Inc. Nasal respiratory devices for positive end-expiratory pressure
US20100147308A1 (en) * 2004-12-08 2010-06-17 Rajiv Doshi Respiratory devices
US8291909B2 (en) 2004-12-08 2012-10-23 Ventus Medical, Inc. Methods of treating a disorder by inhibiting expiration
US7798148B2 (en) 2004-12-08 2010-09-21 Ventus Medical, Inc. Respiratory devices
US20090050144A1 (en) * 2004-12-08 2009-02-26 Ryan Kendall Pierce Adhesive nasal respiratory devices
US8302607B2 (en) 2004-12-08 2012-11-06 Ventus Medical, Inc. Adhesive nasal respiratory devices
US8302606B2 (en) 2004-12-08 2012-11-06 Ventus Medical, Inc. Methods of treating a sleeping subject
US7735492B2 (en) 2004-12-08 2010-06-15 Ventus Medical, Inc. Nasal respiratory devices
US8365736B2 (en) 2004-12-08 2013-02-05 Ventus Medical, Inc. Nasal devices with respiratory gas source
US7735491B2 (en) 2004-12-08 2010-06-15 Ventus Medical, Inc. Methods of treating respiratory disorders
US9833354B2 (en) 2004-12-08 2017-12-05 Theravent, Inc. Nasal respiratory devices
US8061357B2 (en) 2004-12-08 2011-11-22 Ventus Medical, Inc. Adhesive nasal respiratory devices
US20110005530A1 (en) * 2004-12-08 2011-01-13 Rajiv Doshi Methods of treating a disorder by inhibiting expiration
US20060163767A1 (en) * 2005-01-21 2006-07-27 Wisconsin Alumni Research Foundation Plastic cantilevers for force microscopy
US7691298B2 (en) * 2005-01-21 2010-04-06 Wisconsin Alumni Research Foundation Plastic cantilevers for force microscopy
US8610290B2 (en) 2005-02-28 2013-12-17 Lewis & Clark College Fabricated adhesive microstructures for making an electrical connection
US20080308953A1 (en) * 2005-02-28 2008-12-18 The Regents Of The University Of California Fabricated adhesive microstructures for making an electrical connection
US7476982B2 (en) 2005-02-28 2009-01-13 Regents Of The University Of California Fabricated adhesive microstructures for making an electrical connection
US20090146320A1 (en) * 2005-02-28 2009-06-11 The Regents Of The University Of California Fabricated adhesive microstructures for making an electrical connection
US20060237126A1 (en) * 2005-04-07 2006-10-26 Erik Guffrey Methods for forming nanofiber adhesive structures
US7479198B2 (en) * 2005-04-07 2009-01-20 Timothy D'Annunzio Methods for forming nanofiber adhesive structures
US10251436B2 (en) * 2005-10-19 2019-04-09 Nike, Inc. Article of apparel with material elements having a reversible structure
US20130074240A1 (en) * 2005-10-19 2013-03-28 Nike, Inc. Article of Apparel with Material Elements Having a Reversible Structure
US20070118951A1 (en) * 2005-11-14 2007-05-31 Brigitte Schwenner Massaging clothing
US7653948B2 (en) * 2005-11-14 2010-02-02 Brigitte Schwenner Massaging clothing
US20100062208A1 (en) * 2005-11-18 2010-03-11 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
US7709087B2 (en) 2005-11-18 2010-05-04 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
WO2007061854A2 (en) * 2005-11-18 2007-05-31 The Regents Of The University Of California Compliant base to increase contact for micro- or nano-fibers
WO2007061854A3 (en) * 2005-11-18 2007-07-26 Univ California Compliant base to increase contact for micro- or nano-fibers
EP2010959B1 (en) * 2006-02-28 2017-09-20 Hewlett-Packard Development Company, L.P. Bistable nematic liquid crystal device
EP2010959A1 (en) * 2006-02-28 2009-01-07 Hewlett-Packard Development Company, L.P. Method of forming a display
US20110107473A1 (en) * 2006-03-15 2011-05-05 Wisconsin Alumni Research Foundation Diamond-like carbon coated nanoprobes
US20080142709A1 (en) * 2006-03-21 2008-06-19 Anirudha Vishwanath Sumant MONOLITHIC ta-C NANOPROBES AND ta-C COATED NANOPROBES
US20070235238A1 (en) * 2006-04-07 2007-10-11 Research Foundation Of The City University Of New York Modular wall climbing robot with transition capability
US7520356B2 (en) 2006-04-07 2009-04-21 Research Foundation Of The City University Of New York Modular wall climbing robot with transition capability
WO2007121450A3 (en) * 2006-04-17 2008-11-27 Arom Technologies Inc Device and method for handling an object of interest using a directional adhesive structure
US20080025822A1 (en) * 2006-04-17 2008-01-31 Sangbae Kim Device and method for handling an object of interest using a directional adhesive structure
US20070289786A1 (en) * 2006-04-17 2007-12-20 Cutkosky Mark R Climbing with dry adhesives
US7762362B2 (en) 2006-04-17 2010-07-27 The Board Of Trustees Of The Leland Stanford Junior University Climbing with dry adhesives
WO2007121450A2 (en) * 2006-04-17 2007-10-25 Arom Technologies, Inc. Device and method for handling an object of interest using a directional adhesive structure
US9615962B2 (en) 2006-05-23 2017-04-11 Jean-Pierre Robitaille Nasal cannula
US7856979B2 (en) 2006-05-23 2010-12-28 Ventus Medical, Inc. Nasal respiratory devices
US20110067709A1 (en) * 2006-05-23 2011-03-24 Rajiv Doshi Nasal respiratory devices
US20090188493A1 (en) * 2006-06-07 2009-07-30 Rajiv Doshi Nasal devices
US20080041373A1 (en) * 2006-06-07 2008-02-21 Ventus Medical, Inc. Nasal devices
US8985116B2 (en) 2006-06-07 2015-03-24 Theravent, Inc. Layered nasal devices
US20110203598A1 (en) * 2006-06-07 2011-08-25 Favet Michael L Nasal devices including layered nasal devices and delayed resistance adapters for use with nasal devices
US20070283962A1 (en) * 2006-06-07 2007-12-13 Ventus Medical, Inc. Layered nasal devices
US7987852B2 (en) 2006-06-07 2011-08-02 Ventus Medical, Inc. Nasal devices
US20080280085A1 (en) * 2006-06-25 2008-11-13 Oren Livne Dynamically Tunable Fibrillar Structures
US20100170533A1 (en) * 2006-08-11 2010-07-08 Nitto Denko Corporation Cleaning Member, Carrying Member with Cleaning Function, and Method of Cleaning Substrate Processing Equipment
US20100175716A1 (en) * 2006-08-11 2010-07-15 Nitto Denko Corporation Cleaning Member, Delivery Member with Cleaning Function, and Method of Cleaning Substrate Processing Apparatus
US20080070002A1 (en) * 2006-08-23 2008-03-20 The Regents Of The University Of California Symmetric, spatular attachments for enhanced adhesion of micro-and nano-fibers
US8309201B2 (en) 2006-08-23 2012-11-13 The Regents Of The University Of California Symmetric, spatular attachments for enhanced adhesion of micro- and nano-fibers
US20080142018A1 (en) * 2006-11-16 2008-06-19 Ventus Medical, Inc. Nasal device applicators
US20080178874A1 (en) * 2006-11-16 2008-07-31 Ventus Medical, Inc. Adjustable nasal devices
US8240309B2 (en) 2006-11-16 2012-08-14 Ventus Medical, Inc. Adjustable nasal devices
US20100136281A1 (en) * 2006-12-14 2010-06-03 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US8142700B2 (en) 2006-12-14 2012-03-27 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US8524092B2 (en) 2006-12-14 2013-09-03 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US20100021647A1 (en) * 2006-12-14 2010-01-28 Carnegie Mellon University Dry adhesives and methods for making dry adhesives
US20080169003A1 (en) * 2007-01-17 2008-07-17 Nasa Headquarters Field reactive amplification controlling total adhesion loading
US20080178436A1 (en) * 2007-01-25 2008-07-31 3M Innovative Properties Company Fastener webs with microstructured particles and methods of making same
US20080206641A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
US20080206631A1 (en) * 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
US20080221470A1 (en) * 2007-03-07 2008-09-11 Elliot Sather Respiratory sensor adapters for nasal devices
US20080247214A1 (en) * 2007-04-03 2008-10-09 Klaus Ufert Integrated memory
US20080279659A1 (en) * 2007-05-07 2008-11-13 Lintec Corporation Transferring device and transferring method
US7875144B2 (en) * 2007-05-07 2011-01-25 Lintec Corporation Transferring device and transferring method
US20100170524A1 (en) * 2007-05-29 2010-07-08 Harumi Kimura Apparatus for wearing a wig
US20090041986A1 (en) * 2007-06-21 2009-02-12 3M Innovative Properties Company Method of making hierarchical articles
US20080315459A1 (en) * 2007-06-21 2008-12-25 3M Innovative Properties Company Articles and methods for replication of microstructures and nanofeatures
US20090114618A1 (en) * 2007-06-21 2009-05-07 3M Innovative Properties Company Method of making hierarchical articles
US20100203323A1 (en) * 2007-09-11 2010-08-12 Nitto Denko Corporation Pressure-sensitive adhesive tape and method of producing the tape
US20090097261A1 (en) * 2007-10-15 2009-04-16 Chunghwa Picture Tubes, Ltd. Multi-function optical film and polarizer
US20110021965A1 (en) * 2007-11-19 2011-01-27 Massachusetts Institute Of Technology Adhesive articles
US9060842B2 (en) * 2007-11-19 2015-06-23 Massachusettes Institute Of Technology Adhesive articles
US8281557B2 (en) 2007-12-05 2012-10-09 Ventus Medical, Inc. Method of packaging and dispensing nasal devices
US8020700B2 (en) 2007-12-05 2011-09-20 Ventus Medical, Inc. Packaging and dispensing nasal devices
US20090145788A1 (en) * 2007-12-05 2009-06-11 Rajiv Doshi Packaging and dispensing nasal devices
US8319002B2 (en) 2007-12-06 2012-11-27 Nanosys, Inc. Nanostructure-enhanced platelet binding and hemostatic structures
US20090145441A1 (en) * 2007-12-06 2009-06-11 Rajiv Doshi Delayed resistance nasal devices and methods of use
US8304595B2 (en) 2007-12-06 2012-11-06 Nanosys, Inc. Resorbable nanoenhanced hemostatic structures and bandage materials
US20110064785A1 (en) * 2007-12-06 2011-03-17 Nanosys, Inc. Nanostructure-Enhanced Platelet Binding and Hemostatic Structures
US20090194109A1 (en) * 2008-02-01 2009-08-06 Rajiv Doshi Cpap interface and backup devices
US20110111178A1 (en) * 2008-04-02 2011-05-12 The Trustees of Columbia University in theCity of Structures having an adjusted mechanical property
US8728602B2 (en) 2008-04-28 2014-05-20 The Charles Stark Draper Laboratory, Inc. Multi-component adhesive system
US20090308398A1 (en) * 2008-06-16 2009-12-17 Arthur Ferdinand Adjustable resistance nasal devices
US8833430B2 (en) 2008-06-26 2014-09-16 President And Fellows Of Harvard College Versatile high aspect ratio actuatable nanostructured materials through replication
US20110192233A1 (en) * 2008-06-26 2011-08-11 President And Fellows Of Harvard College Versatile high aspect ratio actuatable nanostructured materials through replication
WO2009158631A1 (en) * 2008-06-26 2009-12-30 President And Fellows Of Harvard College Versatile high aspect ratio actuatable nanostructured materials through replication
US8171943B2 (en) * 2008-08-20 2012-05-08 Hamano Miles M System and method for applying and removing cosmetic hair using biomimetic microstructure adhesive layer
US20100043814A1 (en) * 2008-08-20 2010-02-25 Hamano Miles M System and method for applying and removing cosmetic hair using biomimetic microstructure adhesive layer
US9120953B2 (en) 2008-09-18 2015-09-01 Carnegie Mellon University Methods of forming dry adhesive structures
US9340708B2 (en) * 2008-09-18 2016-05-17 Carnegie Mellon University Methods of forming dry adhesive structures
US20130251937A1 (en) * 2008-09-18 2013-09-26 Metin Sitti Dry adhesives and methods of making dry adhesives
US10307941B2 (en) * 2008-09-18 2019-06-04 Carnegie Mellon University Methods of forming dry adhesive structures
US20150376465A1 (en) * 2008-09-18 2015-12-31 Carnegie Mellon University, A Pennsylvania Non-Profit Corporation Methods of forming dry adhesive structures
US8398909B1 (en) 2008-09-18 2013-03-19 Carnegie Mellon University Dry adhesives and methods of making dry adhesives
US8206631B1 (en) 2008-09-18 2012-06-26 Carnegie Mellon University Methods of making dry adhesives
US20120328822A1 (en) * 2008-09-18 2012-12-27 Metin Sitti Dry adhesive structures
WO2010083554A1 (en) * 2009-01-20 2010-07-29 Cochlear Limited Medical device and fixation
US20110218050A1 (en) * 2009-02-27 2011-09-08 Diamondback Group Golf Club with High Friction Striking Surface
US8961333B2 (en) * 2009-02-27 2015-02-24 Diamondback Group Golf club with high friction striking surface
US8424474B2 (en) 2009-06-19 2013-04-23 Under Armour, Inc. Nanoadhesion structures for sporting gear
US20100319111A1 (en) * 2009-06-19 2010-12-23 Under Armour, Inc. Nanoadhesion structures for sporting gear
US20110117321A1 (en) * 2009-10-14 2011-05-19 Carlo Menon Biomimetic dry adhesives and methods of production therefor
US9963616B2 (en) 2009-10-14 2018-05-08 Simon Fraser University Biomimetic dry adhesives and methods of production therefor
US8703032B2 (en) 2009-10-14 2014-04-22 Simon Fraser University Biomimetic dry adhesives and methods of production therefor
US20110108041A1 (en) * 2009-11-06 2011-05-12 Elliot Sather Nasal devices having a safe failure mode and remotely activatable
US8365315B2 (en) * 2009-12-01 2013-02-05 Massachusetts Institute Of Technology Protective articles for resisting mechanical loads and related methods
US20110143080A1 (en) * 2009-12-01 2011-06-16 Massachusetts Institute Of Technology Protective articles for resisting mechanical loads and related methods
US8875711B2 (en) 2010-05-27 2014-11-04 Theravent, Inc. Layered nasal respiratory devices
US20120052234A1 (en) * 2010-08-30 2012-03-01 Sriram Natarajan Adhesive structure with stiff protrusions on adhesive surface
US20120143228A1 (en) * 2010-08-30 2012-06-07 Agency For Science Technology And Research Adhesive structure with stiff protrusions on adhesive surface
WO2012030570A1 (en) 2010-08-30 2012-03-08 Advanced Technologies And Regenerative Medicine, Llc Adhesive structure with stiff protrusions on adhesive surface
US9211176B2 (en) 2010-08-30 2015-12-15 Ethicon Endo-Surgery, Inc. Adhesive structure with stiff protrusions on adhesive surface
US9492952B2 (en) 2010-08-30 2016-11-15 Endo-Surgery, Inc. Super-hydrophilic structures
US9574113B2 (en) 2010-10-21 2017-02-21 Alfred J. Crosby High capacity easy release extended use adhesive devices
US10150892B2 (en) 2010-10-21 2018-12-11 University Of Massachusetts High capacity easy release extended use adhesive devices
US8703267B2 (en) 2010-11-03 2014-04-22 Kimberly-Clark Worldwide, Inc. Synthetic gecko adhesive attachments
US8991527B2 (en) * 2010-12-21 2015-03-31 Stmicroelectronics S.R.L. Rolling means of a moving device and related moving device
US20120152628A1 (en) * 2010-12-21 2012-06-21 Stmicroelectronics S.R.L. Rolling means of a moving device and related moving device
US20160046043A1 (en) * 2011-04-20 2016-02-18 The Board Of Trustees Of The Leland Stanford Junior University Synthetic Dry Adhesives
US9908266B2 (en) * 2011-04-20 2018-03-06 The Board Of Trustees Of The Leland Stanford Junior University Mold fabrication method for gecko-inspired adhesives
US20140225391A1 (en) * 2011-09-07 2014-08-14 J. Schmalz Gmbh Gripping or clamping device and method for handling articles
US9730830B2 (en) 2011-09-29 2017-08-15 Trudell Medical International Nasal insert and cannula and methods for the use thereof
US8783634B2 (en) 2011-09-30 2014-07-22 Adam P. Summers Suction device
US10278701B2 (en) 2011-12-29 2019-05-07 Ethicon, Inc. Adhesive structure with tissue piercing protrusions on its surface
US10100229B2 (en) 2012-01-19 2018-10-16 University Of Massachusetts Double- and multi-sided adhesive devices
US9395038B2 (en) 2012-01-19 2016-07-19 University Of Massachusetts Double- and multi-sided adhesive devices
US20130268063A1 (en) * 2012-04-06 2013-10-10 Boston Scientific Scimed, Inc. Anti-migration Micropatterned Stent Coating
JP2017060851A (en) * 2012-04-06 2017-03-30 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Endoprosthesis
US8926881B2 (en) 2012-04-06 2015-01-06 DePuy Synthes Products, LLC Super-hydrophobic hierarchical structures, method of forming them and medical devices incorporating them
US8969648B2 (en) 2012-04-06 2015-03-03 Ethicon, Inc. Blood clotting substrate and medical device
US9511528B2 (en) 2012-08-06 2016-12-06 The University Of Akron Fabrication of nanofibers as dry adhesives and applications of the same
US10081891B2 (en) 2012-08-06 2018-09-25 The University Of Akron Electrospun aligned nanofiber adhesives with mechanical interlocks
US20150252936A1 (en) * 2012-09-07 2015-09-10 Christian Krantz Device for holding a sheet of paper, a holder for a mobile device and software program for use with such holder
US9003615B1 (en) * 2012-09-13 2015-04-14 Marion Harlan Cates, Jr. Silent hook and loop fastener system
US9440416B2 (en) 2013-02-06 2016-09-13 University Of Massachusetts Weight-bearing adhesives with adjustable angles
US10144195B2 (en) 2013-02-06 2018-12-04 University Of Massachusetts Weight-bearing adhesives with adjustable angles
US9360029B2 (en) * 2013-03-01 2016-06-07 The Boeing Company Frictional Coupling
US20140245584A1 (en) * 2013-03-01 2014-09-04 The Boeing Company Frictional Coupling
US10208775B2 (en) 2013-03-01 2019-02-19 The Boeing Company Methods of frictional coupling
US20160017902A1 (en) * 2013-03-12 2016-01-21 Texas Tech University System Fibrillar structures to reduce viscous drag on aerodynamic and hydrodynamic wall surfaces
US9759370B2 (en) 2013-03-14 2017-09-12 University Of Massachusetts Devices for application and load bearing and method of using the same
US9182075B2 (en) 2013-03-14 2015-11-10 University Of Massachusetts Devices for application and load bearing and method of using the same
US10098419B2 (en) 2013-03-15 2018-10-16 University Of Massachusetts High capacity easy release extended use adhesive closure devices
US9603419B2 (en) 2013-03-15 2017-03-28 University Of Massachusetts High capacity easy release extended use adhesive closure devices
US10335322B2 (en) 2013-08-26 2019-07-02 Lightside Md, Llc Adhesive support devices and methods of making and using them
WO2018031813A1 (en) * 2016-08-10 2018-02-15 Hoowaki, Llc Microstructure arrangement for gripping low coefficient of friction materials
US9971989B2 (en) 2016-08-22 2018-05-15 Amazon Technologies, Inc. Inventory handling by anisotropically adhesive gripping
WO2018039036A1 (en) 2016-08-22 2018-03-01 Amazon Technologies, Inc. Inventory handling by anisotropically adhesive gripping
US9704126B1 (en) 2016-08-22 2017-07-11 Amazon Technologies, Inc. Inventory handling by anisotropically adhesive gripping

Also Published As

Publication number Publication date
US20030208888A1 (en) 2003-11-13
CA2485717A1 (en) 2003-11-20
AU2003230396A1 (en) 2003-11-11
EP1511618A4 (en) 2010-08-18
US7691307B2 (en) 2010-04-06
WO2003095190A1 (en) 2003-11-20
JP2006505414A (en) 2006-02-16
US20050181170A1 (en) 2005-08-18
EP1511618A1 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
Roman et al. Elasto-capillarity: deforming an elastic structure with a liquid droplet
Liu et al. Recent developments in bio-inspired special wettability
De Boer et al. Tribology of MEMS
Evans et al. Biomembrane templates for nanoscale conduits and networks
Bhushan et al. Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM
Autumn et al. Gecko adhesion: evolutionary nanotechnology
Jagota et al. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces
Xia et al. Extending microcontact printing as a microlithographic technique
Reddy et al. Bioinspired surfaces with switchable adhesion
Sethi et al. Gecko-inspired carbon nanotube-based self-cleaning adhesives
EP0725809B1 (en) Pressure-sensitive adhesives having microstructured surfaces
US5658698A (en) Microstructure, process for manufacturing thereof and devices incorporating the same
US7968474B2 (en) Methods for nanowire alignment and deposition
Hui et al. Constraints on microcontact printing imposed by stamp deformation
Pokroy et al. Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness
Kim et al. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives
Liu et al. Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains
Hierold From micro-to nanosystems: mechanical sensors go nano
US7892610B2 (en) Method and system for printing aligned nanowires and other electrical devices
JP4898820B2 (en) Hierarchical nano pattern which is formed by a nanoimprint lithography
Bhushan et al. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction
Bhushan Adhesion of multi-level hierarchical attachment systems in gecko feet
US8153254B2 (en) Methods for modifying the surfaces of a solid and microstructured surfaces with increased adherence produced with said methods
US9095639B2 (en) Aligned carbon nanotube-polymer materials, systems and methods
JP2015135963A (en) Microstructures for improved wafer handling

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALIFORNIA, THE REGENTS OF THE UNIVESITY, CALIFORN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FEARING, RONALD S.;SITTI, METIN;REEL/FRAME:013543/0433;SIGNING DATES FROM 20021018 TO 20021114

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FEARING, RONALD S.;SITTI, METIN;SIGNING DATES FROM 20021018 TO 20021114;REEL/FRAME:013543/0433

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: NAVY, UNITED STATES OF AMERICA AS REPRESENTED BY T

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:REGENTS OF THE UNIVERTIY OF CALIFORNIA, THE;REEL/FRAME:028072/0830

Effective date: 20021016

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12