US6825678B2 - Wafer level interposer - Google Patents

Wafer level interposer Download PDF

Info

Publication number
US6825678B2
US6825678B2 US10/106,167 US10616702A US6825678B2 US 6825678 B2 US6825678 B2 US 6825678B2 US 10616702 A US10616702 A US 10616702A US 6825678 B2 US6825678 B2 US 6825678B2
Authority
US
United States
Prior art keywords
testing
semiconductor chips
interposer
wafer
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US10/106,167
Other versions
US20020097063A1 (en
Inventor
Jerry D. Kline
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRANSPACIFIC MULTICAST LLC
Eaglestone Partners I LLC
Original Assignee
Eaglestone Partners I LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eaglestone Partners I LLC filed Critical Eaglestone Partners I LLC
Priority to US10/106,167 priority Critical patent/US6825678B2/en
Publication of US20020097063A1 publication Critical patent/US20020097063A1/en
Application granted granted Critical
Publication of US6825678B2 publication Critical patent/US6825678B2/en
Assigned to MICRO-ASI, INC. reassignment MICRO-ASI, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLINE, JERRY D., SMITH, CECIL E., JR.
Assigned to EAGLESTONE INVESTMENT PARTNERS I, L.P. reassignment EAGLESTONE INVESTMENT PARTNERS I, L.P. SECURITY AGREEMENT Assignors: MICRO-ASI, INC.
Assigned to TRANSPACIFIC MULTICAST, LLC reassignment TRANSPACIFIC MULTICAST, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EAGLESTONE INVESTMENT PARTNERS I, L.P.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0416Connectors, terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Definitions

  • the present invention relates in general to the field of integrated circuits, and more particularly, to the area of wafer level testing of semiconductor chips using a wafer-interposer assembly and the manufacturing of semiconductor chip assemblies that are singulated from the wafer-interposer assembly.
  • Modern electronic devices utilize semiconductor chips, commonly referred to as “integrated circuits,” which incorporate numerous electronic elements. These chips are mounted on substrates which physically support the chips and electrically interconnect the chips with other elements of the circuit. Such substrates may be secured to an external circuit board or chassis.
  • each subassembly influences the size of the overall electronic device. Moreover, the size of each subassembly controls the required distance between each chip and other chips, or between each chip and other elements of the circuit. Delays in transmission of electrical signals between chips are directly related to these distances. These delays limit the speed of operation of the device. Thus, more compact interconnection assemblies, with smaller distances between chips and smaller signal transmission delays can permit faster operations. At present, two of the most widely utilized interconnection methods are wire bonding and flip-chip bonding.
  • the substrate has a top surface with a plurality of electrically conductive contact pads disposed in a ring-like pattern around the periphery of the chip.
  • the chip is secured to the top surface of the substrate at the center of the ring-like pattern, so that the chip is surrounded by the contact pads on the substrate.
  • the chip is mounted in a face-up disposition. Fine wires are connected between the contacts on the front face of the chip and the contact pads on the top surface of the substrate. These wires extend outwardly from the chip to the surrounding contact pads on the substrate.
  • Wire bonding ordinarily can only be employed with contacts at the periphery of the chip. It is difficult or impossible to make connections with contacts at the center of the front surface of the chip using the wire bonding approach without resulting in shorts in the wire bonding. Accordingly, the contacts on the chip must be spaced at least about 100 micrometers apart from one another. These considerations limit the wire bonding approach to chips having relatively few I/O connections, typically less than about 250 connections per chip. Moreover, the area of the substrate occupied by the chip, the wires and the contact pads of the substrate is substantially greater than the surface area of the chip itself.
  • Wire bonding has a number of disadvantages, for example, bond wire pads act as a scale limiter, as the pads must be of sufficient size for a proper wire bond. Furthermore, bond wires add to the conductor path length between components, increasing the impedance, inductance and capacitance of the conductors as well as the potential for cross-talk. As such, the bond wires serve to limit not only the scale of the device, but also the maximum signal frequency that can be transmitted from the chip. In some designs, these phenomena can limit the maximum speed of a chip to less than seventy percent of its potential. Thus, in some cases the chip designer must make the chip large than necessary in order to accommodate the require I/O. These and other limitations of wire bond technology have become increasingly pronounced as the market makes increasingly higher demands on the size and performance of integrated circuit devices.
  • contacts on the front surface of the chip are provided with bumps of solder.
  • the substrate has contact pads arranged in an array corresponding to the array of contacts on the chip.
  • the chip, with the solder bumps is inverted so that its front surface faces toward the top surface of the substrate, such that the solder bump correspond to the appropriate contact pads of the substrate.
  • the assembly is then heated so as to liquify the solder and bond each contact on the chip to the confronting contact pad of the substrate. Because the flip-chip arrangement does not require leads arranged in a fan-out pattern, it provides a very compact assembly.
  • the area of the substrate occupied by the contact pads is approximately the same size as the chip itself.
  • the flip-chip bonding approach is not limited to contacts on the periphery of the chip. Rather, the contacts on the chip may be arranged in a so-called “area array” covering substantially the entire front face of the chip. Flip-chip bonding is, therefore, very well suited for use with complex chips having large numbers of I/O contacts. Unfortunately, flip-chip bonding has faced a number of problems that have limited its implementation. As one example, assemblies made by traditional flip-chip bonding can be quite susceptible to thermal stresses. The solder interconnections are relatively inflexible, and may be subjected to very high stress upon differential expansion of the chip and substrate. These difficulties are particularly pronounced with relatively large chips.
  • testing normally includes “burn-in” which is used to identify manufacturing defects and parametric testing which is used to verify product conformance.
  • burn-in which is used to identify manufacturing defects
  • parametric testing which is used to verify product conformance.
  • testing has normally taken place after the wafer has been singulated to form the individual chips, and often requiring the chips to be packaged.
  • the present invention disclosed herein provides an apparatus and method that utilize an interposer that is attached to a wafer that allows full parametric testing of each of the semiconductor chips on the wafer to identify defective chips prior to singulation.
  • the interposer after testing of the chips, becomes part of the chip assembly that is attached to a substrate.
  • the present invention comprises a wafer level interposer that has a first surface and a second surface.
  • a first pattern of electrical contact pads is disposed on the first surface. These pad correspond to a pattern of electrical contact pads disposed on a surface of a semiconductor wafer.
  • the interposer also has a second pattern of electrical contact pads disposed on the second surface. The second pattern of electrical contact pads typically conforms to an industry-standard layout.
  • the interposer includes a testing connector having a plurality of testing contacts that allow for testing of the individual chip but are patterned to be automatically removed during wafer singulation.
  • a set of conductors connects the electrical contact pads on the first surface to the electrical contact pads on the second surface.
  • a set of testing conductors connects the electrical contact pads on the first surface to the testing contacts.
  • the interposer may include a multiplexer between the testing connectors and the first pattern of contact pads that allows for sequential testing of various parameters of each semiconductor chip on the wafer.
  • the interposer may also include an array of conductive attachment elements disposed on the first pattern of electrical contact pads and an array of conductive attachment elements disposed on the second pattern of electrical contact pads.
  • semiconductor chip assemblies are manufactured using the following steps.
  • An interposer is connected to a semiconductor wafer having a plurality of semiconductor chip thereon to form a wafer-interposer assembly.
  • the wafer-interposer assembly is attached to a testing apparatus such that the semiconductor chips may be tested.
  • the wafer-interposer assembly is thereafter singulated into a plurality of chip assemblies.
  • the interposer may be connected to the semiconductor wafer by electrically connecting pads on the interposer to pads on each of the semiconductor chips.
  • the testing procedure may include performing a parametric test of each semiconductor chip, testing the semiconductor chips in sequence, testing the semiconductor chips simultaneously, testing the semiconductor chips using a multiplexer, grading each of the semiconductor chips during testing and sorting the semiconductor chips based upon performance level or conformance or combination of the above.
  • FIG. 1 is an exploded view of a wafer-interposer assembly according to the present invention
  • FIG. 2 is a cross-sectional view of an interposer according to the present invention.
  • FIG. 3 is a perspective view of a wafer-interposer assembly according to the present invention, being inserted into a testing apparatus;
  • FIG. 4 is an exploded view of a wafer-interposer assembly having an array of conductive attachment elements disposed on the upper surface thereof;
  • FIG. 5 is an isometric view of a plurality of chip assemblies after singulation of the wafer-interposer assembly.
  • FIG. 6 is an isometric view of a chip assembly in place on a substrate.
  • a wafer-interposer assembly 10 comprises a wafer 12 having a plurality of chips 14 therein. Wafer 12 is depicted as having eighteen chips 14 for simplicity that are separated by dashed lines for clarity. Each chip 14 has a plurality of conductive pads 16 on its surface. For each chip 14 there is a corresponding array 18 of conductive attachment elements 20 one for each conductive pad 16 .
  • the conductive attachment elements 20 may be solder balls or bumps, screened solder paste, a set of conductive two part or heat cured epoxy, conductive thermoplastic balls or bumps or other electrical connection methods known in the art.
  • the interposer 22 has an array 24 of conductive pads 26 on the surface facing away from the wafer 12 .
  • the interposer 22 also has an array of conductive pads (not shown) on the surface facing the wafer 12 , one for each conductive pad 16 on the surface of the wafer 12 .
  • the conductive attachment elements 20 electrically connect and mechanically bond the pads 16 of each chip 14 to the facing interposer pads (not shown).
  • interposer 22 includes a plurality of layer having etched routing lines and vias therein which serve as electrical conductors.
  • One set of conductors, depicted as conductors 32 and 34 pass through the interposer 22 to electrically connect the pads 16 on the chips 14 to the pads of a substrate to which the chip assembly will be attached as explained in more detail below.
  • Conductors 32 and 34 are selected to have suitable conductivity and may be, for example, copper.
  • Testing conductors depicted as conductors 36 and 38 pass through the interposer 22 connecting the pads 16 of the chips 14 to the testing sockets 30 in the testing connector 28 , as best seen in FIG. 1 .
  • the testing conductors may provide direct electrical connection between the testing sockets 30 and the pads 16 , or may pass through a multiplexer or other intervening apparatus (not shown) incorporated into the interposer 22 .
  • Assembly of the wafer 12 and interposer 22 is accomplished through creating a set of permanent electrical and mechanical connections between the wafer 12 and interposer 22 using the conductive attachment elements 20 .
  • the conductive attachment elements 20 will typically be implemented as features on both the upper and lower surfaces of the interposer 22 but may alternatively be placed on the wafer 12 .
  • the attachment elements 20 could be incorporated into a sheet or similar structure sandwiched between the wafer 12 and interposer 22 during assembly.
  • a testing apparatus In order to test the chips 14 using the interposer 22 , it will be necessary that a testing apparatus be able to connect to the full array of pads 16 on each chip 14 through the testing connector 28 .
  • a testing apparatus For a wafer 12 having a substantial number of chips 14 , each having a large number of pads 16 , it may be desirable to connect the pads 16 to the testing sockets 30 through one or more multiplexers (not shown).
  • the multiplexer could be built into the interposer 22 as a standard surface mount device or could be a separate component or set of components.
  • the multiplexer could be powered by the test apparatus or from the bias voltage powering the semiconductor chips 14 . Such a design removes the necessity for a dedicated testing socket 30 for each chip pad 16 , thereby reducing the complexity of the testing connector 28 .
  • FIG. 1 depicts an interposer 22 having a single, rectangular testing connector 28
  • interposer 22 could be attached to a testing apparatus in a variety of ways.
  • interposer 22 may have multiple testing connectors having various sizes, shapes and numbers of sockets.
  • interposer 22 may alternatively have testing connectors mounted on the top surface thereof instead of or in addition to the side mounted testing connectors or may use cables for connection to a testing apparatus.
  • interposer 22 may include bypass capacitors to minimize ground bounce and to filter bias voltage. These capacitors may be standard surface mount devices or embedded within interposer 22 . Additionally, interposer 22 may include inductors to provide additional filtering. Impedance matching networks and line drivers may also be incorporated into interposer 22 to ensure signal integrity and to accurately measure parameters such as signal rise time and bandwidth and to protect the semiconductor chips 14 in the event of test equipment failure.
  • pads 26 on the upwardly facing surface of interposer 22 are depicted in FIG. 1 having the identical geometry as the pads 16 of the chips 14 of the wafer 12 .
  • the invention herein disclosed is by no means limited to this geometry.
  • pads 26 of interposer 22 may utilize a geometry that is different than that of the chips 14 .
  • chip designers were limited in chip layout in that all connections between the elements of the chip 14 and the outside world had to be made either through the peripheral edges of the chip (for wire bonding) or at least through a standard pin or pad layout defined by a standardization body, such as the Joint Electrical Dimensional Electronic Committee (JEDEC). The interconnection requirements, therefore, have traditionally driven the chip layout.
  • JEDEC Joint Electrical Dimensional Electronic Committee
  • the layout of a chip 14 and its pads 16 can be defined according to the interaction of the functional elements of the chip 14 rather than according to the standardization requirements.
  • the interposer 22 can be designed with a standardized layout of pads 26 on its upper surface and can electrically connect each chip pad 16 to the corresponding upper interposer pad 26 without an interposer pad 26 being directly above its corresponding chip pad 16 .
  • the interposer 22 of the present invention provides for standardized interconnection, it also provides for the use of standard test hardware, software, cabling and connectors compatible with existing industry infrastructure.
  • interposer 22 of the present invention is that more than one interposer 22 can be designed for each wafer 12 . A manufacturer can then, by substituting a different interposer 22 , modify the layout of the output pads 16 to conform to a different layout or packaging standard. Alternatively, if the chip 14 and interposer 22 are designed for modularity, a single interposer design may be useful on more than one chip design. A specific interposer design will typically be necessary for each unique wafer design.
  • a wafer 12 and interposer 22 are shown as an assembly 40 ready to be connected to a testing unit 46 .
  • the wafer-interposer assembly 40 interfaces to the testing unit 46 through a testing connector 42 comprising a plurality of testing contacts 44 , shown here as pins.
  • the testing contacts 44 in the testing connector 42 connect with the testing contacts 30 of the interposer 22 .
  • the testing connector 42 need not incorporate a testing contact 44 for every chip pad.
  • the contacts 44 may connect to the chips through a multiplexer or similar device (not shown).
  • the wafer-interposer assembly 40 can be run through a complete parametric test or whatever subset thereof is deemed necessary for that particular chip design.
  • each function of the chip may ideally be tested across a range of conditions, so as to simulate real world operation.
  • the testing unit 46 may incorporate a heating and cooling apparatus for testing the chips across a range of temperatures.
  • the testing unit 46 may also incorporate a device for vibrating or otherwise mechanically stressing the chips 14 .
  • non-conforming chips are identified by the testing unit 46 such that they may be discarded after singulation of the wafer-interposer assembly 40 .
  • individual chips can be graded according to various performance criteria, such as maximum clock speed or thermal stability, for later classification and sorting.
  • performance criteria such as maximum clock speed or thermal stability
  • Such parametric data and attribute data are stored by the testing unit 46 and may be displayed or printed for the operator. Other information such as operator identification code, date, lot number and the like will be stored.
  • FIG. 3 depicts a single wafer-interposer assembly 40 being tested, it should be understood by those skilled in the art that groups of wafer-interposer assemblies could be tested in a rack configuration or groups of racks of wafer-interposer assemblies could be tested in a lot configuration. In such a testing scenario, additional multiplexers, capacitor, impedance matching networks and related components would typically be used.
  • a wafer-interposer assembly 40 is shown having an array 24 of conductive pads 26 on its upper surface.
  • the array 50 of conductive attachment elements 52 may typically be attached to interposer 22 prior to its attachment to wafer 12 .
  • the conductive attachment elements 52 may be attached to interposer 22 following testing of chips 14 of wafer 12 .
  • the conductive attachment elements 52 may be of the types discussed above with reference to FIG. 1 .
  • FIG. 5 shows an array of chip assemblies 62 , after singulation of the wafer-interposer assembly 40 .
  • Each chip assembly 62 comprises a chip 64 , an interposer 66 and a plurality of conductive attachment elements 70 deposited on the conductive pads 68 on the exposed surface of the interposer 66 .
  • the chip assemblies 62 will be separated into conforming and non-conforming groups or sorted by performance level according to the results of the wafer level testing described in accordance with FIG. 3 .
  • FIG. 6 shows an assembly 80 comprising a chip assembly 62 mounted on a substrate 82 having a plurality of conductive layers 90 and dielectric layers 88 .
  • the chip assembly 62 is electrically and mechanically attached to pads 84 on the surface of the substrate 82 through conductive attachment elements 86 .
  • the chip assembly 62 communicates with other electronic devices (not shown) through the conductive layers 90 of the substrate 82 .
  • the interposer 66 provide electrical connection between the chip 64 the substrate 82 .
  • the substrate 82 may represent a traditional FR 4 circuit board. In other embodiments, the substrate 82 may be composed of a higher grade material suitable for use in multichip modules requiring finer conductor pitch. In the latter embodiment, the chip assembly 62 would generally be one of several such assemblies mounted on a small substrate in close proximity. This invention is well suited for implementation in these assemblies. It can be seen in FIG. 6 that the chip assembly 62 occupies an area of substrate 82 only slightly larger than the surface of the chip 64 . This is in contrast to traditional semiconductor assemblies, in which the area consumed by each chip package is much greater than the area of the chip itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

An apparatus and method for manufacture and testing of semiconductor chips (14) is disclosed. The invention comprises the use of an interposer (22) having a plurality of electrical contact pads (26) on each surface connected by a plurality of conductors (32, 34). After assembly of the interposer (22) to a semiconductor wafer (12), the wafer-interposer assembly (10) is attached to a testing unit (46) wherein the semiconductor chips (14) on the wafer (12) are tested. After testing, the interposer-wafer assembly (10) is singulated into a plurality of chip assemblies (62), each chip assembly (62) comprising a silicon chip (64) and the permanently attached interposer (66).

Description

CROSS REFERENCE TO RELATED APPLICATION
This is a divisional of application Ser. No. 09/440,751 entitled “Wafer Level Interposer,” filed on Nov. 16, 1999 now U.S. Pat. No. 6,392,428 in the name of Jerry D. Kline.
TECHNICAL FIELD OF THE INVENTION
The present invention relates in general to the field of integrated circuits, and more particularly, to the area of wafer level testing of semiconductor chips using a wafer-interposer assembly and the manufacturing of semiconductor chip assemblies that are singulated from the wafer-interposer assembly.
BACKGROUND OF THE INVENTION
Modern electronic devices utilize semiconductor chips, commonly referred to as “integrated circuits,” which incorporate numerous electronic elements. These chips are mounted on substrates which physically support the chips and electrically interconnect the chips with other elements of the circuit. Such substrates may be secured to an external circuit board or chassis.
The size of the chip and substrate assembly is a major concern in modern electronic product design. The size of each subassembly influences the size of the overall electronic device. Moreover, the size of each subassembly controls the required distance between each chip and other chips, or between each chip and other elements of the circuit. Delays in transmission of electrical signals between chips are directly related to these distances. These delays limit the speed of operation of the device. Thus, more compact interconnection assemblies, with smaller distances between chips and smaller signal transmission delays can permit faster operations. At present, two of the most widely utilized interconnection methods are wire bonding and flip-chip bonding.
In wire bonding, the substrate has a top surface with a plurality of electrically conductive contact pads disposed in a ring-like pattern around the periphery of the chip. The chip is secured to the top surface of the substrate at the center of the ring-like pattern, so that the chip is surrounded by the contact pads on the substrate. The chip is mounted in a face-up disposition. Fine wires are connected between the contacts on the front face of the chip and the contact pads on the top surface of the substrate. These wires extend outwardly from the chip to the surrounding contact pads on the substrate.
Wire bonding ordinarily can only be employed with contacts at the periphery of the chip. It is difficult or impossible to make connections with contacts at the center of the front surface of the chip using the wire bonding approach without resulting in shorts in the wire bonding. Accordingly, the contacts on the chip must be spaced at least about 100 micrometers apart from one another. These considerations limit the wire bonding approach to chips having relatively few I/O connections, typically less than about 250 connections per chip. Moreover, the area of the substrate occupied by the chip, the wires and the contact pads of the substrate is substantially greater than the surface area of the chip itself.
Wire bonding has a number of disadvantages, for example, bond wire pads act as a scale limiter, as the pads must be of sufficient size for a proper wire bond. Furthermore, bond wires add to the conductor path length between components, increasing the impedance, inductance and capacitance of the conductors as well as the potential for cross-talk. As such, the bond wires serve to limit not only the scale of the device, but also the maximum signal frequency that can be transmitted from the chip. In some designs, these phenomena can limit the maximum speed of a chip to less than seventy percent of its potential. Thus, in some cases the chip designer must make the chip large than necessary in order to accommodate the require I/O. These and other limitations of wire bond technology have become increasingly pronounced as the market makes increasingly higher demands on the size and performance of integrated circuit devices.
In flip-chip bonding, contacts on the front surface of the chip are provided with bumps of solder. The substrate has contact pads arranged in an array corresponding to the array of contacts on the chip. The chip, with the solder bumps, is inverted so that its front surface faces toward the top surface of the substrate, such that the solder bump correspond to the appropriate contact pads of the substrate. The assembly is then heated so as to liquify the solder and bond each contact on the chip to the confronting contact pad of the substrate. Because the flip-chip arrangement does not require leads arranged in a fan-out pattern, it provides a very compact assembly. The area of the substrate occupied by the contact pads is approximately the same size as the chip itself. Moreover, the flip-chip bonding approach is not limited to contacts on the periphery of the chip. Rather, the contacts on the chip may be arranged in a so-called “area array” covering substantially the entire front face of the chip. Flip-chip bonding is, therefore, very well suited for use with complex chips having large numbers of I/O contacts. Unfortunately, flip-chip bonding has faced a number of problems that have limited its implementation. As one example, assemblies made by traditional flip-chip bonding can be quite susceptible to thermal stresses. The solder interconnections are relatively inflexible, and may be subjected to very high stress upon differential expansion of the chip and substrate. These difficulties are particularly pronounced with relatively large chips.
Whatever type of contact is to be made to the chip, it is necessary for the chip to be tested. Testing normally includes “burn-in” which is used to identify manufacturing defects and parametric testing which is used to verify product conformance. In the past, testing has normally taken place after the wafer has been singulated to form the individual chips, and often requiring the chips to be packaged. Thus, in the past, it was necessary to manufacture the wafer, singulate the wafer into discrete chips, package the chips and test the packaged chips individually. It is only after these steps that defective chips are identified and discarded along with the test package in some cases.
The cost of testing and packaging may be even more pronounced for chips known in the semiconductor industry as “Known Good Die” (KGD). These chips are sold unpackaged after being tested for specific levels of conformance. Typically, in order to be considered a KGD, a chip must be singulated from the wafer, packaged for testing, tested, separated from the testing apparatus and sold as a bare chip. This bare chip is then repackaged by the purchaser. This is a very inefficient, but heretofore necessary process.
Therefore, a need has arisen for an apparatus and method that provides for the attachment of an interposer to a wafer that allows full parametric testing of each of the chips on the wafer to identify good chips prior to singulation. A need has also arisen for such an apparatus and method wherein the interposer becomes part of the chip assembly that is attached to a substrate.
SUMMARY OF THE INVENTION
The present invention disclosed herein provides an apparatus and method that utilize an interposer that is attached to a wafer that allows full parametric testing of each of the semiconductor chips on the wafer to identify defective chips prior to singulation. In the present invention, the interposer, after testing of the chips, becomes part of the chip assembly that is attached to a substrate.
The present invention comprises a wafer level interposer that has a first surface and a second surface. A first pattern of electrical contact pads is disposed on the first surface. These pad correspond to a pattern of electrical contact pads disposed on a surface of a semiconductor wafer. The interposer also has a second pattern of electrical contact pads disposed on the second surface. The second pattern of electrical contact pads typically conforms to an industry-standard layout. The interposer includes a testing connector having a plurality of testing contacts that allow for testing of the individual chip but are patterned to be automatically removed during wafer singulation. A set of conductors connects the electrical contact pads on the first surface to the electrical contact pads on the second surface. A set of testing conductors connects the electrical contact pads on the first surface to the testing contacts.
The interposer may include a multiplexer between the testing connectors and the first pattern of contact pads that allows for sequential testing of various parameters of each semiconductor chip on the wafer. The interposer may also include an array of conductive attachment elements disposed on the first pattern of electrical contact pads and an array of conductive attachment elements disposed on the second pattern of electrical contact pads.
In one method of the present invention, semiconductor chip assemblies are manufactured using the following steps. An interposer is connected to a semiconductor wafer having a plurality of semiconductor chip thereon to form a wafer-interposer assembly. The wafer-interposer assembly is attached to a testing apparatus such that the semiconductor chips may be tested. The wafer-interposer assembly is thereafter singulated into a plurality of chip assemblies.
In this method, the interposer may be connected to the semiconductor wafer by electrically connecting pads on the interposer to pads on each of the semiconductor chips. The testing procedure may include performing a parametric test of each semiconductor chip, testing the semiconductor chips in sequence, testing the semiconductor chips simultaneously, testing the semiconductor chips using a multiplexer, grading each of the semiconductor chips during testing and sorting the semiconductor chips based upon performance level or conformance or combination of the above.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
FIG. 1 is an exploded view of a wafer-interposer assembly according to the present invention;
FIG. 2 is a cross-sectional view of an interposer according to the present invention;
FIG. 3 is a perspective view of a wafer-interposer assembly according to the present invention, being inserted into a testing apparatus;
FIG. 4 is an exploded view of a wafer-interposer assembly having an array of conductive attachment elements disposed on the upper surface thereof;
FIG. 5 is an isometric view of a plurality of chip assemblies after singulation of the wafer-interposer assembly; and
FIG. 6 is an isometric view of a chip assembly in place on a substrate.
DETAILED DESCRIPTION OF THE INVENTION
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not define the scope of the invention.
The general features of a wafer-interposer assembly, generally designated 10, are shown in FIG. 1. A wafer-interposer assembly 10 comprises a wafer 12 having a plurality of chips 14 therein. Wafer 12 is depicted as having eighteen chips 14 for simplicity that are separated by dashed lines for clarity. Each chip 14 has a plurality of conductive pads 16 on its surface. For each chip 14 there is a corresponding array 18 of conductive attachment elements 20 one for each conductive pad 16. The conductive attachment elements 20 may be solder balls or bumps, screened solder paste, a set of conductive two part or heat cured epoxy, conductive thermoplastic balls or bumps or other electrical connection methods known in the art.
The interposer 22 has an array 24 of conductive pads 26 on the surface facing away from the wafer 12. The interposer 22 also has an array of conductive pads (not shown) on the surface facing the wafer 12, one for each conductive pad 16 on the surface of the wafer 12. After assembly, the conductive attachment elements 20 electrically connect and mechanically bond the pads 16 of each chip 14 to the facing interposer pads (not shown).
As best seen in FIG. 2, interposer 22 includes a plurality of layer having etched routing lines and vias therein which serve as electrical conductors. One set of conductors, depicted as conductors 32 and 34 pass through the interposer 22 to electrically connect the pads 16 on the chips 14 to the pads of a substrate to which the chip assembly will be attached as explained in more detail below. Conductors 32 and 34 are selected to have suitable conductivity and may be, for example, copper.
Testing conductors, depicted as conductors 36 and 38 pass through the interposer 22 connecting the pads 16 of the chips 14 to the testing sockets 30 in the testing connector 28, as best seen in FIG. 1. The testing conductors may provide direct electrical connection between the testing sockets 30 and the pads 16, or may pass through a multiplexer or other intervening apparatus (not shown) incorporated into the interposer 22.
Assembly of the wafer 12 and interposer 22 is accomplished through creating a set of permanent electrical and mechanical connections between the wafer 12 and interposer 22 using the conductive attachment elements 20. The conductive attachment elements 20 will typically be implemented as features on both the upper and lower surfaces of the interposer 22 but may alternatively be placed on the wafer 12. Likewise, the attachment elements 20 could be incorporated into a sheet or similar structure sandwiched between the wafer 12 and interposer 22 during assembly.
In order to test the chips 14 using the interposer 22, it will be necessary that a testing apparatus be able to connect to the full array of pads 16 on each chip 14 through the testing connector 28. For a wafer 12 having a substantial number of chips 14, each having a large number of pads 16, it may be desirable to connect the pads 16 to the testing sockets 30 through one or more multiplexers (not shown). The multiplexer could be built into the interposer 22 as a standard surface mount device or could be a separate component or set of components. The multiplexer could be powered by the test apparatus or from the bias voltage powering the semiconductor chips 14. Such a design removes the necessity for a dedicated testing socket 30 for each chip pad 16, thereby reducing the complexity of the testing connector 28.
While FIG. 1 depicts an interposer 22 having a single, rectangular testing connector 28, it should be understood by those skilled in the art that interposer 22 could be attached to a testing apparatus in a variety of ways. For example, interposer 22 may have multiple testing connectors having various sizes, shapes and numbers of sockets. Likewise, interposer 22 may alternatively have testing connectors mounted on the top surface thereof instead of or in addition to the side mounted testing connectors or may use cables for connection to a testing apparatus.
It should also be noted that interposer 22 may include bypass capacitors to minimize ground bounce and to filter bias voltage. These capacitors may be standard surface mount devices or embedded within interposer 22. Additionally, interposer 22 may include inductors to provide additional filtering. Impedance matching networks and line drivers may also be incorporated into interposer 22 to ensure signal integrity and to accurately measure parameters such as signal rise time and bandwidth and to protect the semiconductor chips 14 in the event of test equipment failure.
The pads 26 on the upwardly facing surface of interposer 22 are depicted in FIG. 1 having the identical geometry as the pads 16 of the chips 14 of the wafer 12. The invention herein disclosed is by no means limited to this geometry. As each die design may have unique pad geometry, one of the advantages of the present invention is that pads 26 of interposer 22 may utilize a geometry that is different than that of the chips 14. Traditionally, chip designers were limited in chip layout in that all connections between the elements of the chip 14 and the outside world had to be made either through the peripheral edges of the chip (for wire bonding) or at least through a standard pin or pad layout defined by a standardization body, such as the Joint Electrical Dimensional Electronic Committee (JEDEC). The interconnection requirements, therefore, have traditionally driven the chip layout.
Through the use of the interposer 22, the layout of a chip 14 and its pads 16 can be defined according to the interaction of the functional elements of the chip 14 rather than according to the standardization requirements. The interposer 22 can be designed with a standardized layout of pads 26 on its upper surface and can electrically connect each chip pad 16 to the corresponding upper interposer pad 26 without an interposer pad 26 being directly above its corresponding chip pad 16. Not only does the interposer 22 of the present invention provide for standardized interconnection, it also provides for the use of standard test hardware, software, cabling and connectors compatible with existing industry infrastructure.
An additional advantage of interposer 22 of the present invention is that more than one interposer 22 can be designed for each wafer 12. A manufacturer can then, by substituting a different interposer 22, modify the layout of the output pads 16 to conform to a different layout or packaging standard. Alternatively, if the chip 14 and interposer 22 are designed for modularity, a single interposer design may be useful on more than one chip design. A specific interposer design will typically be necessary for each unique wafer design.
Turning now to FIG. 3, a wafer 12 and interposer 22 are shown as an assembly 40 ready to be connected to a testing unit 46. The wafer-interposer assembly 40 interfaces to the testing unit 46 through a testing connector 42 comprising a plurality of testing contacts 44, shown here as pins. The testing contacts 44 in the testing connector 42 connect with the testing contacts 30 of the interposer 22. As noted above, the testing connector 42 need not incorporate a testing contact 44 for every chip pad. The contacts 44 may connect to the chips through a multiplexer or similar device (not shown).
After electrical connection to the testing unit 46, the wafer-interposer assembly 40 can be run through a complete parametric test or whatever subset thereof is deemed necessary for that particular chip design. During the course of testing, each function of the chip may ideally be tested across a range of conditions, so as to simulate real world operation. The testing unit 46 may incorporate a heating and cooling apparatus for testing the chips across a range of temperatures. The testing unit 46 may also incorporate a device for vibrating or otherwise mechanically stressing the chips 14. During testing, non-conforming chips are identified by the testing unit 46 such that they may be discarded after singulation of the wafer-interposer assembly 40. Alternatively, where a manufacturer sells a variety of grades of a particular model of chip, individual chips can be graded according to various performance criteria, such as maximum clock speed or thermal stability, for later classification and sorting. Such parametric data and attribute data are stored by the testing unit 46 and may be displayed or printed for the operator. Other information such as operator identification code, date, lot number and the like will be stored.
While FIG. 3 depicts a single wafer-interposer assembly 40 being tested, it should be understood by those skilled in the art that groups of wafer-interposer assemblies could be tested in a rack configuration or groups of racks of wafer-interposer assemblies could be tested in a lot configuration. In such a testing scenario, additional multiplexers, capacitor, impedance matching networks and related components would typically be used.
Turning now to FIG. 4, a wafer-interposer assembly 40 is shown having an array 24 of conductive pads 26 on its upper surface. The array 50 of conductive attachment elements 52 may typically be attached to interposer 22 prior to its attachment to wafer 12. Alternatively, the conductive attachment elements 52 may be attached to interposer 22 following testing of chips 14 of wafer 12. The conductive attachment elements 52 may be of the types discussed above with reference to FIG. 1.
FIG. 5 shows an array of chip assemblies 62, after singulation of the wafer-interposer assembly 40. Each chip assembly 62 comprises a chip 64, an interposer 66 and a plurality of conductive attachment elements 70 deposited on the conductive pads 68 on the exposed surface of the interposer 66. The chip assemblies 62 will be separated into conforming and non-conforming groups or sorted by performance level according to the results of the wafer level testing described in accordance with FIG. 3.
FIG. 6 shows an assembly 80 comprising a chip assembly 62 mounted on a substrate 82 having a plurality of conductive layers 90 and dielectric layers 88. The chip assembly 62 is electrically and mechanically attached to pads 84 on the surface of the substrate 82 through conductive attachment elements 86. The chip assembly 62 communicates with other electronic devices (not shown) through the conductive layers 90 of the substrate 82. Assembled as shown, the interposer 66 provide electrical connection between the chip 64 the substrate 82.
In certain embodiments, the substrate 82 may represent a traditional FR4 circuit board. In other embodiments, the substrate 82 may be composed of a higher grade material suitable for use in multichip modules requiring finer conductor pitch. In the latter embodiment, the chip assembly 62 would generally be one of several such assemblies mounted on a small substrate in close proximity. This invention is well suited for implementation in these assemblies. It can be seen in FIG. 6 that the chip assembly 62 occupies an area of substrate 82 only slightly larger than the surface of the chip 64. This is in contrast to traditional semiconductor assemblies, in which the area consumed by each chip package is much greater than the area of the chip itself.
While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments.

Claims (29)

What is claimed is:
1. A method for manufacturing semiconductor chip assemblies comprising the steps of:
providing a semiconductor wafer including a plurality of semiconductor chips each having a pattern of electrical contact pads;
providing an interposer having a first surface with a first pattern of electrical contact pads corresponding to the pattern of electrical contact pad on the semiconductor chips of the wafer, a second surface having a second pattern of electrical contact pads and a plurality of testing contacts, the interposer including a set of electrical connections between the first pattern of contact pads and the second pattern of contact pads and set of electrical connections between the first pattern of contact pads and testing contacts;
connecting the interposer to the wafer by electrically connecting the first pattern of electrical contact pads of the interposer to the electrical contact pad on the semiconductor chips of the wafer forming a wafer-interposer assembly;
attaching the wafer-interposer assembly to a testing apparatus;
testing the semiconductor chips; and
singulating the wafer-interposer assembly into a plurality of chip assemblies.
2. The method as recited in claim 1 wherein the step of testing the semiconductor chips further comprises performing a parametric test of each semiconductor chip.
3. The method as recited in claim 1 wherein the step of testing the semiconductor chips further comprises testing the semiconductor chips in sequence.
4. The method as recited in claim 1 wherein the step of testing the semiconductor chips further comprises testing the semiconductor chips simultaneously.
5. The method as recited in claim 1 wherein the step of testing the semiconductor chips further comprises using a multiplexer.
6. The method as recited in claim 1 further comprising the step of grading each of the semiconductor chips during testing and sorting the semiconductor chips based upon performance level.
7. The method as recited in claim 1 further comprising the step of grading each of the semiconductor chips during testing and sorting the semiconductor chips into conforming and non-conforming groups.
8. A semiconductor chip assembly manufactured by the method as recited in claim 1.
9. A method for testing semiconductor chips on a semiconductor wafer comprising the steps of:
attaching a wafer-interposer assembly to a testing apparatus;
testing the semiconductor chips of the semiconductor wafer with the testing apparatus; and
singulating the wafer-interposer assembly into a plurality of chip assemblies.
10. The method as recited in claim 9 further comprising the step of attaching the semiconductor wafer to the interposer by electrically connecting pad on the semiconductor chips to pads on the interposer.
11. The method as recited in claim 9 wherein the step of testing the semiconductor chips further comprises providing a set of signals to the semiconductor chips.
12. The method as recited in claim 9 wherein the step of testing the semiconductor chips further comprises performing a parametric test of each semiconductor chip on the semiconductor wafer.
13. The method as recited in claim 9 wherein the step of testing the semiconductor chips further comprises testing the semiconductor chips in sequence.
14. The method as recited in claim 9 wherein the step of testing the semiconductor chips further comprises testing the semiconductor chips simultaneously.
15. The method as recited in claim 9 wherein the step of testing the semiconductor chips further comprises using a multiplexer.
16. The method as recited in claim 9 further comprising the step of grading each of the semiconductor chips during testing and sorting the semiconductor chips based upon performance level.
17. The method as recited in claim 9 further comprising the step of grading each of the semiconductor chips during testing and sorting the semiconductor chips into conforming and non-conforming groups.
18. The method as recited in claim 9 wherein the step of testing the semiconductor chips further comprises heating the semiconductor wafer to thermally stress the semiconductor chips.
19. The method as recited in claim 9 wherein the step of testing the semiconductor chips further comprises vibrating the semiconductor wafer to mechanically stress the semiconductor chips.
20. A method for manufacturing semiconductor chip assemblies comprising the steps of:
providing a semiconductor wafer including a plurality of semiconductor chips;
connecting an interposer to the semiconductor wafer forming a wafer-interposer assembly;
attaching the wafer-interposer assembly to a testing apparatus;
testing the semiconductor chips; and
singulating the wafer-interposer assembly into a plurality of chip assemblies.
21. The method as recited in claim 20 wherein the step of connecting the interposer to the semiconductor wafer further comprises electrically connecting pads on the interposer to pads on each of the semiconductor chips.
22. The method as recited in claim 20 wherein the interposer includes a first set of conductors for electrically connecting the chip assemblies to a substrate and a second set of conductors for electrically connecting the semiconductor chips to the testing apparatus.
23. The method as recited in claim 20 wherein the step of testing the semiconductor chips further comprises performing a parametric test of at least one of the semiconductor chips.
24. The method as recited in claim 20 wherein the step of testing the semiconductor chips further comprises testing the semiconductor chips in sequence.
25. The method as recited in claim 20 wherein the step of testing the semiconductor chips further comprises testing the semiconductor chips simultaneously.
26. The method as recited in claim 20 wherein the step of testing the semiconductor chips further comprises using a multiplexer.
27. The method as recited in claim 20 further comprising the step of grading each of the semiconductor chips during testing and sorting the semiconductor chips based upon performance level.
28. The method as recited in claim 20 further comprising the step of grading each of the semiconductor chips during testing and sorting the semiconductor chips into conforming and non-conforming groups.
29. A semiconductor chip assembly manufactured by the method as recited in claim 20.
US10/106,167 1999-11-16 2002-03-26 Wafer level interposer Expired - Lifetime US6825678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/106,167 US6825678B2 (en) 1999-11-16 2002-03-26 Wafer level interposer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/440,751 US6392428B1 (en) 1999-11-16 1999-11-16 Wafer level interposer
US10/106,167 US6825678B2 (en) 1999-11-16 2002-03-26 Wafer level interposer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/440,751 Division US6392428B1 (en) 1999-11-16 1999-11-16 Wafer level interposer

Publications (2)

Publication Number Publication Date
US20020097063A1 US20020097063A1 (en) 2002-07-25
US6825678B2 true US6825678B2 (en) 2004-11-30

Family

ID=23750034

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/440,751 Expired - Fee Related US6392428B1 (en) 1999-11-16 1999-11-16 Wafer level interposer
US10/106,167 Expired - Lifetime US6825678B2 (en) 1999-11-16 2002-03-26 Wafer level interposer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/440,751 Expired - Fee Related US6392428B1 (en) 1999-11-16 1999-11-16 Wafer level interposer

Country Status (2)

Country Link
US (2) US6392428B1 (en)
WO (1) WO2001036990A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148108A1 (en) * 2000-12-15 2003-08-07 Pierce John L. Wafer interposer assembly and system for building same
US20040193989A1 (en) * 2003-03-28 2004-09-30 Sun Microsystems, Inc. Test system including a test circuit board including through-hole vias and blind vias
US7131047B2 (en) 2003-04-07 2006-10-31 Sun Microsystems, Inc. Test system including a test circuit board including resistive devices
US11694936B2 (en) 2020-09-09 2023-07-04 Samsung Electronics Co., Ltd. Semiconductor package and method of fabricating the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2101293C (en) * 1992-08-05 2004-06-29 David A. Nicholas Articulating endoscopic surgical apparatus
JP2001091540A (en) * 1999-09-27 2001-04-06 Hitachi Ltd Probe structure
US6392428B1 (en) * 1999-11-16 2002-05-21 Eaglestone Partners I, Llc Wafer level interposer
US6812048B1 (en) * 2000-07-31 2004-11-02 Eaglestone Partners I, Llc Method for manufacturing a wafer-interposer assembly
US6537831B1 (en) 2000-07-31 2003-03-25 Eaglestone Partners I, Llc Method for selecting components for a matched set using a multi wafer interposer
US6815712B1 (en) * 2000-10-02 2004-11-09 Eaglestone Partners I, Llc Method for selecting components for a matched set from a wafer-interposer assembly
JP2002110856A (en) * 2000-10-03 2002-04-12 Sony Corp Manufacturing method of semiconductor device
US6686657B1 (en) * 2000-11-07 2004-02-03 Eaglestone Partners I, Llc Interposer for improved handling of semiconductor wafers and method of use of same
US6529022B2 (en) * 2000-12-15 2003-03-04 Eaglestone Pareners I, Llc Wafer testing interposer for a conventional package
US6673653B2 (en) 2001-02-23 2004-01-06 Eaglestone Partners I, Llc Wafer-interposer using a ceramic substrate
DE10216874A1 (en) * 2002-04-17 2003-07-10 Infineon Technologies Ag Semiconductor chip and process for laying down information on it forms wafer level package with contacts and has optically readable identification on each chip
US6969909B2 (en) * 2002-12-20 2005-11-29 Vlt, Inc. Flip chip FET device
US7038917B2 (en) * 2002-12-27 2006-05-02 Vlt, Inc. Low loss, high density array interconnection
JP2006210402A (en) * 2005-01-25 2006-08-10 Matsushita Electric Ind Co Ltd Semiconductor device
US20080018350A1 (en) * 2006-07-21 2008-01-24 Clinton Chao Test probe for integrated circuits with ultra-fine pitch terminals
US20140055159A1 (en) * 2012-02-21 2014-02-27 Nexus Technology Interposer with Edge Probe Points
US20130257423A1 (en) * 2012-04-03 2013-10-03 Isentek Inc. Hybrid magnetic sensor
US9230682B2 (en) * 2012-12-26 2016-01-05 Broadcom Corporation Method and system for automated device testing
US20190013251A1 (en) 2017-07-10 2019-01-10 International Business Machines Corporation Non-destructive testing of integrated circuit chips
TWI827809B (en) * 2019-04-04 2024-01-01 丹麥商卡普雷斯股份有限公司 Method for measuring an electric property of a test sample, and multilayer test sample
JP2021012041A (en) * 2019-07-03 2021-02-04 デクセリアルズ株式会社 Inspection tool for inspecting electrical characteristics
US12105136B2 (en) * 2021-09-09 2024-10-01 Kla Corporation Method for determining material parameters of a multilayer test sample

Citations (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939588A (en) 1974-06-24 1976-02-24 Hockaday Robert C Lettering guide apparatus
US4577214A (en) 1981-05-06 1986-03-18 At&T Bell Laboratories Low-inductance power/ground distribution in a package for a semiconductor chip
US4617730A (en) 1984-08-13 1986-10-21 International Business Machines Corporation Method of fabricating a chip interposer
US4628411A (en) 1984-03-12 1986-12-09 International Business Machines Corporation Apparatus for directly powering a multi-chip module from a power distribution bus
US4688151A (en) 1986-03-10 1987-08-18 International Business Machines Corporation Multilayered interposer board for powering high current chip modules
US4868712A (en) 1987-02-04 1989-09-19 Woodman John K Three dimensional integrated circuit package
US4998885A (en) 1989-10-27 1991-03-12 International Business Machines Corporation Elastomeric area array interposer
US5016138A (en) 1987-10-27 1991-05-14 Woodman John K Three dimensional integrated circuit package
US5060052A (en) 1990-09-04 1991-10-22 Motorola, Inc. TAB bonded semiconductor device having off-chip power and ground distribution
US5065227A (en) 1990-06-04 1991-11-12 International Business Machines Corporation Integrated circuit packaging using flexible substrate
US5068558A (en) 1988-10-07 1991-11-26 Nippon Ferrofluidics Corporation Magnetic bearing device
US5123850A (en) 1990-04-06 1992-06-23 Texas Instruments Incorporated Non-destructive burn-in test socket for integrated circuit die
US5132613A (en) * 1990-11-30 1992-07-21 International Business Machines Corporation Low inductance side mount decoupling test structure
US5148266A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5309021A (en) 1991-10-16 1994-05-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having particular power distribution interconnection arrangement
US5327325A (en) 1993-02-08 1994-07-05 Fairchild Space And Defense Corporation Three-dimensional integrated circuit package
US5347162A (en) 1989-08-28 1994-09-13 Lsi Logic Corporation Preformed planar structures employing embedded conductors
US5371654A (en) 1992-10-19 1994-12-06 International Business Machines Corporation Three dimensional high performance interconnection package
US5382898A (en) 1992-09-21 1995-01-17 Cerprobe Corporation High density probe card for testing electrical circuits
US5384691A (en) 1993-01-08 1995-01-24 General Electric Company High density interconnect multi-chip modules including embedded distributed power supply elements
US5399898A (en) 1992-07-17 1995-03-21 Lsi Logic Corporation Multi-chip semiconductor arrangements using flip chip dies
US5399505A (en) 1993-07-23 1995-03-21 Motorola, Inc. Method and apparatus for performing wafer level testing of integrated circuit dice
US5410259A (en) 1992-06-01 1995-04-25 Tokyo Electron Yamanashi Limited Probing device setting a probe card parallel
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US5477160A (en) * 1992-08-12 1995-12-19 Fujitsu Limited Module test card
US5483421A (en) 1992-03-09 1996-01-09 International Business Machines Corporation IC chip attachment
US5489804A (en) 1989-08-28 1996-02-06 Lsi Logic Corporation Flexible preformed planar structures for interposing between a chip and a substrate
US5491612A (en) 1995-02-21 1996-02-13 Fairchild Space And Defense Corporation Three-dimensional modular assembly of integrated circuits
US5497079A (en) 1992-09-01 1996-03-05 Matsushita Electric Industrial Co., Ltd. Semiconductor testing apparatus, semiconductor testing circuit chip, and probe card
US5517515A (en) 1994-08-17 1996-05-14 International Business Machines Corporation Multichip module with integrated test circuitry disposed within interposer substrate
US5518964A (en) 1994-07-07 1996-05-21 Tessera, Inc. Microelectronic mounting with multiple lead deformation and bonding
US5532612A (en) 1994-07-19 1996-07-02 Liang; Louis H. Methods and apparatus for test and burn-in of integrated circuit devices
US5544017A (en) 1992-08-05 1996-08-06 Fujitsu Limited Multichip module substrate
US5570032A (en) 1993-08-17 1996-10-29 Micron Technology, Inc. Wafer scale burn-in apparatus and process
US5579207A (en) 1994-10-20 1996-11-26 Hughes Electronics Three-dimensional integrated circuit stacking
US5594273A (en) 1993-07-23 1997-01-14 Motorola Inc. Apparatus for performing wafer-level testing of integrated circuits where test pads lie within integrated circuit die but overly no active circuitry for improved yield
US5600541A (en) 1993-12-08 1997-02-04 Hughes Aircraft Company Vertical IC chip stack with discrete chip carriers formed from dielectric tape
US5600257A (en) 1995-08-09 1997-02-04 International Business Machines Corporation Semiconductor wafer test and burn-in
US5612575A (en) 1994-05-20 1997-03-18 Matra Marconi Space France Method of connecting the output pads on an integrated circuit chip, and multichip module thus obtained
US5615089A (en) 1994-07-26 1997-03-25 Fujitsu Limited BGA semiconductor device including a plurality of semiconductor chips located on upper and lower surfaces of a first substrate
US5635010A (en) 1995-04-14 1997-06-03 Pepe; Angel A. Dry adhesive joining of layers of electronic devices
US5637920A (en) 1995-10-04 1997-06-10 Lsi Logic Corporation High contact density ball grid array package for flip-chips
US5654588A (en) 1993-07-23 1997-08-05 Motorola Inc. Apparatus for performing wafer-level testing of integrated circuits where the wafer uses a segmented conductive top-layer bus structure
US5655290A (en) 1992-08-05 1997-08-12 Fujitsu Limited Method for making a three-dimensional multichip module
US5685885A (en) 1990-09-24 1997-11-11 Tessera, Inc. Wafer-scale techniques for fabrication of semiconductor chip assemblies
US5701666A (en) 1994-08-31 1997-12-30 Motorola, Inc. Method for manufacturing a stimulus wafer for use in a wafer-to-wafer testing system to test integrated circuits located on a product wafer
US5759047A (en) 1996-05-24 1998-06-02 International Business Machines Corporation Flexible circuitized interposer with apertured member and method for making same
US5764071A (en) * 1996-01-05 1998-06-09 International Business Machines Corporation Method and system for testing an electronic module mounted on a printed circuit board
US5789807A (en) 1996-10-15 1998-08-04 International Business Machines Corporation On-chip power distribution for improved decoupling
US5794175A (en) * 1997-09-09 1998-08-11 Teradyne, Inc. Low cost, highly parallel memory tester
US5796746A (en) 1995-12-22 1998-08-18 Micron Technology, Inc. Device and method for testing integrated circuit dice in an integrated circuit module
US5798652A (en) 1993-11-23 1998-08-25 Semicoa Semiconductors Method of batch testing surface mount devices using a substrate edge connector
US5800184A (en) 1994-03-08 1998-09-01 International Business Machines Corporation High density electrical interconnect apparatus and method
US5802713A (en) 1995-01-20 1998-09-08 Fairchild Space And Defense Corportion Circuit board manufacturing method
US5806181A (en) 1993-11-16 1998-09-15 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US5834946A (en) 1995-10-19 1998-11-10 Mosaid Technologies Incorporated Integrated circuit test head
US5832601A (en) 1993-11-16 1998-11-10 Form Factor, Inc. Method of making temporary connections between electronic components
US5838060A (en) 1995-12-12 1998-11-17 Comer; Alan E. Stacked assemblies of semiconductor packages containing programmable interconnect
US5838072A (en) 1997-02-24 1998-11-17 Mosel Vitalic Corporation Intrachip power distribution package and method for semiconductors having a supply node electrically interconnected with one or more intermediate nodes
US5844803A (en) 1997-02-17 1998-12-01 Micron Technology, Inc. Method of sorting a group of integrated circuit devices for those devices requiring special testing
US5854507A (en) 1998-07-21 1998-12-29 Hewlett-Packard Company Multiple chip assembly
US5878486A (en) 1993-11-16 1999-03-09 Formfactor, Inc. Method of burning-in semiconductor devices
US5885849A (en) 1995-03-28 1999-03-23 Tessera, Inc. Methods of making microelectronic assemblies
US5892287A (en) 1997-08-18 1999-04-06 Texas Instruments Semiconductor device including stacked chips having metal patterned on circuit surface and on edge side of chip
US5897326A (en) 1993-11-16 1999-04-27 Eldridge; Benjamin N. Method of exercising semiconductor devices
US5900738A (en) 1993-11-16 1999-05-04 Formfactor, Inc. Contact structure device for interconnections, interposer, semiconductor assembly and package using the same and method
US5905382A (en) 1990-08-29 1999-05-18 Micron Technology, Inc. Universal wafer carrier for wafer level die burn-in
US5915752A (en) 1992-07-24 1999-06-29 Tessera, Inc. Method of making connections to a semiconductor chip assembly
US5927193A (en) 1997-10-16 1999-07-27 International Business Machines Corporation Process for via fill
US5936847A (en) 1996-05-02 1999-08-10 Hei, Inc. Low profile electronic circuit modules
US5942246A (en) 1996-02-16 1999-08-24 The Liposome Company, Inc. Etherlipid containing multiple lipid liposomes
US5943213A (en) 1997-11-03 1999-08-24 R-Amtech International, Inc. Three-dimensional electronic module
US5949246A (en) 1997-01-28 1999-09-07 International Business Machines Test head for applying signals in a burn-in test of an integrated circuit
US5950070A (en) 1997-05-15 1999-09-07 Kulicke & Soffa Investments Method of forming a chip scale package, and a tool used in forming the chip scale package
US5959462A (en) 1996-09-03 1999-09-28 Motorola, Inc. Test structure for enabling burn-in testing on an entire semiconductor wafer
US5977640A (en) 1998-06-26 1999-11-02 International Business Machines Corporation Highly integrated chip-on-chip packaging
US6002178A (en) 1997-11-12 1999-12-14 Lin; Paul T. Multiple chip module configuration to simplify testing process and reuse of known-good chip-size package (CSP)
US6024275A (en) 1997-06-18 2000-02-15 National Semiconductor Corporation Method of making flip chip and BGA interconnections
US6032356A (en) 1993-11-16 2000-03-07 Formfactor. Inc. Wafer-level test and burn-in, and semiconductor process
US6034332A (en) 1995-05-22 2000-03-07 Fujitsu Limited Power supply distribution structure for integrated circuit chip modules
US6046600A (en) 1995-10-31 2000-04-04 Texas Instruments Incorporated Process of testing integrated circuit dies on a wafer
US6049467A (en) 1998-08-31 2000-04-11 Unisys Corporation Stackable high density RAM modules
US6050829A (en) 1996-08-28 2000-04-18 Formfactor, Inc. Making discrete power connections to a space transformer of a probe card assembly
US6053395A (en) 1997-08-06 2000-04-25 Nec Corporation Method of flip-chip bonding between a chip element and a wafer-board
US6064213A (en) 1993-11-16 2000-05-16 Formfactor, Inc. Wafer-level burn-in and test
US6069026A (en) 1997-08-18 2000-05-30 Texas Instruments Incorporated Semiconductor device and method of fabrication
US6080264A (en) 1996-05-20 2000-06-27 Micron Technology, Inc. Combination of semiconductor interconnect
US6080494A (en) 1997-08-29 2000-06-27 Texas Instruments Incorporated Method to manufacture ball grid arrays with excellent solder ball adhesion for semiconductor packaging and the array
US6082610A (en) 1997-06-23 2000-07-04 Ford Motor Company Method of forming interconnections on electronic modules
US6083773A (en) 1997-09-16 2000-07-04 Micron Technology, Inc. Methods of forming flip chip bumps and related flip chip bump constructions
US6098278A (en) 1994-06-23 2000-08-08 Cubic Memory, Inc. Method for forming conductive epoxy flip-chip on chip
US6101100A (en) 1996-07-23 2000-08-08 International Business Machines Corporation Multi-electronic device package
US6104202A (en) 1994-09-01 2000-08-15 Aesop, Inc. Interface apparatus for automatic test equipment
US6133070A (en) 1996-05-27 2000-10-17 Dai Nippon Printing Co., Ltd. Circuit member for semiconductor device, semiconductor device using the same, and method for manufacturing them
US6137299A (en) 1997-06-27 2000-10-24 International Business Machines Corporation Method and apparatus for testing integrated circuit chips
US6147400A (en) 1995-09-22 2000-11-14 Tessera, Inc. Connecting multiple microelectronic elements with lead deformation
US6154371A (en) 1998-09-30 2000-11-28 Cisco Technology, Inc. Printed circuit board assembly and method
US6218910B1 (en) * 1999-02-25 2001-04-17 Formfactor, Inc. High bandwidth passive integrated circuit tester probe card assembly
US6242932B1 (en) * 1999-02-19 2001-06-05 Micron Technology, Inc. Interposer for semiconductor components having contact balls
US6242279B1 (en) 1999-06-14 2001-06-05 Thin Film Module, Inc. High density wire bond BGA
US6246247B1 (en) 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US6275051B1 (en) * 1997-12-29 2001-08-14 International Business Machines Corporation Segmented architecture for wafer test and burn-in
US6281046B1 (en) 2000-04-25 2001-08-28 Atmel Corporation Method of forming an integrated circuit package at a wafer level
US6303992B1 (en) 1999-07-06 2001-10-16 Visteon Global Technologies, Inc. Interposer for mounting semiconductor dice on substrates
US6313522B1 (en) 1998-08-28 2001-11-06 Micron Technology, Inc. Semiconductor structure having stacked semiconductor devices
US6319829B1 (en) 1999-08-18 2001-11-20 International Business Machines Corporation Enhanced interconnection to ceramic substrates
US6373268B1 (en) * 1999-05-10 2002-04-16 Intel Corporation Test handling method and equipment for conjoined integrated circuit dice
US6392428B1 (en) * 1999-11-16 2002-05-21 Eaglestone Partners I, Llc Wafer level interposer
US6432744B1 (en) 1997-11-20 2002-08-13 Texas Instruments Incorporated Wafer-scale assembly of chip-size packages
US6440771B1 (en) 2001-03-23 2002-08-27 Eaglestone Partners I, Llc Method for constructing a wafer interposer by using conductive columns
US6483043B1 (en) * 2000-05-19 2002-11-19 Eaglestone Partners I, Llc Chip assembly with integrated power distribution between a wafer interposer and an integrated circuit chip
US6483330B1 (en) * 2000-09-11 2002-11-19 Eaglestone Partners I, Llc Method for selecting components for a matched set using wafer interposers
US6524885B2 (en) 2000-12-15 2003-02-25 Eaglestone Partners I, Llc Method, apparatus and system for building an interposer onto a semiconductor wafer using laser techniques
US6529022B2 (en) 2000-12-15 2003-03-04 Eaglestone Pareners I, Llc Wafer testing interposer for a conventional package
US6537831B1 (en) * 2000-07-31 2003-03-25 Eaglestone Partners I, Llc Method for selecting components for a matched set using a multi wafer interposer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3848188A (en) * 1973-09-10 1974-11-12 Probe Rite Inc Multiplexer control system for a multi-array test probe assembly
US5206582A (en) * 1988-05-18 1993-04-27 Hewlett-Packard Company Control system for automated parametric test equipment
US5095267A (en) * 1990-03-19 1992-03-10 National Semiconductor Corporation Method of screening A.C. performance characteristics during D.C. parametric test operation
US5059899A (en) * 1990-08-16 1991-10-22 Micron Technology, Inc. Semiconductor dies and wafers and methods for making
KR930001365A (en) * 1991-03-27 1993-01-16 빈센트 죠셉 로너 Composite flip chip semiconductor device, fabrication and burn-in method
EP0702402B1 (en) * 1994-09-13 2003-01-15 STMicroelectronics S.r.l. Manufacturing method for integrated circuits and semiconductor wafer so obtained
US5635101A (en) * 1996-01-22 1997-06-03 Janke George A Deicing composition and method
US6730541B2 (en) * 1997-11-20 2004-05-04 Texas Instruments Incorporated Wafer-scale assembly of chip-size packages

Patent Citations (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939588A (en) 1974-06-24 1976-02-24 Hockaday Robert C Lettering guide apparatus
US4577214A (en) 1981-05-06 1986-03-18 At&T Bell Laboratories Low-inductance power/ground distribution in a package for a semiconductor chip
US4628411A (en) 1984-03-12 1986-12-09 International Business Machines Corporation Apparatus for directly powering a multi-chip module from a power distribution bus
US4617730A (en) 1984-08-13 1986-10-21 International Business Machines Corporation Method of fabricating a chip interposer
US4688151A (en) 1986-03-10 1987-08-18 International Business Machines Corporation Multilayered interposer board for powering high current chip modules
US4868712A (en) 1987-02-04 1989-09-19 Woodman John K Three dimensional integrated circuit package
US5016138A (en) 1987-10-27 1991-05-14 Woodman John K Three dimensional integrated circuit package
US5068558A (en) 1988-10-07 1991-11-26 Nippon Ferrofluidics Corporation Magnetic bearing device
US5347162A (en) 1989-08-28 1994-09-13 Lsi Logic Corporation Preformed planar structures employing embedded conductors
US5489804A (en) 1989-08-28 1996-02-06 Lsi Logic Corporation Flexible preformed planar structures for interposing between a chip and a substrate
US4998885A (en) 1989-10-27 1991-03-12 International Business Machines Corporation Elastomeric area array interposer
US5123850A (en) 1990-04-06 1992-06-23 Texas Instruments Incorporated Non-destructive burn-in test socket for integrated circuit die
US5065227A (en) 1990-06-04 1991-11-12 International Business Machines Corporation Integrated circuit packaging using flexible substrate
US5905382A (en) 1990-08-29 1999-05-18 Micron Technology, Inc. Universal wafer carrier for wafer level die burn-in
US5060052A (en) 1990-09-04 1991-10-22 Motorola, Inc. TAB bonded semiconductor device having off-chip power and ground distribution
US5848467A (en) 1990-09-24 1998-12-15 Tessera, Inc. Methods of making semiconductor chip assemblies
US5148266A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
US5685885A (en) 1990-09-24 1997-11-11 Tessera, Inc. Wafer-scale techniques for fabrication of semiconductor chip assemblies
US5347159A (en) 1990-09-24 1994-09-13 Tessera, Inc. Semiconductor chip assemblies with face-up mounting and rear-surface connection to substrate
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5950304A (en) 1990-09-24 1999-09-14 Tessera, Inc. Methods of making semiconductor chip assemblies
US5132613A (en) * 1990-11-30 1992-07-21 International Business Machines Corporation Low inductance side mount decoupling test structure
US5309021A (en) 1991-10-16 1994-05-03 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having particular power distribution interconnection arrangement
US5222014A (en) 1992-03-02 1993-06-22 Motorola, Inc. Three-dimensional multi-chip pad array carrier
US5483421A (en) 1992-03-09 1996-01-09 International Business Machines Corporation IC chip attachment
US5410259A (en) 1992-06-01 1995-04-25 Tokyo Electron Yamanashi Limited Probing device setting a probe card parallel
US5399898A (en) 1992-07-17 1995-03-21 Lsi Logic Corporation Multi-chip semiconductor arrangements using flip chip dies
US5915752A (en) 1992-07-24 1999-06-29 Tessera, Inc. Method of making connections to a semiconductor chip assembly
US5544017A (en) 1992-08-05 1996-08-06 Fujitsu Limited Multichip module substrate
US5655290A (en) 1992-08-05 1997-08-12 Fujitsu Limited Method for making a three-dimensional multichip module
US5477160A (en) * 1992-08-12 1995-12-19 Fujitsu Limited Module test card
US5497079A (en) 1992-09-01 1996-03-05 Matsushita Electric Industrial Co., Ltd. Semiconductor testing apparatus, semiconductor testing circuit chip, and probe card
US5382898A (en) 1992-09-21 1995-01-17 Cerprobe Corporation High density probe card for testing electrical circuits
US5531022A (en) 1992-10-19 1996-07-02 International Business Machines Corporation Method of forming a three dimensional high performance interconnection package
US5371654A (en) 1992-10-19 1994-12-06 International Business Machines Corporation Three dimensional high performance interconnection package
US5384691A (en) 1993-01-08 1995-01-24 General Electric Company High density interconnect multi-chip modules including embedded distributed power supply elements
US5327325A (en) 1993-02-08 1994-07-05 Fairchild Space And Defense Corporation Three-dimensional integrated circuit package
US5399505A (en) 1993-07-23 1995-03-21 Motorola, Inc. Method and apparatus for performing wafer level testing of integrated circuit dice
US5504369A (en) 1993-07-23 1996-04-02 Motorola Inc. Apparatus for performing wafer level testing of integrated circuit dice
US5594273A (en) 1993-07-23 1997-01-14 Motorola Inc. Apparatus for performing wafer-level testing of integrated circuits where test pads lie within integrated circuit die but overly no active circuitry for improved yield
US5654588A (en) 1993-07-23 1997-08-05 Motorola Inc. Apparatus for performing wafer-level testing of integrated circuits where the wafer uses a segmented conductive top-layer bus structure
US5570032A (en) 1993-08-17 1996-10-29 Micron Technology, Inc. Wafer scale burn-in apparatus and process
US6032356A (en) 1993-11-16 2000-03-07 Formfactor. Inc. Wafer-level test and burn-in, and semiconductor process
US5832601A (en) 1993-11-16 1998-11-10 Form Factor, Inc. Method of making temporary connections between electronic components
US6064213A (en) 1993-11-16 2000-05-16 Formfactor, Inc. Wafer-level burn-in and test
US5897326A (en) 1993-11-16 1999-04-27 Eldridge; Benjamin N. Method of exercising semiconductor devices
US5878486A (en) 1993-11-16 1999-03-09 Formfactor, Inc. Method of burning-in semiconductor devices
US5806181A (en) 1993-11-16 1998-09-15 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US5900738A (en) 1993-11-16 1999-05-04 Formfactor, Inc. Contact structure device for interconnections, interposer, semiconductor assembly and package using the same and method
US5476211A (en) 1993-11-16 1995-12-19 Form Factor, Inc. Method of manufacturing electrical contacts, using a sacrificial member
US5798652A (en) 1993-11-23 1998-08-25 Semicoa Semiconductors Method of batch testing surface mount devices using a substrate edge connector
US5600541A (en) 1993-12-08 1997-02-04 Hughes Aircraft Company Vertical IC chip stack with discrete chip carriers formed from dielectric tape
US5800184A (en) 1994-03-08 1998-09-01 International Business Machines Corporation High density electrical interconnect apparatus and method
US5612575A (en) 1994-05-20 1997-03-18 Matra Marconi Space France Method of connecting the output pads on an integrated circuit chip, and multichip module thus obtained
US6098278A (en) 1994-06-23 2000-08-08 Cubic Memory, Inc. Method for forming conductive epoxy flip-chip on chip
US5518964A (en) 1994-07-07 1996-05-21 Tessera, Inc. Microelectronic mounting with multiple lead deformation and bonding
US5532612A (en) 1994-07-19 1996-07-02 Liang; Louis H. Methods and apparatus for test and burn-in of integrated circuit devices
US5615089A (en) 1994-07-26 1997-03-25 Fujitsu Limited BGA semiconductor device including a plurality of semiconductor chips located on upper and lower surfaces of a first substrate
US5517515A (en) 1994-08-17 1996-05-14 International Business Machines Corporation Multichip module with integrated test circuitry disposed within interposer substrate
US5701666A (en) 1994-08-31 1997-12-30 Motorola, Inc. Method for manufacturing a stimulus wafer for use in a wafer-to-wafer testing system to test integrated circuits located on a product wafer
US6104202A (en) 1994-09-01 2000-08-15 Aesop, Inc. Interface apparatus for automatic test equipment
US5579207A (en) 1994-10-20 1996-11-26 Hughes Electronics Three-dimensional integrated circuit stacking
US6246247B1 (en) 1994-11-15 2001-06-12 Formfactor, Inc. Probe card assembly and kit, and methods of using same
US5802713A (en) 1995-01-20 1998-09-08 Fairchild Space And Defense Corportion Circuit board manufacturing method
US5491612A (en) 1995-02-21 1996-02-13 Fairchild Space And Defense Corporation Three-dimensional modular assembly of integrated circuits
US5885849A (en) 1995-03-28 1999-03-23 Tessera, Inc. Methods of making microelectronic assemblies
US5635010A (en) 1995-04-14 1997-06-03 Pepe; Angel A. Dry adhesive joining of layers of electronic devices
US6034332A (en) 1995-05-22 2000-03-07 Fujitsu Limited Power supply distribution structure for integrated circuit chip modules
US5600257A (en) 1995-08-09 1997-02-04 International Business Machines Corporation Semiconductor wafer test and burn-in
US5929651A (en) 1995-08-09 1999-07-27 International Business Machines Corporation Semiconductor wafer test and burn-in
US6147400A (en) 1995-09-22 2000-11-14 Tessera, Inc. Connecting multiple microelectronic elements with lead deformation
US5637920A (en) 1995-10-04 1997-06-10 Lsi Logic Corporation High contact density ball grid array package for flip-chips
US5834946A (en) 1995-10-19 1998-11-10 Mosaid Technologies Incorporated Integrated circuit test head
US6046600A (en) 1995-10-31 2000-04-04 Texas Instruments Incorporated Process of testing integrated circuit dies on a wafer
US5838060A (en) 1995-12-12 1998-11-17 Comer; Alan E. Stacked assemblies of semiconductor packages containing programmable interconnect
US5796746A (en) 1995-12-22 1998-08-18 Micron Technology, Inc. Device and method for testing integrated circuit dice in an integrated circuit module
US5764071A (en) * 1996-01-05 1998-06-09 International Business Machines Corporation Method and system for testing an electronic module mounted on a printed circuit board
US5942246A (en) 1996-02-16 1999-08-24 The Liposome Company, Inc. Etherlipid containing multiple lipid liposomes
US5936847A (en) 1996-05-02 1999-08-10 Hei, Inc. Low profile electronic circuit modules
US6080264A (en) 1996-05-20 2000-06-27 Micron Technology, Inc. Combination of semiconductor interconnect
US5759047A (en) 1996-05-24 1998-06-02 International Business Machines Corporation Flexible circuitized interposer with apertured member and method for making same
US5984691A (en) 1996-05-24 1999-11-16 International Business Machines Corporation Flexible circuitized interposer with apertured member and method for making same
US6133070A (en) 1996-05-27 2000-10-17 Dai Nippon Printing Co., Ltd. Circuit member for semiconductor device, semiconductor device using the same, and method for manufacturing them
US6101100A (en) 1996-07-23 2000-08-08 International Business Machines Corporation Multi-electronic device package
US6050829A (en) 1996-08-28 2000-04-18 Formfactor, Inc. Making discrete power connections to a space transformer of a probe card assembly
US5959462A (en) 1996-09-03 1999-09-28 Motorola, Inc. Test structure for enabling burn-in testing on an entire semiconductor wafer
US5789807A (en) 1996-10-15 1998-08-04 International Business Machines Corporation On-chip power distribution for improved decoupling
US5949246A (en) 1997-01-28 1999-09-07 International Business Machines Test head for applying signals in a burn-in test of an integrated circuit
US5844803A (en) 1997-02-17 1998-12-01 Micron Technology, Inc. Method of sorting a group of integrated circuit devices for those devices requiring special testing
US5838072A (en) 1997-02-24 1998-11-17 Mosel Vitalic Corporation Intrachip power distribution package and method for semiconductors having a supply node electrically interconnected with one or more intermediate nodes
US6136681A (en) 1997-05-15 2000-10-24 Kulicke & Soffa Investments, Inc. Tool used in forming a chip scale package
US5950070A (en) 1997-05-15 1999-09-07 Kulicke & Soffa Investments Method of forming a chip scale package, and a tool used in forming the chip scale package
US6024275A (en) 1997-06-18 2000-02-15 National Semiconductor Corporation Method of making flip chip and BGA interconnections
US6082610A (en) 1997-06-23 2000-07-04 Ford Motor Company Method of forming interconnections on electronic modules
US6137299A (en) 1997-06-27 2000-10-24 International Business Machines Corporation Method and apparatus for testing integrated circuit chips
US6053395A (en) 1997-08-06 2000-04-25 Nec Corporation Method of flip-chip bonding between a chip element and a wafer-board
US6069026A (en) 1997-08-18 2000-05-30 Texas Instruments Incorporated Semiconductor device and method of fabrication
US5892287A (en) 1997-08-18 1999-04-06 Texas Instruments Semiconductor device including stacked chips having metal patterned on circuit surface and on edge side of chip
US6080494A (en) 1997-08-29 2000-06-27 Texas Instruments Incorporated Method to manufacture ball grid arrays with excellent solder ball adhesion for semiconductor packaging and the array
US5794175A (en) * 1997-09-09 1998-08-11 Teradyne, Inc. Low cost, highly parallel memory tester
US6083773A (en) 1997-09-16 2000-07-04 Micron Technology, Inc. Methods of forming flip chip bumps and related flip chip bump constructions
US5927193A (en) 1997-10-16 1999-07-27 International Business Machines Corporation Process for via fill
US5943213A (en) 1997-11-03 1999-08-24 R-Amtech International, Inc. Three-dimensional electronic module
US6002178A (en) 1997-11-12 1999-12-14 Lin; Paul T. Multiple chip module configuration to simplify testing process and reuse of known-good chip-size package (CSP)
US6432744B1 (en) 1997-11-20 2002-08-13 Texas Instruments Incorporated Wafer-scale assembly of chip-size packages
US6275051B1 (en) * 1997-12-29 2001-08-14 International Business Machines Corporation Segmented architecture for wafer test and burn-in
US5977640A (en) 1998-06-26 1999-11-02 International Business Machines Corporation Highly integrated chip-on-chip packaging
US5854507A (en) 1998-07-21 1998-12-29 Hewlett-Packard Company Multiple chip assembly
US6313522B1 (en) 1998-08-28 2001-11-06 Micron Technology, Inc. Semiconductor structure having stacked semiconductor devices
US6049467A (en) 1998-08-31 2000-04-11 Unisys Corporation Stackable high density RAM modules
US6154371A (en) 1998-09-30 2000-11-28 Cisco Technology, Inc. Printed circuit board assembly and method
US6242932B1 (en) * 1999-02-19 2001-06-05 Micron Technology, Inc. Interposer for semiconductor components having contact balls
US6218910B1 (en) * 1999-02-25 2001-04-17 Formfactor, Inc. High bandwidth passive integrated circuit tester probe card assembly
US6373268B1 (en) * 1999-05-10 2002-04-16 Intel Corporation Test handling method and equipment for conjoined integrated circuit dice
US6242279B1 (en) 1999-06-14 2001-06-05 Thin Film Module, Inc. High density wire bond BGA
US6303992B1 (en) 1999-07-06 2001-10-16 Visteon Global Technologies, Inc. Interposer for mounting semiconductor dice on substrates
US6319829B1 (en) 1999-08-18 2001-11-20 International Business Machines Corporation Enhanced interconnection to ceramic substrates
US6392428B1 (en) * 1999-11-16 2002-05-21 Eaglestone Partners I, Llc Wafer level interposer
US6281046B1 (en) 2000-04-25 2001-08-28 Atmel Corporation Method of forming an integrated circuit package at a wafer level
US6483043B1 (en) * 2000-05-19 2002-11-19 Eaglestone Partners I, Llc Chip assembly with integrated power distribution between a wafer interposer and an integrated circuit chip
US6537831B1 (en) * 2000-07-31 2003-03-25 Eaglestone Partners I, Llc Method for selecting components for a matched set using a multi wafer interposer
US6483330B1 (en) * 2000-09-11 2002-11-19 Eaglestone Partners I, Llc Method for selecting components for a matched set using wafer interposers
US6524885B2 (en) 2000-12-15 2003-02-25 Eaglestone Partners I, Llc Method, apparatus and system for building an interposer onto a semiconductor wafer using laser techniques
US6529022B2 (en) 2000-12-15 2003-03-04 Eaglestone Pareners I, Llc Wafer testing interposer for a conventional package
US6440771B1 (en) 2001-03-23 2002-08-27 Eaglestone Partners I, Llc Method for constructing a wafer interposer by using conductive columns

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148108A1 (en) * 2000-12-15 2003-08-07 Pierce John L. Wafer interposer assembly and system for building same
US20040193989A1 (en) * 2003-03-28 2004-09-30 Sun Microsystems, Inc. Test system including a test circuit board including through-hole vias and blind vias
US7131047B2 (en) 2003-04-07 2006-10-31 Sun Microsystems, Inc. Test system including a test circuit board including resistive devices
US11694936B2 (en) 2020-09-09 2023-07-04 Samsung Electronics Co., Ltd. Semiconductor package and method of fabricating the same

Also Published As

Publication number Publication date
WO2001036990A2 (en) 2001-05-25
WO2001036990A3 (en) 2002-01-10
US20020097063A1 (en) 2002-07-25
US6392428B1 (en) 2002-05-21

Similar Documents

Publication Publication Date Title
US6825678B2 (en) Wafer level interposer
US6812048B1 (en) Method for manufacturing a wafer-interposer assembly
US6822469B1 (en) Method for testing multiple semiconductor wafers
US7141997B2 (en) Method for testing using a universal wafer carrier for wafer level die burn-in
US5123850A (en) Non-destructive burn-in test socket for integrated circuit die
US6075711A (en) System and method for routing connections of integrated circuits
US5280193A (en) Repairable semiconductor multi-package module having individualized package bodies on a PC board substrate
US5539324A (en) Universal wafer carrier for wafer level die burn-in
US5644247A (en) Test socket and method for producing known good dies using the test socket
US20090108393A1 (en) Semiconductor Device With a Plurality of Ground Planes
US6483043B1 (en) Chip assembly with integrated power distribution between a wafer interposer and an integrated circuit chip
US6026221A (en) Prototyping multichip module
KR100687687B1 (en) Multichip module packaging method
US5461544A (en) Structure and method for connecting leads from multiple chips
US20070285115A1 (en) Universal wafer carrier for wafer level die burn-in
US6002267A (en) In-line voltage plane tests for multi-chip modules
US6683468B1 (en) Method and apparatus for coupling to a device packaged using a ball grid array
JP2979289B2 (en) Semiconductor test package with high density array external contacts.
CN113687207A (en) Test board and method for mounting semiconductor integrated circuit
JP2002270757A (en) Mcm, mcm-manufacturing method and mcm-testing method
JPH0672242U (en) Multi-chip module

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: MICRO-ASI, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KLINE, JERRY D.;SMITH, CECIL E., JR.;REEL/FRAME:015991/0058

Effective date: 19991115

AS Assignment

Owner name: EAGLESTONE INVESTMENT PARTNERS I, L.P., CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:MICRO-ASI, INC.;REEL/FRAME:016127/0641

Effective date: 20010426

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: TRANSPACIFIC MULTICAST, LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EAGLESTONE INVESTMENT PARTNERS I, L.P.;REEL/FRAME:021450/0271

Effective date: 20080718

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12