US6647348B2 - Latent defect classification system - Google Patents
Latent defect classification system Download PDFInfo
- Publication number
- US6647348B2 US6647348B2 US09/970,392 US97039201A US6647348B2 US 6647348 B2 US6647348 B2 US 6647348B2 US 97039201 A US97039201 A US 97039201A US 6647348 B2 US6647348 B2 US 6647348B2
- Authority
- US
- United States
- Prior art keywords
- integrated circuits
- subset
- integrated circuit
- subject
- threshold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2894—Aspects of quality control [QC]
Definitions
- This invention relates to the manufacture of integrated circuits. More particularly, this invention relates to identifying integrated circuits that have a high probability of a latent or undetected defect.
- Integrated circuits such as semiconductor devices, are manufactured en masse on a substrate that is subsequently diced to produce the integrated circuits on individual portions of the substrate, commonly called chips or dice.
- a substrate even prior to the dicing operation, typically contains many discrete integrated circuits.
- testing equipment Prior to dicing, testing equipment is used to functionally and parametrically test the integrated circuits individually, to identify and locate defects in the integrated circuits.
- some defects in integrated circuits are not detectible immediately.
- some integrated circuits contain latent defects which, although they cannot be detected early in the life cycle of the integrated circuit, tend to appear at a later point in the life cycle of the integrated circuit. Accordingly, the tester may indicate that a given integrated circuit does not have any defects, when in fact the defects are merely latent and will appear at a later point in time.
- Burn in is designed to detect early failures of integrated circuits by operating them for a period of time, often under stressful conditions such as elevated temperature or clock speeds above that for which they were designed, to see if they will fail during the testing period.
- burn in methods are generally undesirable for a variety of reasons, such as their expense.
- Test data corresponding to a set of integrated circuits is obtained, where the set of integrated circuits was processed on a single substrate.
- a subject integrated circuit is selected for analysis from within the set of integrated circuits.
- a subset of integrated circuits is identified from within the set of integrated circuits, where the subset of integrated circuits includes integrated circuits that were located in close proximity on the substrate to the subject integrated circuit.
- the test data for the subset of integrated circuits is analyzed to determine a defect parameter for the subset of integrated circuits.
- the defect parameter for the subset of integrated circuits is compared to a threshold.
- the subject integrated circuit is classified as having a latent defect when the defect parameter for the subset of integrated circuits violates the threshold, and the subject integrated circuit is classified as not having a latent defect when the defect parameter for the subset of integrated circuits does not violate the threshold.
- the defect parameter can also be used in other ways.
- integrated circuits associated with a defect parameter that violates a given value can be selected for, in alternate embodiments, a longer than normal burn in, a shorter than normal burn in, or no burn in at all.
- the classification for the subject integrated circuit is not based merely on whether the subset of other integrated circuits in close proximity to the subject integrated circuit passed or failed all of their functional and parametric testing. Rather, the classification is based on a defect parameter that is determined from an analysis of the test data for the subset of other integrated circuits. Thus, there is provided a more substantial basis for the classification than merely determining if integrated circuits near the subject integrated circuit are binned as failures.
- the defect parameter comprises an average number of defects for the subset of integrated circuits.
- the test data for the set of integrated circuits preferable includes defect data for functional tests and parametric tests. Most preferably the method is performed for subject integrated circuits for which the test data indicates no defects.
- the threshold is preferably violated when the defect parameter is equal to or greater than the threshold.
- the threshold is a predetermined value, and in an alternate embodiment the method includes the additional step of calculating the threshold based at least in part on the test data for the subset of integrated circuits. Further, the threshold in one embodiment changes based on conditions such as the intended customer for the subject integrated circuit, or on the stability of the process used to manufacture the subject integrated circuit.
- the subset of integrated circuits includes the eight nearest neighbor integrated circuits to the subject integrated circuit.
- the test data is preferably obtained for the set of integrated circuits from a tester before the substrate on which the set of integrated circuits were processed is diced.
- the analysis steps are preferably performed off tester.
- some steps of the method such as the step of classifying the subject integrated circuit as either having or not having a latent defect, can be performed after the substrate has been diced, and even after the subject integrated circuit has been packaged if substrate identification and location information in regard to the subject integrated circuit has been kept.
- FIG. 1 is a representational view of a portion of a substrate representing individual integrated circuits and the number of defects for each integrated circuit as determined during a testing operation
- FIG. 2 is a flow chart of a method according to a preferred embodiment of the invention.
- the present invention relates to the identification of integrated circuits that are likely to have a latent or undetected defect, based at least in part on their position relative to integrated circuits having detected defects.
- FIG. 1 there is shown a representational view of a portion of a substrate 10 having individual integrated circuits 12 .
- Each one of the integrated circuits 12 is located at one of the positions designated as the intersection of one of the rows 1 - 5 and one of the columns A-E, as depicted in FIG. 1 .
- the substrate 10 as shown has preferably been tested by a tester, as referenced in block 100 of FIG. 2, to determine which of the integrated circuits 12 have defects, and the number of such defects each integrated circuit 12 has.
- This information preferably includes complete functional and parametric information for each of the integrated circuits 12 so tested
- the tester collecting the data is preferably set to an override fail setting, so that even if a fail is detected in an integrated circuit, the tester continues to collect the full regimen of data from the integrated circuit, such as may be viably enabled with built-in self test (BIST) testing.
- BIST built-in self test
- this information is collected while the integrated circuits 12 are still united on the substrate 10 , or in other words before the substrate 10 is dice into individual integrated circuits 12 .
- the method of the present invention as described below can be accomplished after the integrated circuits 12 are diced, and even after such integrated circuits 12 are packaged.
- other influences such as financial constraints tend to limit application of the preferred embodiment of the invention to the integrated circuits 12 while still in wafer form.
- a post test analysis of the defect information determined by the tester is analyzed to predict which of the integrated circuits 12 have undetected or latent defects.
- the post test analysis could be accomplished more or less in real time as the required data, as discussed in more detail below, is acquired.
- the post test analysis is performed off tester so that, among other reasons, the cost associated with the use time of the tester can be kept as low as reasonable.
- the post test analysis is preferably accomplished as by computer algorithms configured to evaluate the test data in accordance with the invention.
- the number of defects in each integrated circuit is first calculated. For the purposes of example, the number of defects for each integrated circuit A 1 -E 5 are determined as given in FIG. 1 .
- the defect information is analyzed in accordance with the invention to identify whether a subject integrated circuit, which preferably does not have any detected defects, is likely or unlikely to in fact have latent defects, as given in block 102 of FIG. 2 .
- this identification is made by analyzing the number of defects present in a subset of integrated circuits located within close proximity to the subject integrated circuit as they reside on the substrate 10 , as given in block 104 of FIG. 2 .
- the subset of integrated circuits includes the nearest neighbors to the subject integrated circuits, which are those eight integrated circuits that border the subject integrated circuit.
- other subsets of integrated circuits may be used, such as the four lateral nearest neighbors, the four diagonal nearest neighbors, or the twenty-four nearest neighbors.
- the subset of integrated circuits determined to be within close proximity to the subject integrated circuit may be selected according to one or more of a number of different criteria. For example, it has been determined by the inventors that defects in integrated circuits 12 on a substrate 10 do not tend to be randomly distributed across the surface of the substrate 10 . Rather, certain types of defects tend to be clustered within portions of the substrate 10 . Thus, the relative size and shape of such portions of clustered defects can be empirically determined, and the size and shape of the subset of integrated circuits can be set based at least in part on that empirical determination.
- the integrated circuit 12 located at position B 3 is bordered by the following integrated circuits having the number of detected defects as set forth below:
- the defects detected in the subset of integrated circuits bordering the subject integrated circuit are analyzed to determine a defect parameter, as given in block 106 of FIG. 2 .
- the defect parameter can take on a number of different forms depending upon the ultimate goals and tolerances of the method implemented.
- the defect parameter can comprise just one or both of an average and a standard deviation for the number of defects of the subset of integrated circuits.
- the average calculated could be a mean, median, or mode value.
- the defect parameter is an arithmetic mean of the number of defects for the subset of integrated circuits.
- the defect parameter may take into consideration just a subset of the test data for the subset of integrated circuits. In other words, certain portions of the test data for the subset of integrated circuits may be more useful for the prediction of latent defects in the subject integrated circuit than other portions of the test data for the subset of integrated circuits Further still, the defect parameter may be determined by using a first subset of test data from a first subset of integrated circuits, which is then combined with a second subset of test data from a second subset of integrated circuits. Thus, there are a variety of methods by which both the subset of integrated circuits and the defect parameter may be determined, all in accordance with the present invention.
- the total number of defects present in the subset of eight nearest neighbor integrated circuits bordering the subject integrated circuit located at position B 3 is sixteen.
- the average number of defects per integrated circuit in the subset, or in other words the arithmetic mean, is two.
- the defect parameter for this example is two.
- This defect parameter is compared to a threshold to determine the likelihood that the integrated circuit located at position B 3 has latent defects, as given in blocks 110 and 112 of FIG. 2 .
- the threshold is a predetermined parameter, such as is determined empirically from historical data. For example, if it is determined that subject integrated circuits having defect parameters, such as described above, that are equal to or greater than two tend to have latent defects, then the threshold is preferably set to two. In the example started above, the subject integrated circuit would then be classified as an integrated circuit having a latent defect, because the defect parameter calculated for the subject integrated circuit is equal to the threshold, as given in block 114 of FIG. 2 .
- the threshold need not be a predetermined value.
- the threshold is dynamically determined.
- the threshold may be based on an average for all integrated circuits 12 located on the substrate 10 .
- the threshold may be based on a running average for integrated circuits 12 located within a certain portion of the substrate 10 .
- the invention is not limited to a threshold that is determined prior to testing the integrated circuits 12 on the substrate 10 .
- the threshold may change according to one or more of a number of different parameters.
- the threshold may be reduced for subject integrated circuits that are intended for certain applications.
- subject integrated circuits intended for military applications or other applications where human life may be at risk may have a lower threshold than subject integrated circuits intended for less stringent applications, such as compact disk players intended for the general consumer market
- the prices are higher for subject integrated circuits that pass more stringent thresholds, and the prices may be commensurately lower for subject integrated circuits that pass less stringent thresholds.
- the threshold is preferably based at least in part on the same type of information used to determine the defect parameter.
- the threshold may change according to other constraints as well. For example, when a process for producing integrated is first implemented, and the types and propensity of latent defects in the integrated circuits 12 produced are not well characterized, then it may be desirable to set the threshold at a relatively low value so as to reduce the number of subject integrated circuits that are shipped in commerce that have latent defects. After a period of time when the process has been better characterized and is more stable, the threshold may be raised as confidence increases that there has been a general reduction in the number of latent defects in the integrated circuits 12 produced by the process. Thus, there are a number of different ways and a number of different considerations that may selectively be used in formulating the threshold in accordance with the invention.
- the subject integrated circuit located at location D 3 is bordered by the following integrated circuits having the following number of detected defects:
- the total number of defects present in this subset of integrated circuits bordering the subject integrated circuit located at position D 3 is four, making the average number of defects per surrounding integrated circuit one half. If, as per the example started above, the threshold is two, then the subject integrated circuit located at position D 3 is not classified as having a latent defect, as given in block 116 of FIG. 2 .
- the defect parameter is based on the arithmetic mean of the number of defects in the subset of integrated circuits surrounding the subject integrated circuit.
- the defect parameter can be based on other values.
- the defect parameter is in one embodiment the standard deviation of the number of defects in the subset of integrated circuits surrounding the subject integrated circuit In this example, if the standard deviation for the subset is equal to or greater than a given threshold, then the subject integrated circuit is classified as having a latent defect.
- the invention advantageously enables the classification of a subject integrated circuit as having a high probability of a latent or undetected defect based on the number of detected defects in a subset of surrounding integrated circuits.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
TABLE 1 | |||
Integrated Circuit Location | Number of Detected | ||
A2 | |||
3 | |||
|
2 | ||
|
2 | ||
|
2 | ||
|
1 | ||
|
3 | ||
|
2 | ||
|
1 | ||
TABLE 2 | |||
Integrated Circuit Location | Number of Detected | ||
C2 | |||
2 | |||
|
0 | ||
|
0 | ||
|
1 | ||
|
0 | ||
|
1 | ||
|
0 | ||
|
0 | ||
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/970,392 US6647348B2 (en) | 2001-10-03 | 2001-10-03 | Latent defect classification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/970,392 US6647348B2 (en) | 2001-10-03 | 2001-10-03 | Latent defect classification system |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030069706A1 US20030069706A1 (en) | 2003-04-10 |
US6647348B2 true US6647348B2 (en) | 2003-11-11 |
Family
ID=25516881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/970,392 Expired - Lifetime US6647348B2 (en) | 2001-10-03 | 2001-10-03 | Latent defect classification system |
Country Status (1)
Country | Link |
---|---|
US (1) | US6647348B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030204507A1 (en) * | 2002-04-25 | 2003-10-30 | Li Jonathan Qiang | Classification of rare events with high reliability |
US20060028229A1 (en) * | 2004-07-21 | 2006-02-09 | Texas Instruments Incorporated | Method for test data-driven statistical detection of outlier semiconductor devices |
US20080281541A1 (en) * | 2001-10-19 | 2008-11-13 | Singh Adit D | System and method for estimating reliability of components for testing and quality optimization |
CN109564422A (en) * | 2017-07-11 | 2019-04-02 | 科磊股份有限公司 | tool condition monitoring and matching |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7139630B1 (en) * | 2005-04-28 | 2006-11-21 | International Business Machines Corporation | Allocating manufactured devices according to customer specifications |
US8947118B2 (en) * | 2012-02-13 | 2015-02-03 | Texas Instruments Incorporated | Defect detection in integrated circuit devices |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986950A (en) * | 1997-10-15 | 1999-11-16 | International Business Machines Corporation | Use of redundant circuits to improve the reliability of an integrated circuit |
US5991699A (en) * | 1995-05-04 | 1999-11-23 | Kla Instruments Corporation | Detecting groups of defects in semiconductor feature space |
US6300771B1 (en) * | 1997-11-28 | 2001-10-09 | Nec Corporation | Electrical inspection device for detecting a latent defect |
-
2001
- 2001-10-03 US US09/970,392 patent/US6647348B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5991699A (en) * | 1995-05-04 | 1999-11-23 | Kla Instruments Corporation | Detecting groups of defects in semiconductor feature space |
US5986950A (en) * | 1997-10-15 | 1999-11-16 | International Business Machines Corporation | Use of redundant circuits to improve the reliability of an integrated circuit |
US6300771B1 (en) * | 1997-11-28 | 2001-10-09 | Nec Corporation | Electrical inspection device for detecting a latent defect |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080281541A1 (en) * | 2001-10-19 | 2008-11-13 | Singh Adit D | System and method for estimating reliability of components for testing and quality optimization |
US20030204507A1 (en) * | 2002-04-25 | 2003-10-30 | Li Jonathan Qiang | Classification of rare events with high reliability |
US20060028229A1 (en) * | 2004-07-21 | 2006-02-09 | Texas Instruments Incorporated | Method for test data-driven statistical detection of outlier semiconductor devices |
US7129735B2 (en) | 2004-07-21 | 2006-10-31 | Texas Instruments Incorporated | Method for test data-driven statistical detection of outlier semiconductor devices |
CN109564422A (en) * | 2017-07-11 | 2019-04-02 | 科磊股份有限公司 | tool condition monitoring and matching |
US10360671B2 (en) * | 2017-07-11 | 2019-07-23 | Kla-Tencor Corporation | Tool health monitoring and matching |
CN109564422B (en) * | 2017-07-11 | 2021-03-09 | 科磊股份有限公司 | Tool condition monitoring and matching |
Also Published As
Publication number | Publication date |
---|---|
US20030069706A1 (en) | 2003-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5777901A (en) | Method and system for automated die yield prediction in semiconductor manufacturing | |
US8788237B2 (en) | Methods and apparatus for hybrid outlier detection | |
JP3913715B2 (en) | Defect detection method | |
US6789032B2 (en) | Method of statistical binning for reliability selection | |
US8872538B2 (en) | Systems and methods for test time outlier detection and correction in integrated circuit testing | |
US8606536B2 (en) | Methods and apparatus for hybrid outlier detection | |
US8009895B2 (en) | Semiconductor wafer analysis system | |
US20020121915A1 (en) | Automated pattern clustering detection for wafer probe maps | |
US8010310B2 (en) | Method and apparatus for identifying outliers following burn-in testing | |
US8627266B2 (en) | Test map classification method and fabrication process condition setting method using the same | |
JP2007116182A (en) | Defect detection method | |
US6598194B1 (en) | Test limits based on position | |
US6647348B2 (en) | Latent defect classification system | |
CN113488401B (en) | Chip testing method and device | |
US20030169064A1 (en) | Selective trim and wafer testing of integrated circuits | |
Singh et al. | On optimizing VLSI testing for product quality using die-yield prediction | |
US7073107B2 (en) | Adaptive defect based testing | |
TW200411801A (en) | Method for analyzing defect inspection parameters | |
US7076707B2 (en) | Methodology of locating faults of scan chains in logic integrated circuits | |
US20030072481A1 (en) | Method for evaluating anomalies in a semiconductor manufacturing process | |
US7035770B2 (en) | Fuzzy reasoning model for semiconductor process fault detection using wafer acceptance test data | |
JP2000298595A (en) | Method and device for data processing and information storage medium | |
US6931297B1 (en) | Feature targeted inspection | |
JPH08274139A (en) | Test method of semiconuctor device | |
US6532431B1 (en) | Ratio testing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LSI LOGIC CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MADGE, ROBERT;REEL/FRAME:012234/0862 Effective date: 20011003 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:LSI CORPORATION;AGERE SYSTEMS LLC;REEL/FRAME:032856/0031 Effective date: 20140506 |
|
AS | Assignment |
Owner name: LSI CORPORATION, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:LSI LOGIC CORPORATION;REEL/FRAME:033102/0270 Effective date: 20070406 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LSI CORPORATION;REEL/FRAME:035390/0388 Effective date: 20140814 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: AGERE SYSTEMS LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 Owner name: LSI CORPORATION, CALIFORNIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS (RELEASES RF 032856-0031);ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:037684/0039 Effective date: 20160201 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH CAROLINA Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 Owner name: BANK OF AMERICA, N.A., AS COLLATERAL AGENT, NORTH Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:037808/0001 Effective date: 20160201 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS COLLATERAL AGENT;REEL/FRAME:041710/0001 Effective date: 20170119 |
|
AS | Assignment |
Owner name: BELL SEMICONDUCTOR, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;BROADCOM CORPORATION;REEL/FRAME:044886/0001 Effective date: 20171208 |
|
AS | Assignment |
Owner name: CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERA Free format text: SECURITY INTEREST;ASSIGNORS:HILCO PATENT ACQUISITION 56, LLC;BELL SEMICONDUCTOR, LLC;BELL NORTHERN RESEARCH, LLC;REEL/FRAME:045216/0020 Effective date: 20180124 |
|
AS | Assignment |
Owner name: BELL NORTHERN RESEARCH, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:060885/0001 Effective date: 20220401 Owner name: BELL SEMICONDUCTOR, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:060885/0001 Effective date: 20220401 Owner name: HILCO PATENT ACQUISITION 56, LLC, ILLINOIS Free format text: SECURITY INTEREST;ASSIGNOR:CORTLAND CAPITAL MARKET SERVICES LLC;REEL/FRAME:060885/0001 Effective date: 20220401 |