US6568652B2 - Throttle valve restoring device - Google Patents

Throttle valve restoring device Download PDF

Info

Publication number
US6568652B2
US6568652B2 US09/979,211 US97921102A US6568652B2 US 6568652 B2 US6568652 B2 US 6568652B2 US 97921102 A US97921102 A US 97921102A US 6568652 B2 US6568652 B2 US 6568652B2
Authority
US
United States
Prior art keywords
spring
catch
housing
driver
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/979,211
Other versions
US20020162982A1 (en
Inventor
Klaus Kaiser
Uwe Hammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMMER, UWE, KAISER, KLAUS
Publication of US20020162982A1 publication Critical patent/US20020162982A1/en
Application granted granted Critical
Publication of US6568652B2 publication Critical patent/US6568652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0277Fail-safe mechanisms, e.g. with limp-home feature, to close throttle if actuator fails, or if control cable sticks or breaks

Definitions

  • the invention is based on device for restoring a throttle valve, which is for controlling the combustion air of an internal combustion engine, into a limp-home air position.
  • a restoring device of this kind is used to restore the throttle valve into a definite idle position, the so-called limp-home air position or limp-home position, in which a minimal throttle valve opening for the supply of combustion air to the internal combustion engine is assured so that the engine continues to run smoothly at idle speed or at a minimal load.
  • oblique catch surfaces are provided on the housing catch and the driver catch.
  • the one spring end of the clamping spring is secured to the oblique catch surfaces on the one side and the other spring end of the clamping spring is secured to the flat catch surfaces extending parallel to the catch axis, on the other side from the housing catch and the driver catch. Because of the oblique catch surfaces, the spring end is supported with half of the respective spring force against the two oblique catch surfaces and thus moves the rotatable driver catch in relation to the catch formed by the spring end on the other side of the housing catch and driver catch.
  • the restoring device according to the invention has the advantage that the rotary play-free state in the limp-home air position is reliably achieved with technically simple means.
  • the compensation spring can be produced as a simple stamped part and is easy to install. The additional manufacturing costs for producing a reliable play-free state are therefore minimal.
  • FIG. 1 shows a detailed side view of a device for restoring a throttle valve
  • FIG. 2 shows a detailed section along the line II—II in FIG. 1,
  • FIG. 3 shows a detailed section along the line III—III in FIG. 1,
  • FIG. 4 shows a detailed section along the line IV—IV in FIG. 2,
  • FIG. 5 is an enlarged perspective representation of a compensation spring in the restoring device according to FIGS. 1-4 or according to FIGS. 6-9,
  • FIG. 6 is a perspective representation of a subassembly of a modified device for restoring a throttle valve
  • FIGS. 7 and 8 each show a sectional view equivalent to FIGS. 2 and 3 of the modified restoring device
  • FIG. 9 shows a detailed section along the line IX—IX in FIG. 7, and
  • FIG. 10 shows a detail of a graph of the moment progression of the restoring device on the throttle valve over its rotation angle.
  • the device for restoring a throttle valve which is for controlling combustion air of an internal combustion engine, into a definite limp-home air position or limp-home position, a first exemplary embodiment of which is shown in FIGS. 1-4 and a modified exemplary embodiment of which is shown in FIGS. 7-9, which are respectively depicted in detail in a side view and in various sectional views, has a throttle valve shaft 11 , which is contained so that it can rotate in a housing and which non-rotatably supports a throttle valve 26 that is only shown in FIG. 6 .
  • the throttle valve 26 is disposed in an air intake fitting of the internal combustion engine and by opening the intake cross section in the intake fitting to a greater or lesser degree, controls the combustion air quantity aspirated by the internal combustion engine.
  • the throttle valve shaft 11 has a driver catch 12 rigidly connected to it, which is actuated by a drive mechanism.
  • the driver catch 12 has a toothed segment that engages with a gear (not shown) supported on the driven shaft of an electric motor.
  • the housing 10 contains a clamping spring 13 , which is embodied as a cylindrical helical compression spring and is disposed concentric to the throttle valve shaft 11 and whose spring ends 131 and 132 are bent toward the throttle valve shaft 11 .
  • the clamping spring 13 which is shown in a perspective view in FIG. 6, is already prestressed in the depiction in FIG. 6, so that the two inwardly directed spring ends 131 , 132 protrude crosswise and extend approximately parallel to each other. This initial stress produces a force so that a part inserted between the spring ends 131 , 132 is clamped in place.
  • two catches 14 , 15 which are constituted by axial pieces and are radially offset from each other, are clamped between the two spring ends 131 , 132 of the clamping spring 13 and both extend over at least the axial width of the clamping spring 13 , and on opposite sides in the rotation direction, have respective catch surfaces 16 , 17 for the spring ends 131 and 132 .
  • the catch 14 referred to below as the housing catch 14
  • the catch 15 referred to below as the driver catch 15
  • the driver catch 15 is connected to the driver 12 .
  • the axial piece constituting the housing catch 14 is of one piece with the housing 10 and protrudes axially from the bottom of the housing 10 .
  • the driver catch 15 in FIG. 2 is constituted by an angled leg of a bent metal part 21 , whose other angled leg is injection molded into the plastic driver 12 , whereas the driver catch 15 in FIGS. 8 and 9 is embodied as an axial piece, which is reinforced through the extrusion coating of the likewise inserted angled metal part 21 and is injection molded directly onto—and at the same time as—the driver 12 .
  • the length of the two bent spring ends 131 , 132 of the clamping spring 13 is dimensioned so that of they are able to embrace catch surfaces 16 , which each face in the same rotation direction on the one side the housing catch 14 and the driver catch 15 , and the catch surfaces 17 on their other sides remote from the catch surfaces 16 .
  • the driver 12 is rotated by the drive mechanism, e.g. the electric motor, in the one or the other rotation direction, then as the driver 12 rotates clockwise (in relation to FIG. 1 ), the driver catch 15 entrains the spring end 131 of the clamping spring 13 , and as the driver 12 rotates counter-clockwise (in relation to FIG. 1 ), the driver catch 15 entrains the spring end 132 of the clamping spring 13 , and increasing stress is exerted on the clamping spring 13 . If the drive mechanism malfunctions, e.g. if the electric motor loses its power supply, then the driver 12 is turned back by the restoring force of the clamping spring 13 , in the one case, counter-clockwise (in relation to FIG.
  • the drive mechanism e.g. the electric motor
  • the throttle valve 26 which is entrained by means of the throttle valve shaft 11 , assumes a definite position, the so-called limp-home air position or limp-home position, in which a definite opening of the throttle valve 26 is preset so that the internal combustion engine receives enough combustion air and continues to run smoothly at idle speed or at a minimum load.
  • a play neutralizing spring or compensation spring 18 is disposed between one spring end 131 , 132 and a catch surface 16 , 17 on one of the catches 14 , 15 , with an initial stress directed counter to the restoring force of the clamping spring 13 .
  • the compensation spring 18 is disposed on the housing catch 14 and lies between the catch surface 16 on the housing catch 14 and the spring end 131 of the clamping spring 13
  • the compensation spring 18 is disposed on the driver catch 15 and lies between the catch surface 16 on the driver catch 15 and the spring end 131 of the clamping spring 13 .
  • the initial stress of the compensation spring 18 is determined so that it is ideally half as great as the initial stress of the clamping spring 13 in the limp-home air position.
  • the compensation spring 18 which is shown in an enlarged perspective representation in FIG. 5, has a spring bracket 19 bent into a U-shape, with a long leg 191 and a short leg 192 .
  • the two legs 191 , 192 are of one piece with each other, connected by means of a crosspiece 193 .
  • the long leg 191 is bent outward spaced apart from the crosspiece 193 , the bent leg section forming a spring leaf 20 , which rests between the catch surface 16 of the housing catch 14 (FIGS. 1-4) or of the driver catch 15 (FIGS. 6-9) and the spring end 131 of the clamping spring 13 , with an initial stress directed against the spring end 131 .
  • the compensation spring 18 is placed against the housing catch 14 (FIGS. 1-4) or against the driver catch 15 (FIGS. 6-9) so that the short, rigid leg 192 rests against the catch surface 17 and the likewise rigid leg section 191 ′ of the long leg 191 , which is disposed underneath the bend point, rests against the opposite catch surface 16 of the housing catch 14 (FIGS. 1-4) or of the driver catch 15 (FIGS. 6 - 9 ), preferably with a contact force.
  • a spring catch 22 or 23 is respectively embodied on the housing 10 in the exemplary embodiment of FIGS. 1-4 or on the driver 12 in the exemplary embodiment of FIGS. 6-9, which catch is disposed at a definite distance, viewed in the rotation direction, from the catch surface 16 of the housing catch 14 or the driver catch 15 , and which is contacted with initial stress by the spring leaf 20 at or near its free end.
  • the distance of the spring catch 22 or 23 from the catch surface 16 of the housing catch 14 or the catch surface 16 of the driver catch 15 simultaneously determines the range of motion of the spring leaf 20 , i.e. the spring path of the spring leaf 20 .
  • the width of the axial piece, which constitutes the catch 14 or 15 that does not support the compensation spring 18 is at least equal to or slightly greater than the width of the axial piece, which constitutes the other catch 15 or 14 and whose width is enlarged by the thickness of the spring leaf 20 , which other catch does support the compensation spring 18 , this taking into account the permissible tolerances for the axial piece width.
  • the two catches 14 , 15 are disposed one outside the other in the radial direction, and the clamping spring 13 affixes the driver 12 to the housing 10 by means of its spring ends 131 , 132 that embrace the two respective catch surfaces 16 , which are disposed on the one side of the driver catch 15 and the housing catch 14 , and the two catch surfaces 17 , which are disposed on the other side of the driver catch 15 and the housing catch 14 .
  • the compensation spring 18 presses with its spring leaf 20 against the clamping spring 13 and likewise produces an initial stress so that the driver 12 is prestressed in both directions and no rotary play of the driver 12 can occur in the limp-home air position.
  • the moment required to deflect the driver 12 is only approximately half as great as the moment-required to deflect the clamping spring 13 .
  • the modified restoring device for the throttle valve 26 which device is shown in a perspective representation in FIG. 6 with its housing removed and is shown in sectional views in FIGS. 7-9 similar to those shown in FIGS. 2-4, is also modified in relation to the restoring device from FIGS. 1-4 in ways beyond that which has already been described insofar as by contrast with the restoring device from FIGS. 1-4, the housing catch 14 is not disposed with a greater radial distance from the housing axis 10 , but with a lesser radial distance from this axis than the driver catch 15 is disposed from the throttle valve shaft 11 so that in the limp-home air position, the driver catch 15 is disposed outside of the housing catch 14 , viewed in the radial direction.
  • FIG. 6 gives a three-dimensional representation of the subassembly comprised of the driver 12 , the throttle valve shaft 11 , the throttle valve 26 non-rotatably supported by it, and the clamping spring 13 .
  • the driver catch 15 which is embodied as an axial piece protruding from the driver 12 , supports the compensation spring 18 , whose spring leaf 20 is disposed between the spring end 131 of the clamping spring 13 and the catch surface 16 on the driver catch 15 .
  • the spring leaf 20 is supported close to its free end on the spring catch 23 that is affixed to the driver 12 .
  • the rigid, short leg 192 of the compensation spring 18 which is embodied as a U-shaped spring bracket 19 , rests with frictional engagement against the catch surface 17
  • the leg section 191 ′ which is disposed between the spring leaf 20 and the crosspiece 193 of the spring bracket 19 , rests with frictional engagement against the catch surface 16 of the driver catch 15 .
  • the action of the compensation spring 18 which is disposed against the driver catch 15 and is used to produce a play-free state of the driver 12 in the limp-home air position, functions as described above.
  • the action of the compensation spring 18 is clearly shown by the graph depicted in FIG. 10 .
  • the moment progression M of the restoring device on the throttle valve 26 is plotted there as a function of the rotation angle ⁇ of the throttle valve shaft 11 , in a sector in the vicinity of the low rotation angles around the limp-home air point of 0°.
  • the heavy solid characteristic curve 24 represents the moment progression with maximal play between the catches 14 , 15 , which is produced when the greatest width of the axial piece constituting the housing catch 14 , viewed in the rotation direction, and the smallest width of the axial piece constituting the driver catch 15 , or vice versa, are encumbered with tolerances.
  • the lighter solid characteristic curve 25 represents the moment progression with minimal play of the catches 14 , 15 , which is produced when there are extremely low tolerances between the catches 14 , 15 .
  • the compensation spring 18 there would be no torque in the rotation angle range b around the limp-home air point of 0° so that the throttle valve 26 would flutter and an exact regulation of the internal combustion engine would not be possible.
  • a torque acts on the throttle valve 26 in this region and it is possible for a regulation to be carried out in the rotation angle range b.

Abstract

In a device for restoring a throttle valve, which is for controlling combustion air of an internal combustion engine, into a definite limp-home air position, having a throttle valve shaft, which supports a drivable driver and is rotatably supported in a housing, and having a prestressed clamping spring, whose spring ends, by simultaneously embracing a housing catch and a driver catch on opposing catch surfaces, fix a limp-home air position of the throttle valve, from which the throttle valve can be moved through rotation of the driver , a compensation spring, which has a definite initial stress force directed counter to the spring force of the clamping spring, is disposed between one spring end of the clamping spring and a catch surface on one of the catches in order to produce a rotary play-free state of the driver in the limp-home air position.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a 35 U.S.C. 371 application of PCT/DE 01/01063, filed on Mar. 20, 2001.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention is based on device for restoring a throttle valve, which is for controlling the combustion air of an internal combustion engine, into a limp-home air position.
2. Description of Prior Art
In the event of a failure of the drive mechanism for the driver on the throttle valve shaft, which drive mechanism is an electric motor, for example, a restoring device of this kind is used to restore the throttle valve into a definite idle position, the so-called limp-home air position or limp-home position, in which a minimal throttle valve opening for the supply of combustion air to the internal combustion engine is assured so that the engine continues to run smoothly at idle speed or at a minimal load.
Due to tolerances in the housing-and driver catch and due to the bending precision of the bent spring ends of the clamping spring, in the limp-home air position, in which the driver catch and the housing catch are disposed radially offset from and approximately congruent to each other, there is a certain rotary play in the throttle valve shaft, which renders a precise regulation impossible in this range.
In a known restoring device disclosed in DE 197 35 046 A1, in order to achieve a rotary play-free embodiment with a definite idle position of the catches in the limp-home air position, oblique catch surfaces are provided on the housing catch and the driver catch. The one spring end of the clamping spring is secured to the oblique catch surfaces on the one side and the other spring end of the clamping spring is secured to the flat catch surfaces extending parallel to the catch axis, on the other side from the housing catch and the driver catch. Because of the oblique catch surfaces, the spring end is supported with half of the respective spring force against the two oblique catch surfaces and thus moves the rotatable driver catch in relation to the catch formed by the spring end on the other side of the housing catch and driver catch.
SUMMARY OF THE INVENTION
The restoring device according to the invention has the advantage that the rotary play-free state in the limp-home air position is reliably achieved with technically simple means. The compensation spring can be produced as a simple stamped part and is easy to install. The additional manufacturing costs for producing a reliable play-free state are therefore minimal.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be explained in detail in the description below in conjunction with exemplary embodiments shown in the drawings, in which:
FIG. 1 shows a detailed side view of a device for restoring a throttle valve,
FIG. 2 shows a detailed section along the line II—II in FIG. 1,
FIG. 3 shows a detailed section along the line III—III in FIG. 1,
FIG. 4 shows a detailed section along the line IV—IV in FIG. 2,
FIG. 5 is an enlarged perspective representation of a compensation spring in the restoring device according to FIGS. 1-4 or according to FIGS. 6-9,
FIG. 6 is a perspective representation of a subassembly of a modified device for restoring a throttle valve,
FIGS. 7 and 8 each show a sectional view equivalent to FIGS. 2 and 3 of the modified restoring device,
FIG. 9 shows a detailed section along the line IX—IX in FIG. 7, and
FIG. 10 shows a detail of a graph of the moment progression of the restoring device on the throttle valve over its rotation angle.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The device for restoring a throttle valve, which is for controlling combustion air of an internal combustion engine, into a definite limp-home air position or limp-home position, a first exemplary embodiment of which is shown in FIGS. 1-4 and a modified exemplary embodiment of which is shown in FIGS. 7-9, which are respectively depicted in detail in a side view and in various sectional views, has a throttle valve shaft 11, which is contained so that it can rotate in a housing and which non-rotatably supports a throttle valve 26 that is only shown in FIG. 6. As is known, the throttle valve 26 is disposed in an air intake fitting of the internal combustion engine and by opening the intake cross section in the intake fitting to a greater or lesser degree, controls the combustion air quantity aspirated by the internal combustion engine. In order to be driven, the throttle valve shaft 11 has a driver catch 12 rigidly connected to it, which is actuated by a drive mechanism. Preferably, the driver catch 12 has a toothed segment that engages with a gear (not shown) supported on the driven shaft of an electric motor.
The housing 10 contains a clamping spring 13, which is embodied as a cylindrical helical compression spring and is disposed concentric to the throttle valve shaft 11 and whose spring ends 131 and 132 are bent toward the throttle valve shaft 11. The clamping spring 13, which is shown in a perspective view in FIG. 6, is already prestressed in the depiction in FIG. 6, so that the two inwardly directed spring ends 131, 132 protrude crosswise and extend approximately parallel to each other. This initial stress produces a force so that a part inserted between the spring ends 131, 132 is clamped in place. As can also be seen in FIG. 4 and FIG. 9, two catches 14, 15, which are constituted by axial pieces and are radially offset from each other, are clamped between the two spring ends 131, 132 of the clamping spring 13 and both extend over at least the axial width of the clamping spring 13, and on opposite sides in the rotation direction, have respective catch surfaces 16, 17 for the spring ends 131 and 132. The catch 14, referred to below as the housing catch 14, is connected to the housing 10, and the catch 15, referred to below as the driver catch 15, is connected to the driver 12. As can be seen from FIGS. 2 and 3 as well as FIGS. 7 and 8, the axial piece constituting the housing catch 14 is of one piece with the housing 10 and protrudes axially from the bottom of the housing 10. The driver catch 15 in FIG. 2 is constituted by an angled leg of a bent metal part 21, whose other angled leg is injection molded into the plastic driver 12, whereas the driver catch 15 in FIGS. 8 and 9 is embodied as an axial piece, which is reinforced through the extrusion coating of the likewise inserted angled metal part 21 and is injection molded directly onto—and at the same time as—the driver 12. The length of the two bent spring ends 131, 132 of the clamping spring 13 is dimensioned so that of they are able to embrace catch surfaces 16, which each face in the same rotation direction on the one side the housing catch 14 and the driver catch 15, and the catch surfaces 17 on their other sides remote from the catch surfaces 16.
If the driver 12 is rotated by the drive mechanism, e.g. the electric motor, in the one or the other rotation direction, then as the driver 12 rotates clockwise (in relation to FIG. 1), the driver catch 15 entrains the spring end 131 of the clamping spring 13, and as the driver 12 rotates counter-clockwise (in relation to FIG. 1), the driver catch 15 entrains the spring end 132 of the clamping spring 13, and increasing stress is exerted on the clamping spring 13. If the drive mechanism malfunctions, e.g. if the electric motor loses its power supply, then the driver 12 is turned back by the restoring force of the clamping spring 13, in the one case, counter-clockwise (in relation to FIG. 1) until the spring end 131 comes into contact with the housing catch 14 and in the other case, clockwise (in relation to FIG. 1) until the spring end 132 respectively comes into contact with this housing catch 14. In this position of the driver 12, the throttle valve 26, which is entrained by means of the throttle valve shaft 11, assumes a definite position, the so-called limp-home air position or limp-home position, in which a definite opening of the throttle valve 26 is preset so that the internal combustion engine receives enough combustion air and continues to run smoothly at idle speed or at a minimum load.
Due to tolerances in the two catches 14, 15 and due to the limited bending precision of the spring ends 131, 132, in the limp-home air position of the catches 14, 15, which is determined by the limp-home air position of the throttle valve shaft 11 and in which these catches 14, 15 are aligned one outside the other in the radial direction, there is a certain amount of rotary play which renders a precise regulation of the internal combustion engine impossible in this range. This play is due, for example, to tolerances in the distance, viewed in the rotation direction, between the catch surfaces 16 and 17 on the housing catch 14 on the one hand and on the driver catch 15 on the other, i.e. is due to tolerances in the width, viewed in the rotation direction, of the axial pieces constituting the catches 14, 15, and is due to tolerances in the bending angle of the spring ends 131, 132 so that these spring ends do not rest flat against the catch surfaces 16 or 17 of the two catches 14, 15, but lean more or less toward them. The spring ends 131, 132 then rest, for example, only against the catch surfaces 16, 17 of the housing catch 14 or against the catch surfaces 16, 17 of the driver catch 15 and the driver 12 is not fixed in a rotary play-free fashion in the limp-home air position. In order to suppress the rotary play, a play neutralizing spring or compensation spring 18 is disposed between one spring end 131, 132 and a catch surface 16, 17 on one of the catches 14, 15, with an initial stress directed counter to the restoring force of the clamping spring 13.
In the exemplary embodiment of FIGS. 1-4, the compensation spring 18 is disposed on the housing catch 14 and lies between the catch surface 16 on the housing catch 14 and the spring end 131 of the clamping spring 13, and in the exemplary embodiment of FIGS. 6-9, the compensation spring 18 is disposed on the driver catch 15 and lies between the catch surface 16 on the driver catch 15 and the spring end 131 of the clamping spring 13. In both cases, the initial stress of the compensation spring 18 is determined so that it is ideally half as great as the initial stress of the clamping spring 13 in the limp-home air position.
In the exemplary embodiments described here, the compensation spring 18, which is shown in an enlarged perspective representation in FIG. 5, has a spring bracket 19 bent into a U-shape, with a long leg 191 and a short leg 192. The two legs 191, 192 are of one piece with each other, connected by means of a crosspiece 193. The long leg 191 is bent outward spaced apart from the crosspiece 193, the bent leg section forming a spring leaf 20, which rests between the catch surface 16 of the housing catch 14 (FIGS. 1-4) or of the driver catch 15 (FIGS. 6-9) and the spring end 131 of the clamping spring 13, with an initial stress directed against the spring end 131. The compensation spring 18 is placed against the housing catch 14 (FIGS. 1-4) or against the driver catch 15 (FIGS. 6-9) so that the short, rigid leg 192 rests against the catch surface 17 and the likewise rigid leg section 191′ of the long leg 191, which is disposed underneath the bend point, rests against the opposite catch surface 16 of the housing catch 14 (FIGS. 1-4) or of the driver catch 15 (FIGS. 6-9), preferably with a contact force.
In order to adjust the initial stress of the spring leaf 20, a spring catch 22 or 23 is respectively embodied on the housing 10 in the exemplary embodiment of FIGS. 1-4 or on the driver 12 in the exemplary embodiment of FIGS. 6-9, which catch is disposed at a definite distance, viewed in the rotation direction, from the catch surface 16 of the housing catch 14 or the driver catch 15, and which is contacted with initial stress by the spring leaf 20 at or near its free end. The distance of the spring catch 22 or 23 from the catch surface 16 of the housing catch 14 or the catch surface 16 of the driver catch 15 simultaneously determines the range of motion of the spring leaf 20, i.e. the spring path of the spring leaf 20. For the play compensation, it is thus essential that, viewed in the rotation direction, the width of the axial piece, which constitutes the catch 14 or 15 that does not support the compensation spring 18, is at least equal to or slightly greater than the width of the axial piece, which constitutes the other catch 15 or 14 and whose width is enlarged by the thickness of the spring leaf 20, which other catch does support the compensation spring 18, this taking into account the permissible tolerances for the axial piece width.
As mentioned above, in the limp-home air position, the two catches 14, 15 are disposed one outside the other in the radial direction, and the clamping spring 13 affixes the driver 12 to the housing 10 by means of its spring ends 131, 132 that embrace the two respective catch surfaces 16, which are disposed on the one side of the driver catch 15 and the housing catch 14, and the two catch surfaces 17, which are disposed on the other side of the driver catch 15 and the housing catch 14. At the same time, the compensation spring 18 presses with its spring leaf 20 against the clamping spring 13 and likewise produces an initial stress so that the driver 12 is prestressed in both directions and no rotary play of the driver 12 can occur in the limp-home air position. In the range of motion of the spring leaf 20, which is defined by the distance of the spring catch 22 or 23 from the housing catch 14 or the driver catch 15, the moment required to deflect the driver 12 is only approximately half as great as the moment-required to deflect the clamping spring 13.
The modified restoring device for the throttle valve 26, which device is shown in a perspective representation in FIG. 6 with its housing removed and is shown in sectional views in FIGS. 7-9 similar to those shown in FIGS. 2-4, is also modified in relation to the restoring device from FIGS. 1-4 in ways beyond that which has already been described insofar as by contrast with the restoring device from FIGS. 1-4, the housing catch 14 is not disposed with a greater radial distance from the housing axis 10, but with a lesser radial distance from this axis than the driver catch 15 is disposed from the throttle valve shaft 11 so that in the limp-home air position, the driver catch 15 is disposed outside of the housing catch 14, viewed in the radial direction.
For better comprehension of the restoring device shown in FIGS. 7-9, FIG. 6 gives a three-dimensional representation of the subassembly comprised of the driver 12, the throttle valve shaft 11, the throttle valve 26 non-rotatably supported by it, and the clamping spring 13. The driver catch 15, which is embodied as an axial piece protruding from the driver 12, supports the compensation spring 18, whose spring leaf 20 is disposed between the spring end 131 of the clamping spring 13 and the catch surface 16 on the driver catch 15. The spring leaf 20 is supported close to its free end on the spring catch 23 that is affixed to the driver 12. The rigid, short leg 192 of the compensation spring 18, which is embodied as a U-shaped spring bracket 19, rests with frictional engagement against the catch surface 17, and the leg section 191′, which is disposed between the spring leaf 20 and the crosspiece 193 of the spring bracket 19, rests with frictional engagement against the catch surface 16 of the driver catch 15.
The action of the compensation spring 18, which is disposed against the driver catch 15 and is used to produce a play-free state of the driver 12 in the limp-home air position, functions as described above.
The action of the compensation spring 18 is clearly shown by the graph depicted in FIG. 10. The moment progression M of the restoring device on the throttle valve 26 is plotted there as a function of the rotation angle α of the throttle valve shaft 11, in a sector in the vicinity of the low rotation angles around the limp-home air point of 0°. The heavy solid characteristic curve 24 represents the moment progression with maximal play between the catches 14, 15, which is produced when the greatest width of the axial piece constituting the housing catch 14, viewed in the rotation direction, and the smallest width of the axial piece constituting the driver catch 15, or vice versa, are encumbered with tolerances. The lighter solid characteristic curve 25 represents the moment progression with minimal play of the catches 14, 15, which is produced when there are extremely low tolerances between the catches 14, 15. Without the compensation spring 18, there would be no torque in the rotation angle range b around the limp-home air point of 0° so that the throttle valve 26 would flutter and an exact regulation of the internal combustion engine would not be possible. As a result of the initial stress exerted on the clamping spring 13 by the compensation spring 18, a torque acts on the throttle valve 26 in this region and it is possible for a regulation to be carried out in the rotation angle range b.
The foregoing relates to preferred exemplary embodiments of the invention, it being understood that other variants and embodiments thereof are possible within the spirit and scope of the invention, the latter being defined in the appended claims.

Claims (20)

We claim:
1. A device for restoring a throttle valve (26) for controlling combustion air of an internal combustion engine, into a definite limp-home air position, the device comprising a throttle valve shaft (11) that supports the throttle valve (26) and is rotatably supported in a housing (10), a drivable driver (12), which is non-rotatably supported on the throttle valve shaft (11), a prestressed clamping spring (13), whose spring ends (131, 132), by simultaneously embracing a housing catch (14) affixed to the housing (10) and a driver catch (15) affixed to the driver (12) on opposing catch surfaces (16, 17) of the catches (14, 15), fix the limp-home air position of the throttle valve (26) from which the throttle valve (26) can be moved through rotation of the driver (12), and a compensation spring (18), which has an initial stress force directed counter to the spring force of the clamping spring (13), said compensation spring being disposed between one spring end (131) of the clamping spring (13) and a catch surface (16) on one of the two catches (14, 15).
2. The device according to claim 1, wherein the catches (14, 15), which are respectively embodied as axial pieces protruding from the housing (10) and the driver (12), are disposed radially offset from each other and extend over at least the axial width of the clamping spring (13), which is embodied as a cylindrical helical compression spring and is disposed coaxial to the throttle valve shaft (11), that the catch surfaces (16, 17) are embodied on opposite sides of the axial pieces, viewed in the rotation direction, and that the spring ends (131, 132) of the clamping spring (13), which are directed inward toward the throttle valve shaft (11), respectively protrude across the catch surfaces (16, 17), which are disposed on the same sides of the axial pieces.
3. The device according to claim 1, wherein the compensation spring (18) is disposed against one of the catches (14, 15) and has a spring leaf (20) placed in front of the catch surface (16) of the catch (14, 15), which spring leaf (20), on its one leaf end, is affixed to the catch (14, 15), and at or near its other free leaf end, rests with an initial stress against a spring catch (22, 23), which is disposed spaced apart from the catch surface (16) and determines the spring path of the spring leaf (20).
4. The device according claim 2, wherein the compensation spring (18) is disposed against one of the catches (14, 15) and has a spring leaf (20) placed in front of the catch surface (16) of the catch (14, 15), which spring leaf (20), on its one leaf end, is affixed to the catch (14, 15), and at or near its other free leaf end, rests with an initial stress against a spring catch (22, 23), which is disposed spaced apart from the catch surface (16) and determines the spring path of the spring leaf (20).
5. The device according to claim 3, wherein the compensation spring (18) comprises a spring bracket (19), which is bent into a U-shape having one long and one short bracket leg (191, 192), which are connected by means of a crosspiece (193), the long bracket leg being bent outward spaced apart from the crosspiece (193), the bent bracket leg section (191′) constituting the spring leaf (20).
6. The device according to claim 4, wherein the compensation spring (18) comprises a spring bracket (19), which is bent into a U-shape having one long and one short bracket leg (191, 192), which are connected by means of a crosspiece (193), the long bracket leg being bent outward spaced apart from the crosspiece (193), the bent bracket leg section (191′) constituting the spring leaf (20).
7. The device according to claim 5, wherein the compensation spring (18) is placed against the catch (14, 15) so that the short bracket leg (192) and the bracket leg section (191′), which is disposed below the bending point and adjoins the crosspiece (193), rest against the opposing catches surfaces (16, 17) of the catches (14, 15), preferably in a frictionally-engaging manner.
8. The device according to claim 6, wherein the compensation spring (18) is placed against the catch (14, 15) so that the short bracket leg (192) and the bracket leg section (191′), which is disposed below the bending point and adjoins the crosspiece (193), rest against the opposing catches surfaces (16, 17) of the catches (14, 15), preferably in a frictionally-engaging manner.
9. The device according to claim 3, wherein the compensation spring (18) is disposed against the housing catch (14) and the spring catch (22) for the spring leaf (20) is embodied on the housing (10).
10. The device according to claim 4, wherein the compensation spring (18) is disposed against the housing catch (14) and the spring catch (22) for the spring leaf (20) is embodied on the housing (10).
11. The device according to claim 5, wherein the compensation spring (18) is disposed against the housing catch (14) and the spring catch (22) for the spring leaf (20) is embodied on the housing (10).
12. The device according to claim 6, wherein the compensation spring (18) is disposed against the housing catch (14) and the spring catch (22) for the spring leaf (20) is embodied on the housing (10).
13. The device according to claim 7, wherein the compensation spring (18) is disposed against the housing catch (14) and the spring catch (22) for the spring leaf (20) is embodied on the housing (10).
14. The device according to claim 8, wherein the compensation spring (18) is disposed against the housing catch (14) and the spring catch (22) for the spring leaf (20) is embodied on the housing (10).
15. The device according to claim 3, wherein the compensation spring (18) is disposed against the driver catch (15) and the spring catch (22) for the spring leaf (20) is embodied on the driver (12).
16. The device according to claim 5, wherein the compensation spring (18) is disposed against the driver catch (15) and the spring catch (22) for the spring leaf (20) is embodied on the driver (12).
17. The device according to claim 6, wherein the compensation spring (18) is disposed against the driver catch (15) and the spring catch (22) for the spring leaf (20) is embodied on the driver (12).
18. The device according to claim 1, wherein the initial stress force of a spring leaf (20) of the compensation spring (18) is approximately half as great as the initial stress force of the clamping spring (13) in the limp-home air position of the throttle valve shaft (11).
19. The device according to claim 2, wherein the initial stress force of a spring leaf (20) of the compensation spring (18) is approximately half as great as the initial stress force of the clamping spring (13) in the limp-home air position of the throttle valve shaft (11).
20. The device according to claim 3, wherein the initial stress force of the spring leaf (20) of the compensation spring (18) is approximately half as great as the initial stress force of the clamping spring (13) in the limp-home air position of the throttle valve shaft (11).
US09/979,211 2000-03-21 2001-03-20 Throttle valve restoring device Expired - Fee Related US6568652B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10013917A DE10013917A1 (en) 2000-03-21 2000-03-21 Throttle valve return device has compensation spring prestressed with force opposite to that of clamping spring
DE10013917 2000-03-21
DE10013917.5 2000-03-21
PCT/DE2001/001063 WO2001071173A1 (en) 2000-03-21 2001-03-20 Device for resetting a throttle valve

Publications (2)

Publication Number Publication Date
US20020162982A1 US20020162982A1 (en) 2002-11-07
US6568652B2 true US6568652B2 (en) 2003-05-27

Family

ID=7635728

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/979,211 Expired - Fee Related US6568652B2 (en) 2000-03-21 2001-03-20 Throttle valve restoring device

Country Status (7)

Country Link
US (1) US6568652B2 (en)
EP (1) EP1183451B1 (en)
JP (1) JP2003528250A (en)
KR (1) KR20020005044A (en)
AU (1) AU772215B2 (en)
DE (2) DE10013917A1 (en)
WO (1) WO2001071173A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145827A1 (en) * 2001-01-23 2003-08-07 Harald Klug Device for repositioning a rotating element
US20040094137A1 (en) * 2001-01-23 2004-05-20 Johannes Meiwes Device for restoring a rotary member
US20110283970A1 (en) * 2010-05-19 2011-11-24 Aisan Kogyo Kabushiki Kaisha Throttle apparatus for internal combustion engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202096A1 (en) * 2002-01-21 2003-07-24 Siemens Ag Throttle valve support and drive system for internal combustion engine has stirrup connected to accelerator pedal and moving between minimum and maximum opening stops
JP3750934B2 (en) * 2002-02-25 2006-03-01 三菱電機株式会社 Inlet throttle device
JP4831085B2 (en) * 2008-02-06 2011-12-07 株式会社デンソー Electronic throttle device for internal combustion engines
FR3049673B1 (en) * 2016-03-30 2018-11-23 Faurecia Systemes D'echappement EXHAUST LINE VALVE AND CORRESPONDING MOUNTING METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704635A (en) * 1971-06-01 1972-12-05 Phillip V Eshelman Throttle return spring redundancy system
US3785615A (en) * 1972-09-01 1974-01-15 Gen Electric Emergency trip throttle valve
US6155533A (en) * 1999-01-29 2000-12-05 Ford Global Technologies, Inc. Default mechanism for electronic throttle control system
US6276664B1 (en) * 1999-11-19 2001-08-21 Eaton Corporation Worm driving a servo actuator with spring return and rotary valve employing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4337184A1 (en) * 1993-10-30 1995-05-04 Pierburg Gmbh Throttle body
US5492097A (en) * 1994-09-30 1996-02-20 General Motors Corporation Throttle body default actuation
DE19735046A1 (en) * 1997-08-13 1999-04-22 Pierburg Ag Arrangement of a spring clip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704635A (en) * 1971-06-01 1972-12-05 Phillip V Eshelman Throttle return spring redundancy system
US3785615A (en) * 1972-09-01 1974-01-15 Gen Electric Emergency trip throttle valve
US6155533A (en) * 1999-01-29 2000-12-05 Ford Global Technologies, Inc. Default mechanism for electronic throttle control system
US6155533C1 (en) * 1999-01-29 2002-07-30 Visteon Global Tech Inc Default mechanism for electronic throttle control system
US6276664B1 (en) * 1999-11-19 2001-08-21 Eaton Corporation Worm driving a servo actuator with spring return and rotary valve employing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145827A1 (en) * 2001-01-23 2003-08-07 Harald Klug Device for repositioning a rotating element
US20040094137A1 (en) * 2001-01-23 2004-05-20 Johannes Meiwes Device for restoring a rotary member
US6745994B2 (en) * 2001-01-23 2004-06-08 Robert Bosch Gmbh Device for repositioning a rotating element
US6840217B2 (en) * 2001-01-23 2005-01-11 Robert Bosch Gmbh Device for restoring a rotary member
US20110283970A1 (en) * 2010-05-19 2011-11-24 Aisan Kogyo Kabushiki Kaisha Throttle apparatus for internal combustion engine
US8746209B2 (en) * 2010-05-19 2014-06-10 Denso Corporation Throttle apparatus for internal combustion engine

Also Published As

Publication number Publication date
AU772215B2 (en) 2004-04-22
AU4638501A (en) 2001-10-03
DE50100118D1 (en) 2003-04-17
US20020162982A1 (en) 2002-11-07
EP1183451A1 (en) 2002-03-06
DE10013917A1 (en) 2001-09-27
JP2003528250A (en) 2003-09-24
WO2001071173A1 (en) 2001-09-27
KR20020005044A (en) 2002-01-16
EP1183451B1 (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US5492097A (en) Throttle body default actuation
US7063067B2 (en) Intake air control apparatus for internal combustion engine
US5687691A (en) Throttle device and method for producing a throttle device
US6974119B2 (en) Actuator
US6918374B1 (en) Intake air amount control apparatus for an engine
US6568652B2 (en) Throttle valve restoring device
CN115163313B (en) Throttle device
US7100553B2 (en) Actuator for valve lift control device having cam mechanism
US6050241A (en) Control device for controlling an output of a driving machine
EP1170486B1 (en) Electronic throttle control mechanism with integrated modular construction
US4721281A (en) Actuating device for throttle valve
US7427057B1 (en) Control valve assembly of a carburetor and method of assembly
JP2004150332A (en) Actuating mechanism and valve lift adjusting device using the same
US6553863B1 (en) Accelerator pedal
US6745994B2 (en) Device for repositioning a rotating element
EP1098078A3 (en) Electronically controlled throttle valve with limp home mechanism
US6973913B2 (en) Final control element for controlling internal combustion engines
KR100750405B1 (en) Electronic control type throttle valve apparatus
KR100815162B1 (en) Throttle device for vehicle
US5964203A (en) Throttle valve device of internal combustion engine
US6513491B1 (en) Electronic throttle control linkage with limp home mechanism
US6375151B1 (en) Return spring mechanism for an electronic throttle control assembly
US20240044295A1 (en) Throttle Device
JPH0534517B2 (en)
JPS6349554Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAISER, KLAUS;HAMMER, UWE;REEL/FRAME:012913/0453

Effective date: 20020402

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20110527