US6551856B1 - Method for forming copper pad redistribution and device formed - Google Patents
Method for forming copper pad redistribution and device formed Download PDFInfo
- Publication number
 - US6551856B1 US6551856B1 US09/637,223 US63722300A US6551856B1 US 6551856 B1 US6551856 B1 US 6551856B1 US 63722300 A US63722300 A US 63722300A US 6551856 B1 US6551856 B1 US 6551856B1
 - Authority
 - US
 - United States
 - Prior art keywords
 - redistribution
 - copper
 - passivation layer
 - forming
 - pads
 - Prior art date
 - Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 - Expired - Lifetime
 
Links
- 238000000034 method Methods 0.000 title claims abstract description 111
 - 239000010949 copper Substances 0.000 title claims abstract description 99
 - 229910052802 copper Inorganic materials 0.000 title claims abstract description 94
 - RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 79
 - 239000000758 substrate Substances 0.000 claims abstract description 25
 - 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 16
 - HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 16
 - 239000000126 substance Substances 0.000 claims abstract description 14
 - 238000005498 polishing Methods 0.000 claims abstract description 12
 - 238000007789 sealing Methods 0.000 claims abstract description 12
 - 238000009713 electroplating Methods 0.000 claims abstract description 7
 - 238000007772 electroless plating Methods 0.000 claims abstract description 5
 - 238000002161 passivation Methods 0.000 claims description 56
 - 239000004065 semiconductor Substances 0.000 claims description 22
 - 238000005530 etching Methods 0.000 claims description 19
 - VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
 - 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
 - 238000000151 deposition Methods 0.000 claims description 9
 - 239000011810 insulating material Substances 0.000 claims description 5
 - 229920000642 polymer Polymers 0.000 claims description 4
 - 238000005137 deposition process Methods 0.000 claims description 2
 - 238000001312 dry etching Methods 0.000 claims description 2
 - 238000000059 patterning Methods 0.000 claims description 2
 - 230000009977 dual effect Effects 0.000 abstract description 13
 - 230000004888 barrier function Effects 0.000 abstract description 6
 - 239000010410 layer Substances 0.000 description 75
 - 229910052782 aluminium Inorganic materials 0.000 description 19
 - 229910000679 solder Inorganic materials 0.000 description 17
 - XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 16
 - 229920001721 polyimide Polymers 0.000 description 7
 - 239000004642 Polyimide Substances 0.000 description 6
 - 230000015572 biosynthetic process Effects 0.000 description 5
 - 238000004891 communication Methods 0.000 description 5
 - 239000000463 material Substances 0.000 description 5
 - 230000002093 peripheral effect Effects 0.000 description 5
 - XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 3
 - 229910052751 metal Inorganic materials 0.000 description 3
 - 239000002184 metal Substances 0.000 description 3
 - 238000001020 plasma etching Methods 0.000 description 3
 - 238000007747 plating Methods 0.000 description 3
 - 238000001039 wet etching Methods 0.000 description 3
 - NPNPZTNLOVBDOC-UHFFFAOYSA-N 1,1-difluoroethane Chemical compound CC(F)F NPNPZTNLOVBDOC-UHFFFAOYSA-N 0.000 description 2
 - RYGMFSIKBFXOCR-IGMARMGPSA-N copper-64 Chemical compound [64Cu] RYGMFSIKBFXOCR-IGMARMGPSA-N 0.000 description 2
 - 238000004519 manufacturing process Methods 0.000 description 2
 - 230000008018 melting Effects 0.000 description 2
 - 238000002844 melting Methods 0.000 description 2
 - BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
 - XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
 - ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
 - 239000000654 additive Substances 0.000 description 1
 - 229910045601 alloy Inorganic materials 0.000 description 1
 - 239000000956 alloy Substances 0.000 description 1
 - 230000015556 catabolic process Effects 0.000 description 1
 - 239000004020 conductor Substances 0.000 description 1
 - 238000007796 conventional method Methods 0.000 description 1
 - 230000008878 coupling Effects 0.000 description 1
 - 238000010168 coupling process Methods 0.000 description 1
 - 238000005859 coupling reaction Methods 0.000 description 1
 - 238000006731 degradation reaction Methods 0.000 description 1
 - 230000008021 deposition Effects 0.000 description 1
 - PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
 - 239000003989 dielectric material Substances 0.000 description 1
 - 238000009792 diffusion process Methods 0.000 description 1
 - 238000009826 distribution Methods 0.000 description 1
 - 239000002355 dual-layer Substances 0.000 description 1
 - 230000000694 effects Effects 0.000 description 1
 - 238000004070 electrodeposition Methods 0.000 description 1
 - 230000017525 heat dissipation Effects 0.000 description 1
 - 239000012212 insulator Substances 0.000 description 1
 - 238000010297 mechanical methods and process Methods 0.000 description 1
 - 238000005272 metallurgy Methods 0.000 description 1
 - 230000003647 oxidation Effects 0.000 description 1
 - 238000007254 oxidation reaction Methods 0.000 description 1
 - 238000005240 physical vapour deposition Methods 0.000 description 1
 - 229910052710 silicon Inorganic materials 0.000 description 1
 - 239000010703 silicon Substances 0.000 description 1
 - 238000004544 sputter deposition Methods 0.000 description 1
 
Images
Classifications
- 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L23/00—Details of semiconductor or other solid state devices
 - H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
 - H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
 - H01L23/525—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
 - H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L24/10—Bump connectors ; Manufacturing methods related thereto
 - H01L24/11—Manufacturing methods
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L23/00—Details of semiconductor or other solid state devices
 - H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
 - H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
 - H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
 - H01L23/53204—Conductive materials
 - H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
 - H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
 - H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L24/02—Bonding areas ; Manufacturing methods related thereto
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
 - H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L2224/02—Bonding areas; Manufacturing methods related thereto
 - H01L2224/023—Redistribution layers [RDL] for bonding areas
 - H01L2224/0231—Manufacturing methods of the redistribution layers
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
 - H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L2224/02—Bonding areas; Manufacturing methods related thereto
 - H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
 - H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
 - H01L2224/05001—Internal layers
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
 - H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L2224/02—Bonding areas; Manufacturing methods related thereto
 - H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
 - H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
 - H01L2224/05001—Internal layers
 - H01L2224/05005—Structure
 - H01L2224/05008—Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body, e.g.
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
 - H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L2224/02—Bonding areas; Manufacturing methods related thereto
 - H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
 - H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
 - H01L2224/05001—Internal layers
 - H01L2224/0502—Disposition
 - H01L2224/05022—Disposition the internal layer being at least partially embedded in the surface
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
 - H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L2224/02—Bonding areas; Manufacturing methods related thereto
 - H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
 - H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
 - H01L2224/0554—External layer
 - H01L2224/0555—Shape
 - H01L2224/05556—Shape in side view
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
 - H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L2224/02—Bonding areas; Manufacturing methods related thereto
 - H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
 - H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
 - H01L2224/0554—External layer
 - H01L2224/0556—Disposition
 - H01L2224/05571—Disposition the external layer being disposed in a recess of the surface
 - H01L2224/05572—Disposition the external layer being disposed in a recess of the surface the external layer extending out of an opening
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
 - H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L2224/10—Bump connectors; Manufacturing methods related thereto
 - H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
 - H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
 - H01L2224/13001—Core members of the bump connector
 - H01L2224/13099—Material
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L23/00—Details of semiconductor or other solid state devices
 - H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
 - H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
 - H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
 - H01L23/3114—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
 - H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L24/02—Bonding areas ; Manufacturing methods related thereto
 - H01L24/03—Manufacturing methods
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
 - H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
 - H01L24/02—Bonding areas ; Manufacturing methods related thereto
 - H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
 - H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/0001—Technical content checked by a classifier
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/01—Chemical elements
 - H01L2924/01013—Aluminum [Al]
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/01—Chemical elements
 - H01L2924/01019—Potassium [K]
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/01—Chemical elements
 - H01L2924/01029—Copper [Cu]
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/01—Chemical elements
 - H01L2924/01073—Tantalum [Ta]
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/01—Chemical elements
 - H01L2924/01078—Platinum [Pt]
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/01—Chemical elements
 - H01L2924/01082—Lead [Pb]
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/013—Alloys
 - H01L2924/014—Solder alloys
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/049—Nitrides composed of metals from groups of the periodic table
 - H01L2924/0495—5th Group
 - H01L2924/04953—TaN
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/10—Details of semiconductor or other solid state devices to be connected
 - H01L2924/11—Device type
 - H01L2924/14—Integrated circuits
 
 - 
        
- H—ELECTRICITY
 - H01—ELECTRIC ELEMENTS
 - H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
 - H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
 - H01L2924/30—Technical effects
 - H01L2924/301—Electrical effects
 - H01L2924/30105—Capacitance
 
 
Definitions
- the present invention generally relates to a method for forming input/output pad redistribution on a semiconductor substrate and device formed and more particularly, relates to a method for forming copper pad redistribution in a flip chip that is compatible with copper dual damascene process and a flip chip package formed.
 - solder material is a lead-rich, i.e., 97% lead/3% tin high melting temperature solder alloy.
 - a semiconductor chip is flipped over with the solder bumps aligned and placed in a reflow furnace to effect all the I/O connections to bonding pads on a substrate.
 - a major processing advantage made possible by the flip chip bonding process is its applicability to very high density I/O connections and its high reliability in the interconnects formed when compared to a wire bonding process.
 - the wire bonding process also has limitations in the total number of I/O interconnections that can be made in high performance devices.
 - a limiting factor for using the flip chip bonding process is the fine pitch bonding pads that are frequently required for wire bonding on modern high density devices.
 - bonding pads that are arranged along the periphery of the device may have a pitch, or spacing, as small as 100 ⁇ m. At such narrow spacing, it is difficult and costly to accomplish bonding to the pads by using solder bumps in a flip chip bonding technique, taken into consideration that solder bumps in this case are of low profile, making underfill process extremely difficult.
 - a high density substrate which is very costly is required for flip chip bonding a device with a fine pitch I/O.
 - an I/O redistribution process In order to bond high density IC devices that have peripheral I/O bonding pads with small pitch, i.e., in the range of approximately 100 ⁇ m, an I/O redistribution process must first be carried out before the formation of the solder bumps. In an I/O redistribution process, the peripheral I/O bonding pads are redistributed by signal traces to area array I/O bonding pads.
 - an IC chip that is equipped with peripheral I/O bonding pads has a pitch between the pads as small as 100 ⁇ m.
 - a multiplicity of connecting traces are formed to redistribute the peripheral bonding pads to area array bonding pads.
 - the pitch between the area array bonding pads are greatly increased, i.e., to the extent of approximately four times the pitch between the peripheral bonding pads.
 - the significantly larger pitch between the area array bonding pads allows flip chip bonding to be connected on a low cost substrate manufactured by traditional process.
 - the I/O redistribution process used on modern high density IC devices is therefore an important fabrication step to first enable the device to be solder bumped and then bonding to another chip or to a printed circuit board in a flip chip process.
 - the formation of the connecting traces between the various pairs of bonding pads enables the I/O redistribution process to be accomplished.
 - Electrolytic copper plating techniques used in damascene structures can be defect-free if a seed layer deposited is continuous and has a uniform thickness.
 - the copper seed layer is typically deposited by a physical vapor deposition technique over a barrier layer that prevents diffusion of copper into the insulator such as Ta or TaN.
 - a Cu dual damascene process consists of the formation of trenches and vias in a dielectric material, which stops at an etch-stop layer.
 - the vias and trenches are then filled with a metal stack containing a barrier layer followed by Cu, and then removing the excess metal from the filled region typically by chemical mechanical polishing.
 - This process can be used to form a single or a dual damascene structure.
 - Cu damascene interconnects are produced using plated Cu, typically a seed layer is sputtered on a barrier layer to improve the substrate conductivity and to allow for uniform Cu plating.
 - FIG. 1 A conventional bond pad structure is shown in FIG. 1 for a wire bonding package.
 - a dual layer passivation structure of an undoped silicate gas (USG) layer 12 and a silicon nitride layer 14 is first deposited on a copper bond pad 20 .
 - An opening is then formed in the passivation layers 12 , 14 for an aluminum/copper pad 18 .
 - Several processing drawbacks are associated with this bond pad forming process, for instance, an additional 1 ⁇ 2 photomasking processing are required, a copper oxidation problem, and a large flat silicon nitride passivation layer which presents peeling problem due to built-in stress.
 - FIG. 2 illustrates a conventional method for wire redistribution in a flip tip package 30 .
 - aluminum bond pad 16 is first formed on a silicon substrate 22 .
 - an oxide passivation layer 24 and a polyimid layer 26 are deposited on top of the aluminum bond pad 16 .
 - an opening is formed for aluminum sputtering a redistribution layer
 - a second polyimide dielectric layer 32 is then deposited to insulate the aluminum wiring 28 .
 - an opening is formed for depositing an under-bump-metallurgy layer 34 , and a solder bump for forming solder ball 36 after a reflow process.
 - a first photomasking step is required such that etching can be carried out for forming the opening in the polyimide.
 - a second photomasking step and subsequent etching are carried out to define the aluminum wiring.
 - a third photomasking and etching steps are required for the opening in polyimide layer 32 and for the growth of UBM layer 34 .
 - the conventional aluminum pad redistribution process for the flip chip package therefore requires additional three photomasking steps which presents a major disadvantage for the process.
 - a method for forming copper pad redistribution can be carried out by the operating steps of first providing a pre-processed semiconductor substrate that has a first plurality of copper bond pads in a top surface, planarizing the semiconductor substrate by chemical mechanical polishing, forming a passivation layer on a planarized top surface of the semiconductor substrate, patterning and etching the passivation layer openings for a first plurality of redistribution vias, a second plurality of redistribution lines connecting the first plurality of redistribution vias and the first plurality of redistribution pads by a dry etching method wherein sidewall passivation forms in openings of the second plurality of redistribution lines stopping etching in the passivation layer ids while openings for the redistribution vias are etched through the passivation layer to expose surfaces of the first plurality of copper bond pads, depositing copper into the openings for the first plurality of redistribution vias, the first plurality of redistribution
 - the method for forming copper pad redistribution may further include the step of forming the first plurality of copper bond pads in an inter-metal-dielectric (IMTI) layer formed on the top surface of the semiconductor substrate, or the step of forming the passivation layer in two separate layers of a first passivation layer on top of the first plurality of copper bond pads and a second passivation layer on top of the first passivation layer.
 - the first passivation layer may be silicon oxide, while the second passivation layer may be silicon nitride.
 - the method may further include the step of etching openings in the passivation layer for the first plurality of redistribution vias to a depth larger than the openings etched for the second plurality of redistribution lines.
 - the method may further include the step of etching openings for the second plurality of redistribution lines in the passivation layer.
 - the method may further include the step of stopping the etching of openings for the second plurality of redistribution lines by polymer sidewall passivation in the openings.
 - the method may further include the step of stopping the etching of openings for the second plurality of redistribution lines in a sub-layer of silicon oxide in the passivation layer.
 - the method may further include the step of planarizing the semiconductor substrate after the copper deposition process by chemical mechanical polishing.
 - the method may further include the step of depositing copper into the openings for the first plurality of redistribution pads, the first plurality of redistribution vias and the second plurality of redistribution lines by an electroplating or an electroless plating technique.
 - the method may further include the step of depositing a sealing layer of an insulating material on top of the semiconductor substrate over the first plurality of redistribution pads and the second plurality of redistribution lines.
 - the sealing layer may be deposited of silicon nitride.
 - the present invention is further directed to a flip chip package incorporating copper pad redistribution therein including a semiconductor substrate that has an active circuit formed thereon, a first plurality of copper bond pads imbedded in an insulating layer on top of the semiconductor substrate for electrical communication with the active circuit, a passivation layer formed on top of the first plurality of copper bond pads and the insulating layer, a first plurality of copper redistribution vias formed in the passivation layer for electrical communication with the first plurality of copper bond pads, a first plurality of copper redistribution pads formed in the passivation layer each having a top surface exposed, a second plurality of copper redistribution lines formed in the passivation layer for providing electrical communication between the first plurality of copper redistribution vias and the first plurality of copper redistribution pads, and a sealing layer formed of an insulating material covering the first plurality of copper redistribution vias, the second plurality of copper redistribution lines and the passivation layer while exposing the first plurality of copper
 - the flip chip package incorporating copper pad redistribution therein may further include a first plurality of solder bumps formed on and in electrical communication with the first plurality of copper redistribution pads.
 - the flip chip package may further include a first plurality of solder balls formed on the first plurality of copper redistribution pads.
 - the insulating layer may be an inter-metal dielectric layer.
 - the passivation layer may further include a layer of silicon oxide contacting the insulating layer and a layer of silicon nitride on top of the silicon oxide layer.
 - the sealing layer may be formed of silicon nitride.
 - FIG. 1 is an enlarged, cross-section view of a conventional bond pad structure for wire bonding.
 - FIG. 2 is an enlarged, cross-sectional view of a conventional flip chip package with aluminum redistribution.
 - FIG. 3A is an enlarged, cross-sectional view of the present invention copper pad redistribution structure illustrating a copper bond pad opening filled with copper.
 - FIG. 3B is an enlarged, cross-sectional view of the present invention structure of FIG. 3A after planarized by a chemical mechanical polishing method.
 - FIG. 3C is an enlarged, cross-sectional view of the present invention structure of FIG. 3B after dual passivation layers of silicon oxide and silicon nitride are deposited.
 - FIG. 3D is an enlarged, cross-sectional view of the present invention structure of FIG. 3C after redistribution vias and redistribution lines are patterned.
 - FIG. 3E is an enlarged, cross-sectional view of the present invention structure of FIG. 3D after copper is electrodeposited into the structure.
 - FIG. 3F is an enlarged, cross-sectional view of the present invention structure of FIG. 3E after planarized by a chemical mechanical polishing method.
 - FIG. 3G is an enlarged, cross-sectional view of the present invention structure of FIG. 3F after a sealing layer is deposited on top.
 - FIG. 4 is an enlarged, cross-sectional view of a present invention copper pad redistribution structure.
 - FIG. 5 is an enlarged, plane view of the present invention redistribution vias, redistribution pads and redistribution lines.
 - the present invention discloses a method for forming copper pad redistribution in a flip chip that is compatible with a copper dual damascene process and a flip chip package incorporating the copper pad redistribution.
 - a key advantage of the present invention novel method is its compatibility with a copper dual damascene process in which copper vias and lines are formed.
 - a dual passivation layer of silicon oxide and silicon nitride is first deposited on a wafer surface after the wafer surface is planarized by a chemical mechanical polishing method.
 - copper redistribution lines are also patterned simultaneously.
 - a suitable dimension for the redistribution pad and the redistribution line is 120 nm and 10 nm, respectively.
 - the present invention novel method further utilizes an etching recipe that provides heavy polymer protection. The etching process of the redistribution lines with small dimensions will automatically stop due to polymer passivation on the sidewall of the lines.
 - Redistribution pads on the other hand, will be etched directly down to the top of the copper bond pads due to the relative wide dimension.
 - the passivation layer i.e., the silicon nitride layer
 - a chemical mechanical method has been advantageously utilized to form the redistribution pad after the copper barrier and the copper electro-deposition process.
 - a sealing layer of an insulating material i.e., of silicon nitride may be deposited on top of copper to prevent a direct contact of copper with a subsequently deposited passivation layer of polyimide.
 - the present invention novel method not only solves the issue of flip chip redistribution but also provides a simplified process compared to the conventional aluminum redistribution process.
 - a further advantage provided by the present invention novel method is the relief of the passivation stress. Due to the nature of the copper dual damascene process, the passivation layer is a large, flat sheet covering the entire wafer. Under such circumstances, it is likely for the flat sheet to peel off due to a high stress in the passivation layer.
 - the present invention copper redistribution line embedded in the passivation layer releases the stress and thus preventing peeling.
 - Still another added advantage provided by the present invention novel method is a practical solution for heat distribution, i.e., providing a heat sink in a copper low-k process.
 - the back end performance presents a bottle neck for the process.
 - Copper with low resistivity and low-K materials with low coupling capacitance can be adapted to improve the performance.
 - the present invention novel method demonstrates that the clock frequency is expected to be as high as 1 GHz at 0.13 nm node.
 - a penalty for using the low-k materials is the heat dissipation problem due to their poor thermal productivity.
 - the present invention novel method provides a heat sink anchor which resolves the problem and avoids property degradation due to temperature increase.
 - an inter-metal-dielectric layer 42 is first deposited on an electronic substrate 38 that contains a pre-processed active circuit therein (not shown).
 - a bond pad opening 44 is formed in the IMD layer 42 and filled with copper 46 .
 - the semiconductor 40 is then planarized to produce a flat top surface 48 , as shown in FIG. 3B, by a chemical mechanical polishing method producing a copper bond pad 50 .
 - a passivation layer 52 which may consist of two separate layers, i.e., a silicon oxide layer 56 and a silicon nitride layer 54 . This is shown in FIG. 3 C.
 - a photomasking process is performed followed by a reactive ion etching (RIE) process for etching the passivation layer 52 and forming an opening for a redistribution via 58 and openings for redistribution lines 60 , 62 .
 - RIE reactive ion etching
 - the reactive ion etching of the passivation layer 52 can be carried out by utilizing etchants such as CCl 2 F 2 , CHF 3 /CF 4 , CHF 3 /O 2 , CH 3 CHF 2 for silicon oxide, and etchants such as CF 4 /O 2 , CF 4 /H 2 , CHF 3 and CH 3 CHF 2 for silicon nitride.
 - etchants such as CCl 2 F 2 , CHF 3 /CF 4 , CHF 3 /O 2 , CH 3 CHF 2 for silicon oxide
 - etchants such as CF 4 /O 2 , CF 4 /H 2 , CHF 3 and CH 3 CHF 2 for silicon nitride.
 - copper 64 is blanket deposited on top of the present invention structure 40 by a technique such as electroplating or electroless plating. It should be noted that copper 64 fills up opening 60 for the redistribution line, opening 58 for the redistribution via and opening 52 for the redistribution line.
 - a chemical mechanical polishing method is then carried out on the present invention structure 40 to produce a redistribution line 66 , a redistribution via 68 and a redistribution line 70 , as shown in FIG. 3 F.
 - FIG. 3 F In the last step of the process, shown in FIG.
 - a sealing layer 72 of an insulating material, such as silicon nitride as a for moisture barrier is deposited on top of structure 40 to provide the sealing function. It should be noted that, through FIGS. 3 A ⁇ 3 G, the formation of a redistribution pad with its top surface exposed through the sealing layer 72 is not shown due to the fact that the pad is situated away from the copper bond pad 50 .
 - FIG. 4 illustrates an enlarged, cross-sectional view of the present intention structure, similar to that shown in FIG. 3 F.
 - An enlarged, plane view of a typical redistribution scheme 80 is shown in FIG. 5 .
 - a plurality of bond pads 50 are formed, presumably at a center portion of an IC chip, i.e., a flip chip.
 - a plurality of redistribution vias are formed for connection to redistribution lines 82 .
 - a copper redistribution pad or bump pad 84 is also shown in FIG.
 - a heat sink 86 or anchor bump for connecting through a redistribution line 88 to a heat sink 90 , or a dummy pad.
 - Passivation stress relief slots 92 are further provided for stress relief of the passivation layer on top of the copper structure.
 - solder bumps are formed by an electroplating or an electroless plating technique on top of the bump pads 84 .
 - the solder bumps may be subsequently reflown at a temperature higher than the melting temperature of the solder material to form a plurality of solder balls on top of the bump pads 84 .
 - the present invention novel method for forming copper pad redistribution on a flip chip that is compatible with a copper dual damascene process and the flip chip formed have therefore been amply described in the above description and in the appended drawings of FIGS. 3A-5.
 
Landscapes
- Engineering & Computer Science (AREA)
 - Computer Hardware Design (AREA)
 - Microelectronics & Electronic Packaging (AREA)
 - Power Engineering (AREA)
 - Physics & Mathematics (AREA)
 - Condensed Matter Physics & Semiconductors (AREA)
 - General Physics & Mathematics (AREA)
 - Manufacturing & Machinery (AREA)
 - Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
 
Abstract
A method for forming copper pad redistribution on a flip chip and structures formed by the method are disclosed. The method is compatible with a copper dual damascene process such that, after a substrate surface is planarized by chemical mechanical polishing, a single photomask can be used to pattern a plurality of redistribution pads, redistribution vias and redistribution lines. After the openings are filled with copper by an electroplating or an electroless plating technique, the top of the structure is again chemical mechanical polished to produce a planarized surface and resulting redistribution pads and redistribution lines. A sealing layer such as silicon nitride may be coated on the final structure as a moisture barrier.
  Description
The present invention generally relates to a method for forming input/output pad redistribution on a semiconductor substrate and device formed and more particularly, relates to a method for forming copper pad redistribution in a flip chip that is compatible with copper dual damascene process and a flip chip package formed.
    In the fabrication of IC devices, semiconductor chips are frequently attached to other chips or other electronic structures such as a printed circuit board. The attachment of the chip can be accomplished by a wire bonding process or by a flip chip attachment method. In a wire bonding process, each of a series of I/O bump terminal on a chip that is built on an aluminum bond pad is sequentially bonded to the connecting pads on a substrate. In a flip chip attachment method, all the I/O bumps on a semiconductor chip are terminated with a solder material. For instance, a frequently used solder material is a lead-rich, i.e., 97% lead/3% tin high melting temperature solder alloy. In the bonding process, a semiconductor chip is flipped over with the solder bumps aligned and placed in a reflow furnace to effect all the I/O connections to bonding pads on a substrate.
    A major processing advantage made possible by the flip chip bonding process is its applicability to very high density I/O connections and its high reliability in the interconnects formed when compared to a wire bonding process. Moreover, the wire bonding process also has limitations in the total number of I/O interconnections that can be made in high performance devices.
    A limiting factor for using the flip chip bonding process is the fine pitch bonding pads that are frequently required for wire bonding on modern high density devices. For instance, in a high density memory device, bonding pads that are arranged along the periphery of the device may have a pitch, or spacing, as small as 100 μm. At such narrow spacing, it is difficult and costly to accomplish bonding to the pads by using solder bumps in a flip chip bonding technique, taken into consideration that solder bumps in this case are of low profile, making underfill process extremely difficult. Moreover, a high density substrate which is very costly is required for flip chip bonding a device with a fine pitch I/O.
    In order to bond high density IC devices that have peripheral I/O bonding pads with small pitch, i.e., in the range of approximately 100 μm, an I/O redistribution process must first be carried out before the formation of the solder bumps. In an I/O redistribution process, the peripheral I/O bonding pads are redistributed by signal traces to area array I/O bonding pads.
    In a typical example, an IC chip that is equipped with peripheral I/O bonding pads has a pitch between the pads as small as 100 μm. Through an I/O redistribution process, a multiplicity of connecting traces are formed to redistribute the peripheral bonding pads to area array bonding pads. It should be noted that the pitch between the area array bonding pads are greatly increased, i.e., to the extent of approximately four times the pitch between the peripheral bonding pads. The significantly larger pitch between the area array bonding pads allows flip chip bonding to be connected on a low cost substrate manufactured by traditional process. The I/O redistribution process used on modern high density IC devices is therefore an important fabrication step to first enable the device to be solder bumped and then bonding to another chip or to a printed circuit board in a flip chip process. The formation of the connecting traces between the various pairs of bonding pads enables the I/O redistribution process to be accomplished.
    More recently, void-free and seamless conductors are produced by electroplating copper from plating baths that contain a variety of additives. The capability of the electroplating method to superfill structural features without leaving voids or seams is unique and superior to that of other deposition techniques. Electrolytic copper plating techniques used in damascene structures can be defect-free if a seed layer deposited is continuous and has a uniform thickness. The copper seed layer is typically deposited by a physical vapor deposition technique over a barrier layer that prevents diffusion of copper into the insulator such as Ta or TaN.
    A Cu dual damascene process consists of the formation of trenches and vias in a dielectric material, which stops at an etch-stop layer. The vias and trenches are then filled with a metal stack containing a barrier layer followed by Cu, and then removing the excess metal from the filled region typically by chemical mechanical polishing. This process can be used to form a single or a dual damascene structure. When Cu damascene interconnects are produced using plated Cu, typically a seed layer is sputtered on a barrier layer to improve the substrate conductivity and to allow for uniform Cu plating.
    A conventional bond pad structure is shown in FIG. 1 for a wire bonding package. In this conventional structure, a dual layer passivation structure of an undoped silicate gas (USG) layer  12 and a silicon nitride layer  14 is first deposited on a copper bond pad  20. An opening is then formed in the  passivation layers    12, 14 for an aluminum/copper pad  18. Several processing drawbacks are associated with this bond pad forming process, for instance, an additional 1˜2 photomasking processing are required, a copper oxidation problem, and a large flat silicon nitride passivation layer which presents peeling problem due to built-in stress.
    FIG. 2 illustrates a conventional method for wire redistribution in a flip tip package  30. In the flip chip  30, aluminum bond pad  16 is first formed on a silicon substrate  22. After an oxide passivation layer  24 and a polyimid layer  26 are deposited on top of the aluminum bond pad  16, an opening is formed for aluminum sputtering a redistribution layer, a second polyimide dielectric layer  32 is then deposited to insulate the aluminum wiring  28. At an opposite end of the aluminum wiring  28, an opening is formed for depositing an under-bump-metallurgy layer  34, and a solder bump for forming solder ball  36 after a reflow process. In this conventional aluminum pad redistribution process for the flip chip package  30, after the formation of the aluminum pad  16 and the deposition of the polyimide layer  26, a first photomasking step is required such that etching can be carried out for forming the opening in the polyimide. After aluminum is sputtered for the aluminum wiring  28 for redistribution, a second photomasking step and subsequent etching are carried out to define the aluminum wiring. After a second polyimide layer  32 is deposited on top of the package  30, a third photomasking and etching steps are required for the opening in polyimide layer  32 and for the growth of UBM layer  34. The conventional aluminum pad redistribution process for the flip chip package therefore requires additional three photomasking steps which presents a major disadvantage for the process. While the process has been used and is compatible with aluminum process, there has been no pad redistribution process proposed that is compatible with a copper dual damascene process for forming pad redistribution. Since wet etching of copper is not possible, copper cannot be used to easily replace aluminum in a typical aluminum process which requires wet etching to define the redistribution.
    It is therefore an object of the present invention to provide a flip chip pad redistribution process that does not have the drawbacks or shortcomings of the conventional pad redistribution process for aluminum.
    It is another object of the present invention to provide a flip chip pad redistribution process that is compatible with a copper dual damascene process.
    It is a further object of the present invention to provide a flip chip pad redistribution process wherein a redistribution pattern and a passivation pattern can be carried out on the same photomask.
    It is still another object of the present invention to provide a flip chip pad redistribution process which only requires a single photomasking step for forming redistribution vias, redistribution lines and redistribution pads in a single photomasking process.
    It is still another object of the present invention to provide a flip chip pad redistribution process utilizing chemical mechanical polishing for defining the structural features instead of by wet etching.
    It is yet another object of the present invention to provide a flip chip pad redistribution process that can be used advantageously in a copper dual damascene process.
    It is still another further object of the present invention to provide a flip chip package that incorporates copper pad redistribution therein by forming copper redistribution lines for providing electrical communication between copper redistribution pads and copper redistribution vias.
    It is yet another further object of the present invention to provide a flip chip package that incorporates copper pad redistribution therein wherein the package is equipped with a plurality of solder balls formed on a plurality of copper redistribution pads.
    In accordance with the present invention, a method for forming copper pad redistribution can be carried out by the operating steps of first providing a pre-processed semiconductor substrate that has a first plurality of copper bond pads in a top surface, planarizing the semiconductor substrate by chemical mechanical polishing, forming a passivation layer on a planarized top surface of the semiconductor substrate, patterning and etching the passivation layer openings for a first plurality of redistribution vias, a second plurality of redistribution lines connecting the first plurality of redistribution vias and the first plurality of redistribution pads by a dry etching method wherein sidewall passivation forms in openings of the second plurality of redistribution lines stopping etching in the passivation layer ids while openings for the redistribution vias are etched through the passivation layer to expose surfaces of the first plurality of copper bond pads, depositing copper into the openings for the first plurality of redistribution vias, the first plurality of redistribution pads and the second plurality of redistribution lines, and planarizing the semiconductor substrate forming the first plurality of redistribution pads and the second plurality of redistribution lines.
    The method for forming copper pad redistribution may further include the step of forming the first plurality of copper bond pads in an inter-metal-dielectric (IMTI) layer formed on the top surface of the semiconductor substrate, or the step of forming the passivation layer in two separate layers of a first passivation layer on top of the first plurality of copper bond pads and a second passivation layer on top of the first passivation layer. The first passivation layer may be silicon oxide, while the second passivation layer may be silicon nitride. The method may further include the step of etching openings in the passivation layer for the first plurality of redistribution vias to a depth larger than the openings etched for the second plurality of redistribution lines. The method may further include the step of etching openings for the second plurality of redistribution lines in the passivation layer. The method may further include the step of stopping the etching of openings for the second plurality of redistribution lines by polymer sidewall passivation in the openings. The method may further include the step of stopping the etching of openings for the second plurality of redistribution lines in a sub-layer of silicon oxide in the passivation layer. The method may further include the step of planarizing the semiconductor substrate after the copper deposition process by chemical mechanical polishing. The method may further include the step of depositing copper into the openings for the first plurality of redistribution pads, the first plurality of redistribution vias and the second plurality of redistribution lines by an electroplating or an electroless plating technique. The method may further include the step of depositing a sealing layer of an insulating material on top of the semiconductor substrate over the first plurality of redistribution pads and the second plurality of redistribution lines. The sealing layer may be deposited of silicon nitride.
    The present invention is further directed to a flip chip package incorporating copper pad redistribution therein including a semiconductor substrate that has an active circuit formed thereon, a first plurality of copper bond pads imbedded in an insulating layer on top of the semiconductor substrate for electrical communication with the active circuit, a passivation layer formed on top of the first plurality of copper bond pads and the insulating layer, a first plurality of copper redistribution vias formed in the passivation layer for electrical communication with the first plurality of copper bond pads, a first plurality of copper redistribution pads formed in the passivation layer each having a top surface exposed, a second plurality of copper redistribution lines formed in the passivation layer for providing electrical communication between the first plurality of copper redistribution vias and the first plurality of copper redistribution pads, and a sealing layer formed of an insulating material covering the first plurality of copper redistribution vias, the second plurality of copper redistribution lines and the passivation layer while exposing the first plurality of copper redistribution pads.
    The flip chip package incorporating copper pad redistribution therein may further include a first plurality of solder bumps formed on and in electrical communication with the first plurality of copper redistribution pads. The flip chip package may further include a first plurality of solder balls formed on the first plurality of copper redistribution pads. The insulating layer may be an inter-metal dielectric layer. The passivation layer may further include a layer of silicon oxide contacting the insulating layer and a layer of silicon nitride on top of the silicon oxide layer. The sealing layer may be formed of silicon nitride.
    
    
    These and other objects, features and advantages of the present invention will become apparent from the following detailed description and the appended drawings in which:
    FIG. 1 is an enlarged, cross-section view of a conventional bond pad structure for wire bonding.
    FIG. 2 is an enlarged, cross-sectional view of a conventional flip chip package with aluminum redistribution.
    FIG. 3A is an enlarged, cross-sectional view of the present invention copper pad redistribution structure illustrating a copper bond pad opening filled with copper.
    FIG. 3B is an enlarged, cross-sectional view of the present invention structure of FIG. 3A after planarized by a chemical mechanical polishing method.
    FIG. 3C is an enlarged, cross-sectional view of the present invention structure of FIG. 3B after dual passivation layers of silicon oxide and silicon nitride are deposited.
    FIG. 3D is an enlarged, cross-sectional view of the present invention structure of FIG. 3C after redistribution vias and redistribution lines are patterned.
    FIG. 3E is an enlarged, cross-sectional view of the present invention structure of FIG. 3D after copper is electrodeposited into the structure.
    FIG. 3F is an enlarged, cross-sectional view of the present invention structure of FIG. 3E after planarized by a chemical mechanical polishing method.
    FIG. 3G is an enlarged, cross-sectional view of the present invention structure of FIG. 3F after a sealing layer is deposited on top.
    FIG. 4 is an enlarged, cross-sectional view of a present invention copper pad redistribution structure.
    FIG. 5 is an enlarged, plane view of the present invention redistribution vias, redistribution pads and redistribution lines.
    
    
    The present invention discloses a method for forming copper pad redistribution in a flip chip that is compatible with a copper dual damascene process and a flip chip package incorporating the copper pad redistribution.
    A key advantage of the present invention novel method is its compatibility with a copper dual damascene process in which copper vias and lines are formed. In the process, a dual passivation layer of silicon oxide and silicon nitride is first deposited on a wafer surface after the wafer surface is planarized by a chemical mechanical polishing method. In addition to the copper redistribution pads, copper redistribution lines are also patterned simultaneously. A suitable dimension for the redistribution pad and the redistribution line is 120 nm and 10 nm, respectively. The present invention novel method further utilizes an etching recipe that provides heavy polymer protection. The etching process of the redistribution lines with small dimensions will automatically stop due to polymer passivation on the sidewall of the lines. Redistribution pads, on the other hand, will be etched directly down to the top of the copper bond pads due to the relative wide dimension. By properly controlling the etching recipe and the passivation layer (i.e., the silicon nitride layer) thickness, the present invention novel structure can be achieved.
    In the present invention novel method, a chemical mechanical method has been advantageously utilized to form the redistribution pad after the copper barrier and the copper electro-deposition process. A sealing layer of an insulating material, i.e., of silicon nitride may be deposited on top of copper to prevent a direct contact of copper with a subsequently deposited passivation layer of polyimide.
    The present invention novel method not only solves the issue of flip chip redistribution but also provides a simplified process compared to the conventional aluminum redistribution process. A further advantage provided by the present invention novel method is the relief of the passivation stress. Due to the nature of the copper dual damascene process, the passivation layer is a large, flat sheet covering the entire wafer. Under such circumstances, it is likely for the flat sheet to peel off due to a high stress in the passivation layer. The present invention copper redistribution line embedded in the passivation layer releases the stress and thus preventing peeling.
    Still another added advantage provided by the present invention novel method is a practical solution for heat distribution, i.e., providing a heat sink in a copper low-k process. In a semiconductor device that has reduced dimensions, the back end performance presents a bottle neck for the process. Copper with low resistivity and low-K materials with low coupling capacitance can be adapted to improve the performance. The present invention novel method demonstrates that the clock frequency is expected to be as high as 1 GHz at 0.13 nm node. A penalty for using the low-k materials is the heat dissipation problem due to their poor thermal productivity. The present invention novel method provides a heat sink anchor which resolves the problem and avoids property degradation due to temperature increase.
    Referring now to FIG. 3A wherein a present invention structure  40 is shown. In structure  40, an inter-metal-dielectric layer  42 is first deposited on an electronic substrate  38 that contains a pre-processed active circuit therein (not shown). A bond pad opening 44 is formed in the IMD layer  42 and filled with copper  46. The semiconductor  40 is then planarized to produce a flat top surface  48, as shown in FIG. 3B, by a chemical mechanical polishing method producing a copper bond pad  50. On top of the planarized surface  48, is then deposited a passivation layer  52 which may consist of two separate layers, i.e., a silicon oxide layer  56 and a silicon nitride layer  54. This is shown in FIG. 3C.
    In the next step of the process, a photomasking process is performed followed by a reactive ion etching (RIE) process for etching the passivation layer  52 and forming an opening for a redistribution via 58 and openings for  redistribution lines    60, 62. This step illustrates a present invention novel feature in that the redistribution pattern and the passivation pattern are formed on the same photomask. This is shown in FIG. 3D. The reactive ion etching of the passivation layer  52 can be carried out by utilizing etchants such as CCl2F2, CHF3/CF4, CHF3/O2, CH3CHF2 for silicon oxide, and etchants such as CF4/O2, CF4/H2, CHF3 and CH3CHF2 for silicon nitride.
    In the next step of the present invention novel method, as shown in FIG. 3E, copper  64 is blanket deposited on top of the present invention structure  40 by a technique such as electroplating or electroless plating. It should be noted that copper  64 fills up opening 60 for the redistribution line, opening 58 for the redistribution via and opening  52 for the redistribution line. A chemical mechanical polishing method is then carried out on the present invention structure  40 to produce a redistribution line  66, a redistribution via 68 and a redistribution line  70, as shown in FIG. 3F. In the last step of the process, shown in FIG. 3G, a sealing layer  72 of an insulating material, such as silicon nitride as a for moisture barrier is deposited on top of structure  40 to provide the sealing function. It should be noted that, through FIGS. 3A˜3G, the formation of a redistribution pad with its top surface exposed through the sealing layer  72 is not shown due to the fact that the pad is situated away from the copper bond pad  50.
    FIG. 4 illustrates an enlarged, cross-sectional view of the present intention structure, similar to that shown in FIG. 3F. An enlarged, plane view of a typical redistribution scheme  80 is shown in FIG. 5. It is seen in FIG. 5 that, a plurality of bond pads  50 are formed, presumably at a center portion of an IC chip, i.e., a flip chip. On top of the bond pads  50, a plurality of redistribution vias (not shown) are formed for connection to redistribution lines 82. At the opposite end of the redistribution line  82, is formed a copper redistribution pad or bump pad  84. Also shown in FIG. 5, is a heat sink  86 or anchor bump for connecting through a redistribution line  88 to a heat sink  90, or a dummy pad. Passivation stress relief slots  92 are further provided for stress relief of the passivation layer on top of the copper structure.
    In the final step of the present invention process, which is not shown in FIG. 5, solder bumps are formed by an electroplating or an electroless plating technique on top of the bump pads  84. The solder bumps may be subsequently reflown at a temperature higher than the melting temperature of the solder material to form a plurality of solder balls on top of the bump pads  84.
    The present invention novel method for forming copper pad redistribution on a flip chip that is compatible with a copper dual damascene process and the flip chip formed have therefore been amply described in the above description and in the appended drawings of FIGS. 3A-5.
    While the present invention has been described in an illustrative manner, it should be understood that the terminology used is intended to be in a nature of words of description rather than of limitation.
    Furthermore, while the present invention has been described in terms of a preferred embodiment, it is to be appreciated that those skilled in the art will readily apply these teachings to other possible variations of the inventions.
    The embodiment of the invention in which an exclusive property or privilege is claimed are defined as follows.
    
  Claims (12)
1. A method for forming copper pad redistribution comprising the steps of:
      providing a pre-processed semiconductor substrate having a first plurality of copper bond pads in a top surface, 
      planarizing said semiconductor substrate by chemical mechanical polishing, 
      forming a passivation layer on said planarized top surface of the semiconductor substrate, 
      patterning and etching said passivation layer openings for a first plurality of redistribution vias, a first plurality of redistribution pads and a second plurality of redistribution lines connecting said first plurality of redistribution vias and said first plurality of redistribution pads by a dry etching method wherein sidewall passivation forms in openings of said plurality of redistribution lines stopping said etching in said passivation layer while opening for said first plurality of redistribution vias are etched through in said passivation layer to expose surfaces of said first plurality of copper bond pads, 
      depositing copper into said openings for said first plurality of redistribution vias, said first plurality of redistribution pads and said second plurality of redistribution lines, and 
      planarizing said semiconductor substrate forming said first plurality of redistribution vias and said second plurality of redistribution lines. 
    2. A method for forming copper pad redistribution according to claim 1  further comprising the step of forming said first plurality of copper bond pads in an inter-metal-dielectric layer formed on said top surface of the semiconductor substrate.
    3. A method, for forming copper pad redistribution according to claim 1  further comprising the step of forming said passivation layer in two separate layers of a first passivation layer on top of said first plurality of copper bond pad and a second passivation layer on top of said first passivation layer.
    4. A method for forming copper pad redistribution according to claim 3 , wherein said first passivation layer is silicon oxide and said second passivation layer is silicon nitride.
    5. A method for forming copper pad redistribution according to claim 1  further comprising the step of etching said openings in said passivation layer for said first plurality of redistribution vias to a depth larger than said openings etched for said second plurality of redistribution lines.
    6. A method for forming copper pad redistribution according to claim 1  further comprising the step of stopping said etching of openings for said second plurality of redistribution lines in said passivation layer.
    7. A method for forming copper pad redistribution according to claim 1  further comprising the step of stopping said etching of openings for said second plurality of redistribution lines by polymer sidewall passivation in said openings.
    8. A method for forming copper pad redistribution according to claim 1  further comprising the step of stopping said etching of openings for said second plurality of lines in a sub-layer of silicon oxide in said passivation layer.
    9. A method for forming copper pad redistribution according to claim 1  further comprising the step of planarizing said semiconductor substrate after said copper deposition process by chemical mechanical polishing.
    10. A method for forming copper pad redistribution according to claim 1  further comprising the step of depositing copper into said openings for said first plurality of redistribution pads, said first plurality of redistribution vias and said second plurality of redistribution lines by an electroplating or an electroless plating technique.
    11. A method for forming copper pad redistribution according to claim 1  further comprising the step of depositing a sealing layer of an insulating material on top of said semiconductor substrate over said first plurality of redistribution pads and said second plurality of redistribution lines.
    12. A method for forming copper pad redistribution according to claim 11 , wherein said sealing layer is deposited of silicon nitride.
    Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US09/637,223 US6551856B1 (en) | 2000-08-11 | 2000-08-11 | Method for forming copper pad redistribution and device formed | 
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US09/637,223 US6551856B1 (en) | 2000-08-11 | 2000-08-11 | Method for forming copper pad redistribution and device formed | 
Publications (1)
| Publication Number | Publication Date | 
|---|---|
| US6551856B1 true US6551856B1 (en) | 2003-04-22 | 
Family
ID=24555053
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| US09/637,223 Expired - Lifetime US6551856B1 (en) | 2000-08-11 | 2000-08-11 | Method for forming copper pad redistribution and device formed | 
Country Status (1)
| Country | Link | 
|---|---|
| US (1) | US6551856B1 (en) | 
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US20030051218A1 (en) * | 2001-09-07 | 2003-03-13 | Fujitsu Limited | Method for designing wiring connecting section and semiconductor device | 
| US20030167632A1 (en) * | 2002-03-06 | 2003-09-11 | Stmicroelectronics, Inc. | System and method for providing a redistribution metal layer in an integrated circuit | 
| US20040099949A1 (en) * | 2002-02-10 | 2004-05-27 | Gyung-Su Cho | Semiconductor device and fabrication method thereof | 
| US20040147128A1 (en) * | 2003-01-29 | 2004-07-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming patterned features at a semiconductor wafer periphery to prevent metal peeling | 
| US20040266160A1 (en) * | 2003-06-26 | 2004-12-30 | Jui-Meng Jao | Parasitic capacitance-preventing dummy solder bump structure and method of making the same | 
| US20050048773A1 (en) * | 2003-08-27 | 2005-03-03 | Varughese Mathew | Semiconductor process and composition for forming a barrier material overlying copper | 
| US6977213B1 (en) | 2004-08-27 | 2005-12-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | IC chip solder bump structure and method of manufacturing same | 
| US20060022350A1 (en) * | 2004-07-29 | 2006-02-02 | Watkins Charles M | Integrated circuit and methods of redistributing bondpad locations | 
| US20060040491A1 (en) * | 2004-08-21 | 2006-02-23 | Lim Yeow K | Slot designs in wide metal lines | 
| US20070087566A1 (en) * | 2004-11-22 | 2007-04-19 | Freescale Semiconductor, Inc. | Controlled electroless plating | 
| CN1328790C (en) * | 2003-09-27 | 2007-07-25 | 联华电子股份有限公司 | A dummy solder bump structure and manufacturing method for avoiding generation of parasitic capacitance | 
| US20070200239A1 (en) * | 2006-02-27 | 2007-08-30 | Yi-Hsuan Su | Redistribution connecting structure of solder balls | 
| US20080014735A1 (en) * | 2006-07-07 | 2008-01-17 | Samsung Electronics Co., Ltd. | Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same | 
| US20080079157A1 (en) * | 2006-10-02 | 2008-04-03 | Nec Electronics Corporation | Electronic device and method of manufacturing the same | 
| US20080122086A1 (en) * | 2006-11-03 | 2008-05-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Solder bump structure and method of manufacturing same | 
| US20080191345A1 (en) * | 2007-02-09 | 2008-08-14 | Guichea Na | Integrated circuit package system with bump over via | 
| EP2075825A1 (en) * | 2007-12-28 | 2009-07-01 | Interuniversitaire Microelectronica Centrum vzw ( IMEC) | semiconductor device comprising conductive structures and a planarized surface | 
| CN100539098C (en) * | 2006-12-08 | 2009-09-09 | 日月光半导体制造股份有限公司 | Redistribution connection structure for solder balls | 
| US20090236637A1 (en) * | 2008-03-21 | 2009-09-24 | Ching-Chung Ko | Power and ground routing of integrated circuit devices with improved ir drop and chip performance | 
| US8242012B2 (en) | 2010-07-28 | 2012-08-14 | International Business Machines Corporation | Integrated circuit structure incorporating a conductor layer with both top surface and sidewall passivation and a method of forming the integrated circuit structure | 
| WO2013062590A1 (en) * | 2011-10-28 | 2013-05-02 | Intel Corporation | 3d interconnect structure comprising through-silicon vias combined with fine pitch backside metal redistribution lines fabricated using a dual damascene type approach | 
| WO2013062593A1 (en) * | 2011-10-28 | 2013-05-02 | Intel Corporation | 3d interconnect structure comprising fine pitch single damascene backside metal redistribution lines combined with through-silicon vias | 
| US8466062B2 (en) | 2011-11-02 | 2013-06-18 | Globalfoundries Singapore Pte Ltd | TSV backside processing using copper damascene interconnect technology | 
| US9379059B2 (en) | 2008-03-21 | 2016-06-28 | Mediatek Inc. | Power and ground routing of integrated circuit devices with improved IR drop and chip performance | 
| US9553058B1 (en) * | 2015-09-15 | 2017-01-24 | Globalfoundries Inc. | Wafer backside redistribution layer warpage control | 
| CN108155244A (en) * | 2017-12-25 | 2018-06-12 | 深圳市晶特智造科技有限公司 | Groove-shaped gate associated transistor and preparation method thereof | 
| CN110854024A (en) * | 2018-08-20 | 2020-02-28 | 三星电子株式会社 | Semiconductor device and method of manufacturing the same | 
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US6000130A (en) * | 1996-08-28 | 1999-12-14 | International Business Machines Corporation | Process for making planar redistribution structure | 
| US6033984A (en) * | 1997-12-23 | 2000-03-07 | Siemens Aktiengesellschaft | Dual damascene with bond pads | 
| US6479900B1 (en) * | 1998-12-22 | 2002-11-12 | Sanyo Electric Co., Ltd. | Semiconductor device and method of manufacturing the same | 
- 
        2000
        
- 2000-08-11 US US09/637,223 patent/US6551856B1/en not_active Expired - Lifetime
 
 
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US6000130A (en) * | 1996-08-28 | 1999-12-14 | International Business Machines Corporation | Process for making planar redistribution structure | 
| US6033984A (en) * | 1997-12-23 | 2000-03-07 | Siemens Aktiengesellschaft | Dual damascene with bond pads | 
| US6479900B1 (en) * | 1998-12-22 | 2002-11-12 | Sanyo Electric Co., Ltd. | Semiconductor device and method of manufacturing the same | 
Cited By (74)
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US7005746B2 (en) * | 2001-09-07 | 2006-02-28 | Fujitsu Limited | Method for designing wiring connecting section and semiconductor device | 
| US20060097401A1 (en) * | 2001-09-07 | 2006-05-11 | Fujitsu Limited | Method for designing wiring connecting section and semiconductor device | 
| US7299443B2 (en) | 2001-09-07 | 2007-11-20 | Fujitsu Limited | Method for designing wiring connecting section and semiconductor device | 
| US20030051218A1 (en) * | 2001-09-07 | 2003-03-13 | Fujitsu Limited | Method for designing wiring connecting section and semiconductor device | 
| US20040099949A1 (en) * | 2002-02-10 | 2004-05-27 | Gyung-Su Cho | Semiconductor device and fabrication method thereof | 
| US20060234423A1 (en) * | 2002-03-06 | 2006-10-19 | Stmicroelectronics, Inc. | System for providing a redistribution metal layer in an integrated circuit | 
| US7786582B2 (en) | 2002-03-06 | 2010-08-31 | Stmicroelectronics, Inc. | System for providing a redistribution metal layer in an integrated circuit | 
| US8163645B2 (en) | 2002-03-06 | 2012-04-24 | Stmicroelectronics, Inc. | Method for providing a redistribution metal layer in an integrated circuit | 
| US7096581B2 (en) * | 2002-03-06 | 2006-08-29 | Stmicroelectronics, Inc. | Method for providing a redistribution metal layer in an integrated circuit | 
| US20030167632A1 (en) * | 2002-03-06 | 2003-09-11 | Stmicroelectronics, Inc. | System and method for providing a redistribution metal layer in an integrated circuit | 
| US20100297841A1 (en) * | 2002-03-06 | 2010-11-25 | Thomas Danielle A | Method for providing a redistribution metal layer in an integrated circuit | 
| US20050136645A1 (en) * | 2002-10-02 | 2005-06-23 | Anam Semiconductor Inc. | Semiconductor device and fabrication method thereof | 
| US7163884B2 (en) | 2002-10-02 | 2007-01-16 | Dongbu Electronics Co., Ltd. | Semiconductor device and fabrication method thereof | 
| US6833323B2 (en) * | 2003-01-29 | 2004-12-21 | Taiwan Semiconductor Manufacturing Co., Ltd | Method for forming patterned features at a semiconductor wafer periphery to prevent metal peeling | 
| US20040147128A1 (en) * | 2003-01-29 | 2004-07-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming patterned features at a semiconductor wafer periphery to prevent metal peeling | 
| US20040266160A1 (en) * | 2003-06-26 | 2004-12-30 | Jui-Meng Jao | Parasitic capacitance-preventing dummy solder bump structure and method of making the same | 
| US7026234B2 (en) * | 2003-06-26 | 2006-04-11 | United Microelectronics Corp. | Parasitic capacitance-preventing dummy solder bump structure and method of making the same | 
| US20050048773A1 (en) * | 2003-08-27 | 2005-03-03 | Varughese Mathew | Semiconductor process and composition for forming a barrier material overlying copper | 
| US6924232B2 (en) * | 2003-08-27 | 2005-08-02 | Freescale Semiconductor, Inc. | Semiconductor process and composition for forming a barrier material overlying copper | 
| CN1328790C (en) * | 2003-09-27 | 2007-07-25 | 联华电子股份有限公司 | A dummy solder bump structure and manufacturing method for avoiding generation of parasitic capacitance | 
| US20060223298A1 (en) * | 2004-07-29 | 2006-10-05 | Micron Technology, Inc. | Integrated circuit and methods of redistributing bondpad locations | 
| US20060214309A1 (en) * | 2004-07-29 | 2006-09-28 | Watkins Charles M | Integrated circuit and methods of redistributing bondpad locations | 
| US7795737B2 (en) | 2004-07-29 | 2010-09-14 | Micron Technology, Inc. | Methods of redistributing bondpad locations on an integrated circuit | 
| US20060022350A1 (en) * | 2004-07-29 | 2006-02-02 | Watkins Charles M | Integrated circuit and methods of redistributing bondpad locations | 
| US20070194458A1 (en) * | 2004-07-29 | 2007-08-23 | Watkins Charles M | Methods of redistributing bondpad locations on an integrated circuit | 
| US7262121B2 (en) | 2004-07-29 | 2007-08-28 | Micron Technology, Inc. | Integrated circuit and methods of redistributing bondpad locations | 
| US7439169B2 (en) | 2004-07-29 | 2008-10-21 | Micron Technology, Inc. | Integrated circuit and methods of redistributing bondpad locations | 
| US20060040491A1 (en) * | 2004-08-21 | 2006-02-23 | Lim Yeow K | Slot designs in wide metal lines | 
| US9318378B2 (en) * | 2004-08-21 | 2016-04-19 | Globalfoundries Singapore Pte. Ltd. | Slot designs in wide metal lines | 
| US20060199300A1 (en) * | 2004-08-27 | 2006-09-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | IC chip solder bump structure and method of manufacturing same | 
| US6977213B1 (en) | 2004-08-27 | 2005-12-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | IC chip solder bump structure and method of manufacturing same | 
| US7884471B2 (en) | 2004-08-27 | 2011-02-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Solder bump and related intermediate structure having primary and secondary portions and method of manufacturing same | 
| US20070087566A1 (en) * | 2004-11-22 | 2007-04-19 | Freescale Semiconductor, Inc. | Controlled electroless plating | 
| US7717060B2 (en) | 2004-11-22 | 2010-05-18 | Freescale Semiconductor, Inc. | Controlled electroless plating | 
| US20070200239A1 (en) * | 2006-02-27 | 2007-08-30 | Yi-Hsuan Su | Redistribution connecting structure of solder balls | 
| US7701056B2 (en) * | 2006-02-27 | 2010-04-20 | Advanced Semiconductor Engineering, Inc. | Redistribution connecting structure of solder balls | 
| US20090206464A1 (en) * | 2006-07-07 | 2009-08-20 | Samsung Electronics Co., Ltd. | Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same | 
| US7544538B2 (en) * | 2006-07-07 | 2009-06-09 | Samsung Electronic Co., Ltd. | Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same | 
| US20080014735A1 (en) * | 2006-07-07 | 2008-01-17 | Samsung Electronics Co., Ltd. | Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same | 
| US8039937B2 (en) | 2006-07-07 | 2011-10-18 | Samsung Electronics Co., Ltd. | Method of forming semiconductor chips, the semiconductor chips so formed and chip-stack package having the same | 
| US8685796B2 (en) * | 2006-10-02 | 2014-04-01 | Renesas Electronics Corporation | Electronic device and method of manufacturing the same | 
| US20080079157A1 (en) * | 2006-10-02 | 2008-04-03 | Nec Electronics Corporation | Electronic device and method of manufacturing the same | 
| US7659632B2 (en) * | 2006-11-03 | 2010-02-09 | Taiwan Seminconductor Manufacturing Co., Ltd. | Solder bump structure and method of manufacturing same | 
| US20080122086A1 (en) * | 2006-11-03 | 2008-05-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Solder bump structure and method of manufacturing same | 
| CN100539098C (en) * | 2006-12-08 | 2009-09-09 | 日月光半导体制造股份有限公司 | Redistribution connection structure for solder balls | 
| US8592989B2 (en) | 2007-02-09 | 2013-11-26 | Stats Chippac Ltd. | Integrated circuit package system with bump over via | 
| US20080191345A1 (en) * | 2007-02-09 | 2008-08-14 | Guichea Na | Integrated circuit package system with bump over via | 
| EP2075825A1 (en) * | 2007-12-28 | 2009-07-01 | Interuniversitaire Microelectronica Centrum vzw ( IMEC) | semiconductor device comprising conductive structures and a planarized surface | 
| TWI381483B (en) * | 2008-03-21 | 2013-01-01 | Mediatek Inc | Integrated circuit chips | 
| US20090236637A1 (en) * | 2008-03-21 | 2009-09-24 | Ching-Chung Ko | Power and ground routing of integrated circuit devices with improved ir drop and chip performance | 
| US20110001168A1 (en) * | 2008-03-21 | 2011-01-06 | Ching-Chung Ko | Power and ground routing of integrated circuit devices with improved ir drop and chip performance | 
| US10002833B2 (en) | 2008-03-21 | 2018-06-19 | Mediatek Inc. | Power and ground routing of integrated circuit devices with improved IR drop and chip performance | 
| US9698102B2 (en) | 2008-03-21 | 2017-07-04 | Mediatek Inc. | Power and ground routing of integrated circuit devices with improved IR drop and chip performance | 
| US9379059B2 (en) | 2008-03-21 | 2016-06-28 | Mediatek Inc. | Power and ground routing of integrated circuit devices with improved IR drop and chip performance | 
| US8120067B1 (en) | 2008-03-21 | 2012-02-21 | Mediatek Inc. | Power and ground routing of integrated circuit devices with improved IR drop and chip performance | 
| US8072004B2 (en) | 2008-03-21 | 2011-12-06 | Mediatek Inc. | Power and ground routing of integrated circuit devices with improved IR drop and chip performance | 
| US7821038B2 (en) * | 2008-03-21 | 2010-10-26 | Mediatek Inc. | Power and ground routing of integrated circuit devices with improved IR drop and chip performance | 
| US8242012B2 (en) | 2010-07-28 | 2012-08-14 | International Business Machines Corporation | Integrated circuit structure incorporating a conductor layer with both top surface and sidewall passivation and a method of forming the integrated circuit structure | 
| US9142510B2 (en) | 2011-10-28 | 2015-09-22 | Intel Corporation | 3D interconnect structure comprising through-silicon vias combined with fine pitch backside metal redistribution lines fabricated using a dual damascene type approach | 
| CN103890940B (en) * | 2011-10-28 | 2017-03-01 | 英特尔公司 | 3D interconnect structure including through-silicon vias in combination with fine-pitch backside metal redistribution lines fabricated using dual damascene-type scheme | 
| CN103890940A (en) * | 2011-10-28 | 2014-06-25 | 英特尔公司 | 3D interconnect structure including through-silicon vias combined with fine-pitch backside metal redistribution lines fabricated using a dual damascene approach | 
| KR101620767B1 (en) * | 2011-10-28 | 2016-05-12 | 인텔 코포레이션 | 3d interconnect structure comprising fine pitch single damascene backside metal redistribution lines combined with through-silicon vias | 
| WO2013062590A1 (en) * | 2011-10-28 | 2013-05-02 | Intel Corporation | 3d interconnect structure comprising through-silicon vias combined with fine pitch backside metal redistribution lines fabricated using a dual damascene type approach | 
| US9449913B2 (en) | 2011-10-28 | 2016-09-20 | Intel Corporation | 3D interconnect structure comprising fine pitch single damascene backside metal redistribution lines combined with through-silicon vias | 
| TWI550808B (en) * | 2011-10-28 | 2016-09-21 | 英特爾公司 | 3d interconnect structure, 3d package, and method of forming a dual damascene 3d interconnect structure | 
| US9530740B2 (en) | 2011-10-28 | 2016-12-27 | Intel Corporation | 3D interconnect structure comprising through-silicon vias combined with fine pitch backside metal redistribution lines fabricated using a dual damascene type approach | 
| WO2013062593A1 (en) * | 2011-10-28 | 2013-05-02 | Intel Corporation | 3d interconnect structure comprising fine pitch single damascene backside metal redistribution lines combined with through-silicon vias | 
| CN103890939B (en) * | 2011-10-28 | 2017-03-01 | 英特尔公司 | 3D interconnect structure including fine pitch single damascene backside metal redistribution lines in combination with through silicon vias | 
| CN103890939A (en) * | 2011-10-28 | 2014-06-25 | 英特尔公司 | 3D interconnect structure including fine-pitch single damascene backside metal redistribution lines combined with through-silicon vias | 
| US8466062B2 (en) | 2011-11-02 | 2013-06-18 | Globalfoundries Singapore Pte Ltd | TSV backside processing using copper damascene interconnect technology | 
| US9553058B1 (en) * | 2015-09-15 | 2017-01-24 | Globalfoundries Inc. | Wafer backside redistribution layer warpage control | 
| CN108155244A (en) * | 2017-12-25 | 2018-06-12 | 深圳市晶特智造科技有限公司 | Groove-shaped gate associated transistor and preparation method thereof | 
| CN108155244B (en) * | 2017-12-25 | 2021-10-01 | 深圳市晶特智造科技有限公司 | Trench-type tie-gate transistor and method of making the same | 
| CN110854024A (en) * | 2018-08-20 | 2020-02-28 | 三星电子株式会社 | Semiconductor device and method of manufacturing the same | 
Similar Documents
| Publication | Publication Date | Title | 
|---|---|---|
| US6551856B1 (en) | Method for forming copper pad redistribution and device formed | |
| US7592703B2 (en) | RF and MMIC stackable micro-modules | |
| US6727590B2 (en) | Semiconductor device with internal bonding pad | |
| US8456008B2 (en) | Structure and process for the formation of TSVs | |
| CN100385642C (en) | Pad redistribution layer and method for fabricating copper pad redistribution layer | |
| US8872310B2 (en) | Semiconductor device structures and electronic devices including hybrid conductive vias, and methods of fabrication | |
| US6191023B1 (en) | Method of improving copper pad adhesion | |
| US6977435B2 (en) | Thick metal layer integrated process flow to improve power delivery and mechanical buffering | |
| JP4017173B2 (en) | Integration of bonding pads and high performance copper inductors | |
| US8264077B2 (en) | Backside metal of redistribution line with silicide layer on through-silicon via of semiconductor chips | |
| US8461045B2 (en) | Bond pad connection to redistribution lines having tapered profiles | |
| JP3954974B2 (en) | Semiconductor device | |
| US7956442B2 (en) | Backside connection to TSVs having redistribution lines | |
| KR101319701B1 (en) | Wafer Backside Interconnect Structure Connected To TSVs | |
| KR101209390B1 (en) | Fabrication of thick ILD layers using spray coating or lamination for integrated thick metal process flow at C4 wafer level | |
| TW201923866A (en) | Package and method of manufacturing the same | |
| US10833034B2 (en) | Semiconductor package | |
| US20170092623A1 (en) | Package Structure and Method for Forming Same | |
| JP2009027174A (en) | System in package, and method of manufacturing the same | |
| JP2012054588A (en) | Aluminium pad power bus for integrated circuit device using copper technology interconnection structure, and signal routing technology | |
| JP2012507163A (en) | Semiconductor device including reduced stress structure for metal pillars | |
| US11545450B2 (en) | Interlocked redistribution layer interface for flip-chip integrated circuits | |
| US20020068385A1 (en) | Method for forming anchored bond pads in semiconductor devices and devices formed | |
| US20250022819A1 (en) | Methods for forming conductive structures between two substrates | 
Legal Events
| Date | Code | Title | Description | 
|---|---|---|---|
| AS | Assignment | 
             Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING CO. LTD., TAIWA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, TZE-LIANG;REEL/FRAME:011014/0899 Effective date: 20000714  | 
        |
| STCF | Information on status: patent grant | 
             Free format text: PATENTED CASE  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 4  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 8  | 
        |
| FPAY | Fee payment | 
             Year of fee payment: 12  |