US6471160B2 - Method for deploying a parachute on a drone - Google Patents

Method for deploying a parachute on a drone Download PDF

Info

Publication number
US6471160B2
US6471160B2 US09/865,106 US86510601A US6471160B2 US 6471160 B2 US6471160 B2 US 6471160B2 US 86510601 A US86510601 A US 86510601A US 6471160 B2 US6471160 B2 US 6471160B2
Authority
US
United States
Prior art keywords
parachute
error
deployment
signal
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/865,106
Other languages
English (en)
Other versions
US20010048050A1 (en
Inventor
Wolfram Grieser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Helicopters Deutschland GmbH
Original Assignee
Eurocopter Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eurocopter Deutschland GmbH filed Critical Eurocopter Deutschland GmbH
Assigned to EUROCOPTER DEUTSCHLAND GMBH reassignment EUROCOPTER DEUTSCHLAND GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRIESER, WOLFRAM
Publication of US20010048050A1 publication Critical patent/US20010048050A1/en
Application granted granted Critical
Publication of US6471160B2 publication Critical patent/US6471160B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/80Parachutes in association with aircraft, e.g. for braking thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • B64U70/83Vertical take-off or landing, e.g. using rockets using parachutes, balloons or the like

Definitions

  • the invention relates to a method of deploying a parachute on a drone air vehicle so as to avoid an uncontrolled crash of the drone.
  • a drone is an unmanned airborne vehicle for civil or military applications, for example for area reconnaissance.
  • the drone is generally programmed or controlled to land according to plan in a desired location, once its mission is fulfilled.
  • a control device of the drone activates a parachute system according to a program, so that the parachute system ejects and activates a parachute connected to the drone.
  • the drone lands in the target area by means of the parachute.
  • the drone can trigger the parachute system by means of a flight control computer and its program, integrated in the control device.
  • the control system of a drone at least also comprises such subsystems as the hydraulic system, the electrical system, the power supply system, the propulsion system and the control and actuating drive system.
  • these subsystems are error-critical subsystems, whereby an individual failure of a subassembly from one of these systems frequently leads to the loss of the drone. In the case of failure, such a drone cannot make an emergency landing. It crashes or self-destructs. Such a case of failure can endanger the immediate surroundings in the area of the crash or destruction of the drone.
  • the operator of the drone will desire far-reaching protection of the drone so as to be able to reuse it after repairing affected subassemblies.
  • signals and/or data are supplied from at least flight-relevant subsystems such as the power supply system, the propulsion system and the actuating drive system to an error detection device via signal connections and/or data connections.
  • the error detection device detects errors or error combinations according to a program and then, in response to detecting such an error or error combination, supplies a signal to the parachute system so that the parachute system forms a control signal which causes ejection of the parachute by the ejection mechanism.
  • the drone will automatically and self-sufficiently be deactivated and will be carried safely down to the ground or water on the deployed parachute.
  • a critical error condition which would likely lead to lack of control and/or crashing of the drone
  • the drone will automatically and self-sufficiently be deactivated and will be carried safely down to the ground or water on the deployed parachute.
  • the invention provides the advantage, despite the use of single systems, i.e. without redundantly duplicating flight-relevant systems, of nevertheless providing a reduced risk of losing the drone.
  • the costs of operating the drone can be reduced as it can carry an increased payload and/or has a reduced fuel requirement.
  • FIGURE is a schematic block diagram of a control arrangement for a drone according to the invention, without redundant duplication of subsystems thereof.
  • the control arrangement 1 includes a flight control computer 10 of a drone air vehicle.
  • the flight control computer 10 is connected to subordinate subsystems 100 of the drone, which are controlled or regulated by the flight control computer 10 .
  • the flight control computer 10 receives information from failure-relevant subsystems 100 , such as for example a power supply system 12 via the signal and data connection 121 , a propulsion system 13 via the signal and data connection 131 , and an actuating drive system 14 via the signal and data connection 141 .
  • the power supply system 12 , the propulsion system 13 , and the actuating drive system 14 may each individually be embodied according to any known conventional teachings for such systems in air vehicles and particularly in drones.
  • the propulsion system 13 may comprise any known jet engine, turbine engine, or a combustion engine coupled to a drive propeller, or the like.
  • the actuating drive system 14 may comprise any known electrical, pneumatic, hydraulic, or hybrid actuators and actuator linkages or transmission arrangements for controlling the relevant control surfaces of the drone.
  • the power supply system 12 may comprise any known system for supplying electrical, pneumatic and/or hydraulic power.
  • the signal and data connections 121 , 131 , 141 may be hardwired (e.g. electrical conductors or optical fibers) or in a wireless configuration (e.g. infrared or radio signal receivers and transmitters).
  • the signal and data connections 121 , 131 , 141 transmit actual signal parameters or operating state data of the subsystems 100 to an error detection or recognition device 11 which is preferably integrated in the flight control computer 10 .
  • the signals or data provided from the subsystems 100 may comprise any information that is relevant and/or indicative of the proper operation of the associated subsystem, e.g. the power available from the power supply system, the operating temperature or r.p.m. of the propulsion system, the actuator position of respective actuators of the actuator drive system.
  • the error detection device 11 functions according to any known error detection processes.
  • the incoming data or signals from the subsystems 100 may be compared to pre-defined error conditions stored in a lookup table, or may be compared to pre-defined normal operating parameter values or ranges, or may be analyzed by processing through appropriate functions and comparison with threshold values or the like.
  • the error detection device 11 can be implemented either in software for the flight control computer 10 or in hardware.
  • the error detection or recognition device 11 comprises or contains recognition information for at least one error or error combination which has been defined according to the responsible computing program, whereby such error or error combination will lead to activation of the parachute system 15 if such an error has been detected by the program.
  • the error detection device 11 has been pre-programmed to recognize certain error conditions or combinations of error conditions which are critical and would prevent the proper further operation of the drone on its mission, based on the signals received from the subsystems 12 , 13 and 14 via the signal lines 121 , 131 , and 141 . Some conditions may also be recognized as sub-critical, but as becoming critical if some other related condition arises in combination.
  • the error detection device 11 detects whether one or several subassemblies of the subsystems 100 are error-critical, i.e. have suffered an erroneous operation, are not responding or operating properly, or have partially or totally failed. If a detected error of at least one respective subassembly of at least one respective subsystem 100 , or a combination of detected errors of several subassemblies or subsystems would be expected to lead to failure of the drone, then the error detection device 11 supplies a respective deployment signal to the parachute system 15 .
  • the parachute system 15 inter alia comprises an ejection mechanism 150 with a parachute 151 , which may be embodied in any known manner.
  • the parachute system 15 generates a control signal for one or several actuators of the ejection mechanism 150 which ejects the parachute 151 from the drone so that the parachute can unfold and open its canopy.
  • an integrated airbag can be deployed with the parachute to cushion the landing shock of the drone or prevent the drone from sinking until it is subsequently recovered.
  • the flight control computer 10 can provide a self-destruct signal based on pre-programmed criteria (e.g. phase of the mission, actual location of the drone, etc.) or based on a remotely provided self-destruct command, in the event of the error detection device 11 detecting a critical error or error combination as discussed above.
  • the self-destruct signal will block or override the parachute deployment signal and will instead cause the drone to self-destruct in any known manner.
  • the ability to eject the parachute 151 by the control device 1 of the drone in case of failure of any subsystem makes it possible in an advantageous way to do without duplication or redundancy of the control device 1 or of the relevant subsystems 100 , while still allowing a safe recovery of the drone.
  • the drone can be produced more economically, while at the same time the possibility of reuse after failure remains. This is a decisive advantage compared to drones previously used by operators.
US09/865,106 2000-05-27 2001-05-24 Method for deploying a parachute on a drone Expired - Fee Related US6471160B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10026469 2000-05-27
DE10026469.7 2000-05-27
DE10026469A DE10026469C1 (de) 2000-05-27 2000-05-27 Verfahren zur Ausbringung eines Fallschirms an einer Drohne

Publications (2)

Publication Number Publication Date
US20010048050A1 US20010048050A1 (en) 2001-12-06
US6471160B2 true US6471160B2 (en) 2002-10-29

Family

ID=7643887

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/865,106 Expired - Fee Related US6471160B2 (en) 2000-05-27 2001-05-24 Method for deploying a parachute on a drone

Country Status (4)

Country Link
US (1) US6471160B2 (de)
DE (1) DE10026469C1 (de)
FR (1) FR2809374B1 (de)
IL (1) IL143365A (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685140B2 (en) * 2001-09-27 2004-02-03 Ernest A. Carroll Miniature, unmanned aircraft with automatically deployed parachute
US20050006525A1 (en) * 2003-06-20 2005-01-13 Byers David W. Unmanned aerial vehicle for logistical delivery
US20060186272A1 (en) * 2005-02-22 2006-08-24 Roseman Michael D Radio controlled parachute pack
US20080078865A1 (en) * 2006-09-21 2008-04-03 Honeywell International Inc. Unmanned Sensor Placement In A Cluttered Terrain
US7467762B1 (en) * 2005-08-08 2008-12-23 John Charles Parsons Advanced unmanned aerial vehicle system
US20100012769A1 (en) * 2006-07-27 2010-01-21 Alber Mark R Aerodynamic integration of a payload container with a vertical take-off and landing aircraft
US20100237197A1 (en) * 2005-07-15 2010-09-23 Rosenfield Gary C Rocket ejection delay apparatus and/or method
US8006936B1 (en) 2006-05-31 2011-08-30 Farr Iii Warren W Parachute deployment control
WO2011131733A2 (fr) 2010-04-22 2011-10-27 Desaulniers Jean-Marc Joseph Engin gyropendulaire à propulsion compensatoire et collimation de gradient fluidique, multi-milieux, multimodal, à décollage et atterrissage vertical
US8124921B2 (en) * 2008-04-25 2012-02-28 Raytheon Company Methods and apparatus for guidance of ordnance delivery device
WO2013060693A2 (fr) 2011-10-27 2013-05-02 Desaulniers Jean-Marc Joseph Exosquelette geometrique actif a carenage annulaire pseudo-rhomboedrique pour engin gyropendulaire
WO2015021159A1 (en) * 2013-08-09 2015-02-12 Trope Winston System and method for implementing an airborne telecommunication network using an unmanned aerial vehicle
US8979023B1 (en) * 2014-02-27 2015-03-17 SZ DJI Technology Co., Ltd Impact protection apparatus
US9448040B2 (en) * 2010-03-22 2016-09-20 Omnitek Partners Llc Remotely guided gun-fired and mortar rounds
US20170101179A1 (en) * 2009-09-11 2017-04-13 Aerovironment, Inc. Ad hoc dynamic data link repeater
WO2017066662A1 (en) * 2015-10-14 2017-04-20 Flirtey Holdings, Inc. Parachute control system for an unmanned aerial vehicle
US10059459B2 (en) 2015-05-28 2018-08-28 Kespry Inc. Unmanned aerial vehicle recovery system
WO2018231842A1 (en) * 2017-06-13 2018-12-20 PreNav, Inc. Active tethers for controlling uav flight volumes, and associated methods and systems
US10329029B2 (en) 2016-06-12 2019-06-25 1twoZ, LLC Falling drone warning apparatuses and methods
US10416668B2 (en) 2015-03-03 2019-09-17 PreNav, Inc. Scanning environments and tracking unmanned aerial vehicles
US10618655B2 (en) 2015-10-14 2020-04-14 Flirtey Holdings, Inc. Package delivery mechanism in an unmanned aerial vehicle
WO2021170727A1 (en) 2020-02-28 2021-09-02 Sony Group Corporation Unmanned aerial vehicle, a computer program and a method for reducing a damage to an environment as consequence of a crash of an unmanned aerial vehicle
US11142325B2 (en) * 2016-07-21 2021-10-12 Drone Rescue Systems Gmbh Device and method for ejecting a parachute
WO2022237971A1 (de) * 2021-05-11 2022-11-17 Pegasus Gmbh Gleitschirmsteuerung
US11840333B2 (en) 2017-06-02 2023-12-12 Flirtey Holdings, Inc. Package delivery mechanism

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020534A1 (de) 2008-04-24 2009-10-29 Rheinmetall Defence Electronics Gmbh Bemanntes oder unbemanntes Fluggerät, insbesondere eine Drohne und Verfahren zur Rettung eines bemannten oder unbemannten Fluggeräts, insbesondere einer Drohne
EP2840022B1 (de) 2013-08-21 2016-04-27 Gatewing NV Unbemanntes Flugzeug mit Sicherheitssystem
FR3012423B1 (fr) * 2013-10-25 2018-01-26 Roque Canales Dispositif pour securiser les drones civils en vol, coupant la propulsion et expulsant un parachute si le drone sort de son domaine de vol normal ou si le telepilote demande l'arret d'urgence du vol
CN103770945A (zh) * 2014-01-23 2014-05-07 中国人民解放军总参谋部第六十研究所 一种无人机自动抛伞控制方法
CN104507799B (zh) * 2014-04-28 2016-05-25 深圳市大疆创新科技有限公司 一种飞行器的保护控制方法、装置及飞行器
US9613539B1 (en) * 2014-08-19 2017-04-04 Amazon Technologies, Inc. Damage avoidance system for unmanned aerial vehicle
DE102014217196A1 (de) 2014-08-28 2016-03-03 Meteomatics Gmbh Sicherheitsvorrichtung und Sicherheitsverfahren für ein Fluggerät, und Fluggerät mit der Sicherheitsvorrichtung
FI127355B (fi) * 2015-03-12 2018-04-13 Skycat Oy Menetelmä kauko-ohjatun lentävän laitteen toimielimen ohjaussignaalin korvaamiseksi toisella signaalilla
WO2016182750A1 (en) * 2015-04-28 2016-11-17 SkyFallX, LLC Autonomous safety and recovery system for unmanned aerial vehicles
US20180373243A1 (en) * 2016-01-01 2018-12-27 USDrobotics Inc. System and Method for Safe Utilization of Unmanned Automated Vehicles in Entertainment Venues
WO2018043284A1 (ja) * 2016-09-05 2018-03-08 シャープ株式会社 基地局装置、緊急警報通知システム及び緊急警報通知方法
FR3060530B1 (fr) * 2016-12-21 2021-04-23 Pixiel Dispositif d'ejection d'un parachute propulse par la rupture d'un recipient rempli de gaz sous pression et equipant un aeronef sans pilote
US9889941B1 (en) * 2017-02-03 2018-02-13 Indemnis, Inc. Inflatable deployment apparatus for descent-restraint system for aerial vehicles
IT201700054846A1 (it) * 2017-05-19 2018-11-19 Pozzo Tommaso Dal Drone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719685A (en) * 1950-01-25 1955-10-04 Glenn L Martin Co Parachute recovery system for aircraft
US3749333A (en) * 1972-06-15 1973-07-31 Lear Siegler Inc Dead reckoning back-up navigational system for a drone
US3863869A (en) * 1972-04-10 1975-02-04 Flight Capsule Inc VTOL capsule aircraft
US5620153A (en) * 1995-03-20 1997-04-15 Ginsberg; Harold M. Light aircraft with inflatable parachute wing propelled by a ducted propeller
US5826827A (en) * 1997-05-05 1998-10-27 Coyaso; Richard Air-chute safety system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273835A (en) * 1964-05-19 1966-09-20 Lloyd J Holt Self-ejecting emergency chute recovery system
US5890441A (en) * 1995-09-07 1999-04-06 Swinson Johnny Horizontal and vertical take off and landing unmanned aerial vehicle
DE19721363A1 (de) * 1997-05-22 1998-11-26 Uwe Schoenke Ferngesteuerter Hubschrauber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719685A (en) * 1950-01-25 1955-10-04 Glenn L Martin Co Parachute recovery system for aircraft
US3863869A (en) * 1972-04-10 1975-02-04 Flight Capsule Inc VTOL capsule aircraft
US3749333A (en) * 1972-06-15 1973-07-31 Lear Siegler Inc Dead reckoning back-up navigational system for a drone
US5620153A (en) * 1995-03-20 1997-04-15 Ginsberg; Harold M. Light aircraft with inflatable parachute wing propelled by a ducted propeller
US5826827A (en) * 1997-05-05 1998-10-27 Coyaso; Richard Air-chute safety system

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6685140B2 (en) * 2001-09-27 2004-02-03 Ernest A. Carroll Miniature, unmanned aircraft with automatically deployed parachute
US20050006525A1 (en) * 2003-06-20 2005-01-13 Byers David W. Unmanned aerial vehicle for logistical delivery
US7059566B2 (en) 2003-06-20 2006-06-13 The United States Of America As Represented By The Secretary Of The Navy Unmanned aerial vehicle for logistical delivery
US20060186272A1 (en) * 2005-02-22 2006-08-24 Roseman Michael D Radio controlled parachute pack
US20100237197A1 (en) * 2005-07-15 2010-09-23 Rosenfield Gary C Rocket ejection delay apparatus and/or method
US7918419B2 (en) * 2005-07-15 2011-04-05 Rcs Rocket Motor Components, Inc. Rocket ejection delay apparatus and/or method
US7467762B1 (en) * 2005-08-08 2008-12-23 John Charles Parsons Advanced unmanned aerial vehicle system
US8006936B1 (en) 2006-05-31 2011-08-30 Farr Iii Warren W Parachute deployment control
US8876057B2 (en) 2006-07-27 2014-11-04 Sikorsky Aircraft Corporation Aerodynamic integration of a payload container with a vertical take-off and landing aircraft
US20100012769A1 (en) * 2006-07-27 2010-01-21 Alber Mark R Aerodynamic integration of a payload container with a vertical take-off and landing aircraft
US20080078865A1 (en) * 2006-09-21 2008-04-03 Honeywell International Inc. Unmanned Sensor Placement In A Cluttered Terrain
US8124921B2 (en) * 2008-04-25 2012-02-28 Raytheon Company Methods and apparatus for guidance of ordnance delivery device
US10836483B2 (en) * 2009-09-11 2020-11-17 Aerovironment, Inc. Ad hoc dynamic data link repeater
US20170101179A1 (en) * 2009-09-11 2017-04-13 Aerovironment, Inc. Ad hoc dynamic data link repeater
US9448040B2 (en) * 2010-03-22 2016-09-20 Omnitek Partners Llc Remotely guided gun-fired and mortar rounds
WO2011131733A2 (fr) 2010-04-22 2011-10-27 Desaulniers Jean-Marc Joseph Engin gyropendulaire à propulsion compensatoire et collimation de gradient fluidique, multi-milieux, multimodal, à décollage et atterrissage vertical
WO2013060693A2 (fr) 2011-10-27 2013-05-02 Desaulniers Jean-Marc Joseph Exosquelette geometrique actif a carenage annulaire pseudo-rhomboedrique pour engin gyropendulaire
WO2015021159A1 (en) * 2013-08-09 2015-02-12 Trope Winston System and method for implementing an airborne telecommunication network using an unmanned aerial vehicle
US9493250B2 (en) 2014-02-27 2016-11-15 SZ DJI Technology Co., Ltd Impact protection apparatus
US8979023B1 (en) * 2014-02-27 2015-03-17 SZ DJI Technology Co., Ltd Impact protection apparatus
US9789969B2 (en) 2014-02-27 2017-10-17 SZ DJI Technology Co., Ltd. Impact protection apparatus
US9216818B1 (en) 2014-02-27 2015-12-22 SZ DJI Technology Co., Ltd Impact protection apparatus
US10416668B2 (en) 2015-03-03 2019-09-17 PreNav, Inc. Scanning environments and tracking unmanned aerial vehicles
US10671066B2 (en) 2015-03-03 2020-06-02 PreNav, Inc. Scanning environments and tracking unmanned aerial vehicles
US10059459B2 (en) 2015-05-28 2018-08-28 Kespry Inc. Unmanned aerial vehicle recovery system
US10618655B2 (en) 2015-10-14 2020-04-14 Flirtey Holdings, Inc. Package delivery mechanism in an unmanned aerial vehicle
US10112721B2 (en) * 2015-10-14 2018-10-30 Flirtey Holdings, Inc. Parachute deployment system for an unmanned aerial vehicle
US10703494B2 (en) 2015-10-14 2020-07-07 Flirtey Holdings, Inc. Parachute control system for an unmanned aerial vehicle
WO2017066662A1 (en) * 2015-10-14 2017-04-20 Flirtey Holdings, Inc. Parachute control system for an unmanned aerial vehicle
US11338923B2 (en) 2015-10-14 2022-05-24 Flirtey Holdings, Inc. Parachute control system for an unmanned aerial vehicle
US10329029B2 (en) 2016-06-12 2019-06-25 1twoZ, LLC Falling drone warning apparatuses and methods
US11142325B2 (en) * 2016-07-21 2021-10-12 Drone Rescue Systems Gmbh Device and method for ejecting a parachute
US11840333B2 (en) 2017-06-02 2023-12-12 Flirtey Holdings, Inc. Package delivery mechanism
WO2018231842A1 (en) * 2017-06-13 2018-12-20 PreNav, Inc. Active tethers for controlling uav flight volumes, and associated methods and systems
WO2021170727A1 (en) 2020-02-28 2021-09-02 Sony Group Corporation Unmanned aerial vehicle, a computer program and a method for reducing a damage to an environment as consequence of a crash of an unmanned aerial vehicle
WO2022237971A1 (de) * 2021-05-11 2022-11-17 Pegasus Gmbh Gleitschirmsteuerung

Also Published As

Publication number Publication date
IL143365A (en) 2004-12-15
FR2809374B1 (fr) 2007-02-09
IL143365A0 (en) 2002-04-21
FR2809374A1 (fr) 2001-11-30
DE10026469C1 (de) 2002-01-10
US20010048050A1 (en) 2001-12-06

Similar Documents

Publication Publication Date Title
US6471160B2 (en) Method for deploying a parachute on a drone
US10528046B2 (en) Aircraft autopilot system and method, and an aircraft
US7881833B2 (en) Airplane emergency navigational system
US20050216138A1 (en) Airplane emergency navigational system
US8061650B2 (en) Automatic control systems for aircraft auxiliary power units, and associated methods
CN113311765B (zh) 备份飞行控制系统以及备份飞行控制方法
US20150274293A1 (en) System for a Vehicle with Redundant Computers
US11548631B2 (en) Multi mode safety system for VTOL aircraft
US10940939B2 (en) Ground spoiler control architecture for aircraft
JP2009523658A (ja) 分散型飛行制御システムのバックアップ制御のための装置及び方法
EP3095705B1 (de) System und verfahren zum flugabschluss von luftfahrzeugen
US9828096B2 (en) Movable control surface ejection system
KR101700746B1 (ko) 비행체 고장안전 장치 및 방법
US20180354648A1 (en) System and method for aircraft incident mitigation
US7271713B2 (en) Digital automatic escape system
CN105283383A (zh) 飞机地面升力卸减飞行控制功能
EP3152747A1 (de) Sicherheitssystem für flugzeuge und kommunikationsverfahren mit dem sicherheitssystem
EP1971522B1 (de) Verfahren und system zur steuerung des drucks in einer flugzeugkabine
CN111959799A (zh) 一种民用支线客机的失速保护方法
US9776740B2 (en) Aircraft capable of passing from the aerial domain to the spatial domain and method for automatically adapting the configuration of same
US11834151B2 (en) System for configuring an aircraft in a single-pilot mode or a two-pilot mode
EP4227842A1 (de) Steuerungssystem mit isolierter benutzerrecheneinheit und steuerungsverfahren dafür
EP4306431A1 (de) Elektronische einheit für ein taktiles hinweisgerät
RU2152637C1 (ru) Система управления движением беспилотного летательного аппарата
WO2024013482A1 (en) An electronic unit for a tactile cueing apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: EUROCOPTER DEUTSCHLAND GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GRIESER, WOLFRAM;REEL/FRAME:011851/0871

Effective date: 20010523

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20141029