Connect public, paid and private patent data with Google Patents Public Datasets

Stent configurations

Download PDF

Info

Publication number
US6193744B1
US6193744B1 US09151053 US15105398A US6193744B1 US 6193744 B1 US6193744 B1 US 6193744B1 US 09151053 US09151053 US 09151053 US 15105398 A US15105398 A US 15105398A US 6193744 B1 US6193744 B1 US 6193744B1
Authority
US
Grant status
Grant
Patent type
Prior art keywords
annular
element
stent
boomerang
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US09151053
Inventor
Timothy G. J. Ehr
Graig L. Kveen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Boston Scientific Scimed Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • A61F2002/91541Adjacent bands are arranged out of phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • A61F2002/91558Adjacent bands being connected to each other connected peak to peak

Abstract

Improved stent configurations exhibiting limited recoil, resistance to compression and improved longitudinal flexibility are disclosed. The stent comprised of a plurality of annular elements aligned to form a cylindrical stent body. The annular elements are comprised of a plurality of open, generally boomerang-shaped segments interconnected top-to-bottom around each of the annular elements. Adjacent annular elements are interconnected by interconnecting element.

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to stents of improved configuration.

2. Brief Description of the Prior Art

Stents are radially expandable endoprosthesis which are typically intravascular implants capable of being implanted transluminally and enlarged radially after being introduced percutaneously. They have also been implanted in urinary tracts and bile ducts. They are used to reinforce body vessels and to prevent restenosis following angioplasty in the vascular system. They may be self-expanding or expanded by an internal radial force, such as when mounted on a balloon.

In the past, stents have been generally tubular but have been composed of many configurations and have been made of many materials, including metals and plastic. Ordinary metals such as stainless steel have been used as have shape memory metals such as Nitinol and the like. Stents have also been made of biodegradable plastic materials. Such stents have been formed from wire, tube stock, etc. Some stents are self-expanding and some are expanded by an interior radial force.

SUMMARY OF THE INVENTION

This invention provides new configurations of the segments making up stents which may be adapted to all of the various types of prior art stents described above and/or known previously in the art. There are numerous advantages to the new configurations. For example, the configurations of the invention limit recoil and add resistance to compression for an expanded stent, among other things. Also, the stents of this invention are longitudinally flexible.

The inventive stents comprise a plurality of annular elements aligned to form a cylindrical stent body. Each annular element, in turn, is comprised of a plurality of open, generally boomerang-shaped segments. The segments are interconnected top-to-bottom around each of the annular elements. Adjacent annular elements are interconnected by one or more interconnecting elements. Each interconnecting element extends from an end of a boomerang-shaped segment in one annular element to an end of a boomerang-shaped segment in an adjacent annular element. In a preferred embodiment an interconnecting element extends from each boomerang-shaped segment in an annular element to a neighboring boomerang-shaped segment in an adjacent annular element.

Interconnecting elements joining adjacent annular elements are desirably U-shaped or zig-zag shaped, although other curvilinear and rectilinear interconnecting elements may also be used.

Adjacent boomerang-shaped segments in an annular element may be interconnected via a link extending from the top of a segment to the bottom of an adjacent segment. The links may range in design from a short, straight connector to any of the shapes described below for the interconnecting elements.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a schematic showing boomerang shapes;

FIG. 2 is a flat plan view of an embodiment of a stent configuration of the invention in the unexpanded condition;

FIG. 3 is a longitudinal view of the stent of FIG. 2 in its normal tubular unexpanded condition;

FIG. 4 is a flat plan view of an embodiment of a stent configuration of the invention in the unexpanded condition;

FIG. 5 is a longitudinal view of the stent of FIG. 3 in its tubular, expanded condition;

FIG. 6 is an interconnecting element that may be used to join adjacent annular elements in another embodiment of the invention; and

FIG. 7 is a view of the stent of FIG. 3 after being bent.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

For the purposes of this invention, the term boomerang is used to describe the shape of certain stent segments and is used in the sense as described in the Websters New Collegiate Dictionary with reference to FIG. 1 hereof:

“boomerang 1: A bent or angular throwing club which can be thrown so as to return near the starting point.”

An embodiment of a generally cylindrical stent according to the invention is illustrated in the flat at 110 in FIG. 2 or FIG. 4. The stent may be formed of a metal tube such as nitinol, or stainless steel preferably, which has been etched or preferably laser cut to the configuration shown in the flat plan view of FIGS. 2 or 4. The configuration may be formed in flat sheet and rolled into a cylinder with a welded seam or the like joining together edges 112 and 114, or the configuration may be formed directly in a small tube such as a hypotube. A tubular form of the stent is shown generally at 210 in FIG. 3.

The configurations shown in FIGS. 2-4 are made up of a plurality of aligned annular elements 114 aligned as shown to provide a generally cylindrical stent body. Each annular element 114 is comprised of a series of generally boomerang shaped segments indicated at 118 (see darkened segment in the Figures for clarity) having an open structure joined top 120 to bottom 122 at segment junction 124. Segments 118 are arranged or networked as shown in the Figures with ends 126 of neighboring segments on adjacent annular elements joined by interconnecting elements 128. In FIGS. 2-4, interconnecting element 128 is a U-shaped element which is a partly open curve. Alternative interconnecting elements including zig-zag shaped element 228 as shown in FIG. 6, which may be used in place of U-shaped element 128 to join adjacent annular elements 114 together.

The configurations of FIGS. 2 and 4 are substantially similar to one another, differing principally in the presence of a dimple 130 in each bottom 122 of each segment 118 in the configuration of FIG. 4. Without being bound by a particular theory, it is believed that the presence of the dimple limits the extent to which the stent buckles out of the plane on expansion.

It is desirable that the boomerang-shaped segments be at least substantially symmetric about a midline 138 extending from the top 120 of the segment to the bottom 122 of the segment. Midline 138 is situated midway between ends 126 of the segment.

When the stent of FIG. 2 is expanded, as shown generally at 310 in FIG. 5 on a balloon for example, the boomerang-shaped segments 118 of the unexpanded stent take on a new configuration. The segments 318 take on the shape of rounded triangles with bulging bottoms 322.

It is desirable that the interconnecting elements be U-shaped as shown in FIGS. 2 and 4 or zig-zag shaped as shown in FIG. 6. However, in a more general sense, the invention contemplates the use of curvilinear as well as rectilinear interconnecting elements, including straight elements. Examples of other suitable connectors are disclosed in U.S. patent application Ser. No. 09/111,531 filed Jul. 8, 1998, U.S. patent application Ser. No. 08/846,164 filed Apr. 25, 1997, WO 97/32543 to Divysio Solutions LTD. and WO 97/40780 to David G. Jang, all of which are incorporated herein by reference. Of course, adjacent boomerang-shaped segments may also be joined side-by-side with a region of overlap between adjacent boomerang-shaped segments.

It is also desirable that interconnecting elements be flexible so as to accommodate bending of the stent without substantial distortion of the boomerang-shaped segments. FIG. 7 shows the stent of FIG. 3 having been bent. As shown in FIG. 7, as the stent is bent, interconnecting elements in tension open while interconnecting elements in compression close to accommodate bending of the stent.

Although as shown in the Figures an interconnecting element extends from each boomerang-shaped segment in an annular element to a nearest neighboring boomerang-shaped segment in an adjacent annular element, the invention further contemplates the possibility of an interconnecting element extending from each boomerang-shaped segment in an annular element to a next-nearest neighboring boomerang-shaped segment in an adjacent annular element. In the latter case, the first end 140 and second end 144 of each interconnecting element 128 would be circumferentially offset along the stent.

In a more general sense, the invention further contemplates a stent in which each adjacent annular element is interconnected by one or more interconnecting elements and each interconnecting element extends from an end of a boomerang-shaped segment in one annular element to an end of a boomerang-shaped segment in an adjacent annular element. As such, an interconnecting element need not extend from each boomerang-shaped segment. An example of this is a stent in which interconnecting elements extend from every second or third boomerang-shaped segment in an annular element.

The invention also contemplates the possibility of altering the orientation of some of the annular elements. In one such embodiment, adjacent annular elements in the flat pattern are rotated by 180° relative to one another so that adjacent annular elements point in opposite directions.

Although the ends of nearest neighboring segments in adjacent annular elements are shown in the figures as aligned with one another along the circumference of the stent, the invention further contemplates embodiments of the stent in which nearest neighboring segments in adjacent annular elements are circumferentially displaced relative to one another.

In yet another series of embodiments, adjacent (or non-adjacent) annular elements may be formed of different sized boomerang-shaped elements. As such, adjacent (or non-adjacent) annular elements may span different lengths. Alternatively, adjacent (or non-adjacent) annular elements may comprise different numbers of boomerang-shaped segments.

Although in the embodiment of FIGS. 2-4, segment junction 124 is shown as a small, straight link extending from the top of one segment to the bottom of an adjacent segment, the invention also contemplates the possibility of adjacent boomerang-shaped segments within an annular element being connected by U shaped links, zig-zag shaped links or any of the shapes disclosed above for the interconnecting elements. Additionally, other shaped segments may be interspersed among the boomerang-shaped segments.

The inventive stent may be self-expanding or mechanically expandable such as by balloon. The stent may be made of a variety of suitable bio-compatible materials including metal, plastic and any other material capable of functioning as an expandable stent. For example, the stent may be of metal wire or ribbon such as tantalum, stainless steel or the like or of metal sheeting or metal tubing. It may be thin-walled. It may be of shape memory alloy such as Nitinol or the like.

The above Examples and disclosure are intended to be illustrative and not exhaustive. These examples and description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the attached claims. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims attached hereto.

Claims (24)

What is claimed is as follows:
1. A generally cylindrical, radially expandable stent comprised of
a plurality of annular elements aligned to form a cylindrical stent body,
each annular element having
a first end and
a second end,
the first end longitudinally offset from the second end,
each annular element comprised of
a plurality of separate boomerang-shaped segments,
each boomerang segment having
a top and
a bottom,
the top circumferentially offset from the bottom,
the top and bottom interconnected at a first end and at a second end to define a closed perimeter with an opening therethrough,
the boomerang segments interconnected top-to-bottom around the annular element, and
a plurality of curvilinear interconnecting elements, each curvilinear interconnecting element extending from a first end of a boomerang segment in an annular element to a second end of a boomerang segment in an adjacent annular element.
2. The stent of claim 1 wherein each interconnecting element has one or more bends therein.
3. The stent of claim 2 wherein each interconnecting element is a U-shaped segment.
4. The stent of claim 2 wherein each interconnecting element is a zig-zag-shaped segment.
5. The stent of claim 1 made of metal.
6. The stent of claim 5 made of stainless steel.
7. The stent of claim 5 wherein the metal is a shape memory metal.
8. The stent of claim 1 wherein an interconnecting element extends from each boomerang-shaped segment in an annular element to a boomerang-shaped segment in an adjacent annular element.
9. The stent of claim 3 wherein an interconnecting element extends from each boomerang-shaped segment in an annular element to a neighboring boomerang-shaped segment in an adjacent annular element.
10. The stent of claim 1 wherein at least a portion of each interconnecting element is curvilinear.
11. The stent of claim 1 wherein each boomerang-shaped segment is symmetric about a midline extending from the top of the segment to the bottom of the segment, the midline situated midway between the ends of the segments.
12. The stent of claim 1 wherein each bottom has a dimple therein.
13. The stent of claim 1 made of a bio-compatible material.
14. The stent of claim 1 wherein each interconnecting element has a first end and a second end, the first end circumferentially offset from the second end.
15. The stent of claim 1 wherein the orientation of adjacent annular elements differs.
16. The stent of claim 1 wherein adjacent annular elements are oppositely oriented.
17. The stent of claim 1 including annular elements of different lengths.
18. The stent of claim 1 including annular elements having differing number of boomerang shaped segments.
19. The stent of claim 1 including boomerang segments of differing sizes.
20. The stent of claim 1 wherein nearest neighboring boomerang segments in adjacent annular elements are circumferentially offset.
21. The stent of claim 1 wherein circumferentially adjacent boomerang segments are joined together with a curvilinear element extending from the top of a boomerang segment to the bottom of an adjacent boomerang segment.
22. The stent of claim 1 wherein circumferentially adjacent boomerang segments are joined together with an element having one or more bends therein, the element extending from the top of a boomerang segment to the bottom of an adjacent boomerang segment.
23. A generally cylindrical, radially expandable stent comprised of
a plurality of annular elements aligned to form a cylindrical stent body,
each annular element comprised of a plurality of separate boomerang-shaped segments, each segment having a top and a bottom, the top circumferentially offset from the bottom, a first end and a second end, the top and bottom interconnected at the first and second ends to define an opening therethrough, adjacent segments in an annular element connected by a link extending from the top of a segment to the bottom of an adjacent segment,
adjacent annular elements interconnected by one or more interconnecting elements, each interconnecting element extending from an end of a boomerang-shaped segment in one annular element to an end of a boomerang-shaped segment in an adjacent annular element.
24. A generally cylindrical, radially expandable stent comprised of
a plurality of interconnected annular elements,
each annular element having
a first end and
a second end,
the first end longitudinally offset from the second end,
each annular element comprised of
a plurality of boomerang-shaped segments,
each boomerang segment having
a top and
a bottom,
the top circumferentially offset from the bottom,
the top and bottom interconnected at a first end and at a second end to define a closed perimeter, each boomerang segment having an opening therethrough,
the closed perimeter of circumferentially adjacent boomerang segments non-overlapping,
the boomerang segments interconnected top-to-bottom around the annular element, and
a plurality of curvilinear interconnecting elements, each curvilinear interconnecting element extending from a first end of a boomerang segment in an annular element to a second end of a boomerang segment in an adjacent annular element.
US09151053 1998-09-10 1998-09-10 Stent configurations Active US6193744B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09151053 US6193744B1 (en) 1998-09-10 1998-09-10 Stent configurations

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US09151053 US6193744B1 (en) 1998-09-10 1998-09-10 Stent configurations
DE1999615313 DE69915313T2 (en) 1998-09-10 1999-09-03 Improved stent configurations
PCT/US1999/020383 WO2000015145A9 (en) 1998-09-10 1999-09-03 Improved stent configurations
ES99948129T ES2214888T3 (en) 1998-09-10 1999-09-03 Stents improved configurations.
DE1999615313 DE69915313D1 (en) 1998-09-10 1999-09-03 Improved stent configurations
EP19990948129 EP1112040B1 (en) 1998-09-10 1999-09-03 Improved stent configurations
US09707447 US6471720B1 (en) 1998-09-10 2000-11-07 Stent configurations
US10164989 US20020156524A1 (en) 1998-09-10 2002-06-06 Stent configurations
US10321089 US7442203B2 (en) 1998-09-10 2002-12-17 Stent configurations
US12260000 US7988718B2 (en) 1998-09-10 2008-10-28 Stent configurations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09707447 Continuation US6471720B1 (en) 1998-09-10 2000-11-07 Stent configurations

Publications (1)

Publication Number Publication Date
US6193744B1 true US6193744B1 (en) 2001-02-27

Family

ID=22537143

Family Applications (5)

Application Number Title Priority Date Filing Date
US09151053 Active US6193744B1 (en) 1998-09-10 1998-09-10 Stent configurations
US09707447 Expired - Fee Related US6471720B1 (en) 1998-09-10 2000-11-07 Stent configurations
US10164989 Abandoned US20020156524A1 (en) 1998-09-10 2002-06-06 Stent configurations
US10321089 Active 2020-03-26 US7442203B2 (en) 1998-09-10 2002-12-17 Stent configurations
US12260000 Active 2019-04-09 US7988718B2 (en) 1998-09-10 2008-10-28 Stent configurations

Family Applications After (4)

Application Number Title Priority Date Filing Date
US09707447 Expired - Fee Related US6471720B1 (en) 1998-09-10 2000-11-07 Stent configurations
US10164989 Abandoned US20020156524A1 (en) 1998-09-10 2002-06-06 Stent configurations
US10321089 Active 2020-03-26 US7442203B2 (en) 1998-09-10 2002-12-17 Stent configurations
US12260000 Active 2019-04-09 US7988718B2 (en) 1998-09-10 2008-10-28 Stent configurations

Country Status (5)

Country Link
US (5) US6193744B1 (en)
DE (2) DE69915313T2 (en)
EP (1) EP1112040B1 (en)
ES (1) ES2214888T3 (en)
WO (1) WO2000015145A9 (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375677B1 (en) 1996-03-05 2002-04-23 Ewysio Medical Devices Inc. Expandable stent and method for delivery of same
US20020049493A1 (en) * 1996-04-26 2002-04-25 Jang G. David Intravascular stent
US20020133223A1 (en) * 2001-03-09 2002-09-19 Vito Raymond P. Intravascular device and method for axially stretching blood vessels
US20020161429A1 (en) * 1996-04-26 2002-10-31 Jang G. David Intravascular stent
US20020169500A1 (en) * 1996-04-26 2002-11-14 Jang G. David Intravascular stent
US20030093144A1 (en) * 1998-02-02 2003-05-15 Scimed Life Systems, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US6565598B1 (en) * 1999-10-26 2003-05-20 Biotronik Mess -Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Stent with a closed structure
US20030120335A1 (en) * 1998-09-10 2003-06-26 Scimed Life Systems, Inc. Stent configurations
US20030135261A1 (en) * 1999-12-03 2003-07-17 Kugler Chad J. Endovascular graft system
US6602285B1 (en) * 1998-09-05 2003-08-05 Jomed Gmbh Compact stent
US20030149474A1 (en) * 1997-06-13 2003-08-07 Becker Gary J. Expandable intraluminal endoprosthesis
US20030167084A1 (en) * 1999-05-19 2003-09-04 Michael Orlowski Radially expandable vascular stent
US20040093073A1 (en) * 2002-05-08 2004-05-13 David Lowe Endoprosthesis having foot extensions
US20040093072A1 (en) * 2002-05-06 2004-05-13 Jeff Pappas Endoprosthesis for controlled contraction and expansion
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US20040122511A1 (en) * 2002-11-05 2004-06-24 Mangiardi Eric K. Coated stent with geometry determinated functionality and method of making the same
US20040127973A1 (en) * 2002-11-05 2004-07-01 Mangiardi Eric K. Removable biliary stent
US20040133271A1 (en) * 2000-09-22 2004-07-08 Jang G. David Intravascular stent and assembly
US20040167615A1 (en) * 2003-02-21 2004-08-26 Scimed Life Systems, Inc Stent
US6786922B2 (en) 2002-10-08 2004-09-07 Cook Incorporated Stent with ring architecture and axially displaced connector segments
US6796997B1 (en) 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
US20040193250A1 (en) * 1998-09-05 2004-09-30 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US6805704B1 (en) 2000-06-26 2004-10-19 C. R. Bard, Inc. Intraluminal stents
US20040236407A1 (en) * 1998-09-05 2004-11-25 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US20040236404A1 (en) * 1996-03-05 2004-11-25 Penn Ian M. Expandable stent and method for delivery of same
US20040267353A1 (en) * 2003-06-25 2004-12-30 Scimed Life Systems, Inc. Varying circumferential spanned connectors in a stent
US20050010279A1 (en) * 2002-01-31 2005-01-13 Lars Tenerz Stent
US20050107865A1 (en) * 2003-05-06 2005-05-19 Anton Clifford Endoprosthesis having foot extensions
US20060015173A1 (en) * 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
WO2006024488A2 (en) 2004-08-30 2006-03-09 Interstitial Therapeutics Medical stent provided with inhibitors of atp synthesis
US20060184232A1 (en) * 1998-09-05 2006-08-17 Abbott Laboratories Vascular Methods and apparatus for curved stent
US20060217795A1 (en) * 1997-01-24 2006-09-28 Paragon Intellectual Properties, Llc Fracture-resistant helical stent incorporating bistable cells and methods of use
US20060241739A1 (en) * 1997-01-24 2006-10-26 Paragon Intellectual Properties, Llc Device comprising biodegradable bistable or multistable cells and methods of use
US20060258972A1 (en) * 2005-05-13 2006-11-16 Alveolus, Inc. Delivery device with viewing window and associated method
US20070021834A1 (en) * 2003-05-06 2007-01-25 Eugene Young Endoprosthesis having foot extensions
US20070073384A1 (en) * 1995-03-01 2007-03-29 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20070135891A1 (en) * 1998-09-05 2007-06-14 Ralph Schneider Stent having an expandable web structure
JP2007222677A (en) * 2001-04-06 2007-09-06 Boston Scientific Ltd Stent
US20080132998A1 (en) * 2004-09-29 2008-06-05 Alveolus, Inc. Active stent
US20080294240A1 (en) * 2007-05-23 2008-11-27 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US20090163996A1 (en) * 2007-12-20 2009-06-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
US20090163992A1 (en) * 2007-12-20 2009-06-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US20100094394A1 (en) * 2008-10-06 2010-04-15 Bradley Beach Reconstrainable stent delivery system
US20100114297A1 (en) * 2001-09-18 2010-05-06 Abbott Laboratories Vascular Enterprises Limited Stent
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US20100286760A1 (en) * 2009-04-24 2010-11-11 Bradley Beach Flexible devices
US7850726B2 (en) 2007-12-20 2010-12-14 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US20100328087A1 (en) * 2009-06-28 2010-12-30 Oki Data Corporation Communication apparatus, connection control method for communication apparatus and method of determining state of communication plug relative to communication connector in communication apparatus
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20110214855A1 (en) * 2001-01-16 2011-09-08 Barrie Hart Expandable Device for Use in a Well Bore
US8016874B2 (en) 2007-05-23 2011-09-13 Abbott Laboratories Vascular Enterprises Limited Flexible stent with elevated scaffolding properties
US20130006348A1 (en) * 2007-04-09 2013-01-03 Tyco Healthcare Group Lp Stretchable stent and delivery
US20130060322A1 (en) * 2004-07-21 2013-03-07 Boston Scientific Scimed, Inc. Expandable framework with overlapping connectors
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8500794B2 (en) 2007-08-02 2013-08-06 Flexible Stenting Solutions, Inc. Flexible stent
US20140135903A1 (en) * 1998-07-08 2014-05-15 Boston Scientific Scimed, Inc. Stent
USRE45011E1 (en) 2000-10-20 2014-07-15 Halliburton Energy Services, Inc. Expandable tubing and method
US9415142B2 (en) 2006-04-26 2016-08-16 Micell Technologies, Inc. Coatings containing multiple drugs
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558415B2 (en) * 1998-03-27 2003-05-06 Intratherapeutics, Inc. Stent
US6368346B1 (en) 1999-06-03 2002-04-09 American Medical Systems, Inc. Bioresorbable stent
US20030069629A1 (en) * 2001-06-01 2003-04-10 Jadhav Balkrishna S. Bioresorbable medical devices
US20020188342A1 (en) * 2001-06-01 2002-12-12 Rykhus Robert L. Short-term bioresorbable stents
US20030055485A1 (en) 2001-09-17 2003-03-20 Intra Therapeutics, Inc. Stent with offset cell geometry
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
DE10253633B4 (en) * 2002-11-13 2011-08-11 BIOTRONIK GmbH & Co. KG, 12359 supporting structure
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
JP5112073B2 (en) * 2004-10-26 2013-01-09 コーディス・コーポレイションCordis Corporation Stent having a hoop portion of the phase-shifted
US7485140B2 (en) * 2005-06-17 2009-02-03 Boston Scientific Scimed, Inc. Bifurcation stent assembly
US7766893B2 (en) * 2005-12-07 2010-08-03 Boston Scientific Scimed, Inc. Tapered multi-chamber balloon
US8414611B2 (en) * 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Main vessel constraining side-branch access balloon
US8398695B2 (en) * 2006-11-03 2013-03-19 Boston Scientific Scimed, Inc. Side branch stenting system using a main vessel constraining side branch access balloon and side branching stent
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
EP2391312B1 (en) * 2009-02-02 2013-06-05 Cordis Corporation Flexible stent design
US8425586B2 (en) * 2009-09-02 2013-04-23 Novostent Corporation Vascular prosthesis with stress relief slots
US9155644B2 (en) 2010-08-02 2015-10-13 Cordis Corporation Flexible helical stent having intermediate structural feature
EP2600805A1 (en) 2010-08-02 2013-06-12 Cordis Corporation Flexible stent having protruding hinges
WO2012018844A1 (en) 2010-08-02 2012-02-09 Cordis Corporation Flexible helical stent having different helical regions
EP2658484A1 (en) 2010-12-30 2013-11-06 Boston Scientific Scimed, Inc. Multi stage opening stent designs
WO2012119037A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Stent with reduced profile
WO2012118526A1 (en) 2011-03-03 2012-09-07 Boston Scientific Scimed, Inc. Low strain high strength stent
US9028540B2 (en) * 2011-03-25 2015-05-12 Covidien Lp Vascular stent with improved vessel wall apposition
USD665500S1 (en) 2011-04-15 2012-08-14 Novostent Corporation Stent
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
CN104302250B (en) 2012-05-14 2017-03-15 C·R·巴德公司 Uniformly expandable stent
US9254205B2 (en) 2012-09-27 2016-02-09 Covidien Lp Vascular stent with improved vessel wall apposition
USD723165S1 (en) * 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
DE102013104550A1 (en) * 2013-05-03 2014-11-06 Acandis Gmbh & Co. Kg A medical device for introduction into a hollow body organ

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734698A2 (en) 1995-04-01 1996-10-02 Variomed AG Stent for transluminal implantation into hollow organs
WO1997009945A1 (en) 1995-09-11 1997-03-20 William Cook Europe A/S An expandable endovascular stent
DE29701758U1 (en) 1997-02-01 1997-03-27 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel, in particular in the region of a vessel bifurcation
DE29702671U1 (en) 1997-02-17 1997-04-10 Jomed Implantate Gmbh stent
WO1997014375A1 (en) 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
WO1997026840A1 (en) 1996-01-26 1997-07-31 Deka Products Limited Partnership Axially flexible stent
WO1997032543A1 (en) 1996-03-05 1997-09-12 Divysio Solutions Ulc. Expandable stent and method for delivery of same
WO1997040780A1 (en) 1996-04-26 1997-11-06 Jang G David Intravascular stent
WO1998007386A1 (en) * 1996-08-22 1998-02-26 Thomas Ischinger Tubular stent
US5776183A (en) * 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
WO1998032412A2 (en) 1997-01-24 1998-07-30 Scimed Life Systems Inc Bistable spring construction for a stent and other medical apparatus
WO1998040035A1 (en) 1997-03-13 1998-09-17 United States Surgical Corporation Flexible tissue supporting device
WO1998044871A1 (en) 1997-04-07 1998-10-15 Deka Products Limited Partnership Axially flexible stent
DE29716117U1 (en) 1997-09-09 1999-01-14 Micro Science Medical Ag stent
WO1999017680A1 (en) 1997-10-03 1999-04-15 Localmed, Inc. Radially expansible vessel scaffold having beams and expansion joints
WO1999039660A1 (en) 1998-02-03 1999-08-12 B. Braun Celsa Prosthesis with undulating longitudinal braces
US6017365A (en) * 1997-05-20 2000-01-25 Jomed Implantate Gmbh Coronary stent

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102417A (en) * 1985-11-07 1992-04-07 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
US5314472A (en) * 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US6832996B2 (en) * 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
CA2079417C (en) * 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5507767A (en) * 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5549663A (en) * 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5449373A (en) * 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US5733303A (en) * 1994-03-17 1998-03-31 Medinol Ltd. Flexible expandable stent
US6461381B2 (en) * 1994-03-17 2002-10-08 Medinol, Ltd. Flexible expandable stent
US6464722B2 (en) * 1994-03-17 2002-10-15 Medinol, Ltd. Flexible expandable stent
CA2163824C (en) * 1994-11-28 2000-06-20 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
FR2727854B1 (en) * 1994-12-09 1997-02-07
US5613981A (en) * 1995-04-21 1997-03-25 Medtronic, Inc. Bidirectional dual sinusoidal helix stent
US5593442A (en) * 1995-06-05 1997-01-14 Localmed, Inc. Radially expansible and articulated vessel scaffold
US5776161A (en) * 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
US5938682A (en) * 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
DE19614160A1 (en) 1996-04-10 1997-10-16 Variomed Ag Stent for transluminal implantation in hollow organs
US5922021A (en) * 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
US6039756A (en) * 1996-04-26 2000-03-21 Jang; G. David Intravascular stent
US6152957A (en) * 1996-04-26 2000-11-28 Jang; G. David Intravascular stent
CA2175720C (en) * 1996-05-03 2011-11-29 Ian M. Penn Bifurcated stent and method for the manufacture and delivery of same
US5755781A (en) * 1996-08-06 1998-05-26 Iowa-India Investments Company Limited Embodiments of multiple interconnected stents
US5807404A (en) * 1996-09-19 1998-09-15 Medinol Ltd. Stent with variable features to optimize support and method of making such stent
US6099561A (en) 1996-10-21 2000-08-08 Inflow Dynamics, Inc. Vascular and endoluminal stents with improved coatings
US5868781A (en) * 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US5827321A (en) * 1997-02-07 1998-10-27 Cornerstone Devices, Inc. Non-Foreshortening intraluminal prosthesis
US5810872A (en) * 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5897588A (en) * 1997-03-14 1999-04-27 Hull; Cheryl C. Coronary stent and method of fabricating same
DE19717475C1 (en) * 1997-04-25 1998-09-03 Heraeus Gmbh W C Radially expandable support structure or stent for tubular vessel in body
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US6451049B2 (en) * 1998-04-29 2002-09-17 Sorin Biomedica Cardio, S.P.A. Stents for angioplasty
DE29708689U1 (en) * 1997-05-15 1997-07-17 Jomed Implantate Gmbh coronary stent
DE19834956B9 (en) 1997-08-01 2005-10-20 Eckhard Alt Support prosthesis (stent)
US5855600A (en) * 1997-08-01 1999-01-05 Inflow Dynamics Inc. Flexible implantable stent with composite design
US6059822A (en) 1997-08-22 2000-05-09 Uni-Cath Inc. Stent with different mesh patterns
EP1017336B1 (en) * 1997-09-24 2007-08-15 Med Institute, Inc. Radially expandable stent
US5948016A (en) * 1997-09-25 1999-09-07 Jang; G. David Intravascular stent with non-parallel slots
US6013091A (en) * 1997-10-09 2000-01-11 Scimed Life Systems, Inc. Stent configurations
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
US6113627A (en) * 1998-02-03 2000-09-05 Jang; G. David Tubular stent consists of horizontal expansion struts and contralaterally attached diagonal-connectors
WO1999038458A1 (en) * 1998-02-03 1999-08-05 Cardiovascular Interventional Systems, Inc. Tubular stent consists of non-parallel expansion struts and contralaterally attached diagonal connectors
US6123721A (en) 1998-02-17 2000-09-26 Jang; G. David Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached M-frame connectors
US6019789A (en) * 1998-04-01 2000-02-01 Quanam Medical Corporation Expandable unit cell and intraluminal stent
US6066169A (en) * 1998-06-02 2000-05-23 Ave Connaught Expandable stent having articulated connecting rods
US6261319B1 (en) * 1998-07-08 2001-07-17 Scimed Life Systems, Inc. Stent
US5911754A (en) * 1998-07-24 1999-06-15 Uni-Cath Inc. Flexible stent with effective strut and connector patterns
US6461380B1 (en) * 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US6193744B1 (en) 1998-09-10 2001-02-27 Scimed Life Systems, Inc. Stent configurations
US6190403B1 (en) * 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US6355059B1 (en) * 1998-12-03 2002-03-12 Medinol, Ltd. Serpentine coiled ladder stent
US6355057B1 (en) * 1999-01-14 2002-03-12 Medtronic, Inc. Staggered endoluminal stent
US6273911B1 (en) * 1999-04-22 2001-08-14 Advanced Cardiovascular Systems, Inc. Variable strength stent
US6306132B1 (en) * 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US6331189B1 (en) * 1999-10-18 2001-12-18 Medtronic, Inc. Flexible medical stent
US6423090B1 (en) * 2000-02-11 2002-07-23 Advanced Cardiovascular Systems, Inc. Stent pattern with staged expansion
US6352552B1 (en) * 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US6485508B1 (en) * 2000-10-13 2002-11-26 Mcguinness Colm P. Low profile stent

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0734698A2 (en) 1995-04-01 1996-10-02 Variomed AG Stent for transluminal implantation into hollow organs
WO1997009945A1 (en) 1995-09-11 1997-03-20 William Cook Europe A/S An expandable endovascular stent
WO1997014375A1 (en) 1995-10-20 1997-04-24 Bandula Wijay Vascular stent
WO1997026840A1 (en) 1996-01-26 1997-07-31 Deka Products Limited Partnership Axially flexible stent
WO1997032543A1 (en) 1996-03-05 1997-09-12 Divysio Solutions Ulc. Expandable stent and method for delivery of same
WO1997040780A1 (en) 1996-04-26 1997-11-06 Jang G David Intravascular stent
WO1998007386A1 (en) * 1996-08-22 1998-02-26 Thomas Ischinger Tubular stent
US5776183A (en) * 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
WO1998032412A2 (en) 1997-01-24 1998-07-30 Scimed Life Systems Inc Bistable spring construction for a stent and other medical apparatus
DE29701758U1 (en) 1997-02-01 1997-03-27 Jomed Implantate Gmbh Radially expandable stent for implantation in a body vessel, in particular in the region of a vessel bifurcation
DE29702671U1 (en) 1997-02-17 1997-04-10 Jomed Implantate Gmbh stent
WO1998040035A1 (en) 1997-03-13 1998-09-17 United States Surgical Corporation Flexible tissue supporting device
WO1998044871A1 (en) 1997-04-07 1998-10-15 Deka Products Limited Partnership Axially flexible stent
US6017365A (en) * 1997-05-20 2000-01-25 Jomed Implantate Gmbh Coronary stent
DE29716117U1 (en) 1997-09-09 1999-01-14 Micro Science Medical Ag stent
WO1999017680A1 (en) 1997-10-03 1999-04-15 Localmed, Inc. Radially expansible vessel scaffold having beams and expansion joints
WO1999039660A1 (en) 1998-02-03 1999-08-12 B. Braun Celsa Prosthesis with undulating longitudinal braces

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8449597B2 (en) 1995-03-01 2013-05-28 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US20070073384A1 (en) * 1995-03-01 2007-03-29 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8728147B2 (en) 1995-03-01 2014-05-20 Boston Scientific Limited Longitudinally flexible expandable stent
US6796997B1 (en) 1996-03-05 2004-09-28 Evysio Medical Devices Ulc Expandable stent
US20040236404A1 (en) * 1996-03-05 2004-11-25 Penn Ian M. Expandable stent and method for delivery of same
US20080021542A1 (en) * 1996-03-05 2008-01-24 Evysio Medical Devices Ulc Expandable Stent And Method For Delivery Of Same
US8075609B2 (en) 1996-03-05 2011-12-13 Evysio Medical Devices Ulc Expandable stent
US6758860B1 (en) 1996-03-05 2004-07-06 Envysio Medical Devices Ulc Expandable stent and method for delivery of same
US6375677B1 (en) 1996-03-05 2002-04-23 Ewysio Medical Devices Inc. Expandable stent and method for delivery of same
US8021414B2 (en) 1996-04-26 2011-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US20020193870A1 (en) * 1996-04-26 2002-12-19 Jang G. David Intravascular stent
US20020169500A1 (en) * 1996-04-26 2002-11-14 Jang G. David Intravascular stent
US20020161430A1 (en) * 1996-04-26 2002-10-31 Jang G. David Intravascular stent
US20020161429A1 (en) * 1996-04-26 2002-10-31 Jang G. David Intravascular stent
US20020062149A1 (en) * 1996-04-26 2002-05-23 Jang G. David Intravascular stent
US20020049493A1 (en) * 1996-04-26 2002-04-25 Jang G. David Intravascular stent
US9445926B2 (en) 1996-04-26 2016-09-20 Boston Scientific Scimed, Inc. Intravascular stent
US20040106985A1 (en) * 1996-04-26 2004-06-03 Jang G. David Intravascular stent
US9078778B2 (en) 1996-04-26 2015-07-14 Boston Scientific Scimed, Inc. Intravascular stent
US20080300674A1 (en) * 1996-04-26 2008-12-04 Boston Scientific Scimed, Inc. Intravascular Stent
US20060241739A1 (en) * 1997-01-24 2006-10-26 Paragon Intellectual Properties, Llc Device comprising biodegradable bistable or multistable cells and methods of use
US20060217795A1 (en) * 1997-01-24 2006-09-28 Paragon Intellectual Properties, Llc Fracture-resistant helical stent incorporating bistable cells and methods of use
US8663311B2 (en) 1997-01-24 2014-03-04 Celonova Stent, Inc. Device comprising biodegradable bistable or multistable cells and methods of use
US8353948B2 (en) 1997-01-24 2013-01-15 Celonova Stent, Inc. Fracture-resistant helical stent incorporating bistable cells and methods of use
US20030149474A1 (en) * 1997-06-13 2003-08-07 Becker Gary J. Expandable intraluminal endoprosthesis
US8562665B2 (en) 1998-02-02 2013-10-22 Boston Scientific Scimed, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US20030093144A1 (en) * 1998-02-02 2003-05-15 Scimed Life Systems, Inc. Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal-connectors
US20140135903A1 (en) * 1998-07-08 2014-05-15 Boston Scientific Scimed, Inc. Stent
US8986367B2 (en) * 1998-07-08 2015-03-24 Boston Scientific Scimed, Inc. Stent
US7887577B2 (en) 1998-09-05 2011-02-15 Abbott Laboratories Vascular Enterprises Limited Apparatus for a stent having an expandable web structure
US8814926B2 (en) 1998-09-05 2014-08-26 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US20050004658A1 (en) * 1998-09-05 2005-01-06 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a drug-coated stent having an expandable web structure
US20040236407A1 (en) * 1998-09-05 2004-11-25 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US20050004650A1 (en) * 1998-09-05 2005-01-06 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure and delivery system
US20050004662A1 (en) * 1998-09-05 2005-01-06 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a drug-coated stent having an expandable web structure
US7927364B2 (en) 1998-09-05 2011-04-19 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US20050043778A1 (en) * 1998-09-05 2005-02-24 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure
US20050043777A1 (en) * 1998-09-05 2005-02-24 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure and delivery system
US7887578B2 (en) 1998-09-05 2011-02-15 Abbott Laboratories Vascular Enterprises Limited Stent having an expandable web structure
US20040193250A1 (en) * 1998-09-05 2004-09-30 Jomed Gmbh Methods and apparatus for a stent having an expandable web structure
US20110004289A1 (en) * 1998-09-05 2011-01-06 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure
US7846196B2 (en) 1998-09-05 2010-12-07 Abbott Laboratories Vascular Enterprises Limited Apparatus for a stent having an expandable web structure
US20050004655A2 (en) * 1998-09-05 2005-01-06 Abbott Labortories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure
US7842079B2 (en) 1998-09-05 2010-11-30 Abbott Laboratories Vascular Enterprises Limited Apparatus for a stent having an expandable web structure and delivery system
US20070179601A1 (en) * 1998-09-05 2007-08-02 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protections coupled with improved protections against restenosis and trombus formation
US8343208B2 (en) 1998-09-05 2013-01-01 Abbott Laboratories Vascular Enterprises Limited Stent having an expandable web structure
US20060184232A1 (en) * 1998-09-05 2006-08-17 Abbott Laboratories Vascular Methods and apparatus for curved stent
US9517146B2 (en) 1998-09-05 2016-12-13 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US7842078B2 (en) 1998-09-05 2010-11-30 Abbott Laboratories Vascular Enterprises Limited Apparatus for a stent having an expandable web structure and delivery system
US8303645B2 (en) 1998-09-05 2012-11-06 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure
US7927365B2 (en) 1998-09-05 2011-04-19 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US6602285B1 (en) * 1998-09-05 2003-08-05 Jomed Gmbh Compact stent
US20070213800A1 (en) * 1998-09-05 2007-09-13 Abbott Laboratories Vascular Enterprises Limited Method and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US8088157B2 (en) 1998-09-05 2012-01-03 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US7815672B2 (en) 1998-09-05 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Apparatus for a stent having an expandable web structure
US7811314B2 (en) 1998-09-05 2010-10-12 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protections against restenosis and thrombus formation
US7789904B2 (en) 1998-09-05 2010-09-07 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for a stent having an expandable web structure
US20070135891A1 (en) * 1998-09-05 2007-06-14 Ralph Schneider Stent having an expandable web structure
US20070179593A1 (en) * 1998-09-05 2007-08-02 Abbott Laboratories Vascular Methods and apparatus for stenting comprising enhanced embolic protection coupled with improved protecions against restenosis and thrombus formation
US7794491B2 (en) * 1998-09-05 2010-09-14 Abbott Laboratories Vascular Enterprises Limited Apparatus for a stent having an expandable web structure and delivery system
US7789905B2 (en) 1998-09-05 2010-09-07 Abbottt Laboratories Vascular Enterprises Limited Apparatus for a stent having an expandable web structure
US20030120335A1 (en) * 1998-09-10 2003-06-26 Scimed Life Systems, Inc. Stent configurations
US20090048661A1 (en) * 1998-09-10 2009-02-19 Boston Scientific Scimed, Inc. Stent Configurations
US7988718B2 (en) 1998-09-10 2011-08-02 Boston Scientific Scimed, Inc. Stent configurations
US7442203B2 (en) * 1998-09-10 2008-10-28 Boston Scientific Scimed, Inc. Stent configurations
US8257424B2 (en) * 1999-05-19 2012-09-04 Eurocor Gmbh Radially expandable vascular stent
US20030167084A1 (en) * 1999-05-19 2003-09-04 Michael Orlowski Radially expandable vascular stent
US6565598B1 (en) * 1999-10-26 2003-05-20 Biotronik Mess -Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Stent with a closed structure
US6884260B2 (en) * 1999-12-03 2005-04-26 Cordis Corporation Endovascular graft system
US20030135261A1 (en) * 1999-12-03 2003-07-17 Kugler Chad J. Endovascular graft system
US6805704B1 (en) 2000-06-26 2004-10-19 C. R. Bard, Inc. Intraluminal stents
US20040133271A1 (en) * 2000-09-22 2004-07-08 Jang G. David Intravascular stent and assembly
US7766956B2 (en) 2000-09-22 2010-08-03 Boston Scientific Scimed, Inc. Intravascular stent and assembly
USRE45099E1 (en) 2000-10-20 2014-09-02 Halliburton Energy Services, Inc. Expandable tubing and method
USRE45011E1 (en) 2000-10-20 2014-07-15 Halliburton Energy Services, Inc. Expandable tubing and method
USRE45244E1 (en) 2000-10-20 2014-11-18 Halliburton Energy Services, Inc. Expandable tubing and method
US20110214855A1 (en) * 2001-01-16 2011-09-08 Barrie Hart Expandable Device for Use in a Well Bore
US8230913B2 (en) 2001-01-16 2012-07-31 Halliburton Energy Services, Inc. Expandable device for use in a well bore
US7300455B2 (en) 2001-03-09 2007-11-27 Georgia Tech Research Corporation Intravascular device for axially stretching blood vessels
US20020133223A1 (en) * 2001-03-09 2002-09-19 Vito Raymond P. Intravascular device and method for axially stretching blood vessels
US7018402B2 (en) 2001-03-09 2006-03-28 Georgia Tech Research Corporation Intravascular device and method for axially stretching blood vessels
US20060271162A1 (en) * 2001-03-09 2006-11-30 Vito Raymond P Intravascular device for axially stretching blood vessels
JP2007222677A (en) * 2001-04-06 2007-09-06 Boston Scientific Ltd Stent
US20100114297A1 (en) * 2001-09-18 2010-05-06 Abbott Laboratories Vascular Enterprises Limited Stent
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US20110022159A1 (en) * 2001-09-28 2011-01-27 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
US20050010279A1 (en) * 2002-01-31 2005-01-13 Lars Tenerz Stent
US7011678B2 (en) * 2002-01-31 2006-03-14 Radi Medical Systems Ab Biodegradable stent
US20040093072A1 (en) * 2002-05-06 2004-05-13 Jeff Pappas Endoprosthesis for controlled contraction and expansion
US20100063581A1 (en) * 2002-05-06 2010-03-11 Jeff Pappas Endoprosthesis For Controlled Contraction And Expansion
US7637935B2 (en) 2002-05-06 2009-12-29 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
US8075610B2 (en) 2002-05-06 2011-12-13 Abbott Laboratories Endoprosthesis for controlled contraction and expansion
US20040093073A1 (en) * 2002-05-08 2004-05-13 David Lowe Endoprosthesis having foot extensions
US7128756B2 (en) 2002-05-08 2006-10-31 Abbott Laboratories Endoprosthesis having foot extensions
US7559947B2 (en) 2002-05-08 2009-07-14 Abbott Laboratories Endoprosthesis having foot extensions
US20070021827A1 (en) * 2002-05-08 2007-01-25 David Lowe Endoprosthesis Having Foot Extensions
US7985249B2 (en) 2002-05-08 2011-07-26 Abbott Laboratories Corporation Endoprosthesis having foot extensions
US20060142844A1 (en) * 2002-05-08 2006-06-29 David Lowe Endoprosthesis having foot extensions
US20040243218A1 (en) * 2002-10-08 2004-12-02 Schaeffer Darin G. Stent with ring architecture and axially displaced connector segments
US6786922B2 (en) 2002-10-08 2004-09-07 Cook Incorporated Stent with ring architecture and axially displaced connector segments
US7335228B2 (en) 2002-10-08 2008-02-26 Cook Incorporated Stent with ring architecture and axially displaced connector segments
US8206436B2 (en) 2002-11-05 2012-06-26 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US20100173066A1 (en) * 2002-11-05 2010-07-08 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US20040127973A1 (en) * 2002-11-05 2004-07-01 Mangiardi Eric K. Removable biliary stent
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US20040122511A1 (en) * 2002-11-05 2004-06-24 Mangiardi Eric K. Coated stent with geometry determinated functionality and method of making the same
US20040167615A1 (en) * 2003-02-21 2004-08-26 Scimed Life Systems, Inc Stent
US7179286B2 (en) 2003-02-21 2007-02-20 Boston Scientific Scimed, Inc. Stent with stepped connectors
US20070021834A1 (en) * 2003-05-06 2007-01-25 Eugene Young Endoprosthesis having foot extensions
US8915954B2 (en) 2003-05-06 2014-12-23 Abbott Laboratories Endoprosthesis having foot extensions
US7625398B2 (en) 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US7625401B2 (en) 2003-05-06 2009-12-01 Abbott Laboratories Endoprosthesis having foot extensions
US20060015173A1 (en) * 2003-05-06 2006-01-19 Anton Clifford Endoprosthesis having foot extensions
US20050107865A1 (en) * 2003-05-06 2005-05-19 Anton Clifford Endoprosthesis having foot extensions
US8109991B2 (en) 2003-05-06 2012-02-07 Abbot Laboratories Endoprosthesis having foot extensions
US8048146B2 (en) 2003-05-06 2011-11-01 Abbott Laboratories Endoprosthesis having foot extensions
US20060129230A1 (en) * 2003-06-25 2006-06-15 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US7635384B2 (en) 2003-06-25 2009-12-22 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US7131993B2 (en) 2003-06-25 2006-11-07 Boston Scientific Scimed, Inc. Varying circumferential spanned connectors in a stent
US20040267353A1 (en) * 2003-06-25 2004-12-30 Scimed Life Systems, Inc. Varying circumferential spanned connectors in a stent
US8685079B2 (en) * 2004-07-21 2014-04-01 Boston Scientific Scimed, Inc. Expandable framework with overlapping connectors
US20130060322A1 (en) * 2004-07-21 2013-03-07 Boston Scientific Scimed, Inc. Expandable framework with overlapping connectors
WO2006024488A2 (en) 2004-08-30 2006-03-09 Interstitial Therapeutics Medical stent provided with inhibitors of atp synthesis
US7887579B2 (en) 2004-09-29 2011-02-15 Merit Medical Systems, Inc. Active stent
US20080132998A1 (en) * 2004-09-29 2008-06-05 Alveolus, Inc. Active stent
US7731654B2 (en) 2005-05-13 2010-06-08 Merit Medical Systems, Inc. Delivery device with viewing window and associated method
US20060258972A1 (en) * 2005-05-13 2006-11-16 Alveolus, Inc. Delivery device with viewing window and associated method
US9827117B2 (en) 2005-07-15 2017-11-28 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
US9737645B2 (en) 2006-04-26 2017-08-22 Micell Technologies, Inc. Coatings containing multiple drugs
US9415142B2 (en) 2006-04-26 2016-08-16 Micell Technologies, Inc. Coatings containing multiple drugs
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
US20130006348A1 (en) * 2007-04-09 2013-01-03 Tyco Healthcare Group Lp Stretchable stent and delivery
US9775729B2 (en) 2007-04-17 2017-10-03 Micell Technologies, Inc. Stents having controlled elution
US9433516B2 (en) 2007-04-17 2016-09-06 Micell Technologies, Inc. Stents having controlled elution
US9486338B2 (en) 2007-04-17 2016-11-08 Micell Technologies, Inc. Stents having controlled elution
US8128679B2 (en) 2007-05-23 2012-03-06 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US20080294240A1 (en) * 2007-05-23 2008-11-27 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8016874B2 (en) 2007-05-23 2011-09-13 Abbott Laboratories Vascular Enterprises Limited Flexible stent with elevated scaffolding properties
US9320627B2 (en) 2007-05-23 2016-04-26 Abbott Laboratories Vascular Enterprises Limited Flexible stent with torque-absorbing connectors
US8500794B2 (en) 2007-08-02 2013-08-06 Flexible Stenting Solutions, Inc. Flexible stent
US7850726B2 (en) 2007-12-20 2010-12-14 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US8246674B2 (en) 2007-12-20 2012-08-21 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having struts linked by foot extensions
US8920488B2 (en) 2007-12-20 2014-12-30 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
US20110144738A1 (en) * 2007-12-20 2011-06-16 Abbott Laboratories Vascular Enterprises, Ltd. Endoprosthesis having struts linked by foot extensions
US8337544B2 (en) 2007-12-20 2012-12-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US20090163996A1 (en) * 2007-12-20 2009-06-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having a stable architecture
US20090163992A1 (en) * 2007-12-20 2009-06-25 Abbott Laboratories Vascular Enterprises Limited Endoprosthesis having flexible connectors
US9789233B2 (en) 2008-04-17 2017-10-17 Micell Technologies, Inc. Stents having bioabsorbable layers
US9486431B2 (en) 2008-07-17 2016-11-08 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
US20100094394A1 (en) * 2008-10-06 2010-04-15 Bradley Beach Reconstrainable stent delivery system
US20100286760A1 (en) * 2009-04-24 2010-11-11 Bradley Beach Flexible devices
US20100328087A1 (en) * 2009-06-28 2010-12-30 Oki Data Corporation Communication apparatus, connection control method for communication apparatus and method of determining state of communication plug relative to communication connector in communication apparatus

Also Published As

Publication number Publication date Type
US20020156524A1 (en) 2002-10-24 application
WO2000015145A1 (en) 2000-03-23 application
EP1112040A1 (en) 2001-07-04 application
WO2000015145A9 (en) 2001-10-04 application
US7988718B2 (en) 2011-08-02 grant
DE69915313T2 (en) 2005-01-13 grant
DE69915313D1 (en) 2004-04-08 grant
ES2214888T3 (en) 2004-09-16 grant
US6471720B1 (en) 2002-10-29 grant
EP1112040B1 (en) 2004-03-03 grant
US20030120335A1 (en) 2003-06-26 application
US7442203B2 (en) 2008-10-28 grant
US20090048661A1 (en) 2009-02-19 application

Similar Documents

Publication Publication Date Title
US6432132B1 (en) Expandable intraluminal endoprosthesis
US6730117B1 (en) Intraluminal stent
EP1229864B1 (en) Multi-section filamentary endoluminal stent
US7108714B1 (en) Expandable intraluminal endoprosthesis
US6443982B1 (en) Flexible expandable stent
US6699277B1 (en) Stent with cover connectors
US5824052A (en) Coiled sheet stent having helical articulation and methods of use
US6494907B1 (en) Braided stent
US6325821B1 (en) Stent for angioplasty
US5913896A (en) Interwoven dual sinusoidal helix stent
US6027526A (en) Stent having varied amounts of structural strength along its length
US5935162A (en) Wire-tubular hybrid stent
US6245102B1 (en) Stent, stent graft and stent valve
US6881222B2 (en) Non-foreshortening intraluminal prosthesis
US6071308A (en) Flexible metal wire stent
US6602282B1 (en) Flexible stent structure
US20040006382A1 (en) Intraluminar perforated radially expandable drug delivery prosthesis
US20060247759A1 (en) Flexible stent
US20030195609A1 (en) Hybrid stent
US20060142844A1 (en) Endoprosthesis having foot extensions
US6773455B2 (en) Stent with reinforced struts and bimodal deployment
US6464722B2 (en) Flexible expandable stent
US6042597A (en) Helical stent design
US6019789A (en) Expandable unit cell and intraluminal stent
US6695877B2 (en) Bifurcated stent

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EHR, TIMOTHY G.J.;KVEEN, GRAIG L.;REEL/FRAME:009459/0545;SIGNING DATES FROM 19980901 TO 19980904

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA

Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868

Effective date: 20050101

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12