US6179993B1 - Process for obtaining olefins from residual feedstocks - Google Patents

Process for obtaining olefins from residual feedstocks Download PDF

Info

Publication number
US6179993B1
US6179993B1 US08/803,209 US80320997A US6179993B1 US 6179993 B1 US6179993 B1 US 6179993B1 US 80320997 A US80320997 A US 80320997A US 6179993 B1 US6179993 B1 US 6179993B1
Authority
US
United States
Prior art keywords
solids
feedstock
reaction zone
vapor
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/803,209
Inventor
Noel M. Seimandi
Tony T. Cheng
Willibald Serrand
Mitchell Jacobson
Paul K. Ladwig
John F. Pagel
Michael R. Parrish
Hans A. Weisenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27534128&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6179993(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/606,153 external-priority patent/US5714663A/en
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Priority to US08/803,209 priority Critical patent/US6179993B1/en
Assigned to EXXON CHEMICAL PATENTS INC. reassignment EXXON CHEMICAL PATENTS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SERRAND, WILLIBALD, PAGEL, JOHN F., LADWIG, PAUL K., CHENG, TONY T., WEISENBERGER, HANS A., JACOBSON, MITCHELL, PARRISH, MICHAEL R., SEIMANDI, NOEL M.
Application granted granted Critical
Publication of US6179993B1 publication Critical patent/US6179993B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/28Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material
    • C10G9/32Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid material according to the "fluidised-bed" technique
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • the present invention relates to a process for obtaining a substantial amount of olefinic products from a residual feedstock by use of a vapor short contact time conversion process unit comprised of a bed of fluidized heat transfer solids.
  • the vapor short contact time process unit is operated at conditions which includes steam dilution to reduce partial pressure of hydrocarbon vapors and a vapor residence time less than about 0.5 seconds.
  • crude oils are subjected to atmospheric distillation to produce lighter fractions such as gas oils, kerosenes, gasolines, straight run naphtha, etc.
  • Petroleum fractions in the gasoline boiling range, such as naphthas, and those fractions which can readily be thermally or catalytically converted to gasoline boiling range products, such as gas oils, are the most valuable product streams in the refinery.
  • the residue from the atmospheric distillation step is then distilled at a pressure below atmospheric pressure. This later distillation step produces a vacuum gas oil distillate and a vacuum reduced residual oil which typically contains relatively high levels of asphaltene molecules. These asphaltene molecules are responsible for most of the Conradson carbon residue and metal components in the resid.
  • a significant amount of feedstock in the gas oil boiling range is used to make olefins in steam cracking process units which contains a furnace comprised of fired tubes, or coils in which the feedstock is thermally cracked at temperatures of about 540° C. to 760° C. in the presence of steam.
  • gas oils are adequate feedstocks for such purposes, they are also relatively expensive feedstocks because of their preferred use for the production of transportation fuels.
  • Residual feeds, which are substantially cheaper than gas oils, are typically unsuitable for use in steam crackers because of excessive cracking and coke formation in the furnace tubes leading to overheating and equipment plugging.
  • a process for producing olefins from a residual feedstock comprises converting the feedstock in a process unit comprised of:
  • the vapor short contact reaction zone is comprised of a horizontal moving bed of fluidized heat transfer solids.
  • the residence time in the reaction zone for the solids is about 10 to 30 seconds and the residence time for the vapor is less than 1 second.
  • the feedstock is selected from the group consisting of vacuum resids, atmospheric resids, heavy and reduced petroleum crude oil; pitch; asphalt; bitumen; tar sand oil; shale oil; coal; coal slurries; and coal liquefaction bottoms.
  • the reaction zone is fluidized with the aid of both a mechanical means and a fluidizing gas comprised of vaporized normally gaseous hydrocarbons, hydrogen, hydrogen sulfide, and steam.
  • FIGURE hereof is a schematic flow plan of a non-limiting preferred embodiment of the present invention.
  • Residual feedstocks which are suitable for use in the practice of the present invention are those hydrocarbonaceous streams boiling above about 480° C., preferably above about 540° C., more preferably above about 560° C.
  • Non-limiting examples of such streams include vacuum resids, atmospheric resids, heavy and reduced petroleum crude oil, pitch, asphalt, bitumen, tar sand oil, shale oil, coal slurries, and coal liquefaction bottoms.
  • Such streams may also contain minor amounts of lower boiling material.
  • These streams are normally not used as feeds to steam crackers, which are the petrochemical process units used to produce olefinic products, because they will produce excessive amounts of coke which fouls the furnace tubes.
  • Such feeds will normally have a Conradson carbon content of at least 5 wt. %, generally from about 5 to 50 wt. %, and typically above about 7 wt. %.
  • Conradson carbon residue is measured in accordance with ASTM Test D189-65.
  • the residual feedstocks will be converted to lower boiling products, including light olefins, in a vapor short contact time mechanically fluidized process unit which will be discussed below.
  • a co-feed preferably a refinery waste stream, may also be used with the residual feedstock in accordance with the present invention.
  • suitable co-feeds include: lube extracts, deasphalted rock, heavy products from fluidized catalytic cracking boiling in excess of about 260° C., and petrolatum.
  • Up to about 50 wt. % of the feed stream to the reaction zone can be the co-feed portion. It is preferred that no more that about 10 wt. %, more preferably no more than about 25 wt. % of the total feed stream be the co-feed portion.
  • “Lube extract”, for purposes of the present invention is that portion of a lube oil feedstock which is dissolved in and removed by a selective solvent. Typically, solvent extraction is used to improve: (i) the viscosity index, (ii) oxidation resistance, (iii) color of the lube oil base stock, and (iv) to reduce the carbon- and sludge- forming tendencies of the lubricants by separating the aromatic portion from the naphthenic and paraffinic portion.
  • the most common solvents used are furfural, phenol, and N-methyl-2-pyrrolidone (NMP).
  • a lube extract will typically be comprised of about: 10 to 30 wt. % saturates, 15 to 25 wt.
  • Petrolatum is a soft petroleum material obtained from petroleum residua and consisting of amorphous wax and oil.
  • Olefinic products are produced from the residual feedstocks in accordance with the present invention in a vapor short contact time process unit which is comprised of a heating zone, a vapor short contact time fluidized bed reaction zone, and a stripping zone.
  • Residual feedstock is fed via line 10 to vapor short contact time reaction zone 1 which contains a horizontal moving bed of fluidized hot heat transfer solids having a catalytic component having catalytic activity for the production of olefins. It is preferred that the solids in the vapor short contact time reactor be fluidized with assistance of a mechanical means.
  • the fluidization of the bed of solids is assisted by use of a fluidizing gas comprised of vaporized normally gaseous hydrocarbons, hydrogen, hydrogen sulfide, and added steam.
  • a fluidizing gas comprised of vaporized normally gaseous hydrocarbons, hydrogen, hydrogen sulfide, and added steam.
  • added steam we mean that the steam is not generated during processing as are the other components of the fluidizing gas.
  • the mechanical means be a mechanical mixing system characterized as having a relatively high mixing efficiency with only minor amounts of axial backmixing. Such a mixing system acts like a plug flow system with a flow pattern which ensures that the residence time is nearly equal for all particles.
  • the most preferred mechanical mixing system is the mixer of the type referred to by Lurgi AG of Germany as the LR-Mixer or LR-Flash Coker which was originally designed for processing for oil shale, coal, and tar sands.
  • the LR-Mixer consists of two horizontally oriented rotating screws which aid in fluidizing the solids.
  • the heat transfer solids will normally be substantially catalytically inert, relative to the catalytic component, toward the production of olefins.
  • the heat transfer solids serve as the heat carrier for bringing heat from the heater to the reaction zone for the thermal production of olefins.
  • a catalytic component is also present, increased amounts of olefins will be made. That is, olefins will be produced by both thermal and catalytic means.
  • the catalytic activity of the catalytic component will have an effective activity. By effective activity we mean that the catalytic activity is controlled so that relatively high levels of olefins are produced without the formation of unacceptable amounts of undesirable reaction products, such as methane.
  • the heat transfer solids will typically be petroleum coke from a delayed coking process, recycle coke from the instant process unit, or an inert material such as sand.
  • materials which can be used as the catalytic component include refractory metal oxides and aluminates, zeolites, spent fluid catalytic cracking catalysts, vanadium rich flue fines, spent bauxite, and mixtures thereof.
  • a typical analysis of spent bauxite will be about 30 to 35 wt. % FeO(OH)-AlO(OH); about 15 to 20 wt. % Fe 2 O 3 ; about 3 to 7 wt. % CaCO 3 ; about 2 to 6 wt. % TiO 2 ; and less than about 3 wt. % each of SiO 2 and Mn 3 O 4 .
  • Other mineral matter may also be present in tramp amounts.
  • Preferred refractory metal oxides are those wherein the metal is selected from Groups Ia, IIa, Va, VIa, VIIa, VIb, and VIIIa and the lanthanides, of the Periodic Table of the Elements.
  • Periodic Table of the Elements referred to herein is that published by Sargent-Welch Scientific Company, Catalog No. S-18806, Copyright 1980.
  • metal oxides selected from the group consisting of magnesium oxide, calcium oxide, manganese oxide, beryllium oxide, strontium oxide, cerium oxide, vanadium oxide, and cesium oxide.
  • a catalytic component is used with the heat transfer solids, it is preferred to use at least an effective amount of said catalytic component.
  • effective amount we mean at least that amount needed to increase the olefins yield by at least 5%, preferably by at least 10%, and more preferably by at least 20%, in excess of the yield of olefins obtained when only the relatively inert heat transfer solids are used without the catalytic component under the same reaction conditions.
  • the catalytic component will be of a substantially similar or smaller particle size than the heat transfer solids and will typically deposit on the surface of the heat transfer solids.
  • the portion of catalytic component of the total solids will be at least 3 wt. %, preferably from about 10 to 25 wt.
  • the catalytic component can be introduced into the process at any appropriate location. For example, it can be introduced directly into the vapor short contact time reactor, it can be introduced with the feedstock, etc. In any event, if a mixture of substantially inert and catalytic solids are used, the catalytic solids will preferably be dispersed onto the surface of the inert solids, particularly if the major portion of solids is inert and the catalytic component is in powder form. The catalytic component may also be incorporated or dispersed into the relatively inert heat transfer solids. Although it is preferred that the heat transfer solids be coke particles, they may be any other suitable refractory particulate material.
  • Non-limiting examples of such other suitable refractory particulate materials include those selected from the group consisting of silica, alumina, zirconia, and mullite, synthetically prepared or naturally occurring material such as pumice, clay, kieselguhr, bauxite, and the like.
  • the heat transfer solids will preferably have an average particle size of about 40 microns to 2,000 microns, more preferably from about 200 microns to about 1000 microns, more preferably 400 microns to 800 microns. It is within the scope of the present invention that the catalytic component can represent 100% of the heat transfer solids.
  • the feedstock is contacted with the fluidized hot heat transfer solids, which will preferably be at a temperature from about 670° C. to about 870° C., more preferably from 780° C. to 850° C.
  • a substantial portion of high Conradson carbon and metal-containing components from the feed will deposit onto the hot solids in the form of high molecular weight combustible carbonaceous metal-containing material.
  • the remaining portion will be vaporized and will contain a substantial amount of olefinic products, typically in the range of about 10 to 50 wt. %, preferably from about 20 to 50 wt. %, and more preferably from about 30 to 50 wt. %, based on the total weight of the product stream.
  • the olefin portion of the product stream obtained by the practice of the present invention will typically be comprised of about 5 to 15 wt. % methane; about 5 to 30 wt. %, preferably about 10 to 30 wt. % ethylene; and about 5 to 20 wt. % propylene, based on the feed.
  • the residence time of vapor products in reaction zone 1 will be an effective amount of time. That is, a short enough amount of time so that substantial secondary cracking does not occur. This amount of time will typically be less than about 2 seconds, preferably less than about 1 second, more preferably less than about 0.5 seconds, and most preferably less than about 0.25 seconds.
  • the residence time of solids in the reaction zone will be from about 5 to 60 seconds, preferably from about 10 to 30 seconds.
  • One novel aspect of the present invention is that the residence time of the solids and the residence time of the vapor products, in the vapor short contact time reaction zone, can be independently controlled. Conventional fluidized bed process units are such that the solids residence time and the vapor residence time cannot be independently controlled, especially at relatively short vapor residence times.
  • the vapor short contact time process unit be operated so that the ratio of solids to feed be from about 40 to 1 to 10 to 1, preferably from about 25 to 1 to 15 to 1.
  • the precise ratio of solids to feed for any particular run will primarily depend on the heat balance requirement of the vapor short contact time reaction zone. Associating the solids to oil ratio with heat balance requirements is within the skill of those having ordinary skill in the art, and thus will not be elaborated herein.
  • a minor amount of the feedstock will deposit on the solids in the form of combustible carbonaceous material. Metal components will also deposit on the solids. Consequently, the vaporized fraction will be substantially lower in both Conradson Carbon and metals when compared to the original feed.
  • the vaporized fraction exits the reaction zone via line 11 and is quenched by use of a quench liquid which is introduced via line 12 to temperatures below that which substantial thermal cracking occurs.
  • Preferred quench liquids are water, and hydrocarbon streams, such as naphthas and distillates oil.
  • the temperature to which the vaporized fraction will be quenched will preferably be from about 50° to 100° C. below the temperature of the reaction zone.
  • the vaporized fraction is then introduced into cyclone 2 where most of the entrained solids, or dust, is removed.
  • the resulting dedusted vapors are then passed via line 13 to scrubber 3 where a light product stream is collected overhead via line 28 .
  • the light product stream will typically have an end boiling point of about 510° C.
  • This light product stream will typically contain about 7 to 10 wt. % methane, 5 to 30 wt. % ethylene, and 5 to 20 wt. % propylene, and 6 to 9 wt. % unsaturated C 4 's, such as butanes and butadienes, based on the total weight of the feed.
  • the remaining heavier stream is collected from the scrubber via line 26 and recycled to reaction zone 1 .
  • Solids, having carbonaceous material deposited thereon are passed from reaction zone 1 via lines 15 to the bed of solids 17 in stripper 4 .
  • the solids pass downwardly through the stripper and past a stripping zone where any remaining volatiles, or vaporizable material, are stripped with use of a stripping gas, preferably steam, introduced into the stripping zone via line 16 .
  • Stripped vapor products pass upwardly in stripper vessel 4 , through line 19 to reaction zone 1 , then to cyclone 2 via line 11 and removed via line 13 with the light product stream.
  • the stripped solids are passed via line 18 to heater 5 which contains a heating zone.
  • the heating zone which is a combination of heater 5 and transfer line 18 a , is operated in an oxidizing gas environment, preferably with air, at an effective temperature. That is, at a temperature that will meet the heat requirements of the reaction zone. Air is injected via line 20 to support combustion of the carbonaceous components.
  • the heating zone will typically be operated at a temperature from about 40° C. to 200° C., preferably from about 65° C. to 175° C., more preferably from about 65° C. to 120° C. in excess of the operating temperature of reaction zones 1 .
  • preheated air can also be introduced into the heater.
  • the heater will typically be operated at a pressure ranging from about 0 to 150 psig (0 to 1136 kPa), preferably at a pressure ranging from about 15 to about 45 psig (204.8 to 411.7 kPa). While some carbonaceous residue will be burned from the solids in the heating zone, it is preferred that only partial combustion take place so that the solids, after passing through the heater, will have value as a fuel. Excess solids can be removed from the process unit via line 50 . Flue gas is removed overhead from heater 5 via line 40 . The flue gas can be passed through a cyclone system (not shown) to remove fines.
  • Dedusted flue gas may be passed to a CO boiler (not shown) which includes a waste heat recovery system (not shown), and scrubbed to remove contaminants and particulates.
  • the heated solids are then recycled via lines 12 and 14 to reaction zone 1 .
  • the catalyst component can be introduced anywhere in the process where practical. For example, it can be introduced into the heater 5 , reactor 1 , or with the feedstock in line 10 .
  • a South Louisiana Vacuum Residual was used as the feedstock and was fed at a feed rate of 100 barrels/day to a short contact time fluid coking pilot unit.
  • the operating temperature of the pilot unit was 396° C. at a vapor residence time of less than 1 second.
  • Estimated conversion and product yields are set forth in Table I below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for obtaining a substantial amount of olefinic products from a residual feedstock by use of a vapor short contact time conversion process unit comprised of a bed of fluidized heat transfer solids. The vapor short contact time process unit is operated at conditions which includes steam dilution to reduce partial pressure of hydrocarbon vapors and a vapor residence time less than about 0.5 seconds.

Description

The present application is a continuation-in-part of application Ser. No. 08/606,153 filed Feb. 23, 1996; entitled “Process for Obtaining Significant Olefin Yields from Residua Feedstocks” currently pending (attorney docket number HEN-9517) and the present application claims priority to (1) Provisional application serial No. 60/026,416 filed Sep. 20, 1996 “Process for Obtaining Olefins from Lube Extracts and Other Refinery Waste Streams”; (2) Provisional application serial No. 60/025,743 filed Sep. 20, 1996 “Process for Obtaining Olefins from Residual Feedstocks”; (3) Provisional application serial No. 60/026,427 filed Sep. 20, 1996 “Dual Process for Obtaining Olefins”; and (4) Provisional application serial No. 60/026,376 filed Sep. 20, 1996 “Process for Obtaining Olefins from Residual Feedstocks”. The present application is related to (1) application Ser. No. 08/803,664 filed on the same date as this application, entitled “Process for Obtaining Olefins from Lube Extracts and Other Refinery Waste Streams” by inventor P. A. Ruziska, et. al., and (2) application Ser. No. 08/803,664 filed on the same date as this application, entitled “Dual Process for Obtaining Olefins” by inventors W. Serrand, et. al. All of these applications are incorporated herein by this reference.
FIELD OF THE INVENTION
The present invention relates to a process for obtaining a substantial amount of olefinic products from a residual feedstock by use of a vapor short contact time conversion process unit comprised of a bed of fluidized heat transfer solids. The vapor short contact time process unit is operated at conditions which includes steam dilution to reduce partial pressure of hydrocarbon vapors and a vapor residence time less than about 0.5 seconds.
BACKGROUND OF THE INVENTION
In a typical refinery, crude oils are subjected to atmospheric distillation to produce lighter fractions such as gas oils, kerosenes, gasolines, straight run naphtha, etc. Petroleum fractions in the gasoline boiling range, such as naphthas, and those fractions which can readily be thermally or catalytically converted to gasoline boiling range products, such as gas oils, are the most valuable product streams in the refinery. The residue from the atmospheric distillation step is then distilled at a pressure below atmospheric pressure. This later distillation step produces a vacuum gas oil distillate and a vacuum reduced residual oil which typically contains relatively high levels of asphaltene molecules. These asphaltene molecules are responsible for most of the Conradson carbon residue and metal components in the resid. They also contain relatively high levels of heteroatoms, such as sulfur and nitrogen. These feeds have little commercial value, primarily because they cannot be used as a fuel oil owing to ever stricter environmental regulations. They also have little value as feedstocks for refinery processes, such as fluid catalytic cracking, because they produce excessive amounts of gas and coke. Also, their high metals content leads to catalyst deactivation. Thus, there is a great need in petroleum refining for greater utilization of such feedstocks for example by upgrading them to make them more valuable cleaner and lighter feeds.
A significant amount of feedstock in the gas oil boiling range is used to make olefins in steam cracking process units which contains a furnace comprised of fired tubes, or coils in which the feedstock is thermally cracked at temperatures of about 540° C. to 760° C. in the presence of steam. While gas oils are adequate feedstocks for such purposes, they are also relatively expensive feedstocks because of their preferred use for the production of transportation fuels. Residual feeds, which are substantially cheaper than gas oils, are typically unsuitable for use in steam crackers because of excessive cracking and coke formation in the furnace tubes leading to overheating and equipment plugging.
An attempt to overcome these problems was made in U.S. Pat. No. 2,768,127 which teaches the use of residual feedstocks for the production of aromatic and olefinic product streams. This was accomplished by contacting the residua feedstock in a fluidized bed of coke particles maintained at a temperature from about 675° C. to 760° C. While such attempts have been made to overcome these problems, there remains a need for improved processes having better control of solids and vapor residence times.
SUMMARY OF THE INVENTION
In accordance with the present invention, there is provided a process for producing olefins from a residual feedstock, which process comprises converting the feedstock in a process unit comprised of:
(i) a heating zone wherein heat transfer solids containing carbonaceous deposits thereon are received from a stripping zone and heated in the presence of an oxidizing gas;
(ii) a vapor short contact time reaction zone containing a bed of fluidized solids comprised of heat transfer solids recycled from the heating zone; and
(iii) a stripping zone through which solids having carbonaceous deposits thereon are passed from the reaction zone and wherein lower boiling additional hydrocarbons and volatiles are recovered with a stripping gas; which process comprises:
(a) feeding the residual feedstock to said vapor short contact time reaction zone wherein it contacts the fluidized heat transfer solids and catalytic component, which reaction zone is operated at a temperature from about 760° C. to about 790° C. and under conditions such that the solids residence time and the vapor residence time are independently controlled, which vapor residence time is less than about 0.5 seconds, and which solids residence time is from about 5 to about 60 seconds, thereby resulting in a material being deposited onto said solids, and a vaporized fraction containing olefinic products, which material is characterized as a combustible carbonaceous metal-containing material, and wherein steam is fed at a rate from about 0.2 to 0.5 lbs per lb. of residual feedstock;
(b) separating the vaporized fraction from the solids;
(c) separating an olefin-rich fraction from said vaporized fraction;
(d) passing the separated solids to said stripping zone where they are contacted with a stripping gas, thereby removing any remaining volatile material therefrom;
(e) passing the stripped solids to said heating zone where they are heated to an effective temperature that will maintain the operating temperature of the reaction zone; and
(f) recycling heated solids from the heating zone to the reaction zone where they provide the heat of reaction and are contacted with fresh feedstock.
In a preferred embodiment of the present invention, the vapor short contact reaction zone is comprised of a horizontal moving bed of fluidized heat transfer solids.
In other preferred embodiments of the present invention the residence time in the reaction zone for the solids is about 10 to 30 seconds and the residence time for the vapor is less than 1 second.
In still other preferred embodiments of the present invention, the feedstock is selected from the group consisting of vacuum resids, atmospheric resids, heavy and reduced petroleum crude oil; pitch; asphalt; bitumen; tar sand oil; shale oil; coal; coal slurries; and coal liquefaction bottoms.
In still other preferred embodiments of the present invention, the reaction zone is fluidized with the aid of both a mechanical means and a fluidizing gas comprised of vaporized normally gaseous hydrocarbons, hydrogen, hydrogen sulfide, and steam.
BRIEF DESCRIPTION OF THE FIGURE
The sole FIGURE hereof is a schematic flow plan of a non-limiting preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Residual feedstocks which are suitable for use in the practice of the present invention are those hydrocarbonaceous streams boiling above about 480° C., preferably above about 540° C., more preferably above about 560° C. Non-limiting examples of such streams include vacuum resids, atmospheric resids, heavy and reduced petroleum crude oil, pitch, asphalt, bitumen, tar sand oil, shale oil, coal slurries, and coal liquefaction bottoms. Such streams may also contain minor amounts of lower boiling material. These streams are normally not used as feeds to steam crackers, which are the petrochemical process units used to produce olefinic products, because they will produce excessive amounts of coke which fouls the furnace tubes. Such feeds will normally have a Conradson carbon content of at least 5 wt. %, generally from about 5 to 50 wt. %, and typically above about 7 wt. %. Conradson carbon residue is measured in accordance with ASTM Test D189-65. The residual feedstocks will be converted to lower boiling products, including light olefins, in a vapor short contact time mechanically fluidized process unit which will be discussed below.
A co-feed, preferably a refinery waste stream, may also be used with the residual feedstock in accordance with the present invention. Non-limiting examples of suitable co-feeds include: lube extracts, deasphalted rock, heavy products from fluidized catalytic cracking boiling in excess of about 260° C., and petrolatum. Up to about 50 wt. % of the feed stream to the reaction zone can be the co-feed portion. It is preferred that no more that about 10 wt. %, more preferably no more than about 25 wt. % of the total feed stream be the co-feed portion.
“Lube extract”, for purposes of the present invention is that portion of a lube oil feedstock which is dissolved in and removed by a selective solvent. Typically, solvent extraction is used to improve: (i) the viscosity index, (ii) oxidation resistance, (iii) color of the lube oil base stock, and (iv) to reduce the carbon- and sludge- forming tendencies of the lubricants by separating the aromatic portion from the naphthenic and paraffinic portion. The most common solvents used are furfural, phenol, and N-methyl-2-pyrrolidone (NMP). A lube extract will typically be comprised of about: 10 to 30 wt. % saturates, 15 to 25 wt. % one ring compounds, 20 to 30 wt. % two ring compounds, 10 to 20 wt. % three ring compounds, 5 to 20 wt. % four ring compounds, and 1 to 10 wt. % polars, wherein said weight percents are based on the total weight of the extract. Petrolatum is a soft petroleum material obtained from petroleum residua and consisting of amorphous wax and oil.
Olefinic products are produced from the residual feedstocks in accordance with the present invention in a vapor short contact time process unit which is comprised of a heating zone, a vapor short contact time fluidized bed reaction zone, and a stripping zone. Reference is now made to the sole figure hereof which illustrates, in a simplified form, a preferred process embodiment of the present invention. Residual feedstock is fed via line 10 to vapor short contact time reaction zone 1 which contains a horizontal moving bed of fluidized hot heat transfer solids having a catalytic component having catalytic activity for the production of olefins. It is preferred that the solids in the vapor short contact time reactor be fluidized with assistance of a mechanical means. The fluidization of the bed of solids is assisted by use of a fluidizing gas comprised of vaporized normally gaseous hydrocarbons, hydrogen, hydrogen sulfide, and added steam. By “added steam” we mean that the steam is not generated during processing as are the other components of the fluidizing gas. Further, it is preferred that the mechanical means be a mechanical mixing system characterized as having a relatively high mixing efficiency with only minor amounts of axial backmixing. Such a mixing system acts like a plug flow system with a flow pattern which ensures that the residence time is nearly equal for all particles. The most preferred mechanical mixing system is the mixer of the type referred to by Lurgi AG of Germany as the LR-Mixer or LR-Flash Coker which was originally designed for processing for oil shale, coal, and tar sands. The LR-Mixer consists of two horizontally oriented rotating screws which aid in fluidizing the solids.
The heat transfer solids will normally be substantially catalytically inert, relative to the catalytic component, toward the production of olefins. The heat transfer solids serve as the heat carrier for bringing heat from the heater to the reaction zone for the thermal production of olefins. When a catalytic component is also present, increased amounts of olefins will be made. That is, olefins will be produced by both thermal and catalytic means. The catalytic activity of the catalytic component will have an effective activity. By effective activity we mean that the catalytic activity is controlled so that relatively high levels of olefins are produced without the formation of unacceptable amounts of undesirable reaction products, such as methane. The heat transfer solids will typically be petroleum coke from a delayed coking process, recycle coke from the instant process unit, or an inert material such as sand. Non-limiting examples of materials which can be used as the catalytic component include refractory metal oxides and aluminates, zeolites, spent fluid catalytic cracking catalysts, vanadium rich flue fines, spent bauxite, and mixtures thereof. The term “spent bauxite”, also sometimes referred to as “red mud”, as used herein, refers to the waste portion of bauxite left after aluminum production. Spent bauxite will typically be comprised of the remaining mineral matter, in oxide form, after aluminum production. A typical analysis of spent bauxite will be about 30 to 35 wt. % FeO(OH)-AlO(OH); about 15 to 20 wt. % Fe2O3; about 3 to 7 wt. % CaCO3; about 2 to 6 wt. % TiO2; and less than about 3 wt. % each of SiO2 and Mn3O4. Other mineral matter may also be present in tramp amounts. Preferred refractory metal oxides are those wherein the metal is selected from Groups Ia, IIa, Va, VIa, VIIa, VIb, and VIIIa and the lanthanides, of the Periodic Table of the Elements. The Periodic Table of the Elements referred to herein is that published by Sargent-Welch Scientific Company, Catalog No. S-18806, Copyright 1980. Preferred are metal oxides selected from the group consisting of magnesium oxide, calcium oxide, manganese oxide, beryllium oxide, strontium oxide, cerium oxide, vanadium oxide, and cesium oxide.
If a catalytic component is used with the heat transfer solids, it is preferred to use at least an effective amount of said catalytic component. By “effective amount” we mean at least that amount needed to increase the olefins yield by at least 5%, preferably by at least 10%, and more preferably by at least 20%, in excess of the yield of olefins obtained when only the relatively inert heat transfer solids are used without the catalytic component under the same reaction conditions. Typically, the catalytic component will be of a substantially similar or smaller particle size than the heat transfer solids and will typically deposit on the surface of the heat transfer solids. The portion of catalytic component of the total solids will be at least 3 wt. %, preferably from about 10 to 25 wt. % of the total weight of the solids in the vapor short contact time reaction zone. The catalytic component can be introduced into the process at any appropriate location. For example, it can be introduced directly into the vapor short contact time reactor, it can be introduced with the feedstock, etc. In any event, if a mixture of substantially inert and catalytic solids are used, the catalytic solids will preferably be dispersed onto the surface of the inert solids, particularly if the major portion of solids is inert and the catalytic component is in powder form. The catalytic component may also be incorporated or dispersed into the relatively inert heat transfer solids. Although it is preferred that the heat transfer solids be coke particles, they may be any other suitable refractory particulate material. Non-limiting examples of such other suitable refractory particulate materials include those selected from the group consisting of silica, alumina, zirconia, and mullite, synthetically prepared or naturally occurring material such as pumice, clay, kieselguhr, bauxite, and the like. The heat transfer solids will preferably have an average particle size of about 40 microns to 2,000 microns, more preferably from about 200 microns to about 1000 microns, more preferably 400 microns to 800 microns. It is within the scope of the present invention that the catalytic component can represent 100% of the heat transfer solids.
The feedstock is contacted with the fluidized hot heat transfer solids, which will preferably be at a temperature from about 670° C. to about 870° C., more preferably from 780° C. to 850° C. A substantial portion of high Conradson carbon and metal-containing components from the feed will deposit onto the hot solids in the form of high molecular weight combustible carbonaceous metal-containing material. The remaining portion will be vaporized and will contain a substantial amount of olefinic products, typically in the range of about 10 to 50 wt. %, preferably from about 20 to 50 wt. %, and more preferably from about 30 to 50 wt. %, based on the total weight of the product stream. The olefin portion of the product stream obtained by the practice of the present invention will typically be comprised of about 5 to 15 wt. % methane; about 5 to 30 wt. %, preferably about 10 to 30 wt. % ethylene; and about 5 to 20 wt. % propylene, based on the feed.
The residence time of vapor products in reaction zone 1 will be an effective amount of time. That is, a short enough amount of time so that substantial secondary cracking does not occur. This amount of time will typically be less than about 2 seconds, preferably less than about 1 second, more preferably less than about 0.5 seconds, and most preferably less than about 0.25 seconds. The residence time of solids in the reaction zone will be from about 5 to 60 seconds, preferably from about 10 to 30 seconds. One novel aspect of the present invention is that the residence time of the solids and the residence time of the vapor products, in the vapor short contact time reaction zone, can be independently controlled. Conventional fluidized bed process units are such that the solids residence time and the vapor residence time cannot be independently controlled, especially at relatively short vapor residence times. It is preferred that the vapor short contact time process unit be operated so that the ratio of solids to feed be from about 40 to 1 to 10 to 1, preferably from about 25 to 1 to 15 to 1. The precise ratio of solids to feed for any particular run will primarily depend on the heat balance requirement of the vapor short contact time reaction zone. Associating the solids to oil ratio with heat balance requirements is within the skill of those having ordinary skill in the art, and thus will not be elaborated herein. A minor amount of the feedstock will deposit on the solids in the form of combustible carbonaceous material. Metal components will also deposit on the solids. Consequently, the vaporized fraction will be substantially lower in both Conradson Carbon and metals when compared to the original feed.
The vaporized fraction exits the reaction zone via line 11 and is quenched by use of a quench liquid which is introduced via line 12 to temperatures below that which substantial thermal cracking occurs. Preferred quench liquids are water, and hydrocarbon streams, such as naphthas and distillates oil. The temperature to which the vaporized fraction will be quenched will preferably be from about 50° to 100° C. below the temperature of the reaction zone. The vaporized fraction is then introduced into cyclone 2 where most of the entrained solids, or dust, is removed. The resulting dedusted vapors are then passed via line 13 to scrubber 3 where a light product stream is collected overhead via line 28. The light product stream will typically have an end boiling point of about 510° C. This light product stream will typically contain about 7 to 10 wt. % methane, 5 to 30 wt. % ethylene, and 5 to 20 wt. % propylene, and 6 to 9 wt. % unsaturated C4's, such as butanes and butadienes, based on the total weight of the feed. The remaining heavier stream is collected from the scrubber via line 26 and recycled to reaction zone 1.
Solids, having carbonaceous material deposited thereon are passed from reaction zone 1 via lines 15 to the bed of solids 17 in stripper 4. The solids pass downwardly through the stripper and past a stripping zone where any remaining volatiles, or vaporizable material, are stripped with use of a stripping gas, preferably steam, introduced into the stripping zone via line 16. Stripped vapor products pass upwardly in stripper vessel 4, through line 19 to reaction zone 1, then to cyclone 2 via line 11 and removed via line 13 with the light product stream. The stripped solids are passed via line 18 to heater 5 which contains a heating zone. The heating zone, which is a combination of heater 5 and transfer line 18 a, is operated in an oxidizing gas environment, preferably with air, at an effective temperature. That is, at a temperature that will meet the heat requirements of the reaction zone. Air is injected via line 20 to support combustion of the carbonaceous components. The heating zone will typically be operated at a temperature from about 40° C. to 200° C., preferably from about 65° C. to 175° C., more preferably from about 65° C. to 120° C. in excess of the operating temperature of reaction zones 1.
It is to be understood that preheated air can also be introduced into the heater. The heater will typically be operated at a pressure ranging from about 0 to 150 psig (0 to 1136 kPa), preferably at a pressure ranging from about 15 to about 45 psig (204.8 to 411.7 kPa). While some carbonaceous residue will be burned from the solids in the heating zone, it is preferred that only partial combustion take place so that the solids, after passing through the heater, will have value as a fuel. Excess solids can be removed from the process unit via line 50. Flue gas is removed overhead from heater 5 via line 40. The flue gas can be passed through a cyclone system (not shown) to remove fines. Dedusted flue gas may be passed to a CO boiler (not shown) which includes a waste heat recovery system (not shown), and scrubbed to remove contaminants and particulates. The heated solids are then recycled via lines 12 and 14 to reaction zone 1. The catalyst component can be introduced anywhere in the process where practical. For example, it can be introduced into the heater 5, reactor 1, or with the feedstock in line 10.
The following example is presented to show that a short contact time process mode is important for obtaining increased olefin yields from residual feedstocks.
EXAMPLE
A South Louisiana Vacuum Residual was used as the feedstock and was fed at a feed rate of 100 barrels/day to a short contact time fluid coking pilot unit. The operating temperature of the pilot unit was 396° C. at a vapor residence time of less than 1 second. Estimated conversion and product yields are set forth in Table I below.
TABLE I
Feed rate 100
Temperature ° C. 745
C3 Conversion 35
Gas Yields wt. % on Feed
Methane 7-10
Ethylene 14-16 
Propylene 9-12
Unsaturated C4's 6-9 
Liquid Yields wt. % on Feed
C5/220° C. 17.5
220°/340° C. 8.0
340° C.+ 13.0
Total C5+ 38.5
Gross Coke, wt. % on Feed 18.7
Ethylene/Ethane 6.0
Propylene/Propane 19.0
Butylene/Butane 30.0

Claims (12)

What is claimed is:
1. A process for producing olefins from a residual feedstock, which process comprises converting the feedstock in a process unit comprised of:
(i) a heating zone wherein heat transfer solids containing carbonaceous deposits thereon are received from a stripping zone and heated in the presence of an oxidizing gas;
(ii) a vapor short contact time reaction zone containing a bed of fluidized solids comprised of heat transfer solids recycled from the heating zone; and
(iii) a stripping zone through which solids having carbonaceous deposits thereon are passed from the reaction zone and wherein lower boiling additional hydrocarbons and volatiles are recovered with a stripping gas; which process comprises:
(a) feeding the residual feedstock to said vapor short contact time reaction zone wherein (it) the residual feedstock contacts the fluidized heat transfer solids and catalytic component, which reaction zone is operated at a temperature from about 760° C. to about 790° C. and under conditions such that the solids residence time and the vapor residence time are independently controlled, which vapor residence time is less than about 0.5 seconds, and which solids residence time is from about 5 to about 60 seconds, thereby resulting in a material being deposited onto said solids, and a vaporized fraction containing olefinic products, which material is characterized as a combustible carbonaceous metal-containing material, and wherein steam is fed at a rate from about 0.2 to 0.5 lbs per lb. of residual feedstock;
(b) separating the vaporized fraction from the solids;
(c) separating an olefin-rich fraction from said vaporized fraction;
(d) passing the separated solids to said stripping zone where they are contacted with a stripping gas, thereby removing any remaining volatile material therefrom;
(e) passing the stripped solids to said heating zone where they are heated to an effective temperature that will maintain the operating temperature of the reaction zone; and
(f) recycling heated solids from the heating zone to the reaction zone where they provide the heat of reaction and are contacted with fresh feedstock.
2. The process of claim 1 wherein the solids residence time of the vapor short contact time reaction zone is from about 10 to 30 seconds.
3. The process of claim 1 wherein the residua feedstock is selected from the group consisting of vacuum resids, atmospheric resids, heavy and reduced petroleum crude oil; pitch; asphalt; bitumen; tar sand oil; shale oil; coal slurries; and coal liquefaction bottoms.
4. The process of claim 3 wherein the residua feedstock is a vacuum resid.
5. The process of claim 1 wherein (the) a catalytic component is present in the heat transfer solids which is selected from the group consisting of refractory metal oxides, aluminates, zeolites, spent fluid catalytic cracking catalysts, vanadium rich flue fines, spent bauxite, and mixtures thereof.
6. The process of claim 5 wherein the catalytic component is metal oxides selected from the group consisting of magnesium oxide, calcium oxide, manganese oxide, beryllium oxide, strontium oxide, cerium oxide, vanadium oxide, cesium oxide, and mixtures thereof.
7. The process of claim 1 wherein the heat transfer solids are selected from the group consisting of petroleum coke from a delayed coking process, recycle coke, (or) an inert material, (such as) or sand.
8. The process of claim 1 wherein the solids of the vapor short contact time reaction zone are fluidized with the aid of a mechanical means and a fluidizing gas.
9. The process of claim 8 wherein the fluidizing gas is comprised of normally gaseous hydrocarbons, hydrogen, hydrogen sulfide, and steam.
10. The process of claim 1 wherein a co-feed is used and is selected from the group consisting of lube extracts, deasphalted rock, heavy products from fluidized catalytic cracking boiling in excess of about 260° C., and petrolatum.
11. The process of claim 10 wherein less than 50 wt. % of the feedstock is said co-feed.
12. The process of claim 1 wherein the stripping gas is steam.
US08/803,209 1996-02-23 1997-02-21 Process for obtaining olefins from residual feedstocks Expired - Fee Related US6179993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/803,209 US6179993B1 (en) 1996-02-23 1997-02-21 Process for obtaining olefins from residual feedstocks

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US08/606,153 US5714663A (en) 1996-02-23 1996-02-23 Process for obtaining significant olefin yields from residua feedstocks
US2642796P 1996-09-20 1996-09-20
US2641696P 1996-09-20 1996-09-20
US2637696P 1996-09-20 1996-09-20
US2574396P 1996-09-20 1996-09-20
US08/803,209 US6179993B1 (en) 1996-02-23 1997-02-21 Process for obtaining olefins from residual feedstocks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/606,153 Continuation-In-Part US5714663A (en) 1996-02-22 1996-02-23 Process for obtaining significant olefin yields from residua feedstocks

Publications (1)

Publication Number Publication Date
US6179993B1 true US6179993B1 (en) 2001-01-30

Family

ID=27534128

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/803,664 Expired - Fee Related US5952539A (en) 1996-02-23 1997-02-21 Dual process for obtaining olefins
US08/803,209 Expired - Fee Related US6179993B1 (en) 1996-02-23 1997-02-21 Process for obtaining olefins from residual feedstocks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/803,664 Expired - Fee Related US5952539A (en) 1996-02-23 1997-02-21 Dual process for obtaining olefins

Country Status (9)

Country Link
US (2) US5952539A (en)
EP (1) EP0888419B2 (en)
CN (1) CN1214076A (en)
AU (1) AU717437B2 (en)
CA (1) CA2247058A1 (en)
DE (1) DE69706838T3 (en)
EA (1) EA001136B1 (en)
ES (1) ES2165039T3 (en)
WO (1) WO1997031083A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867341B1 (en) 2002-09-17 2005-03-15 Uop Llc Catalytic naphtha cracking catalyst and process
US20080253936A1 (en) * 2007-04-16 2008-10-16 Ramin Abhari Process for producing synthetic petroleum jelly
US20110131874A1 (en) * 2009-12-08 2011-06-09 Baker Hughes Incorporated Method for improving the efficiency of heat transfer in a coal fired furnace
US20110232548A1 (en) * 2009-12-08 2011-09-29 Baker Hughes Incorporated Method for improving the efficiency of heat transfer in a furnace
WO2011150217A2 (en) 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8361311B2 (en) 2010-07-09 2013-01-29 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals conversion process
US8399729B2 (en) 2010-07-09 2013-03-19 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
US8604260B2 (en) 2010-05-18 2013-12-10 Kior, Inc. Biomass pyrolysis conversion process with high olefin production and upgrade
WO2021086509A1 (en) 2019-11-01 2021-05-06 Exxonmobil Chemical Patents Inc. Processes and systems for quenching pyrolysis effluents
EP3819357A1 (en) 2019-11-11 2021-05-12 Indian Oil Corporation Limited A process for producing hydrogen and light olefins from resid fluid catalytic cracking

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879536A (en) * 1996-12-17 1999-03-09 Exxon Research And Engineering Company Two-stage process for obtaining significant olefin yields from residua feedstocks
US5879535A (en) * 1996-12-17 1999-03-09 Exxon Research And Engineering Company Two-stage process for obtaining significant olefin yields from residua feedstocks
EP1015529A4 (en) * 1997-06-25 2002-08-14 Exxonmobil Res & Eng Co Improved process for obtaining significant olefin yields from residua feedstocks
DE60016787T2 (en) * 1999-10-14 2005-05-19 Exxonmobil Research And Engineering Co. TWO-STAGE PROCESS FOR CONVERTING RESIDUES TO PETROL AND LIGHT OIL FINES
US7102050B1 (en) * 2000-05-04 2006-09-05 Exxonmobil Chemical Patents Inc. Multiple riser reactor
ES2395116T3 (en) 2000-09-18 2013-02-08 Ivanhoe Htl Petroleum Ltd Products produced from rapid thermal processing of heavy hydrocarbon raw materials
US7033486B2 (en) * 2002-04-01 2006-04-25 Exxonmobil Research And Engineering Company Residuum conversion process
CA2493884A1 (en) * 2002-07-19 2004-01-29 Shell Internationale Research Maatschappij B.V. Use of a blue flame burner
EP1534996A1 (en) * 2002-07-19 2005-06-01 Shell Internationale Researchmaatschappij B.V. Process for combustion of a liquid hydrocarbon
US7572365B2 (en) 2002-10-11 2009-08-11 Ivanhoe Energy, Inc. Modified thermal processing of heavy hydrocarbon feedstocks
US7572362B2 (en) * 2002-10-11 2009-08-11 Ivanhoe Energy, Inc. Modified thermal processing of heavy hydrocarbon feedstocks
CO5540064A1 (en) * 2003-04-17 2005-07-29 Ivanhoe Htl Petroleum Ltd MODIFIED THERMAL PROCESS OF HEAVY HYDROCARBON RAW MATERIALS
CN102909046B (en) * 2011-06-20 2014-07-02 上海宝钢化工有限公司 High activity catalyst used for hydrocracking and upgrading reactions of PRO residual oil and preparation method thereof
WO2014072058A1 (en) * 2012-11-08 2014-05-15 Linde Aktiengesellschaft Process for producing olefin-containing products by thermal steam cracking
US9707532B1 (en) 2013-03-04 2017-07-18 Ivanhoe Htl Petroleum Ltd. HTL reactor geometry
GB201603558D0 (en) * 2016-03-01 2016-04-13 Johnson Matthey Davy Technologies Ltd Apparatus and process
WO2018111540A1 (en) * 2016-12-15 2018-06-21 Exxonmobil Research And Engineering Company Efficient process for upgrading paraffins to gasoline
WO2019164609A1 (en) * 2018-02-21 2019-08-29 Exxonmobil Chemical Patents Inc. Fluid bed steam cracking using direct heating
US20220275283A1 (en) * 2019-08-02 2022-09-01 Exxonmobil Chemical Patents Inc. Processes and Systems for Upgrading a Hydrocarbon-Containing Feed
US11352567B2 (en) * 2019-08-02 2022-06-07 Exxonmobil Chemical Patents Inc. Processes for converting organic material-containing feeds via pyrolysis
EP4219661A1 (en) * 2019-09-06 2023-08-02 Shell Internationale Research Maatschappij B.V. Fluidized bed devolatilization and cracking of solid refinery residue

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2385446A (en) 1941-08-06 1945-09-25 Kellogg M W Co Catalytic conversion of hydrocarbons
US2432962A (en) 1946-06-20 1947-12-16 Socony Vacuum Oil Co Inc Process for heating hydrocarbons by contact with alioving granular solid
US2436160A (en) 1943-12-10 1948-02-17 Cracking of hydrocarbon oils with
US2731508A (en) 1951-06-08 1956-01-17 Exxon Research Engineering Co Conversion of hydrocarbons for the production of unsaturates and gasoline with the use of inert solids
DE938844C (en) 1951-06-08 1956-02-09 Standard Oil Dev Co Process for the conversion of hydrocarbon residue oils
US2737479A (en) 1953-07-27 1956-03-06 Exxon Research Engineering Co Staged separation and stabilization of oil conversion products and apparatus therefor
US2768127A (en) 1951-05-17 1956-10-23 Exxon Research Engineering Co Improved residual oil conversion process for the production of chemicals
US2776727A (en) 1953-07-03 1957-01-08 Exxon Research Engineering Co Apparatus for separating and quenching oil products
US3074878A (en) 1957-10-18 1963-01-22 Exxon Research Engineering Co Short contact time system
US3365387A (en) 1966-04-29 1968-01-23 Exxon Research Engineering Co Off-stream decoking of a minor portion of on-stream thermal cracking tubes
NL6806323A (en) 1967-05-06 1968-11-07
US3717438A (en) 1969-10-17 1973-02-20 Metallgesellschaft Ag Hydrocarbon cracking apparatus
JPS49128003A (en) 1973-04-09 1974-12-07
JPS515402A (en) 1974-07-04 1976-01-17 Kawasaki Heavy Ind Ltd DENNETSUKANSETSUGOBUNO HIHAKAIKENSAGAKANONA CHOKUKANGATAJOKIHATSUSEIKINO KUMITATEHOHO
JPS5242762A (en) 1975-09-30 1977-04-02 Kikoushiya:Kk Cargo balance having a device for adjusting balance
US4057490A (en) 1976-07-12 1977-11-08 Gulf Research & Development Company Thermal cracking process employing crushed oil shale as fuel
US4061562A (en) 1976-07-12 1977-12-06 Gulf Research & Development Company Thermal cracking of hydrodesulfurized residual petroleum oils
US4172857A (en) 1978-04-03 1979-10-30 Arthur G. Mckee & Company Process and apparatus for ethylene production
US4186079A (en) 1978-12-15 1980-01-29 Shell Oil Company Pyrolysis process
US4259117A (en) 1976-03-17 1981-03-31 Kuraray Co., Ltd. Dental filling material
JPS5849784A (en) 1981-09-21 1983-03-24 Agency Of Ind Science & Technol Thermal cracking of heavy oil using fluidized bed of coke particle
US4379046A (en) 1981-06-11 1983-04-05 Exxon Research & Engineering Co. Integrated two stage coking and steam cracking process and apparatus therefor
US4437979A (en) 1980-07-03 1984-03-20 Stone & Webster Engineering Corp. Solids quench boiler and process
US4454022A (en) 1981-11-18 1984-06-12 Agency Of Industrial Science & Technology Decoking method
US4552645A (en) 1984-03-09 1985-11-12 Stone & Webster Engineering Corporation Process for cracking heavy hydrocarbon to produce olefins and liquid hydrocarbon fuels
US4828681A (en) 1984-12-24 1989-05-09 Exxon Research & Engineering Company Process of thermally cracking hydrocarbons using particulate solids as heat carrier
EP0315179A1 (en) 1987-11-05 1989-05-10 David B. Bartholic Ultra-short contact time fluidized catalytic cracking process
US4859284A (en) 1986-03-25 1989-08-22 Intevep, S.A. Combined process for the separation and continuous coking of high softening point asphaltenes
US4975181A (en) 1984-12-10 1990-12-04 Utah Tsao Process and apparatus for ethylene production
US4980053A (en) 1987-08-08 1990-12-25 Research Institute Of Petroleum Processing, Sinopec Production of gaseous olefins by catalytic conversion of hydrocarbons
CN1083092A (en) 1992-08-27 1994-03-02 中国石油化工总公司石油化工科学研究院 The catalytic thermocracking process of petroleum hydrocarbon
WO1997004043A1 (en) 1995-07-17 1997-02-06 Exxon Research And Engineering Company Integrated residua upgrading and fluid catalytic cracking

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421616A (en) * 1944-12-28 1947-06-03 Standard Oil Dev Co Catalytic treatment of hydrocarbon oils
US2700637A (en) * 1951-11-30 1955-01-25 Standard Oil Dev Co Process for the removal of asphaltic constituents from residual oils
US2952617A (en) * 1956-12-18 1960-09-13 Exxon Research Engineering Co Prevention of disperse phase coke deposition in fluid coker
US2952619A (en) * 1957-01-11 1960-09-13 Exxon Research Engineering Co Feed injector for coking for chemicals
US2994659A (en) * 1959-10-16 1961-08-01 Kellogg M W Co Method and apparatus for conversion of hydrocarbons
NL293037A (en) * 1962-05-23
US3193494A (en) * 1962-07-24 1965-07-06 Sinclair Research Inc Progressive flow cracking of contaminated hydrocarbon feedstocks
US4619758A (en) * 1982-07-09 1986-10-28 Texaco, Inc. Fluid catalytic cracking method
US4663019A (en) * 1984-03-09 1987-05-05 Stone & Webster Engineering Corp. Olefin production from heavy hydrocarbon feed
US4587010A (en) * 1984-04-02 1986-05-06 Exxon Research And Engineering Co. Fluid coking with improved stripping
US4749470A (en) * 1986-09-03 1988-06-07 Mobil Oil Corporation Residuum fluid catalytic cracking process and apparatus using microwave energy

Patent Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2385446A (en) 1941-08-06 1945-09-25 Kellogg M W Co Catalytic conversion of hydrocarbons
US2436160A (en) 1943-12-10 1948-02-17 Cracking of hydrocarbon oils with
US2432962A (en) 1946-06-20 1947-12-16 Socony Vacuum Oil Co Inc Process for heating hydrocarbons by contact with alioving granular solid
US2768127A (en) 1951-05-17 1956-10-23 Exxon Research Engineering Co Improved residual oil conversion process for the production of chemicals
US2731508A (en) 1951-06-08 1956-01-17 Exxon Research Engineering Co Conversion of hydrocarbons for the production of unsaturates and gasoline with the use of inert solids
DE938844C (en) 1951-06-08 1956-02-09 Standard Oil Dev Co Process for the conversion of hydrocarbon residue oils
US2776727A (en) 1953-07-03 1957-01-08 Exxon Research Engineering Co Apparatus for separating and quenching oil products
US2737479A (en) 1953-07-27 1956-03-06 Exxon Research Engineering Co Staged separation and stabilization of oil conversion products and apparatus therefor
US3074878A (en) 1957-10-18 1963-01-22 Exxon Research Engineering Co Short contact time system
US3365387A (en) 1966-04-29 1968-01-23 Exxon Research Engineering Co Off-stream decoking of a minor portion of on-stream thermal cracking tubes
NL6806323A (en) 1967-05-06 1968-11-07
US3717438A (en) 1969-10-17 1973-02-20 Metallgesellschaft Ag Hydrocarbon cracking apparatus
JPS49128003A (en) 1973-04-09 1974-12-07
JPS515402A (en) 1974-07-04 1976-01-17 Kawasaki Heavy Ind Ltd DENNETSUKANSETSUGOBUNO HIHAKAIKENSAGAKANONA CHOKUKANGATAJOKIHATSUSEIKINO KUMITATEHOHO
JPS5242762A (en) 1975-09-30 1977-04-02 Kikoushiya:Kk Cargo balance having a device for adjusting balance
US4259117A (en) 1976-03-17 1981-03-31 Kuraray Co., Ltd. Dental filling material
US4061562A (en) 1976-07-12 1977-12-06 Gulf Research & Development Company Thermal cracking of hydrodesulfurized residual petroleum oils
US4057490A (en) 1976-07-12 1977-11-08 Gulf Research & Development Company Thermal cracking process employing crushed oil shale as fuel
US4172857A (en) 1978-04-03 1979-10-30 Arthur G. Mckee & Company Process and apparatus for ethylene production
US4186079A (en) 1978-12-15 1980-01-29 Shell Oil Company Pyrolysis process
US4437979A (en) 1980-07-03 1984-03-20 Stone & Webster Engineering Corp. Solids quench boiler and process
US4379046A (en) 1981-06-11 1983-04-05 Exxon Research & Engineering Co. Integrated two stage coking and steam cracking process and apparatus therefor
JPS5849784A (en) 1981-09-21 1983-03-24 Agency Of Ind Science & Technol Thermal cracking of heavy oil using fluidized bed of coke particle
US4454022A (en) 1981-11-18 1984-06-12 Agency Of Industrial Science & Technology Decoking method
US4552645A (en) 1984-03-09 1985-11-12 Stone & Webster Engineering Corporation Process for cracking heavy hydrocarbon to produce olefins and liquid hydrocarbon fuels
US4975181A (en) 1984-12-10 1990-12-04 Utah Tsao Process and apparatus for ethylene production
US4828681A (en) 1984-12-24 1989-05-09 Exxon Research & Engineering Company Process of thermally cracking hydrocarbons using particulate solids as heat carrier
US4859284A (en) 1986-03-25 1989-08-22 Intevep, S.A. Combined process for the separation and continuous coking of high softening point asphaltenes
US4980053A (en) 1987-08-08 1990-12-25 Research Institute Of Petroleum Processing, Sinopec Production of gaseous olefins by catalytic conversion of hydrocarbons
EP0315179A1 (en) 1987-11-05 1989-05-10 David B. Bartholic Ultra-short contact time fluidized catalytic cracking process
CN1083092A (en) 1992-08-27 1994-03-02 中国石油化工总公司石油化工科学研究院 The catalytic thermocracking process of petroleum hydrocarbon
WO1997004043A1 (en) 1995-07-17 1997-02-06 Exxon Research And Engineering Company Integrated residua upgrading and fluid catalytic cracking

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"A New Process for Ethylene Production-Heavy Oil Contact Cracking Process", Petroleum Processing and Petrochemicals, vol. 26, Jun., 1995, pp. 9-14.
"Ethlylene", Chemical Week, Nov. 13, 1965, pp. 70-81..
"Olefins From Heavy Oils", Liquid Feed for Ethylene/Propylene-The New Wave, CEP, Jan. 1983, pp. 76-84.

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867341B1 (en) 2002-09-17 2005-03-15 Uop Llc Catalytic naphtha cracking catalyst and process
US20050075526A1 (en) * 2002-09-17 2005-04-07 Hayim Abrevaya Catalytic naphtha cracking catalyst and process
US20050130832A1 (en) * 2002-09-17 2005-06-16 Hayim Abrevaya Catalytic naphtha cracking catalyst and process
US7314964B2 (en) 2002-09-17 2008-01-01 Uop Llc Catalytic naphtha cracking catalyst and process
US7446071B2 (en) 2002-09-17 2008-11-04 Uop Llc Catalytic naphtha cracking catalyst and process
US20080318764A1 (en) * 2002-09-17 2008-12-25 Hayim Abrevaya Catalytic Naphtha Cracking Catalyst and Process
US7585489B2 (en) 2002-09-17 2009-09-08 Uop Llc Catalytic naphtha cracking catalyst and process
US20080253936A1 (en) * 2007-04-16 2008-10-16 Ramin Abhari Process for producing synthetic petroleum jelly
US7851663B2 (en) * 2007-04-16 2010-12-14 Syntroleum Corporation Process for producing synthetic petroleum jelly
US20110232548A1 (en) * 2009-12-08 2011-09-29 Baker Hughes Incorporated Method for improving the efficiency of heat transfer in a furnace
US20110131874A1 (en) * 2009-12-08 2011-06-09 Baker Hughes Incorporated Method for improving the efficiency of heat transfer in a coal fired furnace
US9056297B2 (en) 2010-01-22 2015-06-16 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals conversion process
US9327260B2 (en) 2010-01-22 2016-05-03 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
US8604260B2 (en) 2010-05-18 2013-12-10 Kior, Inc. Biomass pyrolysis conversion process with high olefin production and upgrade
WO2011150217A2 (en) 2010-05-28 2011-12-01 Greatpoint Energy, Inc. Conversion of liquid heavy hydrocarbon feedstocks to gaseous products
US8361311B2 (en) 2010-07-09 2013-01-29 Exxonmobil Chemical Patents Inc. Integrated vacuum resid to chemicals conversion process
US8399729B2 (en) 2010-07-09 2013-03-19 Exxonmobil Chemical Patents Inc. Integrated process for steam cracking
WO2021086509A1 (en) 2019-11-01 2021-05-06 Exxonmobil Chemical Patents Inc. Processes and systems for quenching pyrolysis effluents
EP3819357A1 (en) 2019-11-11 2021-05-12 Indian Oil Corporation Limited A process for producing hydrogen and light olefins from resid fluid catalytic cracking
US11952543B2 (en) 2019-11-11 2024-04-09 Indian Oil Corporation Limited Process for producing hydrogen and light olefins from resid fluid catalytic cracking

Also Published As

Publication number Publication date
CA2247058A1 (en) 1997-08-28
DE69706838D1 (en) 2001-10-25
ES2165039T3 (en) 2002-03-01
DE69706838T3 (en) 2007-06-21
WO1997031083A1 (en) 1997-08-28
AU2191897A (en) 1997-09-10
AU717437B2 (en) 2000-03-23
EP0888419A1 (en) 1999-01-07
US5952539A (en) 1999-09-14
EP0888419B1 (en) 2001-09-19
EA199800762A1 (en) 1999-06-24
EP0888419B2 (en) 2006-11-22
CN1214076A (en) 1999-04-14
DE69706838T2 (en) 2002-04-25
EA001136B1 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US6179993B1 (en) Process for obtaining olefins from residual feedstocks
US5714663A (en) Process for obtaining significant olefin yields from residua feedstocks
US5714056A (en) Process for deasphalting residua (HEN9511)
EP1021497B1 (en) Integrated residua upgrading and fluid catalytic cracking
EP0842243A1 (en) Integrated residua upgrading and fluid catalytic cracking
US6352638B2 (en) Two-stage process for converting residua to gasoline blendstocks and light olefins
EP0950042B1 (en) Two-stage process for obtaining significant olefin yields from residua feedstocks
US5879536A (en) Two-stage process for obtaining significant olefin yields from residua feedstocks
EP1015529A1 (en) Improved process for obtaining significant olefin yields from residua feedstocks
RU2173695C2 (en) Improved method for achieving considerable yield of olefins from residual starting material
JP2001504517A (en) Process for obtaining olefins from residual and other heavy feeds

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXXON CHEMICAL PATENTS INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEIMANDI, NOEL M.;CHENG, TONY T.;SERRAND, WILLIBALD;AND OTHERS;REEL/FRAME:010999/0563;SIGNING DATES FROM 20000414 TO 20000627

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20130130