US6153751A - Method and compositions for the synthesis of BCH-189 and related compounds - Google Patents

Method and compositions for the synthesis of BCH-189 and related compounds Download PDF

Info

Publication number
US6153751A
US6153751A US09/337,910 US33791099A US6153751A US 6153751 A US6153751 A US 6153751A US 33791099 A US33791099 A US 33791099A US 6153751 A US6153751 A US 6153751A
Authority
US
United States
Prior art keywords
bch
mmol
mixture
solution
analogs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/337,910
Inventor
Dennis C. Liotta
Woo-Baeg Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emory University
Original Assignee
Emory University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23879071&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US6153751(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Emory University filed Critical Emory University
Priority to US09/337,910 priority Critical patent/US6153751A/en
Assigned to EMORY UNIVERSITY reassignment EMORY UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, WOO-BAEG, LIOTTA, DENNIS C.
Application granted granted Critical
Publication of US6153751A publication Critical patent/US6153751A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids

Definitions

  • the present invention relates to methods and compositions for preparing antiviral nucleoside analogs, particularly BCH-189 (2',3'-dideoxy-3'-thia-cytidine). More particularly, the invention relates to the selective synthesis of the ⁇ -isomer of BCH-189 and related compounds as well as the selective synthesis of enantiomerically-enriched BCH-189 and related compounds.
  • HIV-1 Human Immunodeficiency Virus type 1
  • the disease AIDS is the end result of an HIV-1 virus following its own complex life cycle.
  • the virion life cycle begins with the virion attaching itself to the host human T-4 lymphocyte immune cell through the bonding of a glycoprotein on the surface of the virion's protective coat with the CD4 glycoprotein on the lymphocyte cell. Once attached, the virion sheds its glycoprotein coat, penetrates into the membrane of the host cell, and uncoats its RNA.
  • the virion enzyme, reverse transcriptase directs the process of transcribing the RNA into single stranded DNA.
  • the viral RNA is degraded and a second DNA strand is created.
  • the now double-stranded DNA is integrated into the human cell's genes and those genes are used for cell reproduction.
  • the human cell carries out its reproductive process by using its own RNA polymerase to transcribe the integrated DNA into viral RNA.
  • the viral RNA is translated into glycoproteins, structural proteins, and viral enzymes, which assemble with the viral RNA intact.
  • a new virion cell not a T-4 lymphocyte, buds forth.
  • the number of HIV-1 virus cells thus grows while the number of T-4 lymphocytes decline.
  • the typical human immune system response killing the invading virion, is taxed because a large portion of the virion's life cycle is spent in a latent state within the immune cell.
  • viral reverse transcriptase the enzyme used in making a new virion cell, is not very specific, and causes transcription mistakes that result in continually changed glycoproteins on the surface of the viral protective coat. This lack of specificity decreases the immune system's effectiveness because antibodies specifically produced against one glycoprotein may be useless against another, hence reducing the number of antibodies available to fight the virus.
  • the virus continues to grow while the immune response system continues to weaken. Eventually, the HIV largely holds free reign over the body's immune system, allowing opportunistic infections to set in and ensuring that, without the administration of antiviral agents and/or immunomodulators, death will result.
  • the viral RNA to viral DNA transcription process has provided the bulk of the therapies used in treating AIDS. This transcription must occur for the virion to reproduce because the virion's genes are encoded in RNA; the host cell reads only DNA. By introducing drugs that block the reverse transcriptase from completing the formation of viral DNA, HIV-1 replication can be stopped.
  • Nucleoside analogs such as 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxycytidine (DDC), 2',3'-dideoxythymidinene (D4T), 2',3'-dideoxyinosine (DDI), and various fluoro-derivatives of these nucleosides are relatively effective in halting HIV replication at the reverse transcriptase stage.
  • Another promising reverse transcriptase inhibitor is 2',3'-dideoxy-3'-thia-cytidine (BCH-189), which contains an oxathiolane ring substituting for the sugar moiety in the nucleoside.
  • AZT is a successful anti-HIV drug because it sabotages the formation of viral DNA inside the host T-4 lymphocyte cell.
  • cellular kinases activate AZT by phosphorylation to AZT triphosphate.
  • AZT triphosphate then competes with natural thymidine nucleosides for the receptor site of HIV reverse transcriptase enzyme.
  • the natural nucleoside possesses two reactive ends, the first for attachment to the previous nucleoside and the second for linking to the next nucleoside.
  • the AZT molecule has only the first reactive end; once inside the HIV enzyme site, the AZT azide group terminates viral DNA formation because the azide cannot make the 3',5'-phosphodiester with the ribose moiety of the following nucleoside.
  • AZT's clinical benefits include increased longevity, reduced frequency and severity of opportunistic infections, and increased peripheral CD4 lymphocyte count.
  • Immunosorbent assays for viral p24, an antigen used to track HIV-1 activity show a significant decrease with use of AZT.
  • AZT's benefits must be weighed against the severe adverse reactions of bone marrow suppression, nausea, myalgia, insomnia, severe headaches, anemia, peripheral neuropathy, and seizures. Furthermore, these adverse side effects occur immediately after treatment begins whereas a minimum of six weeks of therapy is necessary to realize AZT's benefits.
  • DDC and D4T are potent inhibitors of HIV replication with activities comparable (D4T) or superior (DDC) to AZT.
  • DDC and D4T are converted to their 5' triphosphates less efficiently than their natural analogs and are resistent to deaminases and phosphorylases.
  • Clinically, both compounds are toxic.
  • DDI is used to conjunction with AZT to treat AIDS.
  • DDI's side effects include sporadic pancreatis and peripheral neuropathy.
  • Initial tests on 3'-fluoro-2'-3'-dideoxythymidine show that its anti-viral activity is comparable to that of AZT.
  • BCH-189 possesses anti-HIV activity similar to AZT and DDC, but without the cell toxicity which causes the debilitating side effects of AZT and DDC. A sufficient quantity of BCH-189 is needed to allow clinical testing and treatment using the drug.
  • nucleosides or nucleoside analogs can be classified into two broad categories: (1) those which modify intact nucleosides by altering the carbohydrate, the base, or both and (2) those which modify carbohydrates and incorporate the base, or its synthetic precursor, at a suitable stage in the synthesis. Because BCH-189 substitutes a sulfur atom for a carbon atom in the carbohydrate ring, the second approach is more feasible. The most important factor in this latter strategy involves delivering the base from the ⁇ -face of the carbohydrate ring in the glycosylation reaction because only the ⁇ -isomers exhibit useful biological activity.
  • the present invention relates to the discovery of a surprisingly efficient synthetic route to BCH-189 and various analogs of BCH-189 from inexpensive precursors with the option of introducing functionality as needed.
  • This synthetic route allows the stereoselective preparation of the biologically active isomer of these compounds, ⁇ -BCH-189 and related compounds.
  • the steochemistry at the nucleoside 4' position can be controlled to produce enantiomerically-enriched ⁇ -BCH-189 and its analogs.
  • BCH-189 analogs is meant to refer to nucleosides that are formed from pyrimidine bases substituted at the 5 position that are coupled to substituted 1,3-oxathiolanes.
  • the method of the present invention includes ozonizing an allyl ether or ester having the formula CH 2 ⁇ CH--CH 2 OR, in which R is a protecting group, such as an alkyl, silyl, or acyl group, to form a glycoaldehyde having the formula OHC--CH 2 --OR; adding thioglycolic acid to the glycoaldehyde to form a lactone of the formula 2-(R-oxy)-methyl-5-oxo-1,3-oxathiolane; converting the lactone to its corresponding carboxylate at the 5 position of the oxathiolane ring; coupling the acetate with a silyated pyrimidine base in the presence of SnCl 4 to form the ⁇ -isomer of a 5'-(R-oxy)-2',3'-thia-nucleoside analog; and replacing the R protecting group with a hydrogen to form BCH-189 or an analog of BCH-189.
  • R is a protecting
  • the invention can be used to produce BCH-189 or BCH-189 analogs that are enantiomerically-enriched at the 4' position by selecting an appropriate R protecting group to allow stereoselective selection by an enzyme.
  • the R protecting group can be chosen such that the substituent at the 2 position of the oxathiolane lactone is butyryloxy to permit stereoselective enzymatic hydrolysis by pig liver esterase.
  • the resulting optically active hydrolyzed lactone can then be converted to its corresponding diacetate and coupled with a silyated pyrimidine base as above.
  • one of the objectives of this invention is to provide an efficient method for preparing the ⁇ -isomer of BCH-189 and analogs of BCH-189 in high yields. Furthermore, it is an objective of this invention to provide a synthetic method to produce only one optical isomer, rather than a racemic mixture, of BCH-189 and analogs of BCH-189. A further object of this invention is to provide a synthetic route to produce ⁇ -BCH-189 that is enantiomerically-enriched.
  • an objective of this invention is to provide intermediates from which BCH-189 or BCH-189 analogs can be synthesized of the formula 2-(R-oxymethyl)-5-acyloxy-1,3-oxathiolane, wherein R is a protecting group, such as alkyl, silyl, or acyl, and a method of preparing these compounds. Furthermore, it is an object of this invention to provide enantiomerically-enriched 2-acetoxymethyl-5-acetoxy-1,3-oxathiolane and 2-butoxymethyl-5-oxo-1,3-oxathiolane and methods of preparing these compounds.
  • Another objective of this invention is to provide intermediates from which BCH-189 or BCH-189 analogs can be synthesized of the formula: ##STR1## wherein R is a protecting group, such as alkyl, silyl, or acyl, and Y can be hydrogen, methyl, halo, alkyl, alkenyl, alkynl, hydroxalkyl, carboxalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl, thioaryl, and selenoaryl, and methods of preparing these compounds.
  • R is a protecting group, such as alkyl, silyl, or acyl
  • Y can be hydrogen, methyl, halo, alkyl, alkenyl, alkynl, hydroxalkyl, carboxalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalken
  • this invention provides intermediates from which BCH-189 or BCH-189 analogs can be synthesized of the formula: ##STR2## wherein R is a protecting group, such as alkyl, silyl, or acyl, and Y can be hydrogen, methyl, halo, alkyl, alkenyl, alkynyl, hydroxalkyl, carboxalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl, thioaryl, and selenoaryl, and methods of preparing these compounds.
  • R is a protecting group, such as alkyl, silyl, or acyl
  • Y can be hydrogen, methyl, halo, alkyl, alkenyl, alkynyl, hydroxalkyl, carboxalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl,
  • FIG. 1 illustrates one embodiment of a synthesis of BCH-189 and BCH-189 analogs according to the present invention
  • FIG. 2 illustrates one embodiment of the synthesis of BCH-189 according to the present invention
  • FIG. 3 illustrates one embodiment of the synthesis of 5-methylcytidine and thymidine derivatives of BCH-189 according to the present invention.
  • FIG. 4 illustrates one embodiment of the synthesis of enantiomerically-enriched BCH-189 according to the present invention.
  • BCH-189 is a compound of the formula: ##STR3##
  • FIG. 1 The process of the present invention for preparing BCH-189 and BCH-189 analogs is set forth in FIG. 1.
  • An allyl ether or ester 1 is ozonized to give an aldehyde 2, which reacts with thioglycolic acid to give a lactone 3.
  • the lactone 3 is treated with a reducing agent, followed by a carboxylic anhydride, to produce the carboxylate 4.
  • This carboxylate is coupled with a silyated pyrimidine base in the presence of a Lewis acid that can catalyze stereospecific coupling, such as SnCl 4 , to yield the ⁇ -isomer of the substituted nucleoside 5 in essentially a 100:0 ratio of ⁇ : ⁇ isomers.
  • the substituted nucleoside 5 is deprotected to produce BCH-189 or BCH-189 analog 6.
  • This procedure can be tailored to produce BCH-189 or BCH-189 analogs that are enantiomerically-enriched at the 4' position by selecting an appropriate R protecting group to allow stereoselective enzymatic hydrolysis of 3 by an enzyme such as pig liver esterase, porcine pancreatic lipase, or subtilisin or other enzymes that hydrolyze 3 in a stereoselective fashion.
  • the resulting optically active 3 can be converted to enantiomerically-enriched carboxylate 4 and coupled with a silyated pyrimidine base as above to produce enantiomerically-enriched BCH-189 or BCH-189 analogs.
  • the protecting group R in 1 can be selected to provide protection for the corresponding alcohol until the final step in the synthesis is carried out (deprotection of 5 to form 6). Additionally, the protecting group can be selected, if desired, to provide an additional recognition site for an enzyme to be used later in an enantio-selective hydrolysis reaction. Any group that functions in this matter may be used. For instance, alkyl, silyl, and acyl protecting groups or groups that possess substantially the same properties as these groups can be used.
  • An alkyl protecting group means triphenylmethyl or an alkyl group that possesses substantially the same protecting properties as triphenylmethyl.
  • a silyl protecting group means a trialkylsilyl group having the formula: ##STR4## wherein R 1 , R 2 , and R 3 may be lower-alkyl, e.g., methyl, ethyl, butyl, and alkyl possessing 5 carbon atoms or less; or phenyl. furthermore, R 1 may be identical to R 2 ; R 1 , R 2 , and R 3 may all be identical. Examples of silyl protecting groups include, but are not limited to, trimethylsilyl and t-butyldiphenylsilyl.
  • An acyl group as used herein to describe an acyl protecting group (as in 1) or to describe a carboxylate (as in 4), is a group having the formula: ##STR5## wherein R' is a lower alkyl, e.g., methyl, ethyl, butyl, and alkyl possessing 5 carbon atoms or less; substituted lower alkyl wherein the alkyl bears one, two, or more simple substituents, including, but not limited to, amino, carboxyl, hydroxy, phenyl, lower-alkoxy, e.g., methoxy and ethoxy; phenyl' substituted phenyl wherein the phenyl bears one, two, or more simple substituents, including, but not limited to, lower alkyl, halo, e.g., chloro and bromo, sulfato, sulfonyloxy, carboxyl, carbo-lower-alkoxy, e.g
  • a silyated pyrimidine base means a compound having the formula: ##STR6## wherein X is either a trialkylsilyloxy or a trialkylsilylamino group, Z is a trialkylsilyl group, and Y is further described below.
  • a trialkylsilyl group means a group having the formula: ##STR7## wherein R 1 , R 2 , and R 3 may be lower-alkyl, e.g., methyl, ethyl, butyl, and alkyl possessing 5 carbon atoms or less, or phenyl. Furthermore, R 1 may be identical to R 2 ; R 1 ; R 2 , and R 3 may all be identical. Examples of trialkylsilyl groups include, but are not limited to, trimethylsilyl and t-butyldiphenylsilyl.
  • the silyated pyrimidine base may be substituted with various Y substituents, including, but not limited to, hydrogen, methyl, halo, alkyl, alkenyl, alkynyl, hydroxyalkyl, carboxyalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl, thioaryl, and selenoaryl, at position 5 of the silyated pyrimidine base (Y substituent in FIG. 1) to modify the properties, such as transport properties or the rate of metabolism, of the BCH-189 analog.
  • Y substituents including, but not limited to, hydrogen, methyl, halo, alkyl, alkenyl, alkynyl, hydroxyalkyl, carboxyalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl, thioaryl, and selenoary
  • FIGS. 2, 3, and 4 Illustrative examples of the synthesis of BCH-189 or BCH-189 analogs according to the present invention are given in FIGS. 2, 3, and 4 and the following descriptions.
  • FIG. 2 shows the synthesis of BCH-189 starting with allyl alcohol 7.
  • a NaH oil suspension (4.5 g, 60%, 110 mmol) was washed with THF twice (100 ml ⁇ 2) and the resulting solid suspended in THF (300 ml). The suspension was cooled at 0° C., allyl alcohol 7 (6.8 ml, 100 mmol) was added dropwise, and the mixture was stirred for 30 minutes at 0° C.
  • t-Butyl-diphenylsilyl chloride 25.8 ml, 100.8 mmol was added dropwise at 0° C. and the reaction mixture was stirred for 1 hour at 0° C.
  • Silayted glycoaldehyde 9 (15.0 g, 50.3 mmol) was dissolved in toluene (200 ml) and thioglycolic acid (3.50 ml, 50.3 mmol) was added all at once. The solution was refluxed for 2 hours while the resulting water was removed with a Dean-Stark trap. The solution was cooled to room temperature and washed with saturated NaHCO 3 solution and the aqueous washings were extracted with diethyl ether (200 ml ⁇ 2).
  • Silyether 13 (0.23 g, 0.49 mmol) was dissolved in THF (30 ml), and to it was added n-Bu 4 NF solution (0.50 ml, 1.0 M solution in THF, 0.50 mmol) dropwise at room temperature. The mixture was stirred for 1 hour and concentrated under vacuum. The residue was taken up with ethanol/triethylamine (2 ml/1 ml), and subjected to flash chromatography (first with EtOAc, then 20% ethanol in EtOAc) to afford a white solid 14 in 100% anomeric purity (BCH-189; 0.11 g, 0.48 mmol, 98%), which was further recrystallized from ethanol/CHCl 3 /Hexanes mixture.
  • BCH-189 and its analogs can also be synthesized by coupling a silylated uracil derivative with 11.
  • Silylated uracil derivative 15 (1.80 g, 7.02 mmol) was coupled with 11 (1.72 g, 4.13 mmol) in 1,2-dichloroethane (50 ml) in the presence of SnCl 4 (5.0 ml) as described above in the preparation of the cytosine derivative 13.
  • the reaction was complete after 5 hours. Flash chromatography, first with 40% EtOAc in hexane and then EtOAc, afforded a white foam 16 (1.60 g, 3.43 mmol, 83%).
  • the uracil derivative 16 can be converted to the cytosine derivative 13.
  • the uracil derivative 16 (0.20 g, 0.43 mmol) was dissolved in a mixture of pyridine/dichloroethane (2 ml/10 ml), and the solution cooled to 0° C.
  • Triflic anhydride 72 ⁇ l, 0.43 mmol was added dropwise at 0° C. and the mixture was warmed to room temperature and stirred for 1 hour. Additional triflic anhydride (0.50 ⁇ l, 0.30 mmol) was added and the mixture stirred for 1 hour. TLC showed no mobility with EtOAc.
  • reaction mixture was then decannulated into a NH 3 -saturated methanol solution (30 ml) and the mixture was stirred for 12 hours at room temperature.
  • the solution was concentrated, and the residue subjected to flash chromatography to give a tanned foam 13 (0.18 g, 0.39 mmol, 91%), which was identical with the compound obtained from the cytosine coupling reaction.
  • FIG. 3 illustrates the synthesis of 5-methylcytidine and thymidine derivatives of BCH-189.
  • the acetate 11 (0.93 g, 2.23 mmol) in 1,2-dichloroethane (50 ml), was reacted with the silylated thymine derivative 17 (1.0 g, 3.70 mmol), and SnCl 4 solution (4.0 ml) in a manner similar to that described for the preparation of cytosine derivative 13.
  • the thymine derivative 18 (0.20 g, 0.42 mmol) was dissolved in a mixture of pyridine/dichloroethane (2 ml/10 ml), and the solution cooled to 0° C. To it was added triflic anhydride (100 ⁇ l, 0.60 mmol) dropwise at 0° C., and mixture was allowed, with continuous stirring, to warm to room temperature. After reaching room temperature, it was stirred for 1 hour. TLC showed no mobility with EtOAc. The reaction mixture was then decannulated into the NH 3-saturated methanol solution (20 ml), and the mixture stirred for 12 hours at room temperature.
  • Silylether 18 (0.70 g, 1.46 mmol) was dissolved in THF (50 ml), and an n-Bu 4 NF solution (2 ml, 1.0 M solution in THF, 2 mmol) was added, dropwise, at room temperature. The mixture was stirred for 1 hour and concentrated under vacuum. The residue was taken up with ethanol/triethylamine (2 ml/l ml), and subjected to flash chromatography to afford a white solid 21 (0.33 g, 1.35 mmol, 92%).
  • FIG. 4 illustrates the synthesis of enantiomerically-enriched BCH-189 and its analogs.
  • Allyl butyrate 22 (19.0 g, 148 mmol) was dissolved in CH 2 Cl 2 (400 ml), and ozonized at -78° C.
  • dimethyl sulfide (20 ml, 270 mmol, 1.8 eq) was added at -78° C. and the mixture was warmed to room temperature and stirred overnight. The solution was washed with water (100 ml ⁇ 2), dried over MgSO 4 , filtered, concentrated, and distilled under vacuum (70-80° C.
  • Butyryloxyacetaldehyde 23 (15.0 g, 115 mmol) was dissolved in toluene (200 ml) and mixed with thioglycolic acid (8.0 ml, 115 mmol). The solution was refluxed for 5 hours while the resulting water was removed with a Dean-Stark trap. The solution was cooled to room temperature and was transferred to a 500 ml separatory funnel. The solution was then washed with saturated NaHCO 3 solution. These aqueous washing were extracted with diethyl ether (200 ml ⁇ 2) to recuperate any crude product from the aqueous layer.
  • Pig liver esterase solution (90 ⁇ l) was added to a buffer solution (pH 7, 100 ml) at room temperature, and the mixture stirred vigorously for 5 minutes.
  • the butyrate 24 (2.8 g, 13.7 mmol) was added, all at once, to the esterase/buffer solution and the mixture was stirred vigorously at room temperature for 2 hours.
  • the reaction mixture was poured into a separatory funnel.
  • the reaction flask was washed with ether (10 ml) and the washing was combined with the reaction mixture in the funnel.
  • the combined mixture was extracted with hexanes three times (100 ml ⁇ 3).
  • the lactone 25 (0.85 g, 4.16 mmol) was dissolved in toluene (30 ml), and the solution cooled to -78° C. Dibal-H solution (9 ml, 1.0 M in hexanes, 9 mmol) was added dropwise, while the inside temperature was kept below -70° C. throughout the addition. After the addition was completed, the mixture was stirred for 0.5 hours at -78° C. Acetic anhydride (5 ml, 53 mmol) was added and the mixture, with continuous stirring, was allowed to reach room temperature overnight. Water (5 ml) was added to the reaction mixture and the resultant mixture was stirred for 1 hour.
  • the 2-Acetoxymethyl-5-acetoxy-1,3-oxathiolane 26 (0.40 g, 1.82 mmol) was dissolved in 1,2-dichloroethane (40 ml), and to it the silylated cytosine 12 (0.70 g, 2.74 mmol) was added, all at once, at room temperature. The mixture was stirred for 10 minutes, and to it a SnCl 4 solution (3.0 ml, 1.0 M solution in CH 2 Cl 2 , 3.0 mmol) was added, dropwise, at room temperature. Additional SnCl 4 solution (1.0 ml) was added after 1 hour. The reaction was followed by TLC.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Steroid Compounds (AREA)

Abstract

The present invention relates to a method of preparing BCH-189 and various analogs of BCH-189 from inexpensive precursors with the option of introducing functionality as needed. This synthetic route allows the stereoselective preparation of the biologically active isomer of these compounds, β-BCH-189 and related compounds. Furthermore, the steochemistry at the nucleoside 4' position can be controlled to produce enantiomerically-enriched β-BCH-189 and its analogs.

Description

This application is a continuation U.S. Ser. No. 08/472,345, filed on Jun. 7, 1995, now U.S. Pat. No. 5,914,400, which is a continuation of U.S. Ser. No. 08/215,498 filed Mar. 21, 1994, now abandoned which is a continuation of U.S. Ser. No. 08/015,992 filed Feb. 10, 1993 now U.S. Pat. No. 5,539,116, which is a divisional of U.S. Ser. No. 07/473,318 filed Feb. 1, 1990, issued Apr. 20, 1993 as U.S. Pat. No. 5,204,466, the contents of which are incorporated by reference.
TECHNICAL FIELD
The present invention relates to methods and compositions for preparing antiviral nucleoside analogs, particularly BCH-189 (2',3'-dideoxy-3'-thia-cytidine). More particularly, the invention relates to the selective synthesis of the β-isomer of BCH-189 and related compounds as well as the selective synthesis of enantiomerically-enriched BCH-189 and related compounds.
BACKGROUND ART
In 1981, documentation began on the disease that became known as Acquired Immune Deficiency Syndrome (AIDS), as well as its forerunner AIDS Related Complex (ARC). In 1983, the cause of the disease AIDS was established as a virus named the Human Immunodeficiency Virus type 1 (HIV-1). Usually, a person infected with the virus will eventually develop AIDS; in all known cases of AIDS the final outcome has always been death.
The disease AIDS is the end result of an HIV-1 virus following its own complex life cycle. The virion life cycle begins with the virion attaching itself to the host human T-4 lymphocyte immune cell through the bonding of a glycoprotein on the surface of the virion's protective coat with the CD4 glycoprotein on the lymphocyte cell. Once attached, the virion sheds its glycoprotein coat, penetrates into the membrane of the host cell, and uncoats its RNA. The virion enzyme, reverse transcriptase, directs the process of transcribing the RNA into single stranded DNA. The viral RNA is degraded and a second DNA strand is created. The now double-stranded DNA is integrated into the human cell's genes and those genes are used for cell reproduction.
At this point, the human cell carries out its reproductive process by using its own RNA polymerase to transcribe the integrated DNA into viral RNA. The viral RNA is translated into glycoproteins, structural proteins, and viral enzymes, which assemble with the viral RNA intact. When the host cell finishes the reproductive step, a new virion cell, not a T-4 lymphocyte, buds forth. The number of HIV-1 virus cells thus grows while the number of T-4 lymphocytes decline.
The typical human immune system response, killing the invading virion, is taxed because a large portion of the virion's life cycle is spent in a latent state within the immune cell. In addition, viral reverse transcriptase, the enzyme used in making a new virion cell, is not very specific, and causes transcription mistakes that result in continually changed glycoproteins on the surface of the viral protective coat. This lack of specificity decreases the immune system's effectiveness because antibodies specifically produced against one glycoprotein may be useless against another, hence reducing the number of antibodies available to fight the virus. The virus continues to grow while the immune response system continues to weaken. Eventually, the HIV largely holds free reign over the body's immune system, allowing opportunistic infections to set in and ensuring that, without the administration of antiviral agents and/or immunomodulators, death will result.
There are three critical points in the virus' life cycle which have been identified as targets for antiviral drugs: (1) the initial attachment of the virion to the T-4 lymphocyte, or macrophage, site, (2) the transcription of viral RNA to viral DNA, and (3) the assemblage of the new virion cell during reproduction.
Inhibition of the virus at the second critical point, the viral RNA to viral DNA transcription process, has provided the bulk of the therapies used in treating AIDS. This transcription must occur for the virion to reproduce because the virion's genes are encoded in RNA; the host cell reads only DNA. By introducing drugs that block the reverse transcriptase from completing the formation of viral DNA, HIV-1 replication can be stopped.
Nucleoside analogs, such as 3'-azido-3'-deoxythymidine (AZT), 2',3'-dideoxycytidine (DDC), 2',3'-dideoxythymidinene (D4T), 2',3'-dideoxyinosine (DDI), and various fluoro-derivatives of these nucleosides are relatively effective in halting HIV replication at the reverse transcriptase stage. Another promising reverse transcriptase inhibitor is 2',3'-dideoxy-3'-thia-cytidine (BCH-189), which contains an oxathiolane ring substituting for the sugar moiety in the nucleoside.
AZT is a successful anti-HIV drug because it sabotages the formation of viral DNA inside the host T-4 lymphocyte cell. When AZT enters the cell, cellular kinases activate AZT by phosphorylation to AZT triphosphate. AZT triphosphate then competes with natural thymidine nucleosides for the receptor site of HIV reverse transcriptase enzyme. The natural nucleoside possesses two reactive ends, the first for attachment to the previous nucleoside and the second for linking to the next nucleoside. The AZT molecule has only the first reactive end; once inside the HIV enzyme site, the AZT azide group terminates viral DNA formation because the azide cannot make the 3',5'-phosphodiester with the ribose moiety of the following nucleoside.
AZT's clinical benefits include increased longevity, reduced frequency and severity of opportunistic infections, and increased peripheral CD4 lymphocyte count. Immunosorbent assays for viral p24, an antigen used to track HIV-1 activity, show a significant decrease with use of AZT. However, AZT's benefits must be weighed against the severe adverse reactions of bone marrow suppression, nausea, myalgia, insomnia, severe headaches, anemia, peripheral neuropathy, and seizures. Furthermore, these adverse side effects occur immediately after treatment begins whereas a minimum of six weeks of therapy is necessary to realize AZT's benefits.
Both DDC and D4T are potent inhibitors of HIV replication with activities comparable (D4T) or superior (DDC) to AZT. However, both DDC and D4T are converted to their 5' triphosphates less efficiently than their natural analogs and are resistent to deaminases and phosphorylases. Clinically, both compounds are toxic. Currently, DDI is used to conjunction with AZT to treat AIDS. However, DDI's side effects include sporadic pancreatis and peripheral neuropathy. Initial tests on 3'-fluoro-2'-3'-dideoxythymidine show that its anti-viral activity is comparable to that of AZT.
Recent tests on BCH-189 have shown that it possesses anti-HIV activity similar to AZT and DDC, but without the cell toxicity which causes the debilitating side effects of AZT and DDC. A sufficient quantity of BCH-189 is needed to allow clinical testing and treatment using the drug.
The commonly-used chemical approaches for synthesizing nucleosides or nucleoside analogs can be classified into two broad categories: (1) those which modify intact nucleosides by altering the carbohydrate, the base, or both and (2) those which modify carbohydrates and incorporate the base, or its synthetic precursor, at a suitable stage in the synthesis. Because BCH-189 substitutes a sulfur atom for a carbon atom in the carbohydrate ring, the second approach is more feasible. The most important factor in this latter strategy involves delivering the base from the β-face of the carbohydrate ring in the glycosylation reaction because only the β-isomers exhibit useful biological activity.
It is well known in the art that the stereoselective introduction of bases to the anomeric centers of carbohydrates can be controlled by capitalizing on the neighboring group participation of a 2-substituent on the carbohydrate ring (Chem. Ber. 114:1234 (1981)). However, BCH-189 and its analogs do not possess a 2-substitutent and, therefore, cannot utilize this procedure unless additional steps to introduce a functional group that is both directing and disposable are incorporated into the synthesis. These added steps would lower the overall efficiency of the synthesis.
It is also well known in the art that "considerable amounts of the undesired α-nucleosides are always formed during the synthesis of 2'-deoxyribosides" (Chem. Ber. 114:1234, 1244 (1981)). Furthermore, this reference teaches that the use of simple Friedel-Crafts catalysts like SnCl4 in nucleoside syntheses produces undesirable emulsions upon the workup of the reaction mixture, generates complex mixtures of the α and β-isomers, and leads to stable δ-complexes between the SnCl4 and the more basic silyated heterocycles such as silyated cytosine. These complexes lead to longer reaction times, lower yields, and production of the undesired unnatural N-3-nucleosides. Thus, the prior art teaches the use of trimethysilyl triflate or trimethylsilyl perchlorate as a catalyst during the coupling of pyrimidine bases with a carbohydrate ring to achieve high yields of the biologically active β-isomers. However, the use of these catalysts to synthesize BCH-189 or BCH-189 analogs does not produce the β-isomer preferentially; these reactions result in approximately a 50:50 ratio of the isomers.
Thus, there exists a need for an efficient synthetic route to BCH-189 and its analogs. There also exists a need for a stereoselective synthetic route to the biologically active isomer of these compounds, β-BCH-189 and related β-analogs. Furthermore, there exists a need for a stereoselective synthetic route to enantiomerically-enriched β-BCH-189 because the other enantiomer is inactive and, therefore, represents a 50% impurity.
DISCLOSURE OF INVENTION
The present invention relates to the discovery of a surprisingly efficient synthetic route to BCH-189 and various analogs of BCH-189 from inexpensive precursors with the option of introducing functionality as needed. This synthetic route allows the stereoselective preparation of the biologically active isomer of these compounds, β-BCH-189 and related compounds. Furthermore, the steochemistry at the nucleoside 4' position can be controlled to produce enantiomerically-enriched β-BCH-189 and its analogs.
The term "BCH-189 analogs" is meant to refer to nucleosides that are formed from pyrimidine bases substituted at the 5 position that are coupled to substituted 1,3-oxathiolanes.
The method of the present invention includes ozonizing an allyl ether or ester having the formula CH2 ═CH--CH2 OR, in which R is a protecting group, such as an alkyl, silyl, or acyl group, to form a glycoaldehyde having the formula OHC--CH2 --OR; adding thioglycolic acid to the glycoaldehyde to form a lactone of the formula 2-(R-oxy)-methyl-5-oxo-1,3-oxathiolane; converting the lactone to its corresponding carboxylate at the 5 position of the oxathiolane ring; coupling the acetate with a silyated pyrimidine base in the presence of SnCl4 to form the β-isomer of a 5'-(R-oxy)-2',3'-thia-nucleoside analog; and replacing the R protecting group with a hydrogen to form BCH-189 or an analog of BCH-189.
The invention can be used to produce BCH-189 or BCH-189 analogs that are enantiomerically-enriched at the 4' position by selecting an appropriate R protecting group to allow stereoselective selection by an enzyme. For instance, the R protecting group can be chosen such that the substituent at the 2 position of the oxathiolane lactone is butyryloxy to permit stereoselective enzymatic hydrolysis by pig liver esterase. The resulting optically active hydrolyzed lactone can then be converted to its corresponding diacetate and coupled with a silyated pyrimidine base as above.
Accordingly, one of the objectives of this invention is to provide an efficient method for preparing the β-isomer of BCH-189 and analogs of BCH-189 in high yields. Furthermore, it is an objective of this invention to provide a synthetic method to produce only one optical isomer, rather than a racemic mixture, of BCH-189 and analogs of BCH-189. A further object of this invention is to provide a synthetic route to produce β-BCH-189 that is enantiomerically-enriched.
Additionally, an objective of this invention is to provide intermediates from which BCH-189 or BCH-189 analogs can be synthesized of the formula 2-(R-oxymethyl)-5-acyloxy-1,3-oxathiolane, wherein R is a protecting group, such as alkyl, silyl, or acyl, and a method of preparing these compounds. Furthermore, it is an object of this invention to provide enantiomerically-enriched 2-acetoxymethyl-5-acetoxy-1,3-oxathiolane and 2-butoxymethyl-5-oxo-1,3-oxathiolane and methods of preparing these compounds.
Another objective of this invention is to provide intermediates from which BCH-189 or BCH-189 analogs can be synthesized of the formula: ##STR1## wherein R is a protecting group, such as alkyl, silyl, or acyl, and Y can be hydrogen, methyl, halo, alkyl, alkenyl, alkynl, hydroxalkyl, carboxalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl, thioaryl, and selenoaryl, and methods of preparing these compounds.
Furthermore, this invention provides intermediates from which BCH-189 or BCH-189 analogs can be synthesized of the formula: ##STR2## wherein R is a protecting group, such as alkyl, silyl, or acyl, and Y can be hydrogen, methyl, halo, alkyl, alkenyl, alkynyl, hydroxalkyl, carboxalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl, thioaryl, and selenoaryl, and methods of preparing these compounds.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates one embodiment of a synthesis of BCH-189 and BCH-189 analogs according to the present invention;
FIG. 2 illustrates one embodiment of the synthesis of BCH-189 according to the present invention;
FIG. 3 illustrates one embodiment of the synthesis of 5-methylcytidine and thymidine derivatives of BCH-189 according to the present invention; and
FIG. 4 illustrates one embodiment of the synthesis of enantiomerically-enriched BCH-189 according to the present invention.
BEST MODE OF CARRYING OUT THE INVENTION
BCH-189 is a compound of the formula: ##STR3##
The process of the present invention for preparing BCH-189 and BCH-189 analogs is set forth in FIG. 1. An allyl ether or ester 1 is ozonized to give an aldehyde 2, which reacts with thioglycolic acid to give a lactone 3. The lactone 3 is treated with a reducing agent, followed by a carboxylic anhydride, to produce the carboxylate 4. This carboxylate is coupled with a silyated pyrimidine base in the presence of a Lewis acid that can catalyze stereospecific coupling, such as SnCl4, to yield the β-isomer of the substituted nucleoside 5 in essentially a 100:0 ratio of β:α isomers. The substituted nucleoside 5 is deprotected to produce BCH-189 or BCH-189 analog 6.
This procedure can be tailored to produce BCH-189 or BCH-189 analogs that are enantiomerically-enriched at the 4' position by selecting an appropriate R protecting group to allow stereoselective enzymatic hydrolysis of 3 by an enzyme such as pig liver esterase, porcine pancreatic lipase, or subtilisin or other enzymes that hydrolyze 3 in a stereoselective fashion. The resulting optically active 3 can be converted to enantiomerically-enriched carboxylate 4 and coupled with a silyated pyrimidine base as above to produce enantiomerically-enriched BCH-189 or BCH-189 analogs.
The protecting group R in 1 can be selected to provide protection for the corresponding alcohol until the final step in the synthesis is carried out (deprotection of 5 to form 6). Additionally, the protecting group can be selected, if desired, to provide an additional recognition site for an enzyme to be used later in an enantio-selective hydrolysis reaction. Any group that functions in this matter may be used. For instance, alkyl, silyl, and acyl protecting groups or groups that possess substantially the same properties as these groups can be used.
An alkyl protecting group, as used herein, means triphenylmethyl or an alkyl group that possesses substantially the same protecting properties as triphenylmethyl. A silyl protecting group, as used herein, means a trialkylsilyl group having the formula: ##STR4## wherein R1, R2, and R3 may be lower-alkyl, e.g., methyl, ethyl, butyl, and alkyl possessing 5 carbon atoms or less; or phenyl. furthermore, R1 may be identical to R2 ; R1, R2, and R3 may all be identical. Examples of silyl protecting groups include, but are not limited to, trimethylsilyl and t-butyldiphenylsilyl.
An acyl group, as used herein to describe an acyl protecting group (as in 1) or to describe a carboxylate (as in 4), is a group having the formula: ##STR5## wherein R' is a lower alkyl, e.g., methyl, ethyl, butyl, and alkyl possessing 5 carbon atoms or less; substituted lower alkyl wherein the alkyl bears one, two, or more simple substituents, including, but not limited to, amino, carboxyl, hydroxy, phenyl, lower-alkoxy, e.g., methoxy and ethoxy; phenyl' substituted phenyl wherein the phenyl bears one, two, or more simple substituents, including, but not limited to, lower alkyl, halo, e.g., chloro and bromo, sulfato, sulfonyloxy, carboxyl, carbo-lower-alkoxy, e.g., carbomethoxy and carbethoxy, amino, mono- and di-lower alkylamino, e.g., methylamino, amido, hydroxy, lower alkoxy, e.g., methoxy and ethoxy, lower-alkanoyloxy, e.g., acetoxy.
A silyated pyrimidine base, as used herein, means a compound having the formula: ##STR6## wherein X is either a trialkylsilyloxy or a trialkylsilylamino group, Z is a trialkylsilyl group, and Y is further described below. A trialkylsilyl group, as used herein, means a group having the formula: ##STR7## wherein R1, R2, and R3 may be lower-alkyl, e.g., methyl, ethyl, butyl, and alkyl possessing 5 carbon atoms or less, or phenyl. Furthermore, R1 may be identical to R2 ; R1 ; R2, and R3 may all be identical. Examples of trialkylsilyl groups include, but are not limited to, trimethylsilyl and t-butyldiphenylsilyl.
The silyated pyrimidine base may be substituted with various Y substituents, including, but not limited to, hydrogen, methyl, halo, alkyl, alkenyl, alkynyl, hydroxyalkyl, carboxyalkyl, thioalkyl, selenoalkyl, phenyl, cycloalkyl, cycloalkenyl, thioaryl, and selenoaryl, at position 5 of the silyated pyrimidine base (Y substituent in FIG. 1) to modify the properties, such as transport properties or the rate of metabolism, of the BCH-189 analog.
Illustrative examples of the synthesis of BCH-189 or BCH-189 analogs according to the present invention are given in FIGS. 2, 3, and 4 and the following descriptions.
FIG. 2 shows the synthesis of BCH-189 starting with allyl alcohol 7. A NaH oil suspension (4.5 g, 60%, 110 mmol) was washed with THF twice (100 ml×2) and the resulting solid suspended in THF (300 ml). The suspension was cooled at 0° C., allyl alcohol 7 (6.8 ml, 100 mmol) was added dropwise, and the mixture was stirred for 30 minutes at 0° C. t-Butyl-diphenylsilyl chloride (25.8 ml, 100.8 mmol) was added dropwise at 0° C. and the reaction mixture was stirred for 1 hour at 0° C. The solution was quenched with water (100 ml), and extracted with diethyl ether (200 ml×2). The combined extracts were washed with water, dried over MgSO4, filtered, concentrated, and the residue distilled under vacuum (90-100° C. at 0.5-0.6 mm Hg) to give a colorless liquid 8 (28 g., 94 mmol, 94%). (1 H NMR: 7.70-7.35 (10H, m, aromatic-H); 5.93 (1H, m, H2); 5.37 (1H, dt, H1) J=1.4 and 14.4 Hz; 5.07 (1H, dt, H1) J-1.4 and 8.7 Hz; 4.21 (2H, m, H3); 1.07 (9H, s, t-Bu)).
The silyl allyl ether 8 (15.5 g, 52.3 mmol) was dissolved in CH2 Cl2 (400 ml), and ozonized at -78° C. Upon completion of ozonolysis, DMS (15 ml, 204 mmol, 3.9 eq) was added at -78° C. and the mixture was warmed to room temperature and stirred overnight. The solution was washed with water (100 ml×2), dried over MgSO4, filtered, concentrated, and distilled under vacuum (100-110° C. at 0.5-0.6 mm Hg) to give a colorless liquid 9 (15.0 g, 50.3 mmol, 96%). (1 H NMR: 9.74 (1H, s, H--CO); 7.70-7.35 (10H, m, aromatic-H); 4.21 (2H, s, --CH2); 1.22 (9H, s, t-Bu)).
Silayted glycoaldehyde 9 (15.0 g, 50.3 mmol) was dissolved in toluene (200 ml) and thioglycolic acid (3.50 ml, 50.3 mmol) was added all at once. The solution was refluxed for 2 hours while the resulting water was removed with a Dean-Stark trap. The solution was cooled to room temperature and washed with saturated NaHCO3 solution and the aqueous washings were extracted with diethyl ether (200 ml×2). The combined extracts were washed with water (100 ml×2), dried over MgSO4, filtered, and concentrated to give a colorless oil 10 (16.5 g, 44.3 mmol, 88%), which gradually solidified under vacuum. Recrystallization from hexane afforded a white solid 10 (15.8 g, 84%). (1 H NMR: 7.72-7.38 (10H, m, aromatic-H); 5.53 (1H, t, H2) J=2.7 Hz; 3.93 (1H, dd, --CH2 O) J=9.3 Hz; 3.81 (1H, d, 1H4) J=13.8 Hz; 3.79 (1H, dd, --CH2 O); 3.58 (1H, d, 1H4); 1.02 (9H, s, t-Bu).
2-(t-Butyl-diphenylsilyloxy)-methyl-5-oxo-1,2-oxathiolane 10 (5.0 g, 13.42 mmol) was dissolved in toluene (150 ml) and the solution was cooled to -78° C. Dibal-H solution (14 ml, 1.0M in hexanes, 14 mmol) was added dropwise, while the inside temperature was kept below -70° C. all the time. After the completion of the addition, the mixture was stirred for 30 minutes at -78° C. Acetic anhydride (5 ml, 53 mmol) was added and the mixture was warmed to room temperature and stirred overnight. Water (5 ml) was added to the mixture and the resulting mixture was stirred for 1 hour at room temperature. The mixture was diluted with diethyl ether (300 ml), MgSO4 (40 g) was added, and the mixture was stirred vigorously for 1 hour at room temperature. The mixture was filtered, concentrated, and the residue flash chromatographed with 20% ETOAc in hexanes to give a colorless liquid 11 (3.60 g, 8.64 mmol, 64%), which was a 6:1 mixture of anomers. (1 H NMR of the major isomer: 7.70-7.35 (10H, m, aromatic-H); 6.63 (1H, d, H5) J=4.4 Hz; 5.47 (1H, t, H2 4.20-3.60 (2H, m, --CH2 O); 3.27 (1H, dd, 1H4) J-4.4 and 11.4 Hz; 3.09 (1H, d, 1H4) J=11.4 Hz; 2.02 (3H, s, CH3 CO); 1.05 (9H, s, t-Bu); 1 H NMR of the minor isomer: 7.70-7.35 (10H, m, aromatic-H); 6.55 (1H, d, H5) J=3.9 Hz; 5.45 (1H, t, H2); 4.20-3.60 (2H, m, --CH2 O); 3.25 (1H, dd, 1H4) J=3.9 and 11.4 Hz; 3.11 (1H, d, 1H4) J=11.4 Hz; 2.04 (3H, s, CH3 CO); 1.04 (9H, s, t-Bu)).
2-(t-Butyl-diphenylsilyloxy)-methyl-5-acetoxy-1,3-oxathiolane 11 (0.28 g, 0.67 mmol) was dissolved in 1,2-dichloroethane (20 ml), and silylated cytosine 12 (0.20 g, 0.78 mmol) was added at once at room temperature. The mixture was stirred for 10 minutes and to it was added SnCl4 solution (0.80 ml, 1.0 M solution in CH2 Cl2, 0.80 mmol) dropwise at room temperature. Additional cytosine 12 (0.10 g, 0.39 mmol) and SnCl4 solution (0.60 ml) were added in a same manner 1 hour later. After completion of the reaction in 2 hours, the solution was concentrated, and the residue was triturated with triethylamine (2 ml) and subjected to flash chromatography (first with neat EtOAc and then 20% ethanol in EtOAc) to give a tan solid 13 (100% β configuration) (0.25 g, 0.54 mmol, 80%). (1 H NMR (DMSO-d6): 7.75 (1H, d, H6) J=7.5 Hz; 7.65-7.35 (10H, m, aromatic-H); 7.21 and 7.14 (2H, broad, --NH2); 6.19 (1H, t, H5'); 5.57 (1H, d, H5); 5.25 (1H, t, H2'); 3.97 (1H, dd, --CH2 O) J=3.9 and 11.1 Hz; 3.87 (1H, dd, --CH2 O); 3.41 (1H, dd, 1H4') J=4.5 and 11.7 Hz; 3.03 (1H, dd, 1H4') J=?; 0.97 (9H, s, t-Bu)).
Silyether 13 (0.23 g, 0.49 mmol) was dissolved in THF (30 ml), and to it was added n-Bu4 NF solution (0.50 ml, 1.0 M solution in THF, 0.50 mmol) dropwise at room temperature. The mixture was stirred for 1 hour and concentrated under vacuum. The residue was taken up with ethanol/triethylamine (2 ml/1 ml), and subjected to flash chromatography (first with EtOAc, then 20% ethanol in EtOAc) to afford a white solid 14 in 100% anomeric purity (BCH-189; 0.11 g, 0.48 mmol, 98%), which was further recrystallized from ethanol/CHCl3 /Hexanes mixture. (1 H NMR (DMSO-d6): 7.91 (1H, d, H6) J=7.6 Hz; 7.76 and 7.45 (2H, broad, --NH2); 6.19 (1H, t, H5'); 5.80 (1H, d, H5) J=7.6 Hz; 5.34 (1H, broad, --OH); 5.17 (1H, t, H2'); 3.74 (3.74 (2H, m, --CH2 O); 3.42 (1H, dd, 1H4') J=5.6 and 11.5 Hz; 3.09 (1H, dd, 1H4') J=4.5 and 11.5 Hz).
BCH-189 and its analogs can also be synthesized by coupling a silylated uracil derivative with 11. Silylated uracil derivative 15 (1.80 g, 7.02 mmol) was coupled with 11 (1.72 g, 4.13 mmol) in 1,2-dichloroethane (50 ml) in the presence of SnCl4 (5.0 ml) as described above in the preparation of the cytosine derivative 13. The reaction was complete after 5 hours. Flash chromatography, first with 40% EtOAc in hexane and then EtOAc, afforded a white foam 16 (1.60 g, 3.43 mmol, 83%). (1 H NMR: 9.39 (1H, broad, --NH) 7.90 (1H, d, H6) J=7.9 Hz; 7.75-7.35 (10H, m aromatic-H); 6.33 (1H, dd, H5'); 5.51 (1H, d, H5) J=7.9 Hz; 5.23 (1H, t, H2'); 4.11 (1H, dd, --CH2 O) J=3.2 and 11.7 Hz; 3.93 (1H, dd, --CH2 O); 3.48 (1H, dd, 1H4') J=5.4 and 12.2 Hz; 3.13 (1H, dd, 1H4') J=3.2 and 12.2 Hz).
The uracil derivative 16 can be converted to the cytosine derivative 13. The uracil derivative 16 (0.20 g, 0.43 mmol) was dissolved in a mixture of pyridine/dichloroethane (2 ml/10 ml), and the solution cooled to 0° C. Triflic anhydride (72 μl, 0.43 mmol) was added dropwise at 0° C. and the mixture was warmed to room temperature and stirred for 1 hour. Additional triflic anhydride (0.50 μl, 0.30 mmol) was added and the mixture stirred for 1 hour. TLC showed no mobility with EtOAc. The reaction mixture was then decannulated into a NH3 -saturated methanol solution (30 ml) and the mixture was stirred for 12 hours at room temperature. The solution was concentrated, and the residue subjected to flash chromatography to give a tanned foam 13 (0.18 g, 0.39 mmol, 91%), which was identical with the compound obtained from the cytosine coupling reaction.
FIG. 3 illustrates the synthesis of 5-methylcytidine and thymidine derivatives of BCH-189. The acetate 11 (0.93 g, 2.23 mmol) in 1,2-dichloroethane (50 ml), was reacted with the silylated thymine derivative 17 (1.0 g, 3.70 mmol), and SnCl4 solution (4.0 ml) in a manner similar to that described for the preparation of cytosine derivative 13. (1 H NMR: 8.10 (1H, broad, NH); 7.75-7.30 (11H, m, 10 Aromatic H's and 1H6); 6.32 (1H, t, H1') J=5.4 Hz; 5.25 (1H, t, H4') J=4.2 Hz; 4.01 (1H, dd, 1H5') J=3.9 and 11.4 Hz; 3.93 (1H, dd, 1H5') J=4.5 and 11.4 Hz; 3.41 (1H, dd, 1H2') J=5.4 and 11.7 Hz; 3.04 (1H, dd, 1H2') J=5.7 and 11.7 Hz; 1.75 (3H, s, CH3); 1.07 (9H, s, t-Bu)).
The thymine derivative 18 (0.20 g, 0.42 mmol) was dissolved in a mixture of pyridine/dichloroethane (2 ml/10 ml), and the solution cooled to 0° C. To it was added triflic anhydride (100 μl, 0.60 mmol) dropwise at 0° C., and mixture was allowed, with continuous stirring, to warm to room temperature. After reaching room temperature, it was stirred for 1 hour. TLC showed no mobility with EtOAc. The reaction mixture was then decannulated into the NH 3-saturated methanol solution (20 ml), and the mixture stirred for 12 hours at room temperature. The solution was concentrated, and the residue was subjected to flash chromatography to give a tanned foam 19 (0.18 g, 0.38 mmol, 90%). (1 H NMR: 7.70-7.30 (12H, m, 10 Aromatic H's, 1NH and H6); 6.60 (1H, broad, 1NH); 6.34 (1H, t, H1') J=4.5 Hz; 5.25 (1H, t, H4') J=3.6 Hz; 4.08 (1H, dd, 1H5') J=3.6 and 11.4 Hz; 3.96 (1H dd, 1H5') J=3.6 and 11.4 Hz; 3.52 (1H, dd, 1H2') J=5.4 and 12.3 Hz; 3.09 (1H, dd, 1H2') J=3,9 and 12.3 Hz; 1.72 (3H, s, CH3); 1.07 (9H, s, t-Bu)).
Silylether 19 (0.18 g, 0.38 mmol) was dissolved in THF (20 ml), and an n-Bu4 NF solution (0.50 ml, 1.0 M solution in THF, 0.50 mmol) was added, dropwise, at room temperature. The mixture was stirred for 1 hour and concentrated under vacuum. The residue was taken up with ethanol/triethylamine (2 ml/1 ml), and subjected to flash chromatography (first with EtOAc, then 20% ethanol in EtOAc) to afford a white solid 20 (0.09 g, 0.37 mmol, 97%), which was further recrystallized from ethanol/CHCl3 /Hexanes mixture to afford 82 mg of pure compound (89%). (1 H NMR: (in d6 -DMSO): 7.70 (1H, s, H6); 7.48 and 7.10 (2H, broad, NH2); 6.19 (1H, t, H1') J=6.5 Hz; 5.31 (1H, t, OH);5.16 (1H, t, 1H4') J=5.4 Hz; 3.72 (2H, m, 2H5') 3.36 (1H, dd, 1H2') J=6.5 and 14.0 Hz; 3.05 (1H, dd, 1H2') J=6.5 and 14.0 Hz; 1.85 (3H, s, CH3)).
Silylether 18 (0.70 g, 1.46 mmol) was dissolved in THF (50 ml), and an n-Bu4 NF solution (2 ml, 1.0 M solution in THF, 2 mmol) was added, dropwise, at room temperature. The mixture was stirred for 1 hour and concentrated under vacuum. The residue was taken up with ethanol/triethylamine (2 ml/l ml), and subjected to flash chromatography to afford a white solid 21 (0.33 g, 1.35 mmol, 92%). (1 H NMR: (in d6 -Acetone): 9.98 (1H, broad, NH); 7.76 (1H, d, H6) J=1.2 Hz; 6.25 (1H, t, H4') J=5.7 Hz; 5.24 (1H, t, H1') J=4.2 Hz; 4.39 (1H, t, OH) J=5.7 Hz; 3.85 (1H, dd, 2H5') J=4.2 and 5.7 Hz; 3.41 (1H, dd, 1H2') J=5.7 and 12.0 Hz; 3.19 (1H, dd, 1H2') J=5.4 and 12.0 Hz; 1.80 (3H, S, CH3)).
FIG. 4 illustrates the synthesis of enantiomerically-enriched BCH-189 and its analogs. Allyl butyrate 22 (19.0 g, 148 mmol) was dissolved in CH2 Cl2 (400 ml), and ozonized at -78° C. Upon completion of ozonolysis, dimethyl sulfide (20 ml, 270 mmol, 1.8 eq) was added at -78° C. and the mixture was warmed to room temperature and stirred overnight. The solution was washed with water (100 ml×2), dried over MgSO4, filtered, concentrated, and distilled under vacuum (70-80° C. at 0.5-0.6 mm Hg) to give a colorless liquid 23 (17.0 g, 131 mmol, 88%). (1 H NMR: 9.59 (1H, s, H--CO); 4.66 (2H, s, --CH2 O); 2.42 (2H, t, CH2 CO) J=7.2 Hz; 1.71 (2H, sex, --CH2); 0.97 (3H, t, CH3) J=7.2 Hz) (IR neat): 2990, 2960, 2900, 1750, 1740, 1460, 1420, 1390, 1280, 1190, 1110, 1060, 1020, 990, 880, 800, 760).
Butyryloxyacetaldehyde 23 (15.0 g, 115 mmol) was dissolved in toluene (200 ml) and mixed with thioglycolic acid (8.0 ml, 115 mmol). The solution was refluxed for 5 hours while the resulting water was removed with a Dean-Stark trap. The solution was cooled to room temperature and was transferred to a 500 ml separatory funnel. The solution was then washed with saturated NaHCO3 solution. These aqueous washing were extracted with diethyl ether (200 ml×2) to recuperate any crude product from the aqueous layer. The ether extracts were added to the toluene layer and the resulting mixture was washed with water (100 ml×2), dried over MgSO4, filtered concentrated, and distilled under vacuum (70-80°C. at 0.5-0.6 mm Hg) to give a colorless oil 24 (19 g, 93 mmol, 81%). (1 H NMR: 5.65 (1H, dd, H5) J=5.0 and 1.4 Hz; 4.35 (1H, dd, --CH2 O) J=3.2 and 12.2 Hz; 4.29 (1H, dd, --CH2 O) J=5.7 and 12.2 Hz; 3.72 (1H, d, --CH2 S) J=16.2 Hz; 3.64 (1H, d, --CH2 S; 2.34 (2H, t, --CH2 CO) J=7.2 Hz; 1.66 (2H, sex, --CH2); 0.95 (3H, t, CH3) J=7.2 Hz) (IR (neat): 2980, 2960, 2900, 1780, 1740, 1460, 1410, 1390, 1350, 1300, 1290, 1260, 1220, 1170, 1110, 1080, 1070, 1000, 950, 910, 830, 820, 800, 760).
Pig liver esterase solution (90 μl) was added to a buffer solution (pH 7, 100 ml) at room temperature, and the mixture stirred vigorously for 5 minutes. The butyrate 24 (2.8 g, 13.7 mmol) was added, all at once, to the esterase/buffer solution and the mixture was stirred vigorously at room temperature for 2 hours. The reaction mixture was poured into a separatory funnel. The reaction flask was washed with ether (10 ml) and the washing was combined with the reaction mixture in the funnel. The combined mixture was extracted with hexanes three times (100 ml×3). The three hexane extracts were combined and dried over MgSO4, filtered, and concentrated to give the optically active butyrate 24 (1.12 g, 5.48 mmol, 40%). Enantiomeric excess was determined by an NMR experiment using a Tris[3-heptafluoropropyl-hydroxymethylene)-(+)-camphorato] europium (III) derivative as a chemical shift reagent; this procedure showed approximately 40% enrichment for one enantiomer. The remaining aqueous layer from the reaction was subjected to a continuous extraction with CH2 Cl2 for 20 hours. The organic layer was removed from the extraction apparatus, dried over MgSO4, filtered, and concentrated to give an oil (1.24 g), which was shown by NMR analysis to consist of predominately the 2-hydroxymethyl-5-oxo-1,3-oxathiolane 25 with small amounts of butyric acid and the butyrate 24.
The lactone 25 (0.85 g, 4.16 mmol) was dissolved in toluene (30 ml), and the solution cooled to -78° C. Dibal-H solution (9 ml, 1.0 M in hexanes, 9 mmol) was added dropwise, while the inside temperature was kept below -70° C. throughout the addition. After the addition was completed, the mixture was stirred for 0.5 hours at -78° C. Acetic anhydride (5 ml, 53 mmol) was added and the mixture, with continuous stirring, was allowed to reach room temperature overnight. Water (5 ml) was added to the reaction mixture and the resultant mixture was stirred for 1 hour. MgSO4 (40 g) was then added and the mixture was stirred vigorously for 1 hour at room temperature. The mixture was filtered, concentrated, and the residue flash chromatographed with 20% EtOAc in hexanes to give a colorless liquid 26 (0.41 g, 1.86 mmol, 45%) which was a mixture of anomers at the C-4 position.
The 2-Acetoxymethyl-5-acetoxy-1,3-oxathiolane 26 (0.40 g, 1.82 mmol) was dissolved in 1,2-dichloroethane (40 ml), and to it the silylated cytosine 12 (0.70 g, 2.74 mmol) was added, all at once, at room temperature. The mixture was stirred for 10 minutes, and to it a SnCl4 solution (3.0 ml, 1.0 M solution in CH2 Cl2, 3.0 mmol) was added, dropwise, at room temperature. Additional SnCl4 solution (1.0 ml) was added after 1 hour. The reaction was followed by TLC. Upon completion of the coupling, the solution was concentrated, the residue was triturated with triethylamine (2 ml) and subjected to flash chromatography (first with neat EtOAc then 20% ethanol in EtOAc) to give a tan solid 27 (0.42 g, 1.55 mmol, 86%). (1 H NMR: 7.73 (1H, d, H6) J=7.5 Hz; 6.33 (1H, t, H4') J=4.8 Hz; 5.80 (1H, d, H5) J=7.5 Hz; 4.52 (1H, dd, 1H5') J=5.7 and 12.3 Hz; 4.37 (1H, dd, 1H5') J=3.3 and 12.3 Hz; 3.54 (1H, dd, H2,) J=5.4 and 12.0 Hz; 3.10 (1H, dd, 1H3); 2.11 (3H, s, CH3).
The 5'-Acetate of BCH-189 27 (140 mg. 0.52 mmol) was dissolved in anhydrous methanol (10 ml), and to it was added sodium methoxide (110 mg, 2.0 mmol) in one portion. The mixture was stirred at room temperature until the hydrolysis was complete. The hydrolysis took about 1 hour, and the reaction was followed by TLC. Upon completion, the mixture was then concentrated, and the residue taken up with ethanol (2 ml). The ethanol solution was subjected to column chromatography using ethyl acetate first, then 20% ethanol in EtOAc to afford a white foam (110 mg, 92%), which exhibited an NMR spectrum identical to that of authentic BCH-189, 14.

Claims (1)

What is claimed is:
1. A method of preparing the B-isomer of a 1,3-oxathiolane nucleoside, comprising reacting a compound of the structure: ##STR8## wherein R' is an acyl group and R is an oxygen protecting group, with a protected pyrimidine base in the presence of SnCl4.
US09/337,910 1990-02-01 1999-06-22 Method and compositions for the synthesis of BCH-189 and related compounds Expired - Fee Related US6153751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/337,910 US6153751A (en) 1990-02-01 1999-06-22 Method and compositions for the synthesis of BCH-189 and related compounds

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US07/473,318 US5204466A (en) 1990-02-01 1990-02-01 Method and compositions for the synthesis of bch-189 and related compounds
US08/015,992 US5539116A (en) 1990-02-01 1993-02-10 Method and compositions for the synthesis of BCH-189 and related compounds
US21549894A 1994-03-21 1994-03-21
US08/472,345 US5914400A (en) 1990-02-01 1995-06-07 Method and compositions for the synthesis of BCH-189 and related compounds
US09/337,910 US6153751A (en) 1990-02-01 1999-06-22 Method and compositions for the synthesis of BCH-189 and related compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/472,345 Continuation US5914400A (en) 1990-02-01 1995-06-07 Method and compositions for the synthesis of BCH-189 and related compounds

Publications (1)

Publication Number Publication Date
US6153751A true US6153751A (en) 2000-11-28

Family

ID=23879071

Family Applications (8)

Application Number Title Priority Date Filing Date
US07/473,318 Expired - Fee Related US5204466A (en) 1990-02-01 1990-02-01 Method and compositions for the synthesis of bch-189 and related compounds
US07/659,760 Expired - Lifetime US5210085A (en) 1990-02-01 1991-02-22 Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US08/015,992 Expired - Fee Related US5539116A (en) 1990-02-01 1993-02-10 Method and compositions for the synthesis of BCH-189 and related compounds
US08/017,820 Expired - Lifetime US5814639A (en) 1990-02-01 1993-02-16 Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US08/472,345 Expired - Lifetime US5914400A (en) 1990-02-01 1995-06-07 Method and compositions for the synthesis of BCH-189 and related compounds
US08/482,875 Expired - Lifetime US6114343A (en) 1990-02-01 1995-06-07 Antiviral activity and resolution of 2-hydroxymethyl-5-(5-flurocytosin-1-yl)-1,3-oxathiolane
US09/337,910 Expired - Fee Related US6153751A (en) 1990-02-01 1999-06-22 Method and compositions for the synthesis of BCH-189 and related compounds
US10/700,276 Abandoned US20050004148A1 (en) 1990-02-01 2003-11-03 Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane

Family Applications Before (6)

Application Number Title Priority Date Filing Date
US07/473,318 Expired - Fee Related US5204466A (en) 1990-02-01 1990-02-01 Method and compositions for the synthesis of bch-189 and related compounds
US07/659,760 Expired - Lifetime US5210085A (en) 1990-02-01 1991-02-22 Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US08/015,992 Expired - Fee Related US5539116A (en) 1990-02-01 1993-02-10 Method and compositions for the synthesis of BCH-189 and related compounds
US08/017,820 Expired - Lifetime US5814639A (en) 1990-02-01 1993-02-16 Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US08/472,345 Expired - Lifetime US5914400A (en) 1990-02-01 1995-06-07 Method and compositions for the synthesis of BCH-189 and related compounds
US08/482,875 Expired - Lifetime US6114343A (en) 1990-02-01 1995-06-07 Antiviral activity and resolution of 2-hydroxymethyl-5-(5-flurocytosin-1-yl)-1,3-oxathiolane

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/700,276 Abandoned US20050004148A1 (en) 1990-02-01 2003-11-03 Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane

Country Status (21)

Country Link
US (8) US5204466A (en)
EP (3) EP1772151A3 (en)
JP (6) JPH07618B2 (en)
KR (2) KR100188357B1 (en)
AT (1) ATE170750T1 (en)
AU (6) AU658136C (en)
BG (1) BG62236B1 (en)
CA (3) CA2678778A1 (en)
DE (4) DE122004000015I2 (en)
DK (2) DK0872237T3 (en)
ES (2) ES2076130T5 (en)
FI (4) FI114471B (en)
GR (1) GR950300024T1 (en)
HU (4) HU227485B1 (en)
LU (1) LU91073I2 (en)
MC (1) MC2233A1 (en)
NL (1) NL300148I2 (en)
NO (6) NO923014L (en)
RO (1) RO108564B1 (en)
RU (1) RU2125558C1 (en)
WO (1) WO1991011186A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038350A1 (en) * 1990-02-01 2004-02-26 Liotta Dennis C. Method of resolution and antiviral activity of 1,3-oxathiolane nucleoside enantiomers
US20060036092A1 (en) * 2004-02-03 2006-02-16 Marcos Sznaidman Methods to manufacture 1,3-dioxolane nucleosides
WO2010082128A1 (en) 2009-01-19 2010-07-22 Aurobindo Pharma Limited Process for the preparation of cis-nucleoside derivative

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6175008B1 (en) * 1988-04-11 2001-01-16 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US5047407A (en) * 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
US6903224B2 (en) 1988-04-11 2005-06-07 Biochem Pharma Inc. Substituted 1,3-oxathiolanes
US5466806A (en) * 1989-02-08 1995-11-14 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US7119202B1 (en) * 1989-02-08 2006-10-10 Glaxo Wellcome Inc. Substituted-1,3-oxathiolanes and substituted-1,3-dioxolanes with antiviral properties
US6350753B1 (en) 1988-04-11 2002-02-26 Biochem Pharma Inc. 2-Substituted-4-substituted-1,3-dioxolanes and use thereof
AU3154993A (en) 1989-02-08 1994-07-19 Biochem Pharma Inc. Process for preparing substituted 1,3-oxathiolanes with antiviral properties
US20090239887A1 (en) * 1990-02-01 2009-09-24 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nucleoside enantiomers
US6703396B1 (en) * 1990-02-01 2004-03-09 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nuclesoside enantiomers
US5276151A (en) * 1990-02-01 1994-01-04 Emory University Method of synthesis of 1,3-dioxolane nucleosides
US5204466A (en) * 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
US5914331A (en) * 1990-02-01 1999-06-22 Emory University Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
GB9009861D0 (en) * 1990-05-02 1990-06-27 Glaxo Group Ltd Chemical compounds
US5925643A (en) * 1990-12-05 1999-07-20 Emory University Enantiomerically pure β-D-dioxolane-nucleosides
US5444063A (en) * 1990-12-05 1995-08-22 Emory University Enantiomerically pure β-D-dioxolane nucleosides with selective anti-Hepatitis B virus activity
IL100502A (en) * 1991-01-03 1995-12-08 Iaf Biochem Int Pharmaceutical compositions containing cis-4-amino-1(hydroxymethyl-1,3-oxathiolan-5-yl)-1H-pyrimid-2-one nucleoside or its derivatives
IL100965A (en) * 1991-02-22 1999-12-31 Univ Emory 2-Hydroxymethyl-5-(5-fluorocytosin-l-yl)-1,3-oxathiolane its resolution and pharmaceutical compositions containing it
AU662130B2 (en) * 1991-03-06 1995-08-24 Emory University Use of 5-fluoro-2'-deoxy-3'-thiacytidine for the treatment of hepatitis B
US6812233B1 (en) * 1991-03-06 2004-11-02 Emory University Therapeutic nucleosides
GB9104740D0 (en) * 1991-03-06 1991-04-17 Wellcome Found Antiviral nucleoside combination
US5817667A (en) * 1991-04-17 1998-10-06 University Of Georgia Research Foudation Compounds and methods for the treatment of cancer
GB9109506D0 (en) * 1991-05-02 1991-06-26 Wellcome Found Therapeutic nucleosides
GB9110874D0 (en) * 1991-05-20 1991-07-10 Iaf Biochem Int Medicaments
ZA923641B (en) * 1991-05-21 1993-02-24 Iaf Biochem Int Processes for the diastereoselective synthesis of nucleosides
GB9111902D0 (en) * 1991-06-03 1991-07-24 Glaxo Group Ltd Chemical compounds
GB9116601D0 (en) * 1991-08-01 1991-09-18 Iaf Biochem Int 1,3-oxathiolane nucleoside analogues
US20050192299A1 (en) * 1992-04-16 2005-09-01 Yung-Chi Cheng Method of treating or preventing hepatitis B virus
GB9311709D0 (en) * 1993-06-07 1993-07-21 Iaf Biochem Int Stereoselective synthesis of nucleoside analogues using bicycle intermediate
EP0717628A4 (en) 1993-09-10 1999-05-26 Univ Emory Nucleosides with anti-hepatitis b virus activity
US20020120130A1 (en) * 1993-09-10 2002-08-29 Gilles Gosselin 2' or 3' -deoxy and 2', 3' -dideoxy-beta-L-pentofuranonucleo-side compounds, method of preparation and application in therapy, especially as anti- viral agents
US5587362A (en) * 1994-01-28 1996-12-24 Univ. Of Ga Research Foundation L-nucleosides
IL113432A (en) 1994-04-23 2000-11-21 Glaxo Group Ltd Process for the diastereoselective synthesis of nucleoside analogues
IL115156A (en) * 1994-09-06 2000-07-16 Univ Georgia Pharmaceutical compositions for the treatment of cancer comprising 1-(2-hydroxymethyl-1,3-dioxolan-4-yl) cytosines
US5703058A (en) * 1995-01-27 1997-12-30 Emory University Compositions containing 5-fluoro-2',3'-didehydro-2',3'-dideoxycytidine or a mono-, di-, or triphosphate thereof and a second antiviral agent
US6391859B1 (en) 1995-01-27 2002-05-21 Emory University [5-Carboxamido or 5-fluoro]-[2′,3′-unsaturated or 3′-modified]-pyrimidine nucleosides
US5808040A (en) * 1995-01-30 1998-09-15 Yale University L-nucleosides incorporated into polymeric structure for stabilization of oligonucleotides
US6689761B1 (en) 1995-02-01 2004-02-10 Merck & Co., Inc. Combination therapy for HIV infection
MY115461A (en) 1995-03-30 2003-06-30 Wellcome Found Synergistic combinations of zidovudine, 1592u89 and 3tc
GB9506644D0 (en) * 1995-03-31 1995-05-24 Wellcome Found Preparation of nucleoside analogues
DE19514523A1 (en) * 1995-04-12 1996-10-17 Schering Ag New cytosine and cytidine derivatives
AU722214B2 (en) 1995-06-07 2000-07-27 Centre National De La Recherche Scientifique (Cnrs) Nucleosides with anti-hepatitis B virus activity
ATE257708T1 (en) 1996-06-25 2004-01-15 Glaxo Group Ltd COMBINATIONS CONTAINING VX478, ZIDOVUDINE AND 3TC FOR THE TREATMENT OF HIV
US5753789A (en) * 1996-07-26 1998-05-19 Yale University Oligonucleotides containing L-nucleosides
US6113920A (en) * 1996-10-31 2000-09-05 Glaxo Wellcome Inc. Pharmaceutical compositions
US6022876A (en) * 1996-11-15 2000-02-08 Yale University L-β-dioxolane uridine analogs and methods for treating and preventing Epstein-Barr virus infections
US5792773A (en) * 1996-11-15 1998-08-11 Yale University L-β-dioxolane uridine analog administration for treating Epstein-Barr virus infection
ES2221164T3 (en) 1997-03-19 2004-12-16 Emory University SYNTHESIS AND ACTIVITY OF HUMAN IMMUNODEFICIENCY AND ANTIVIRUS OF HEPATITIS B OF NUCLEOSIDS 1,3-OXASELENOLANO.
JP2001518899A (en) 1997-04-07 2001-10-16 トライアングル ファーマシューティカルズ,インコーポレイティド Use of MKC-442 in combination with other antiviral agents
EP1754710A3 (en) 1998-02-25 2007-12-19 Emory University 2'-Fluoroncucleosides
BR9908270A (en) 1998-02-25 2004-06-29 Univ Emory 2-Fluoro-nucleosides, pharmaceutical compositions and their uses
US6444652B1 (en) * 1998-08-10 2002-09-03 Novirio Pharmaceuticals Limited β-L-2'-deoxy-nucleosides for the treatment of hepatitis B
KR100691737B1 (en) 1998-08-10 2007-03-12 이데닉스(케이만)리미티드 Β-L-2'-deoxy-nucleoside for the treatment of hepatitis V
DE69921829T2 (en) * 1998-08-12 2005-10-27 Gilead Sciences, Inc., Foster City PROCESS FOR THE PREPARATION OF 1,3-OXATHOLO NUCLEOSIDE
US6979561B1 (en) * 1998-10-09 2005-12-27 Gilead Sciences, Inc. Non-homogeneous systems for the resolution of enantiomeric mixtures
US6528515B1 (en) 1998-11-02 2003-03-04 Triangle Pharmaceuticals, Inc. Combination therapy to treat hepatitis B virus
KR100618028B1 (en) 1998-11-05 2006-08-30 쌍트르 나쉬오날 드 라 르쉐르스 쉬앙티피끄 Nucleosides with anti-hepatitis hepatitis activity
US6407077B1 (en) 1998-11-05 2002-06-18 Emory University β-L nucleosides for the treatment of HIV infection
RU2237479C2 (en) * 1998-11-05 2004-10-10 Сантр Насьональ Де Ля Решерш Сьентифик Nucleosides with activity against hepatitis b virus
ES2209532T3 (en) * 1998-12-23 2004-06-16 Shire Biochem Inc. ANTIVIRAL NUCLEOSID ANALOGS.
US7205404B1 (en) * 1999-03-05 2007-04-17 Metabasis Therapeutics, Inc. Phosphorus-containing prodrugs
US6653318B1 (en) * 1999-07-21 2003-11-25 Yale University 5-(E)-Bromovinyl uracil analogues and related pyrimidine nucleosides as anti-viral agents and methods of use
CN1919858A (en) * 1999-11-12 2007-02-28 法玛赛特有限公司 Synthesis of 2'-deoxy-l-nucleosides
EP1634888A3 (en) 1999-11-12 2007-11-21 Pharmasset, Inc. Synthesis of 2'-deoxy-L-nucleosides
US6436948B1 (en) 2000-03-03 2002-08-20 University Of Georgia Research Foundation Inc. Method for the treatment of psoriasis and genital warts
CA2308559C (en) 2000-05-16 2005-07-26 Brantford Chemicals Inc. 1,3-oxathiolan-5-ones useful in the production of antiviral nucleoside analogues
MY164523A (en) * 2000-05-23 2017-12-29 Univ Degli Studi Cagliari Methods and compositions for treating hepatitis c virus
EA007867B1 (en) * 2000-05-26 2007-02-27 Айденикс (Кайман) Лимитед Methods and compositions for treating flaviviruses and pestiviruses
US6787526B1 (en) 2000-05-26 2004-09-07 Idenix Pharmaceuticals, Inc. Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides
US6875751B2 (en) * 2000-06-15 2005-04-05 Idenix Pharmaceuticals, Inc. 3′-prodrugs of 2′-deoxy-β-L-nucleosides
US20030166606A1 (en) * 2000-08-09 2003-09-04 Kwan-Hee Kim 5'-deoxy-n-(substituted oxycarbonyl)-5-fluorocytosine and derivatives thereof, method of preparing same, and anticancer composition comprising same as active ingredients
CN1446225A (en) * 2000-08-09 2003-10-01 可隆株式会社 5'-deoxy-N-(substituted oxycarbonyl)-5-fluorocytosine and derivatives thereof, method of preparing same, and anticancer composition comprising same as active ingredients
US20030228320A1 (en) * 2000-08-18 2003-12-11 Ashdown Martin Leonard Retroviral immunotherapy
US20030087873A1 (en) 2000-10-18 2003-05-08 Lieven Stuyver Modified nucleosides for the treatment of viral infections and abnormal cellular proliferation
DE10104231A1 (en) * 2001-01-31 2002-08-08 Consortium Elektrochem Ind Process for the enzymatic production of enantiomerically pure 1,3-dioxolan-4-one derivatives
EP1389207B1 (en) 2001-03-01 2005-12-07 Gilead Sciences, Inc. Polymorphic and other crystalline forms of cis-ftc
CA2380804A1 (en) * 2001-05-01 2002-11-01 Mitsui Chemicals, Inc. Method for producing cytosine nucleosides compounds
US6600044B2 (en) 2001-06-18 2003-07-29 Brantford Chemicals Inc. Process for recovery of the desired cis-1,3-oxathiolane nucleosides from their undesired trans-isomers
ITMI20012317A1 (en) * 2001-11-06 2003-05-06 Recordati Ind Chimica E Farma DIASTEREOSELECTIVE PROCESS FOR THE PREPARATION OF THE ANTIVIRAL AGENT4-AMINO-1- (2R-IDROSSIMETIL- / 1,3 / OSSATIOLAN-5S-I1) -1H-PIRIMIDIN-2-ONE
CA2470202A1 (en) * 2001-12-14 2003-06-26 Kyoichi A. Watanabe Preparation of intermediates useful in the synthesis of antiviral nucleosides
AUPS054702A0 (en) * 2002-02-14 2002-03-07 Immunaid Pty Ltd Cancer therapy
JP2005527589A (en) * 2002-04-12 2005-09-15 アキリオン ファーマシューティカルズ,インコーポレーテッド Method for synthesizing β-L-5-fluoro-2 ', 3'-dideoxy-2', 3'-didehydrocytidine (β-L-FD4C)
CN101172993A (en) * 2002-06-28 2008-05-07 埃迪尼克斯(开曼)有限公司 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
US7608600B2 (en) * 2002-06-28 2009-10-27 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
CA2489552A1 (en) * 2002-06-28 2004-01-08 Idenix (Cayman) Limited 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
IL166682A0 (en) 2002-08-06 2006-01-15 Pharmasset Ltd Processes for preparing 1,3-dioxolane nucleosides
TWI244393B (en) * 2002-08-06 2005-12-01 Idenix Pharmaceuticals Inc Crystalline and amorphous forms of beta-L-2'-deoxythymidine
PT1572095E (en) * 2002-09-13 2015-10-13 Novartis Ag Beta-l-2'-deoxynucleosides for use in the treatment of resistant hbv strains
CA2506129C (en) * 2002-11-15 2015-02-17 Idenix (Cayman) Limited 2'-branched nucleosides and flaviviridae mutation
EP1569659A4 (en) * 2002-12-09 2009-03-25 Univ Georgia Res Found DIOXOLAN THYMINE AND ITS COMBINATIONS FOR USE AGAINST 3TC / AZT-RESISTANT HIV STRAINS
EP1585529A4 (en) * 2002-12-12 2008-05-28 Idenix Cayman Ltd Process for the production of 2'-branched nucleosides
HRP20140379A2 (en) * 2003-01-14 2014-07-18 Gilead Sciences, Inc. Compositions and methods for combination antiviral therapy
ITMI20030578A1 (en) * 2003-03-24 2004-09-25 Clariant Lsm Italia Spa PROCESS AND INTERMEDIATES FOR THE PREPARATION OF EMTRICITABINE
EP1608629A1 (en) 2003-03-24 2005-12-28 F. Hoffmann-La Roche Ag Benzyl-pyridazinons as reverse transcriptase inhibitors
US20050059632A1 (en) * 2003-06-30 2005-03-17 Richard Storer Synthesis of beta-L-2'-deoxy nucleosides
GB0317009D0 (en) 2003-07-21 2003-08-27 Univ Cardiff Chemical compounds
ES2357430T3 (en) 2003-10-24 2011-04-26 Immunaid Pty Ltd THERAPY METHOD
PT1778251E (en) 2004-07-27 2011-06-29 Gilead Sciences Inc Nucleoside phosphonate conjugates as anti hiv agents
JP4058057B2 (en) * 2005-04-26 2008-03-05 株式会社東芝 Sino-Japanese machine translation device, Sino-Japanese machine translation method and Sino-Japanese machine translation program
TWI471145B (en) * 2005-06-13 2015-02-01 Bristol Myers Squibb & Gilead Sciences Llc Unitary pharmaceutical dosage form
TWI375560B (en) * 2005-06-13 2012-11-01 Gilead Sciences Inc Composition comprising dry granulated emtricitabine and tenofovir df and method for making the same
CA2625047A1 (en) 2005-10-19 2007-04-26 F. Hoffmann-La Roche Ag Phenyl-acetamide nnrt inhibitors
US8076303B2 (en) 2005-12-13 2011-12-13 Spring Bank Pharmaceuticals, Inc. Nucleotide and oligonucleotide prodrugs
US7781576B2 (en) * 2005-12-23 2010-08-24 Idenix Pharmaceuticals, Inc. Process for preparing a synthetic intermediate for preparation of branched nucleosides
WO2007082890A1 (en) * 2006-01-17 2007-07-26 N.V. Organon SELECTIVE ENZYMATIC HYDROLYSIS OF C-TERMINAL tert-BUTYL ESTERS OF PEPTIDES
US9044509B2 (en) 2006-02-03 2015-06-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Inhibition of HIV infection through chemoprophylaxis
US8895531B2 (en) * 2006-03-23 2014-11-25 Rfs Pharma Llc 2′-fluoronucleoside phosphonates as antiviral agents
WO2007119248A1 (en) * 2006-04-18 2007-10-25 Lupin Limited A novel crystalline form of lamivudine
AR061838A1 (en) 2006-07-07 2008-09-24 Gilead Sciences Inc THERAPEUTIC PHARMACOCINETIC PROPERTIES MODULATORS
MX2009005881A (en) 2006-12-13 2009-06-12 Hoffmann La Roche Non-nucleoside reverse transcriptase inhibitors.
EP3689353A1 (en) 2007-02-23 2020-08-05 Gilead Sciences, Inc. Modulators of pharmacokinetic properties of therapeutics
CN101307048B (en) * 2007-05-18 2011-03-23 上海迪赛诺医药发展有限公司 Method for preparing lamivadin by stereoselectivity
BRPI0813237B8 (en) 2007-06-18 2021-05-25 Sunshine Lake Pharma Co Ltd compound, method of preparing the compound, medicine, and use of the compound
MX2010000424A (en) 2007-07-09 2010-08-10 Easter Virginia Medical School Substituted nucleoside derivatives with antiviral and antimicrobial properties.
RU2373218C2 (en) * 2007-08-10 2009-11-20 Роберт Шалвович Бибилашвили 5'-phosphorus-containing derivatives of 2',3'-dideoxy-3'-thiacytidine - new antiviral agents
WO2009052050A1 (en) * 2007-10-15 2009-04-23 Pharmasset, Inc. Dioxolane thymine phosphoramidates as anti-hiv agents
CN101918394A (en) * 2007-11-29 2010-12-15 兰贝克赛实验室有限公司 Process for preparing substituted 1, 3-oxathiolanes
EP2227478A1 (en) * 2007-11-29 2010-09-15 Ranbaxy Laboratories Limited Process and intermediates for the preparation of substituted 1, 3-oxathiolanes, especially lamivudine
WO2009107692A1 (en) 2008-02-29 2009-09-03 株式会社カネカ 2'-hydroxyl-protected ribonucleoside derivative and manufacturing method of same
EP2350065A1 (en) * 2008-11-12 2011-08-03 Lupin Ltd. A novel polymorph of emtricitabine and a process for preparing of the same
AP2011005745A0 (en) 2008-12-09 2011-06-30 Gilead Sciences Inc Modulators of toll-like receptors.
KR101474570B1 (en) 2009-04-13 2014-12-19 주식회사 대희화학 New intermediate of Lamivudine and the preparation thereof
EP2435825B8 (en) 2009-05-27 2015-09-02 Biotempus Limited Methods of treating diseases
EP2454244B1 (en) 2009-07-15 2013-06-26 Lupin Limited An improved process for preparation of efavirenz
US20120295930A1 (en) 2010-02-03 2012-11-22 Shankar Rama Novel process for the preparation of cis-nucleoside derivative
US20110223131A1 (en) 2010-02-24 2011-09-15 Gilead Sciences, Inc. Antiviral compounds
WO2011141805A2 (en) 2010-05-14 2011-11-17 Lupin Limited An improved process for the manufacture of lamivudine
US20130296562A1 (en) 2011-08-05 2013-11-07 Lupin Limited Stereoselective process for preparation of 1,3-oxathiolane nucleosides
CN102584800A (en) * 2011-12-16 2012-07-18 四川大学 Compound containing framework of chiral indolone and angelica lactone and asymmetric synthesis method
WO2013167743A1 (en) 2012-05-11 2013-11-14 Akron Molecules Gmbh Use of compounds for the treatment of pain
HUE044605T2 (en) * 2012-11-16 2019-11-28 Univ College Cardiff Consultants Ltd Mixture of rp/sp gemcitabine-[phenyl-(benzyloxy-l-alaninyl)]-phosphate
BR122015029881B1 (en) 2012-12-21 2022-04-26 Gilead Sciences, Inc Polycyclic carbamoylpyridone compounds, pharmaceutical composition comprising them and their pharmaceutical use
SI3019503T1 (en) 2013-07-12 2017-11-30 Gilead Sciences, Inc. Polycyclic-carbamoylpyridone compounds and their use for the treatment of hiv infections
NO2865735T3 (en) 2013-07-12 2018-07-21
EP3038607A2 (en) 2013-08-29 2016-07-06 Teva Pharmaceutical Industries Ltd. Unit dosage form comprising emtricitabine, tenofovir, darunavir and ritonavir and a monolithic tablet comprising darunavir and ritonavir
EP3105238A4 (en) 2014-02-13 2017-11-08 Ligand Pharmaceuticals, Inc. Prodrug compounds and their uses
TW201622731A (en) 2014-04-08 2016-07-01 泰瓦藥品工業有限公司 Unit dosage form comprising Emtricitabine, Tenofovir, Darunavir and Ritonavir and a monolithic tablet comprising darunavir and ritonavir
TWI677489B (en) 2014-06-20 2019-11-21 美商基利科學股份有限公司 Synthesis of polycyclic-carbamoylpyridone compounds
NO2717902T3 (en) 2014-06-20 2018-06-23
TW201613936A (en) 2014-06-20 2016-04-16 Gilead Sciences Inc Crystalline forms of(2R,5S,13aR)-8-hydroxy-7,9-dioxo-n-(2,4,6-trifluorobenzyl)-2,3,4,5,7,9,13,13a-octahydro-2,5-methanopyrido[1',2':4,5]pyrazino[2,1-b][1,3]oxazepine-10-carboxamide
EP3164136A4 (en) 2014-07-02 2018-04-04 Ligand Pharmaceuticals, Inc. Prodrug compounds and uses therof
WO2016001907A1 (en) 2014-07-02 2016-01-07 Prendergast Patrick T Mogroside iv and mogroside v as agonist/stimulator/un-blocking agent for toll-like receptor 4 and adjuvant for use in human/animal vaccine and to stimulate immunity against disease agents.
CN106714800B (en) 2014-07-11 2021-09-03 吉利德科学公司 TOLL-like receptor modulators for the treatment of HIV
US9675632B2 (en) 2014-08-26 2017-06-13 Enanta Pharmaceuticals, Inc. Nucleoside and nucleotide derivatives
TWI695003B (en) 2014-12-23 2020-06-01 美商基利科學股份有限公司 Polycyclic-carbamoylpyridone compounds and their pharmaceutical use
EP3277691B1 (en) 2015-04-02 2019-01-30 Gilead Sciences, Inc. Polycyclic-carbamoylpyridone compounds and their pharmaceutical use
AU2016322763A1 (en) 2015-09-15 2018-04-19 Gilead Sciences, Inc. Modulators of toll-like recptors for the treatment of HIV
GB201610327D0 (en) * 2016-06-14 2016-07-27 Univ Nelson Mandela Metropolitan Process for producing Lamivudine and Entricitabine
JP2020515607A (en) * 2017-03-31 2020-05-28 ザ ユニバーシティー オブ リヴァプール Prodrug composition
CA3087932A1 (en) 2018-01-09 2019-07-18 Ligand Pharmaceuticals, Inc. Acetal compounds and therapeutic uses thereof

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000137A (en) * 1975-06-10 1976-12-28 American Home Products Corporation Antitumor derivatives of periodate-oxidized nucleosides
US4336381A (en) * 1979-11-08 1982-06-22 Shionogi & Co., Ltd. 5-Fluorouracil derivatives
US4861759A (en) * 1985-08-26 1989-08-29 The United States Of America As Represented By The Department Of Health And Human Services Antiviral compositions and methods
EP0337713A2 (en) * 1988-04-11 1989-10-18 Biochem Pharma Inc 2-Substituted-4-Substituted-1,3-Dioxolanes, Synthesis and use thereof
US4879277A (en) * 1985-08-26 1989-11-07 The United States Of America As Represented By The Department Of Health And Human Services Antiviral compositions and methods
US4916122A (en) * 1987-01-28 1990-04-10 University Of Georgia Research Foundation, Inc. 3'-Azido-2',3'-dideoxyuridine anti-retroviral composition
EP0375329A2 (en) * 1988-12-19 1990-06-27 The Wellcome Foundation Limited Antiviral pyrimidine and purine compounds, process for their preparation and pharmaceutical compositions containing them
US4963533A (en) * 1986-10-24 1990-10-16 Stichting Rega Vzw (Rega) Therapeutic application of dideoxycytidinene
US5011774A (en) * 1987-07-17 1991-04-30 Bristol-Myers Squibb Co. Dideoxyinosine by enzymatic deamination of dideoxyadenosine
EP0433898A2 (en) * 1989-12-20 1991-06-26 Abbott Laboratories Analogs of oxetanyl purines and pyrimidines
US5041449A (en) * 1988-04-11 1991-08-20 Iaf Biochem International, Inc. 4-(nucleoside base)-substituted-1,3-dioxolanes useful for treatment of retroviral infections
US5047407A (en) * 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
US5059690A (en) * 1990-03-01 1991-10-22 E. R. Squibb & Sons, Inc. Purinyl tetrahydrofurans
WO1991017159A1 (en) * 1990-05-02 1991-11-14 Iaf Biochem International Inc. 1,3-oxathiolane nucleoside analogues
EP0494119A1 (en) * 1991-01-03 1992-07-08 Biochem Pharma Inc. Use of 1,3-oxathiolane nucleoside analogues in the treatment of hepatitis B
WO1992015308A1 (en) * 1991-03-06 1992-09-17 The Wellcome Foundation Limited Use of 5-fluoro-2'-deoxy-3'-thiacytidine for the treatment of hepatitis b
EP0515157A1 (en) * 1991-05-21 1992-11-25 Biochem Pharma Inc. Processes for the diastereoselective synthesis of nucleosides
EP0515144A1 (en) * 1991-05-20 1992-11-25 Biochem Pharma Inc. 1,3-Oxathiolanes useful in the treatment of hepatitis
EP0526253A1 (en) * 1991-08-01 1993-02-03 Biochem Pharma Inc. 1,3-Oxathiolane nucleoside analogues
US5204466A (en) * 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
WO1996018517A1 (en) * 1994-12-13 1996-06-20 Ab Volvo Pressure medium actuated operating device
US5639787A (en) * 1995-02-28 1997-06-17 The Center For The Improvement Of Human Functioning Int'l, Inc. Therapeutic method for the treatment of cancer
US5684164A (en) * 1988-04-11 1997-11-04 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US5700937A (en) * 1990-02-01 1997-12-23 Emory University Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US5728575A (en) * 1990-02-01 1998-03-17 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5914331A (en) * 1990-02-01 1999-06-22 Emory University Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259171A (en) * 1975-11-10 1977-05-16 Asahi Chem Ind Co Ltd Preparation of uracil derivatives
JPS6045196B2 (en) * 1976-08-09 1985-10-08 株式会社興人 Method for producing 1-(2-tetrahydrofuryl)uracils
JPS5738774A (en) * 1980-08-19 1982-03-03 Chugai Pharmaceut Co Ltd Uracil derivative and its preparation
JPS5839672A (en) * 1981-09-03 1983-03-08 Chugai Pharmaceut Co Ltd Uracil derivative
DE3481191D1 (en) * 1983-07-20 1990-03-08 Teijin Ltd ANTINEOPLASTIC AGENT.
DE3534979A1 (en) * 1985-07-25 1987-01-29 Licentia Gmbh POWER SUPPLY
DE3650741T2 (en) * 1985-09-17 2000-10-12 The Wellcome Foundation Ltd., Greenford Combination of therapeutic nucleosides with other therapeutically active components.
AU613026B2 (en) * 1987-03-24 1991-07-25 Nycomed As 2',3' dideoxyribofuranoxide derivatives
US5185437A (en) * 1987-04-09 1993-02-09 Burroughs Wellcome Co. Therapeutic nucleosides
US5270315A (en) * 1988-04-11 1993-12-14 Biochem Pharma Inc. 4-(purinyl bases)-substituted-1,3-dioxlanes
US5466806A (en) * 1989-02-08 1995-11-14 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US4900828A (en) * 1988-05-12 1990-02-13 Hoffmann-Laroche Inc. Intermediate compounds and an improved procedure for the synthesis of 2',3'-dideoxycytidine
CA1318627C (en) * 1988-07-14 1993-06-01 Jeffrey M. Howell Enzymatic resolution process
US5106750A (en) * 1988-08-30 1992-04-21 G. D. Searle & Co. Enantio- and regioselective synthesis of organic compounds using enol esters as irreversible transacylation reagents
JPH0269476A (en) * 1988-09-06 1990-03-08 Kohjin Co Ltd Production of pyrimidine derivative
JPH0269469A (en) * 1988-09-06 1990-03-08 Kohjin Co Ltd Dihydrofuran derivative and production thereof
GB8822546D0 (en) * 1988-09-26 1988-11-02 Wellcome Found Antiviral combinations
AU3154993A (en) * 1989-02-08 1994-07-19 Biochem Pharma Inc. Process for preparing substituted 1,3-oxathiolanes with antiviral properties
NZ233197A (en) * 1989-04-13 1991-11-26 Richard Thomas Walker Aromatically substituted nucleotide derivatives, intermediates therefor and pharmaceutical compositions
CA2023856A1 (en) * 1989-09-26 1991-03-27 Jeffrey M. Howell Enzymatic resolution process
US5071983A (en) * 1989-10-06 1991-12-10 Burroughs Wellcome Co. Therapeutic nucleosides
US5276151A (en) * 1990-02-01 1994-01-04 Emory University Method of synthesis of 1,3-dioxolane nucleosides
US6703396B1 (en) * 1990-02-01 2004-03-09 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nuclesoside enantiomers
US5587480A (en) * 1990-11-13 1996-12-24 Biochem Pharma, Inc. Substituted 1,3-oxathiolanes and substituted 1,3-dithiolanes with antiviral properties
IT1246983B (en) * 1990-11-13 1994-12-12 Consiglio Nazionale Ricerche L-2'-DESOXYURIDINE AND PHARMACEUTICAL COMPOSITIONS THAT CONTAIN IT.
US5248776A (en) * 1990-12-05 1993-09-28 University Of Georgia Research Foundation, Inc. Process for enantiomerically pure β-L-1,3-oxathiolane nucleosides
US5925643A (en) * 1990-12-05 1999-07-20 Emory University Enantiomerically pure β-D-dioxolane-nucleosides
US5444063A (en) * 1990-12-05 1995-08-22 Emory University Enantiomerically pure β-D-dioxolane nucleosides with selective anti-Hepatitis B virus activity
AU9125991A (en) * 1990-12-05 1992-07-08 University Of Georgia Research Foundation, Inc., The Enantiomerically pure beta -l-(-)-1,3-oxathiolane nucleosides
US5179104A (en) * 1990-12-05 1993-01-12 University Of Georgia Research Foundation, Inc. Process for the preparation of enantiomerically pure β-D-(-)-dioxolane-nucleosides
IL100965A (en) * 1991-02-22 1999-12-31 Univ Emory 2-Hydroxymethyl-5-(5-fluorocytosin-l-yl)-1,3-oxathiolane its resolution and pharmaceutical compositions containing it
GB9104740D0 (en) * 1991-03-06 1991-04-17 Wellcome Found Antiviral nucleoside combination
WO1992018517A1 (en) * 1991-04-17 1992-10-29 Yale University Method of treating or preventing hepatitis b virus
GB9111902D0 (en) * 1991-06-03 1991-07-24 Glaxo Group Ltd Chemical compounds
GB9307013D0 (en) * 1993-04-02 1993-05-26 Wellcome Found Therapeutic combinations

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4000137A (en) * 1975-06-10 1976-12-28 American Home Products Corporation Antitumor derivatives of periodate-oxidized nucleosides
US4336381A (en) * 1979-11-08 1982-06-22 Shionogi & Co., Ltd. 5-Fluorouracil derivatives
US4861759A (en) * 1985-08-26 1989-08-29 The United States Of America As Represented By The Department Of Health And Human Services Antiviral compositions and methods
US4879277A (en) * 1985-08-26 1989-11-07 The United States Of America As Represented By The Department Of Health And Human Services Antiviral compositions and methods
US4963533A (en) * 1986-10-24 1990-10-16 Stichting Rega Vzw (Rega) Therapeutic application of dideoxycytidinene
US4916122A (en) * 1987-01-28 1990-04-10 University Of Georgia Research Foundation, Inc. 3'-Azido-2',3'-dideoxyuridine anti-retroviral composition
US5011774A (en) * 1987-07-17 1991-04-30 Bristol-Myers Squibb Co. Dideoxyinosine by enzymatic deamination of dideoxyadenosine
EP0337713A2 (en) * 1988-04-11 1989-10-18 Biochem Pharma Inc 2-Substituted-4-Substituted-1,3-Dioxolanes, Synthesis and use thereof
US5684164A (en) * 1988-04-11 1997-11-04 Biochem Pharma Inc. Processes for preparing substituted 1,3-oxathiolanes with antiviral properties
US5041449A (en) * 1988-04-11 1991-08-20 Iaf Biochem International, Inc. 4-(nucleoside base)-substituted-1,3-dioxolanes useful for treatment of retroviral infections
EP0375329A2 (en) * 1988-12-19 1990-06-27 The Wellcome Foundation Limited Antiviral pyrimidine and purine compounds, process for their preparation and pharmaceutical compositions containing them
EP0382526B1 (en) * 1989-02-08 1996-05-15 Biochem Pharma Inc Substituted -1,3-oxathiolanes with antiviral properties
US5047407A (en) * 1989-02-08 1991-09-10 Iaf Biochem International, Inc. 2-substituted-5-substituted-1,3-oxathiolanes with antiviral properties
EP0433898A2 (en) * 1989-12-20 1991-06-26 Abbott Laboratories Analogs of oxetanyl purines and pyrimidines
US5204466A (en) * 1990-02-01 1993-04-20 Emory University Method and compositions for the synthesis of bch-189 and related compounds
US5539116A (en) * 1990-02-01 1996-07-23 Emory University Method and compositions for the synthesis of BCH-189 and related compounds
US5914400A (en) * 1990-02-01 1999-06-22 Emory University Method and compositions for the synthesis of BCH-189 and related compounds
US5700937A (en) * 1990-02-01 1997-12-23 Emory University Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US5728575A (en) * 1990-02-01 1998-03-17 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5914331A (en) * 1990-02-01 1999-06-22 Emory University Antiviral activity and resolution of 2-hydroxymethyl-5-(5-fluorocytosin-1-yl)-1,3-oxathiolane
US5814639A (en) * 1990-02-01 1998-09-29 Emory University Method for the synthesis, compositions and use of 2'-deoxy-5-fluoro-3'-thiacytidine and related compounds
US5892025A (en) * 1990-02-01 1999-04-06 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nucleoside enantiomers
US5827727A (en) * 1990-02-01 1998-10-27 Emory University Method of resolution of 1,3-oxathiolane nucleoside enantiomers
US5059690A (en) * 1990-03-01 1991-10-22 E. R. Squibb & Sons, Inc. Purinyl tetrahydrofurans
WO1991017159A1 (en) * 1990-05-02 1991-11-14 Iaf Biochem International Inc. 1,3-oxathiolane nucleoside analogues
EP0494119A1 (en) * 1991-01-03 1992-07-08 Biochem Pharma Inc. Use of 1,3-oxathiolane nucleoside analogues in the treatment of hepatitis B
WO1992015308A1 (en) * 1991-03-06 1992-09-17 The Wellcome Foundation Limited Use of 5-fluoro-2'-deoxy-3'-thiacytidine for the treatment of hepatitis b
EP0515144A1 (en) * 1991-05-20 1992-11-25 Biochem Pharma Inc. 1,3-Oxathiolanes useful in the treatment of hepatitis
EP0515156A1 (en) * 1991-05-21 1992-11-25 Biochem Pharma Inc Processes for the diastereo-selective synthesis of nucleosides
US5696254A (en) * 1991-05-21 1997-12-09 Biochem Pharma Inc. Processes for the diastereoselective synthesis of nucleoside analogues
US5663320A (en) * 1991-05-21 1997-09-02 Biochem Pharma, Inc. Processes for the diastereoselective separation of nucleoside analogue synthetic intermediates
US5744596A (en) * 1991-05-21 1998-04-28 Biochem Pharma Inc. Nucleoside analogues and synthetic intermediates
US5756706A (en) * 1991-05-21 1998-05-26 Biochem Pharma Inc. Processes for the diastereoselective synthesis of nucleoside analogues
EP0515157A1 (en) * 1991-05-21 1992-11-25 Biochem Pharma Inc. Processes for the diastereoselective synthesis of nucleosides
US5618820A (en) * 1991-08-01 1997-04-08 Biochem Pharma, Inc. 1,3-oxathiolane nucleoside analogues and methods for using same
US5538975A (en) * 1991-08-01 1996-07-23 Biochem Pharma, Inc. 1,3-oxathiolane nucleoside compounds and compositions
EP0526253A1 (en) * 1991-08-01 1993-02-03 Biochem Pharma Inc. 1,3-Oxathiolane nucleoside analogues
WO1996018517A1 (en) * 1994-12-13 1996-06-20 Ab Volvo Pressure medium actuated operating device
US5639787A (en) * 1995-02-28 1997-06-17 The Center For The Improvement Of Human Functioning Int'l, Inc. Therapeutic method for the treatment of cancer

Non-Patent Citations (73)

* Cited by examiner, † Cited by third party
Title
Annunziata, R., et al., Tetrahedron Letters, 1990, 6733. *
Balzarini, J., et al., Biochemical and Biophysical Research Communications, vol. 140, No. 2, pp. 735 742 (1986). *
Balzarini, J., et al., Biochemical and Biophysical Research Communications, vol. 140, No. 2, pp. 735-742 (1986).
Barlett, P. A., J. Am. Chem. Soc. 1983, 105:2088. *
Barlett, P. A.,J. Am. Chem. Soc. 1983, 105:2088.
Belleau, B., et al., "Design and Activity of a Novel Class of Nucleoside Analogs Effective Against HIV-1," 5th International Conference on AIDS, Montreal, Quebec, Canada, Jun. 4-9, 1989.
Belleau, B., et al., Design and Activity of a Novel Class of Nucleoside Analogs Effective Against HIV 1, 5th International Conference on AIDS, Montreal, Quebec, Canada, Jun. 4 9, 1989. *
Carter, et al., "Activities of (-)-Carbovir and 3'-Azido-3'-Deoxythymidine Against Human Immunodeficiency Virus in Vitro," Antimicrobial Agents and Chemotherapy, vol. 34, No. 6, pp. 1297-1300 (1990).
Carter, et al., Activities of ( ) Carbovir and 3 Azido 3 Deoxythymidine Against Human Immunodeficiency Virus in Vitro, Antimicrobial Agents and Chemotherapy, vol. 34, No. 6, pp. 1297 1300 (1990). *
Chang, Chien Neng, et al., Deoxycytidine Deaminase resistant Stereoisomer Is the Active Form of ( ) 2 ,3 Didedoxy 3 thiacytidine in the Inhibition of Hepatitis B Virus Replication, The Journal of Biological Chemistry, vol. 357, No. 20, pp. 13938 13942 (1992). *
Chang, Chien-Neng, et al., "Deoxycytidine Deaminase-resistant Stereoisomer Is the Active Form of (+)-2',3'-Didedoxy-3'-thiacytidine in the Inhibition of Hepatitis B Virus Replication," The Journal of Biological Chemistry, vol. 357, No. 20, pp. 13938-13942 (1992).
Chem. Ber., 114:1244 (1981). *
Choi et al., J. Am. Chem. Soc., vol. 113, No. 24, 1991. *
Choi, W.B., et al., J. Am. Chem. Soc., 1991, 113, p. 9377 9379. *
Choi, W.B., et al., J. Am. Chem. Soc., 1991, 113, p. 9377-9379.
Chu, C. K., et al., "En Efficient Total Synthesis of 3'-Azido-3'-Deoxythiamidine (AZT) and 3'-Azido-2',3'-Dideoxyuridine (AZDDU, CS-87) from D-Mannitol," Tetrahedron Letters, 1988, p. 5349.
Chu, C. K., et al., En Efficient Total Synthesis of 3 Azido 3 Deoxythiamidine (AZT) and 3 Azido 2 ,3 Dideoxyuridine (AZDDU, CS 87) from D Mannitol, Tetrahedron Letters, 1988, p. 5349. *
Chu, C. K., Nucleosides & Nucleotides, 1989, 8:903. *
Chu, et al., "Comparative Activity of 2',3'-Saturated and Unsaturated Pyrimidine and Purine Nucleosides Against Human Immunodeficiency Virus Type 1 in Peripheral Blood Mononuclear Cells," Biochem. Pharm., vol. 37, No. 19, pp. 3543-3548 (1988).
Chu, et al., Comparative Activity of 2 ,3 Saturated and Unsaturated Pyrimidine and Purine Nucleosides Against Human Immunodeficiency Virus Type 1 in Peripheral Blood Mononuclear Cells, Biochem. Pharm., vol. 37, No. 19, pp. 3543 3548 (1988). *
Cretton, E., et al., "Pharmakinetics of 3'-Azido-3'-Deoxythymidine and its Catabolites and Interactions with Probenecid in Rhesus Monkeys," Antimicrobial Agents and Chemotherapy, pp. 801-807 (1991).
Cretton, E., et al., Pharmakinetics of 3 Azido 3 Deoxythymidine and its Catabolites and Interactions with Probenecid in Rhesus Monkeys, Antimicrobial Agents and Chemotherapy, pp. 801 807 (1991). *
Evans, D. A. et al. J. Am. Chem. Soc., 1990, 112:8215. *
Furman, et al., "The Anti-Hepatitis B Virus Activities, Cytotoxicities, and Anabolic Profiles of the (-) and (+) Enantiomers of cis-5-Fluoro-1-[2-(Hydromethyl)-1,3-Oxathiolan-5-yl] Cytosine," Antimicrobial Agents and Chemotherapy, vol. 36, No. 12, pp. 2686-2692 (1992).
Furman, et al., The Anti Hepatitis B Virus Activities, Cytotoxicities, and Anabolic Profiles of the ( ) and ( ) Enantiomers of cis 5 Fluoro 1 2 (Hydromethyl) 1,3 Oxathiolan 5 yl Cytosine, Antimicrobial Agents and Chemotherapy, vol. 36, No. 12, pp. 2686 2692 (1992). *
Hoong, et al., Journal of Organic Chemistry, 1992, vol. 57, pp. 5563 5565. *
Hoong, et al., Journal of Organic Chemistry, 1992, vol. 57, pp. 5563-5565.
Jeong, L., et al., "Asymmetric Synthesis and Biological Evaluation of β-L-(2R,5S)- and α-L-(2E,5R)-1,3-Oxathiolane -Pyrimidine and -Purine Nucleosides and Potential Anti-HIV Agents," J. Med. Chem., vol. 36 (1993).
Jeong, L., et al., Asymmetric Synthesis and Biological Evaluation of L (2R,5S) and L (2E,5R) 1,3 Oxathiolane Pyrimidine and Purine Nucleosides and Potential Anti HIV Agents, J. Med. Chem., vol. 36 (1993). *
Kotick et al, JOC, 34, 1969, 3806 3813. *
Kotick et al, JOC, 34, 1969, 3806-3813.
Lin, et al., "Potent and Selective In Vitro Activity of 3'-Deoxythyminidin-2-ene-(3'-Deoxy-2',3'-Didehydrothymidine) Against Human Immunodeficiency Virus," Biochem. Pharm., vol. 36, No. 17, p. 2716 (1987).
Lin, et al., Potent and Selective In Vitro Activity of 3 Deoxythyminidin 2 ene (3 Deoxy 2 ,3 Didehydrothymidine) Against Human Immunodeficiency Virus, Biochem. Pharm., vol. 36, No. 17, p. 2716 (1987). *
Lowry, T.H., et al., Mechanism and Theory in Organic Chemistry, 2nd Ed., Harper & Row, Publishers, NY, pp. 281 287 (1968). *
Lowry, T.H., et al., Mechanism and Theory in Organic Chemistry, 2nd Ed., Harper & Row, Publishers, NY, pp. 281-287 (1968).
Mitsuya, H. et al., "Molecular Targets for AIDS Therapy," Science, vol. 249, pp. 1533-1544 (1990).
Mitsuya, H. et al., Molecular Targets for AIDS Therapy, Science, vol. 249, pp. 1533 1544 (1990). *
Mitsuya, H. et al., Proc. Natl. Acad. Sci. USA, vol. 82, pp. 7097 7100 (1985). *
Mitsuya, H. et al., Proc. Natl. Acad. Sci. USA, vol. 82, pp. 7097-7100 (1985).
Mitsuya, H., et al., "Rapid in Vitro Systems for Assessing Activity of Agents Against HTLV-III/LAV," AIDS: Modern Concepts and Therapeutic Challenges, S. Broder, Ed. (Marcel-Dekker, New York), (1987), p. 303.
Mitsuya, H., et al., Rapid in Vitro Systems for Assessing Activity of Agents Against HTLV III/LAV, AIDS: Modern Concepts and Therapeutic Challenges, S. Broder, Ed. (Marcel Dekker, New York), (1987), p. 303. *
Nicolaou, K. C., J. Am. Chem. Soc., 1986, 108:2466. *
Norbeck, D., et al., "A New 2',3'-Dideoxynucleoside Prototype with an In Vitro Activity Against HIV," Tetrahedron Lett. (1989), p. 6263.
Norbeck, D., et al., A New 2 ,3 Dideoxynucleoside Prototype with an In Vitro Activity Against HIV, Tetrahedron Lett. (1989), p. 6263. *
Okabe, M. et al., "Synthesis of the Dideoxynucleosides ddC and CNT from Glutamic Acid, Ribonolactone, and Pyrimidine Bases," J. Org. Chem., 1989, 53:4780.
Okabe, M. et al., Synthesis of the Dideoxynucleosides ddC and CNT from Glutamic Acid, Ribonolactone, and Pyrimidine Bases, J. Org. Chem., 1989, 53:4780. *
Pearson, R.G., J. Am. Chem. Soc., 1963, 85, p. 3533 3539. *
Pearson, R.G., J. Am. Chem. Soc., 1963, 85, p. 3533-3539.
Richman, D. et al., "The Toxicity of Azidothymidine (AZT) in the Treatment of Patients with AIDS and AIDS-Related Complex," N. Eng. J. Med., (1987) 317:192.
Richman, D. et al., The Toxicity of Azidothymidine (AZT) in the Treatment of Patients with AIDS and AIDS Related Complex, N. Eng. J. Med., (1987) 317:192. *
Satsumabayashi, S. et al., "The Synthesis of 1,3-Oxathiolan-5-one Derivatives," Bull. Chem. Soc. Japan, 1972, 45, 913.
Satsumabayashi, S. et al., The Synthesis of 1,3 Oxathiolan 5 one Derivatives, Bull. Chem. Soc. Japan, 1972, 45, 913. *
Schinazi, R. F. et al., "Insights into HIV Chemotherapy," AIDS Research and Human Retroviruses 8(6) (1992) p. 963-990.
Schinazi, R. F. et al., Antimicrobial Agents and Chemotherapy 36(3) p. 672 676 (1992). *
Schinazi, R. F. et al., Antimicrobial Agents and Chemotherapy 36(3) p. 672-676 (1992).
Schinazi, R. F. et al., Antimicrobial Agents and Chemotherapy, 36(11) pp. 2432 2438 (1992). *
Schinazi, R. F. et al., Antimicrobial Agents and Chemotherapy, 36(11) pp. 2432-2438 (1992).
Schinazi, R. F. et al., Insights into HIV Chemotherapy, AIDS Research and Human Retroviruses 8(6) (1992) p. 963 990. *
Schinazi, R. F., et al., "Substrate Specificity of Escherichia Coli Thymidine Phosphorylase for Pyrimidine Nucleoside with an Anti-Human Immunodeficiency Virus Activity," Biochemical Pharmacology 44(2) (1992) 199-204.
Schinazi, R. F., et al., Substrate Specificity of Escherichia Coli Thymidine Phosphorylase for Pyrimidine Nucleoside with an Anti Human Immunodeficiency Virus Activity, Biochemical Pharmacology 44(2) (1992) 199 204. *
Storer, Richard, et al., Nucleosides & Nucleotides, 12(2), 225 236 (1993). *
Storer, Richard, et al., Nucleosides & Nucleotides, 12(2), 225-236 (1993).
Takano, A., et al., Chemistry Letters, 1983, p. 1593. *
Ulrich Niedballa and Helmut Vorbruggen in "Nucleic Acid Chemistry", Leroy B. Townsend Ed., 1979, John-Wiley & Sons, New York, p 431-433.
Ulrich Niedballa and Helmut Vorbruggen in Nucleic Acid Chemistry , Leroy B. Townsend Ed., 1979, John Wiley & Sons, New York, p 431 433. *
Vorbruggen et al., "Nucleoside Synthesis with Trimethylsilyl Triflate and Perchlorate as Catalysts," Chem. Ber. 1981, 114:1234-1255.
Vorbruggen et al., Nucleoside Synthesis with Trimethylsilyl Triflate and Perchlorate as Catalysts, Chem. Ber. 1981, 114:1234 1255. *
Wilson, L. J., et al., "A General Method for Controlling Glycosylation Stereochemistry in the Synthesis of 2'-Deoxyribose Nucleosides," Tetrahedron Lett. 1990, p. 1815.
Wilson, L. J., et al., A General Method for Controlling Glycosylation Stereochemistry in the Synthesis of 2 Deoxyribose Nucleosides, Tetrahedron Lett. 1990, p. 1815. *
Winslow, Dean L. et al., AIDS, vol. 8, No. 6, pp. 753 755 (1994). *
Winslow, Dean L. et al., AIDS, vol. 8, No. 6, pp. 753-755 (1994).
Zhu, Zhou, et al., Molecular Pharmacology, vol. 38, pp. 929 938 (1990). *
Zhu, Zhou, et al., Molecular Pharmacology, vol. 38, pp. 929-938 (1990).

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040038350A1 (en) * 1990-02-01 2004-02-26 Liotta Dennis C. Method of resolution and antiviral activity of 1,3-oxathiolane nucleoside enantiomers
US7160999B2 (en) 1990-02-01 2007-01-09 Emory University Method of resolution and antiviral activity of 1,3-oxathiolane nucleoside enantiomers
US20060036092A1 (en) * 2004-02-03 2006-02-16 Marcos Sznaidman Methods to manufacture 1,3-dioxolane nucleosides
US7785839B2 (en) * 2004-02-03 2010-08-31 Emory University Methods to manufacture 1,3-dioxolane nucleosides
US20110130559A1 (en) * 2004-02-03 2011-06-02 Gilead Sciences, Inc. Methods to Manufacture 1,3-Dioxolane Nucleosides
US8420354B2 (en) 2004-02-03 2013-04-16 Emory University Methods to manufacture 1,3-dioxolane nucleosides
WO2010082128A1 (en) 2009-01-19 2010-07-22 Aurobindo Pharma Limited Process for the preparation of cis-nucleoside derivative

Also Published As

Publication number Publication date
CA2481078C (en) 2009-12-15
ES2076130T5 (en) 2004-12-16
HU227485B1 (en) 2011-07-28
JPH07618B2 (en) 1995-01-11
JP3844978B2 (en) 2006-11-15
US5914400A (en) 1999-06-22
CA2075189A1 (en) 1991-08-02
DE69130166T2 (en) 1999-04-08
HUT62566A (en) 1993-05-28
AU698859C (en) 2003-01-30
US6114343A (en) 2000-09-05
DE513200T1 (en) 1995-07-13
GR950300024T1 (en) 1995-06-30
NO970385D0 (en) 1997-01-29
NO970386L (en) 1992-07-30
DE122004000015I2 (en) 2004-11-18
AU2010201878A1 (en) 2010-05-27
AU658136C (en) 2003-06-12
JPH05505794A (en) 1993-08-26
AU4031995A (en) 1996-04-26
NO923014D0 (en) 1992-07-30
FI20030933A7 (en) 2003-06-24
NO324979B1 (en) 2008-01-14
CA2075189C (en) 2004-11-30
FI923446A0 (en) 1992-07-30
FI20060622L (en) 2006-06-27
JP2005053893A (en) 2005-03-03
EP0872237A1 (en) 1998-10-21
US5814639A (en) 1998-09-29
LU91073I2 (en) 2004-04-23
CA2678778A1 (en) 1991-08-08
DK0513200T4 (en) 2004-07-05
JP4496377B2 (en) 2010-07-07
JP2002012591A (en) 2002-01-15
AU698859B2 (en) 1998-11-12
JP4108645B2 (en) 2008-06-25
NO970385L (en) 1992-07-30
DE69133556T2 (en) 2007-08-16
DE69130166T3 (en) 2005-04-14
FI923446L (en) 1992-07-30
NO20083728L (en) 1992-07-30
NO20065640L (en) 1992-07-30
US20050004148A1 (en) 2005-01-06
RO108564B1 (en) 1994-06-30
US5210085A (en) 1993-05-11
NL300148I1 (en) 2004-07-01
US5204466A (en) 1993-04-20
EP0872237B1 (en) 2007-01-17
DK0872237T3 (en) 2007-04-23
US5539116A (en) 1996-07-23
RU2125558C1 (en) 1999-01-27
NO970386D0 (en) 1997-01-29
DE122004000015I1 (en) 2004-08-12
EP1772151A2 (en) 2007-04-11
FI116222B (en) 2005-10-14
AU658136B2 (en) 1995-04-06
EP0513200B1 (en) 1998-09-09
ATE170750T1 (en) 1998-09-15
ES2076130T3 (en) 1999-03-01
DE69133556D1 (en) 2007-03-08
FI20050672L (en) 2005-06-22
EP0513200B2 (en) 2004-04-28
DK0513200T3 (en) 1999-05-25
WO1991011186A1 (en) 1991-08-08
AU7300491A (en) 1991-08-21
ES2279559T3 (en) 2007-08-16
EP0513200A1 (en) 1992-11-19
JP2006141408A (en) 2006-06-08
JP2001019690A (en) 2001-01-23
EP1772151A3 (en) 2007-06-13
MC2233A1 (en) 1993-02-23
CA2481078A1 (en) 1991-08-08
NO923014L (en) 1992-07-30
EP0513200A4 (en) 1993-04-07
JP3530150B2 (en) 2004-05-24
BG62236B1 (en) 1999-06-30
KR100381705B1 (en) 2003-04-26
HU9202496D0 (en) 1992-12-28
AU2006207874A1 (en) 2006-09-28
AU2006207874B2 (en) 2010-02-11
HK1014664A1 (en) 1999-09-30
KR920703582A (en) 1992-12-18
NO326249B1 (en) 2008-10-27
HU211300A9 (en) 1995-11-28
NL300148I2 (en) 2004-11-01
ES2076130T1 (en) 1995-11-01
AU4474599A (en) 1999-11-11
NO313048B1 (en) 2002-08-05
FI20060622A7 (en) 2006-06-27
AU2002300661B2 (en) 2006-06-08
DE69130166D1 (en) 1998-10-15
NO2008011I2 (en) 2010-10-18
KR100188357B1 (en) 1999-06-01
FI121069B (en) 2010-06-30
FI114471B (en) 2004-10-29
JP2001352997A (en) 2001-12-25
BG96717A (en) 1993-12-24
NO2008011I1 (en) 2008-07-28

Similar Documents

Publication Publication Date Title
US6153751A (en) Method and compositions for the synthesis of BCH-189 and related compounds
EP0869131A1 (en) 5-halo-5-deoxy sorbopyranose compounds
AU715577B3 (en) Method and compositions for the synthesis of BCH-189 and related compounds
HK1014664B (en) Method and compositions for the synthesis of bch-189 and related compounds

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMORY UNIVERSITY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIOTTA, DENNIS C.;CHOI, WOO-BAEG;REEL/FRAME:010056/0286;SIGNING DATES FROM 19950907 TO 19950911

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REFU Refund

Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20121128