US6093931A - Pattern-forming method and lithographic system - Google Patents

Pattern-forming method and lithographic system Download PDF

Info

Publication number
US6093931A
US6093931A US09/410,018 US41001899A US6093931A US 6093931 A US6093931 A US 6093931A US 41001899 A US41001899 A US 41001899A US 6093931 A US6093931 A US 6093931A
Authority
US
United States
Prior art keywords
pattern
exposure
lithographic system
charge
light exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/410,018
Inventor
Kazuyoshi Sugihara
Hiromi Niiyama
Shunko Magoshi
Atsushi Ando
Tetsuro Nakasugi
Shinji Sato
Yumi Watanabe
Yosimitu Kato
Toru Shibata
Katsuya Okumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to US09/410,018 priority Critical patent/US6093931A/en
Application granted granted Critical
Publication of US6093931A publication Critical patent/US6093931A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • G03F7/203Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure comprising an imagewise exposure to electromagnetic radiation or corpuscular radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography

Definitions

  • This invention relates to a pattern forming method for forming fine patterns with great throughput and a lithographic system for realizing the method.
  • Photolithography has been used during the manufacture of a wide variety of semiconductor devices because of its simplicity and low cost.
  • Continually advancing technical innovation has brought about use of shorter wavelength in recent years (e.g., use of a KrF excimer laser light source), which has realized the manufacture of patterns 0.25 ⁇ m or less in width.
  • a ArF excimer laser light source and a Levenson-type phase-shift mask both with much shorter wavelength are being developed. It is expected that they will be used as mass-production lithographic tools conforming to 0.15 ⁇ m rules.
  • problems to be solved before such tools are realized This elongates the time required to develop them, leading to the fear that the development cannot catch up with the pace at which the devices are being miniaturized.
  • pattern transfer to the same resist is performed by light exposure and electron-beam exposure to reduce the area exposed to the electron-beam and increase the number of wafers that the electron-beam drawing machine can process in an hour. That is, a light beam and an electron beam are used to expose layer.
  • Jpn. Pat. Appln. KOKAI Publication No. 4-155812 has disclosed that in a pattern formation lithographic process, pattern transfer to the same resist is performed by exposure to a light beam and an electron beam with a phase shift mask. In the approach, most of the patterns forming the elements are transferred through a phase shift mask and the portions where defects have occurred because of the arrangement of the phase shifter are repaired with the electron beam. This minimizes the area drawn by the electron beam and increases the number of wafers that the electron-beam drawing machine can process in an hour.
  • Jpn. Pat. Appln. KOKAI Publication No. 1-293616 has disclosed the following method: a function block common to various semiconductor elements is printed on the same resist by light exposure and then a pattern peculiar to each semiconductor element is drawn using an electron beam. Namely, a mask for the portions common to the individual elements is made beforehand and only the remaining portions where the pattern differs from element to element are drawn using an electron beam. This method makes it possible to shorten the time needed to design the elements and manufacture them, because it is not necessary to produce a mask for each pattern.
  • the method cannot deal with a case where the function block contains patterns smaller than the critical resolution of light exposure.
  • the pattern to be drawn with an electron beam are interconnections.
  • the patterns have to be drawn one by one. Inevitably, this process takes a lot of time.
  • the conventional method of projecting a light beam and an electron beam on the same layer to improve the throughput has the following problems: the resolving power of electron-beam exposure is not used sufficiently and the throughput is not raised to that of the optical stepper.
  • the object of the present invention is to provide a pattern forming method capable of forming fine patterns with high throughput and a lithographic system for realizing the method.
  • a rough pattern exceeding the resolution limit of light exposure is formed by light exposure and a fine pattern not exceeding the resolution limit of light exposure is formed by charge-beam exposure.
  • Combining the rough pattern and the fine pattern produces a desired pattern.
  • the sharing of the work between light exposure and charge-beam exposure exhibits the high throughput of light exposure and the excellent resolving power of charge-beam exposure. This achieves high throughput and realizes exposure suitable for the formation of fine patterns.
  • use of an electron beam to expose fine patterns adds an allowance to the focal depth in the step portion inevitably developed between the element region and the element-isolating region, which makes it possible to form fine patterns with high accuracy. This leads to the elimination of a flattening process for reducing steps, which contributes to shortening the processes.
  • the photosensitive material is developed after both light exposure and charge-beam exposure have been completed.
  • the photosensitive material has to be sensitive to both light and a charge beam.
  • a chemical amplification resist may be used as the photosensitive material.
  • the throughput is improved further by simultaneously exposing part of the repetitive portions in the desired pattern to a charge beam.
  • the photosensitive material is composed of an antireflection film and a resist.
  • At least one of the antireflection film and the resist has only to be conductive.
  • Data on the desired pattern is divided into data on the rough pattern and data on the fine pattern on the basis of the critical resolution of light exposure.
  • the charge beam is an electron beam with high resolution.
  • the ratio of the number of light exposure machines to the number of charge-beam exposure machines is determined so that the processing capability of light exposure and that of charge-beam exposure may be substantially in balance. This causes the processing speed of the light exposure process to substantially balance with the processing speed of the charge-beam exposure process, improving the total throughput.
  • the substrate coated with the photosensitive material is conveyed through a transport mechanism, this prevents the substrate from being contaminated with chemical pollution, physical pollution, temperature, and humidity.
  • FIG. 1 shows a schematic configuration of a lithographic system according to a preferred embodiment of the present invention
  • FIG. 2 shows a plane layout of the lithographic system of FIG. 1;
  • FIG. 3 illustrates an example of resist patterns formed with the lithographic system of FIG. 1;
  • FIG. 4 shows a basic configuration required to align an electron-beam exposure fine pattern (or a fine pattern) with a light exposure rough pattern (or a rough pattern) in the lithographic system of FIG. 1;
  • FIG. 5 is a flowchart for the aligning process in FIG. 4;
  • FIG. 6 is a flowchart for the process in which the pattern-dividing processor of FIG. 1 divides the original pattern into a rough pattern and a fine pattern;
  • FIG. 7A is a sectional view of a semiconductor device formed by the lithographic method of the present invention.
  • FIG. 7B is a sectional view of another semiconductor device formed by the lithographic method of the present invention.
  • FIG. 7C is a plan view of a gate electrode formed by the lithographic method of the present invention.
  • FIG. 8A is a perspective view of a wafer immediately before lithography in a case where a gate electrode is formed by the lithographic method of the present invention
  • FIG. 8B is a perspective view of the wafer subjected to lithography in the step following the step of FIG. 8A;
  • FIG. 8C is a perspective view of the wafer on which the resist has been developed in the step following the step of FIG. 8B;
  • FIG. 8D is a perspective view of the wafer subjected to RIE (etching) in the step following the step of FIG. 8C.
  • FIG. 1 is a schematic representation of a lithographic system according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the lithographic system of the embodiment.
  • the original pattern data (design data) corresponds to the final exposure pattern of the resist.
  • the original pattern data is divided into data representing a rough pattern exceeding the resolution limit of light exposure and data on a fine pattern not exceeding the resolution limit.
  • At least one optical stepper 1 is provided to transfer the rough pattern to the coated resist on a substrate 5, a semiconductor wafer serving as a substrate to be treated.
  • the optical stepper 1 is a Deep-UV stepper using, for example, excimer laser light.
  • the lithographic system of the embodiment is provided with a resist coating/developing machine 3 that has both the function of applying resist and an antireflection film to the substrate 5 and the function of developing the resist whose pattern has been exposed to light.
  • a transport mechanism 4 is provided to transport the substrate 5 between machines 1, 2, and 3 in an atmosphere-controlled environment in order to protect the substrate 5 from various types of pollution by treating the substrate 5 in a complete in-line process.
  • the optical stepper 1 for light exposure includes an illumination lens 1a, a photomask 1b in which part of an LSI pattern has been formed, and a projection lens 1c.
  • An electron-beam exposure machine 2 for electron-beam exposure includes an electron gun 2a and shaping aperture masks 2b and 2c.
  • the electron beam released from the electron gun 2a can be shaped into such a basic figure as a rectangle or a triangle, and into various cells serving as basic elements for repetition by changing the way the shaping aperture masks 2b and 2c are laid on top of the other.
  • the flow of lithography is realized by the controller 7 controlling the machines 1 to 4 according to sequence data.
  • the wafer 5 on which the antireflection film and resist have been coated is conveyed by the transport mechanism 4 to the optical stepper 1.
  • the optical stepper 1 projects a reduced pattern of the reticle onto the entire wafer 5. This causes a rough pattern to be transferred to the resist. The transfer of the rough pattern is repeated as the transfer position is changed.
  • the wafer 5 is conveyed by the transport mechanism 4 to the electron-beam exposure machine 2.
  • the electron-beam exposure machine 2 further draws a fine pattern on the resist to which the rough pattern has been transferred through light exposure.
  • the electron-beam exposure machine 2 senses a base pattern and a latent image of the rough pattern formed by light exposure and aligns the fine pattern drawn by the electron beam with the base pattern and/or the rough pattern.
  • the latent image is sensed by scanning the resist with a low-dose electron beam leaving the resist unchanged and sensing the secondary electrons or the reflected electrons generated.
  • the electron-beam exposure machine 2 draws a fine pattern on the resist on the wafer 5 with the electron beam.
  • the drawing of the fine pattern is repeated as the drawing position is changed.
  • the fine pattern is exposed repeatedly by a cell projection method.
  • the throughput of electron-beam exposure with the electron-beam exposure machine 2 is lower than that of light exposure with the optical stepper 1. Because of this, the ratio of the number of optical steppers 1 to that of electron-beam exposure machines 2 installed has been adjusted so as to prevent the processing capability of the optical stepper 1 from being limited by the processing capability of the electron-beam exposure machine 2, that is, so as to substantially balance the processing speed of light exposure with that of electron-beam exposure. It is only natural that the number of electron-beam exposure machines 2 installed is larger than that of optical steppers 1 installed.
  • the electron-beam exposure machines 2 are arranged so that the wafers 5 delivered from the stepper 1 may be processed in parallel, and are controlled by a controller 7.
  • a specific number of optical steppers 1 and electron-beam exposure machines 2 may be provided beforehand and the controller 7 may control the ratio of the number of the former in operation to that of the latter in operation during an actual exposure process in such a manner that the processing speed of the former and that of the latter are substantially in balance.
  • the sharing of the work between light exposure and charge-beam exposure exhibits the high throughput of light exposure and the excellent resolving power of charge-beam exposure.
  • the transport mechanism 4 After both the rough pattern and fine pattern have been transferred to the resist, the transport mechanism 4 returns the wafer 5 to the coating/developing machine 3, which develops the resist and completes the pattern formation.
  • a chemical-amplification resist e.g., UV2HS or UVN-HS made by Shipley Far East LTD. featuring sensitivity to both light and an electron beam and high resolution is preferable.
  • the resist Since the properties of such a chemical-amplification resist easily deteriorate in the presence of various chemical substances in the air, the resist is treated in and between the machines 1, 2, and 3 in an controlled environment within the transport mechanism 4.
  • the environment is controlled, taking into account not only chemical pollution but also physical pollution, temperature, and humidity. This suppresses changes in the dimensions of the pattern before and after exposure.
  • FIG. 3 shows an example of a fine pattern formed on a 0.5- ⁇ m-thick chemical-amplification negative resist (UVN) using the lithographic system.
  • UVN chemical-amplification negative resist
  • Up to 0.25- ⁇ m rough patterns were formed on the resist using a Deep-UV optical stepper 1 and less than 0.25- ⁇ m fine patterns were drawn on the resist by an electron beam.
  • the developing solution used was a solution of TNAH and the requirements for development were 60 seconds according to 0.27 rule.
  • the patterns up to 0.1 ⁇ m were successfully formed. This showed that the lithographic system had a sufficient resolving power.
  • TABLE 1 lists the results of a trial calculation of the throughput of the present lithographic system.
  • the exposure pattern used in the trial calculation of the throughput was the gate layer of a 0.15- ⁇ m-rule 256-Mbit DRAM.
  • a trial calculation of the throughput was made for a case where the patterns for 100 chips were placed side by side all over an 8-inch wafer.
  • the sensitivity of the resist was assumed to be 10- ⁇ C/cm 2 .
  • the electron-beam drawing machine used for the trial calculation was a Hitachi HL-800D.
  • the following documents were referred to: (1) Y. Nakayama et al., J. Vac. Sci. Techno 1, B8(6), 1990, p. 1836, (2) Y. Shoda et al., J. Vac. Sci. Techno 1, B9(6), 1991, p. 2940, and (3) H. Itoh et al., J. Vac. Sci. Techno 1, B10(6), 1992, p. 2799.
  • a single stepper and a single electron-beam exposure machine were used.
  • the throughput was 0.3 wafer/h.
  • the throughput was as high as 2.8 wafers/h. If three electron-beam exposure machines are installed in such a manner that the wafers from the stepper can be processed in parallel, these machines will achieve the throughput assuring that the machines will be sufficiently usable as mass-production tools.
  • FIG. 4 is a drawing to help explain a method of aligning a rough pattern in light exposure with a fine pattern in electron-beam exposure in the lithographic system.
  • numerals 21 and 22 indicate deflectors for deflecting an electron beam.
  • Numerals 23 and 24 represent X and Y driving mechanisms, respectively.
  • Numeral 26 indicates a laser interferometer for measuring the position of a table 25, and 27 represents a control unit for deflecting the position of the electron beam on the basis of the pattern data.
  • the rough pattern is aligned indirectly with the fine pattern. Specifically, using the same mark on the wafer 5 as a reference, the rough pattern and the fine patterns are exposed.
  • the pattern on the reticle is slightly deformed because of the aberration of the lens and is reduced and exposed at a time. If electron-beam exposure is performed according to the design data, taking no account of the distortion of the pattern position, the relative positional relationship between the rough pattern and the fine pattern will be lost.
  • the electron-beam exposure machine 2 Since the slight deformation is inherent to the lens, it can be measured in advance. If in which direction and how much the rough pattern has shifted near the pattern subjected to electron-beam exposure, is known, the electron-beam exposure machine 2 will be able to control the position for each shot by using the deflectors 21 and 22. This makes it possible to form a total pattern by adjusting, on the basis of information on the distortion, the position of the pattern subjected to electron-beam exposure in such a manner that the relative positional relationship between the rough pattern and the fine pattern becomes more accurate.
  • the lens distortion in the exposure field of the optical stepper 1 is measured beforehand (S1). On the basis of the distortion measurements, the field is divided into a suitable number of meshes and the direction of and the amount of the shift of the actual light exposure positions with respect to the ideal positions of the lattice points are listed in a table (S2).
  • the map table is stored in an internal memory within the controller 7. Then, on the basis of the amount of shift from the lattice points, the controller 7 adjusts the fine pattern data (S3) so that the exposure position of the fine pattern exposed to the electron beam may be aligned with the exposure position of the actual rough pattern in light exposure (S4). Using the adjusted fine pattern data, the fine pattern is drawn on the resist with the electron beam.
  • the wafer 5 is moved to the electron-beam exposure machine 2. Then, the fine pattern is exposed while the deflectors 21 and 22 are correcting the position of the pattern accurately on the basis of the adjusted data (T2). Further, the step (T1) may be executed after the step (T2).
  • FIG. 6 is a flowchart to help explain the formation of a reticle mask for a rough pattern for light exposure and the creation of the fine pattern data for electron-beam exposure in the lithographic system.
  • the pattern division processor 6 divides the original pattern data (P1) representing the device pattern into rough pattern data and fine pattern data (P2).
  • the rough pattern data is for light exposure and exceeds the critical resolution of the optical stepper 1 used in the lithographic system or the limit value longer than the critical resolution by a specific distance.
  • the fine pattern data does not exceed the critical resolution or the limit value.
  • An ordinary reticle forming process (Q2) is executed on the basis of the rough pattern data (Q1) to form a reticle mask (Q3).
  • the formed reticle mask is placed on the optical stepper 1 and used to optically transfer a pattern exceeding the limit value at a time (Q4).
  • the fine pattern data for electron-beam exposure (R1) is converted by the controller 7 into a suitable form of data usable in the electron-beam exposure machine 2 (R3) and the converted data is sent to the electron-beam exposure machine 2 (R3). Then, a fine pattern not exceeding the limit dimensions is projected on the wafer subjected to light exposure.
  • CAD data on the device pattern is divided into the rough pattern data for light exposure and the fine pattern data for electron-beam exposure on the basis of the limit dimensions less strict than the critical resolution of the optical stepper 1 used in the lithographic system.
  • This allows light exposure to handle the formation of rough patterns exceeding the critical resolution or the limit value in the original pattern, which makes it easier to produce a reticle, giving the exposure process more flexibility.
  • electron-beam exposure takes charge of only the formation of fine patterns not exceeding the critical resolution or the limit value, which shortens the electron-beam exposure time remarkably. As a consequence, it is possible to realize a mass-production system featuring not only the excellent resolving power of electron-beam exposure superior to that of light but also the throughput equal to that of the optical stepper.
  • FIGS. 7A to 7C are drawings to help explain how to produce a semiconductor device by the pattern forming method of the present invention. Explanation will be given using an example of forming a gate electrode of a MOSFET.
  • FIG. 7A shows a basic structure of a semiconductor device produced with the lithographic system of the embodiment.
  • an element isolating oxide film 102 and a gate oxide film 103 are formed on the surface of a semiconductor substrate 101.
  • a polysilicon region 104 and a resist 105 are deposited on the element isolating oxide film and gate oxide film.
  • LOCOS Local Oxidation of Silicon
  • Si3N4 as an oxidation mask
  • the invention may be applied to steps caused by another element-isolating method, such as STI (Shallow Trench Isolation).
  • the resist 105 is a resist sensitive to both Deep-UV light and an electron beam, such as UVN-HS, with a thickness of about 500 nm.
  • FIG. 7B shows another structure of a semiconductor device produced with the lithographic system of the embodiment.
  • a gate electrode region is composed of a polysilicon region 104 and a low-resistance layer region 106 such as tungsten silicide.
  • a silicon nitride film region 107 is deposited on the gate electrode region.
  • the silicon nitride film is used as a mask material in processing tungsten silicide by reactive ion etching (RIE) or used in the self-align contact (SAC) process.
  • RIE reactive ion etching
  • SAC self-align contact
  • a resist region 105 is deposited.
  • the mask material may be a silicon oxide film.
  • the low-resistance layer region 106 is not restricted to silicide and may be a suitable metal, such as tungsten.
  • FIG. 7C is a plan view of a gate electrode exposed to an electron beam.
  • numeral 108 indicates a contact pattern, 109 a gate pattern, and 110 a source-drain pattern. Since the focal depth is as deep as several ⁇ m or more during exposure to an electron beam, this provides a great exposure latitude to a step incomparable with the exposure latitude during exposure to ordinary Deep-UV light. The great exposure latitude makes it possible to effect accurate patterning in a step portion between the element region and the element-isolating region without permitting the resist from breaking.
  • FIGS. 8A to 8D the process of forming a gate electrode by a semiconductor manufacturing method using the lithographic system of the present invention will be explained by reference to FIGS. 8A to 8D.
  • a gate oxide film region 103 and an element-isolating oxide film region 102 are formed on a semiconductor substrate 101.
  • a 200-nm-thick polysilicon region 104 is formed on the gate oxide film and element-isolating oxide film region.
  • a 500-nm resist region 105 is formed on the polysilicon region.
  • the resist is a negative resist. The entire pattern on the resist is formed by exposing only the gate to an electron beam and the remaining portions to Deep-UV light.
  • FIG. 8B shows a latent image 120 formed in the resist by light exposure.
  • the latent image can be checked by projecting a low-accelerated electron beam and sensing the secondary electrons generated.
  • the pattern is aligned and the fine line portions (121) are patterned with the electron-beam exposure machine.
  • the latent image formed by electron-beam exposure is also shown in FIG. 8B.
  • the resist is developed and the state of FIG. 8C is produced.
  • a TMAH solution complying with 0.27 rule is used for the development of the resist.
  • the RIE process is carried out on the basis of the resist pattern to form a gate electrode as shown in FIG. BD.
  • a low-resistance silicide region such as WSi
  • a polysilicon stacked structure it is difficult to perform RIE with a resist mask to the end, because of the RIE selection ratio.
  • the pattern is transferred to an SiN region once and the WSi and polysilicon are subjected to RIE again with the transferred pattern as a mask.
  • the selection ratio of polysilicon to the resist in RIE is about 10
  • only the resist mask is sufficient and is used as a stopper film in the SAC process.
  • the optical stepper is not restricted to the Deep-UV stepper and may be a stepper for another wavelength region. Although it is most preferable to use an electron-beam exposure machine of the cell projection type, an ordinary drawing type may be used when there are fewer patterns to be formed by electron-beam exposure. The number of optical steppers and electron-beam exposure machines used in parallel may be changed according to specifications. An ion-beam exposure machine, which uses an ion beam instead of an electron beam, may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Electron Beam Exposure (AREA)

Abstract

A rough pattern exceeding the resolution limit of light exposure is formed by light resolution. A fine pattern not exceeding the resolution limit of light exposure is formed by charge-beam exposure. Combining the rough pattern and the fine pattern produces a desired pattern. The sharing of the work between light exposure and charge-beam exposure exhibits the high throughput of light exposure and the excellent resolving power of charge-beam exposure.

Description

This is a division of application Ser. No. 09/030,888, filed Feb. 26, 1998, now U.S. Pat. No. 5,994,030 all of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
This invention relates to a pattern forming method for forming fine patterns with great throughput and a lithographic system for realizing the method.
Photolithography has been used during the manufacture of a wide variety of semiconductor devices because of its simplicity and low cost. Continually advancing technical innovation has brought about use of shorter wavelength in recent years (e.g., use of a KrF excimer laser light source), which has realized the manufacture of patterns 0.25 μm or less in width. To miniaturize the devices further, a ArF excimer laser light source and a Levenson-type phase-shift mask both with much shorter wavelength are being developed. It is expected that they will be used as mass-production lithographic tools conforming to 0.15 μm rules. There are a lot of problems to be solved before such tools are realized. This elongates the time required to develop them, leading to the fear that the development cannot catch up with the pace at which the devices are being miniaturized.
In the case of electron-beam lithography, a first candidate for post-photolithography, it has been proved that use of a finely focused beam produces patterns as fine as 0.01 μm. Although there seems to be no problem for the time being from the viewpoint of miniaturization, electron-beam lithography has a throughput problem in terms of device mass-production tools. Because fine patterns are drawn one by one, the inevitable result is that the time needed to draw the patterns is long. To make the drawing time shorter, several systems have been developed. One of them is a cell projection system that draws patterns in such a manner that part of repetitive portions of the ULSI patterns are lumped together. Use of those systems, however, have not succeeded in achieving throughput coming up to the throughput of photolithography.
As a method of increasing the throughput of electron-beam lithography, the following method has been proposed: pattern transfer to the same resist is performed by light exposure and electron-beam exposure to reduce the area exposed to the electron-beam and increase the number of wafers that the electron-beam drawing machine can process in an hour. That is, a light beam and an electron beam are used to expose layer.
Jpn. Pat. Appln. KOKAI Publication No. 4-155812 has disclosed that in a pattern formation lithographic process, pattern transfer to the same resist is performed by exposure to a light beam and an electron beam with a phase shift mask. In the approach, most of the patterns forming the elements are transferred through a phase shift mask and the portions where defects have occurred because of the arrangement of the phase shifter are repaired with the electron beam. This minimizes the area drawn by the electron beam and increases the number of wafers that the electron-beam drawing machine can process in an hour.
With this method, although the drawing area need not be large, it is impossible to transfer patterns smaller than the critical resolution of the phase shift mask. Consequently, the method will not be able to deal with the miniaturization of future devices.
In manufacturing few-of-a-kind elements, it takes considerable time to produce a mask. To overcome this problem, Jpn. Pat. Appln. KOKAI Publication No. 1-293616 has disclosed the following method: a function block common to various semiconductor elements is printed on the same resist by light exposure and then a pattern peculiar to each semiconductor element is drawn using an electron beam. Namely, a mask for the portions common to the individual elements is made beforehand and only the remaining portions where the pattern differs from element to element are drawn using an electron beam. This method makes it possible to shorten the time needed to design the elements and manufacture them, because it is not necessary to produce a mask for each pattern.
The method, however, cannot deal with a case where the function block contains patterns smaller than the critical resolution of light exposure. In the method, most of the patterns to be drawn with an electron beam are interconnections. To form the interconnections by electron beam exposure, the patterns have to be drawn one by one. Inevitably, this process takes a lot of time.
As described above, the conventional method of projecting a light beam and an electron beam on the same layer to improve the throughput has the following problems: the resolving power of electron-beam exposure is not used sufficiently and the throughput is not raised to that of the optical stepper.
BRIEF SUMMARY OF THE INVENTION
The object of the present invention is to provide a pattern forming method capable of forming fine patterns with high throughput and a lithographic system for realizing the method.
With the present invention, a rough pattern exceeding the resolution limit of light exposure is formed by light exposure and a fine pattern not exceeding the resolution limit of light exposure is formed by charge-beam exposure. Combining the rough pattern and the fine pattern produces a desired pattern. The sharing of the work between light exposure and charge-beam exposure exhibits the high throughput of light exposure and the excellent resolving power of charge-beam exposure. This achieves high throughput and realizes exposure suitable for the formation of fine patterns. Moreover, use of an electron beam to expose fine patterns adds an allowance to the focal depth in the step portion inevitably developed between the element region and the element-isolating region, which makes it possible to form fine patterns with high accuracy. This leads to the elimination of a flattening process for reducing steps, which contributes to shortening the processes.
The photosensitive material is developed after both light exposure and charge-beam exposure have been completed.
The photosensitive material has to be sensitive to both light and a charge beam. A chemical amplification resist may be used as the photosensitive material.
To improve the resolution of light exposure, it is desirable that light in the far ultraviolet region should be used in light exposure.
The throughput is improved further by simultaneously exposing part of the repetitive portions in the desired pattern to a charge beam.
The photosensitive material is composed of an antireflection film and a resist.
For charge-beam exposure, at least one of the antireflection film and the resist has only to be conductive.
Data on the desired pattern is divided into data on the rough pattern and data on the fine pattern on the basis of the critical resolution of light exposure.
Since a shift in the exposure position during light exposure results from the distortion of the lens, it can be measured in advance. By adjusting data on the position information of the fine pattern on the previously calculated amount of a shift in the position, the rough pattern is aligned with the fine pattern with high accuracy.
Preferably, the charge beam is an electron beam with high resolution.
The ratio of the number of light exposure machines to the number of charge-beam exposure machines is determined so that the processing capability of light exposure and that of charge-beam exposure may be substantially in balance. This causes the processing speed of the light exposure process to substantially balance with the processing speed of the charge-beam exposure process, improving the total throughput.
Because the substrate coated with the photosensitive material is conveyed through a transport mechanism, this prevents the substrate from being contaminated with chemical pollution, physical pollution, temperature, and humidity.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
FIG. 1 shows a schematic configuration of a lithographic system according to a preferred embodiment of the present invention;
FIG. 2 shows a plane layout of the lithographic system of FIG. 1;
FIG. 3 illustrates an example of resist patterns formed with the lithographic system of FIG. 1;
FIG. 4 shows a basic configuration required to align an electron-beam exposure fine pattern (or a fine pattern) with a light exposure rough pattern (or a rough pattern) in the lithographic system of FIG. 1;
FIG. 5 is a flowchart for the aligning process in FIG. 4;
FIG. 6 is a flowchart for the process in which the pattern-dividing processor of FIG. 1 divides the original pattern into a rough pattern and a fine pattern;
FIG. 7A is a sectional view of a semiconductor device formed by the lithographic method of the present invention;
FIG. 7B is a sectional view of another semiconductor device formed by the lithographic method of the present invention;
FIG. 7C is a plan view of a gate electrode formed by the lithographic method of the present invention;
FIG. 8A is a perspective view of a wafer immediately before lithography in a case where a gate electrode is formed by the lithographic method of the present invention;
FIG. 8B is a perspective view of the wafer subjected to lithography in the step following the step of FIG. 8A;
FIG. 8C is a perspective view of the wafer on which the resist has been developed in the step following the step of FIG. 8B; and
FIG. 8D is a perspective view of the wafer subjected to RIE (etching) in the step following the step of FIG. 8C.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, referring to the accompanying drawings, preferred embodiments of the present invention will be explained.
FIG. 1 is a schematic representation of a lithographic system according to an embodiment of the present invention. FIG. 2 is a plan view of the lithographic system of the embodiment. The original pattern data (design data) corresponds to the final exposure pattern of the resist. On the basis of the resolution limit of light exposure, the original pattern data is divided into data representing a rough pattern exceeding the resolution limit of light exposure and data on a fine pattern not exceeding the resolution limit.
At least one optical stepper 1 is provided to transfer the rough pattern to the coated resist on a substrate 5, a semiconductor wafer serving as a substrate to be treated. The optical stepper 1 is a Deep-UV stepper using, for example, excimer laser light.
To draw a fine pattern on the resist, not only the optical stepper 1 for exposure to light but also at least one cell-projection electron-beam exposure machine 2 have been provided in the lithographic system.
The lithographic system of the embodiment is provided with a resist coating/developing machine 3 that has both the function of applying resist and an antireflection film to the substrate 5 and the function of developing the resist whose pattern has been exposed to light. A transport mechanism 4 is provided to transport the substrate 5 between machines 1, 2, and 3 in an atmosphere-controlled environment in order to protect the substrate 5 from various types of pollution by treating the substrate 5 in a complete in-line process.
The optical stepper 1 for light exposure includes an illumination lens 1a, a photomask 1b in which part of an LSI pattern has been formed, and a projection lens 1c. An electron-beam exposure machine 2 for electron-beam exposure includes an electron gun 2a and shaping aperture masks 2b and 2c. The electron beam released from the electron gun 2a can be shaped into such a basic figure as a rectangle or a triangle, and into various cells serving as basic elements for repetition by changing the way the shaping aperture masks 2b and 2c are laid on top of the other.
Next, the flow of lithography with the system constructed as described above will be explained. The flow of lithography is realized by the controller 7 controlling the machines 1 to 4 according to sequence data.
In the resist coating/developing machine 3, the wafer 5 on which the antireflection film and resist have been coated is conveyed by the transport mechanism 4 to the optical stepper 1. To prevent the wafer from being charged up during exposure to the electron beam, at least one of the resist and antireflection film is conductive. The optical stepper 1 projects a reduced pattern of the reticle onto the entire wafer 5. This causes a rough pattern to be transferred to the resist. The transfer of the rough pattern is repeated as the transfer position is changed.
After light exposure has been completed, the wafer 5 is conveyed by the transport mechanism 4 to the electron-beam exposure machine 2. The electron-beam exposure machine 2 further draws a fine pattern on the resist to which the rough pattern has been transferred through light exposure.
To increase the accuracy with which the rough pattern is aligned with the fine pattern, the electron-beam exposure machine 2 senses a base pattern and a latent image of the rough pattern formed by light exposure and aligns the fine pattern drawn by the electron beam with the base pattern and/or the rough pattern. The latent image is sensed by scanning the resist with a low-dose electron beam leaving the resist unchanged and sensing the secondary electrons or the reflected electrons generated.
After the alignment is complete, the electron-beam exposure machine 2 draws a fine pattern on the resist on the wafer 5 with the electron beam. The drawing of the fine pattern is repeated as the drawing position is changed. In this case, to increase the throughput of the electron-beam drawing, the fine pattern is exposed repeatedly by a cell projection method.
Generally, the throughput of electron-beam exposure with the electron-beam exposure machine 2 is lower than that of light exposure with the optical stepper 1. Because of this, the ratio of the number of optical steppers 1 to that of electron-beam exposure machines 2 installed has been adjusted so as to prevent the processing capability of the optical stepper 1 from being limited by the processing capability of the electron-beam exposure machine 2, that is, so as to substantially balance the processing speed of light exposure with that of electron-beam exposure. It is only natural that the number of electron-beam exposure machines 2 installed is larger than that of optical steppers 1 installed. The electron-beam exposure machines 2 are arranged so that the wafers 5 delivered from the stepper 1 may be processed in parallel, and are controlled by a controller 7.
Instead of installing the optical steppers 1 and the electron-beam exposure machines 2 in the ratio of the number of the former to that of the latter previously adjusted so as to substantially balance the processing speed of the former with that of the latter, a specific number of optical steppers 1 and electron-beam exposure machines 2 may be provided beforehand and the controller 7 may control the ratio of the number of the former in operation to that of the latter in operation during an actual exposure process in such a manner that the processing speed of the former and that of the latter are substantially in balance.
In contrast, when the throughput of the electron-beam exposure machine 2 is larger than that of the optical stepper 1, the number of steppers 1 in operation is made smaller than that of electron-beam exposure machines 2.
Even when the number of electron-beam exposure machines 2 is made larger than that of optical steppers 1, the wafers will flow in series in the system as a whole. As a consequence, a single resist coating/developing machine 4 is sufficient for the exposure machines 1 and 2.
The sharing of the work between light exposure and charge-beam exposure exhibits the high throughput of light exposure and the excellent resolving power of charge-beam exposure.
After both the rough pattern and fine pattern have been transferred to the resist, the transport mechanism 4 returns the wafer 5 to the coating/developing machine 3, which develops the resist and completes the pattern formation.
As a resist usable in this type of system, a chemical-amplification resist (e.g., UV2HS or UVN-HS made by Shipley Far East LTD. featuring sensitivity to both light and an electron beam and high resolution is preferable.
Since the properties of such a chemical-amplification resist easily deteriorate in the presence of various chemical substances in the air, the resist is treated in and between the machines 1, 2, and 3 in an controlled environment within the transport mechanism 4. The environment is controlled, taking into account not only chemical pollution but also physical pollution, temperature, and humidity. This suppresses changes in the dimensions of the pattern before and after exposure.
By constructing the lithographic system as described above, it is possible to form a device pattern including a 0.1-μm-rule fine pattern with a high throughput. FIG. 3 shows an example of a fine pattern formed on a 0.5-μm-thick chemical-amplification negative resist (UVN) using the lithographic system. Up to 0.25-μm rough patterns were formed on the resist using a Deep-UV optical stepper 1 and less than 0.25-μm fine patterns were drawn on the resist by an electron beam. The developing solution used was a solution of TNAH and the requirements for development were 60 seconds according to 0.27 rule. The patterns up to 0.1 μm were successfully formed. This showed that the lithographic system had a sufficient resolving power.
The following TABLE 1 lists the results of a trial calculation of the throughput of the present lithographic system.
              TABLE 1                                                     
______________________________________                                    
                     Deep-UV/EB Intra-level                               
                     Mix & Match                                          
        Only EB lithography                                               
                     Memory cell:CP                                       
        Memory cell:CP                                                    
                     Peripheral circuit:                                  
        Peripheral circuit:VSB                                            
                     DeepUV                                               
______________________________________                                    
Evaluation                                                                
          0.3 wafers/hour                                                 
                         2.84 wafers/hour                                 
sample                                                                    
256 MDRAM                                                                 
gate layer                                                                
______________________________________                                    
 CONDITION                                                                
 Wafer : 8 inches                                                         
 The number of chips : 100/wafer                                          
 CPEB system : Hitachi HL800D                                             
The exposure pattern used in the trial calculation of the throughput was the gate layer of a 0.15-μm-rule 256-Mbit DRAM. A trial calculation of the throughput was made for a case where the patterns for 100 chips were placed side by side all over an 8-inch wafer. The sensitivity of the resist was assumed to be 10-μC/cm2. The electron-beam drawing machine used for the trial calculation was a Hitachi HL-800D. For the performance of the machine, the following documents were referred to: (1) Y. Nakayama et al., J. Vac. Sci. Techno 1, B8(6), 1990, p. 1836, (2) Y. Shoda et al., J. Vac. Sci. Techno 1, B9(6), 1991, p. 2940, and (3) H. Itoh et al., J. Vac. Sci. Techno 1, B10(6), 1992, p. 2799. For the trial calculation, a single stepper and a single electron-beam exposure machine were used.
When the patterns were exposed only to an electron beam with a cell projection having five cells, the throughput was 0.3 wafer/h. In contrast, when patterns equal to or larger than the 0.25-μm rule were exposed by a Deep-UV stepper and patterns smaller than the 0.25-μm rule were exposed to an electron beam with a cell projection having five cells, the throughput was as high as 2.8 wafers/h. If three electron-beam exposure machines are installed in such a manner that the wafers from the stepper can be processed in parallel, these machines will achieve the throughput assuring that the machines will be sufficiently usable as mass-production tools.
As described above, with the present embodiment, it is possible to realize a mass-production system featuring not only the excellent resolving power of electron-beam exposure superior to that of light but also the throughput equal to that of the optical stepper.
FIG. 4 is a drawing to help explain a method of aligning a rough pattern in light exposure with a fine pattern in electron-beam exposure in the lithographic system. In FIG. 4, for the sake of explanation, it is assumed that a single electron-beam exposure machine 2 is used. In the electron-beam exposure machine 2, numerals 21 and 22 indicate deflectors for deflecting an electron beam. Numerals 23 and 24 represent X and Y driving mechanisms, respectively. Numeral 26 indicates a laser interferometer for measuring the position of a table 25, and 27 represents a control unit for deflecting the position of the electron beam on the basis of the pattern data.
Next, a method of matching the exposure position of the fine pattern with the rough pattern in the system constructed as described above will be explained. In a case where the same layer is exposed to both light and an electron beam, the rough pattern is aligned indirectly with the fine pattern. Specifically, using the same mark on the wafer 5 as a reference, the rough pattern and the fine patterns are exposed. In the optical stepper 1, the pattern on the reticle is slightly deformed because of the aberration of the lens and is reduced and exposed at a time. If electron-beam exposure is performed according to the design data, taking no account of the distortion of the pattern position, the relative positional relationship between the rough pattern and the fine pattern will be lost.
Since the slight deformation is inherent to the lens, it can be measured in advance. If in which direction and how much the rough pattern has shifted near the pattern subjected to electron-beam exposure, is known, the electron-beam exposure machine 2 will be able to control the position for each shot by using the deflectors 21 and 22. This makes it possible to form a total pattern by adjusting, on the basis of information on the distortion, the position of the pattern subjected to electron-beam exposure in such a manner that the relative positional relationship between the rough pattern and the fine pattern becomes more accurate.
A concrete correcting method will be described by reference to a flowchart in FIG. 5. The lens distortion in the exposure field of the optical stepper 1 is measured beforehand (S1). On the basis of the distortion measurements, the field is divided into a suitable number of meshes and the direction of and the amount of the shift of the actual light exposure positions with respect to the ideal positions of the lattice points are listed in a table (S2). The map table is stored in an internal memory within the controller 7. Then, on the basis of the amount of shift from the lattice points, the controller 7 adjusts the fine pattern data (S3) so that the exposure position of the fine pattern exposed to the electron beam may be aligned with the exposure position of the actual rough pattern in light exposure (S4). Using the adjusted fine pattern data, the fine pattern is drawn on the resist with the electron beam.
Specifically, after only the rough pattern has been transferred at a time by the optical stepper 1 (T1), the wafer 5 is moved to the electron-beam exposure machine 2. Then, the fine pattern is exposed while the deflectors 21 and 22 are correcting the position of the pattern accurately on the basis of the adjusted data (T2). Further, the step (T1) may be executed after the step (T2).
As described above, by determining the exposure position of the electron beam projected later, taking into account a shift in the position of the pattern caused by light exposure, it is possible to form a pattern whose positional accuracy is almost the same as that when the pattern on the wafer 5 is exposed at a time using only light exposure. This prevents the relative position between the rough and fine patterns from being misaligned when one pattern is laid on top of the other pattern on another layer formed by light exposure.
FIG. 6 is a flowchart to help explain the formation of a reticle mask for a rough pattern for light exposure and the creation of the fine pattern data for electron-beam exposure in the lithographic system.
The pattern division processor 6 divides the original pattern data (P1) representing the device pattern into rough pattern data and fine pattern data (P2). The rough pattern data is for light exposure and exceeds the critical resolution of the optical stepper 1 used in the lithographic system or the limit value longer than the critical resolution by a specific distance. The fine pattern data does not exceed the critical resolution or the limit value.
An ordinary reticle forming process (Q2) is executed on the basis of the rough pattern data (Q1) to form a reticle mask (Q3). The formed reticle mask is placed on the optical stepper 1 and used to optically transfer a pattern exceeding the limit value at a time (Q4). On the other hand, the fine pattern data for electron-beam exposure (R1) is converted by the controller 7 into a suitable form of data usable in the electron-beam exposure machine 2 (R3) and the converted data is sent to the electron-beam exposure machine 2 (R3). Then, a fine pattern not exceeding the limit dimensions is projected on the wafer subjected to light exposure.
As described above, in the embodiment, CAD data on the device pattern is divided into the rough pattern data for light exposure and the fine pattern data for electron-beam exposure on the basis of the limit dimensions less strict than the critical resolution of the optical stepper 1 used in the lithographic system. This allows light exposure to handle the formation of rough patterns exceeding the critical resolution or the limit value in the original pattern, which makes it easier to produce a reticle, giving the exposure process more flexibility. On the other hand, electron-beam exposure takes charge of only the formation of fine patterns not exceeding the critical resolution or the limit value, which shortens the electron-beam exposure time remarkably. As a consequence, it is possible to realize a mass-production system featuring not only the excellent resolving power of electron-beam exposure superior to that of light but also the throughput equal to that of the optical stepper.
FIGS. 7A to 7C are drawings to help explain how to produce a semiconductor device by the pattern forming method of the present invention. Explanation will be given using an example of forming a gate electrode of a MOSFET.
FIG. 7A shows a basic structure of a semiconductor device produced with the lithographic system of the embodiment. In FIG. 7A, on the surface of a semiconductor substrate 101, an element isolating oxide film 102 and a gate oxide film 103 are formed. On the element isolating oxide film and gate oxide film, a polysilicon region 104 and a resist 105 are deposited. Although a step developed as a result of LOCOS (Local Oxidation of Silicon), a selective oxidation method using Si3N4 as an oxidation mask, has been illustrated, the invention may be applied to steps caused by another element-isolating method, such as STI (Shallow Trench Isolation). The resist 105 is a resist sensitive to both Deep-UV light and an electron beam, such as UVN-HS, with a thickness of about 500 nm.
FIG. 7B shows another structure of a semiconductor device produced with the lithographic system of the embodiment. In FIG. 7B, a gate electrode region is composed of a polysilicon region 104 and a low-resistance layer region 106 such as tungsten silicide. On the gate electrode region, a silicon nitride film region 107 is deposited. The silicon nitride film is used as a mask material in processing tungsten silicide by reactive ion etching (RIE) or used in the self-align contact (SAC) process. On the silicon nitride film 107, a resist region 105 is deposited. The mask material may be a silicon oxide film. The low-resistance layer region 106 is not restricted to silicide and may be a suitable metal, such as tungsten.
FIG. 7C is a plan view of a gate electrode exposed to an electron beam. In FIG. 7C, numeral 108 indicates a contact pattern, 109 a gate pattern, and 110 a source-drain pattern. Since the focal depth is as deep as several μm or more during exposure to an electron beam, this provides a great exposure latitude to a step incomparable with the exposure latitude during exposure to ordinary Deep-UV light. The great exposure latitude makes it possible to effect accurate patterning in a step portion between the element region and the element-isolating region without permitting the resist from breaking.
Hereinafter, the process of forming a gate electrode by a semiconductor manufacturing method using the lithographic system of the present invention will be explained by reference to FIGS. 8A to 8D.
As shown in FIG. 8A, on a semiconductor substrate 101, a gate oxide film region 103 and an element-isolating oxide film region 102 are formed. On the gate oxide film and element-isolating oxide film region, a 200-nm-thick polysilicon region 104 is formed. On the polysilicon region, a 500-nm resist region 105 is formed. The resist is a negative resist. The entire pattern on the resist is formed by exposing only the gate to an electron beam and the remaining portions to Deep-UV light.
First, the pattern is exposed to Deep-UV light. FIG. 8B shows a latent image 120 formed in the resist by light exposure. The latent image can be checked by projecting a low-accelerated electron beam and sensing the secondary electrons generated.
Then, the pattern is aligned and the fine line portions (121) are patterned with the electron-beam exposure machine. The latent image formed by electron-beam exposure is also shown in FIG. 8B.
Next, the resist is developed and the state of FIG. 8C is produced. For the development of the resist, a TMAH solution complying with 0.27 rule is used. Thereafter, the RIE process is carried out on the basis of the resist pattern to form a gate electrode as shown in FIG. BD.
As shown in FIG. 7B, when a low-resistance silicide region, such as WSi, and a polysilicon stacked structure are used as a gate electrode, it is difficult to perform RIE with a resist mask to the end, because of the RIE selection ratio. To avoid this problem, the pattern is transferred to an SiN region once and the WSi and polysilicon are subjected to RIE again with the transferred pattern as a mask. In the case of only polysilicon, because the selection ratio of polysilicon to the resist in RIE is about 10, only the resist mask is sufficient and is used as a stopper film in the SAC process.
As described above, with the embodiment, patterns not exceeding the critical resolution of photolithography can be formed easily. Furthermore, resist patterns can be formed with a throughput almost equal to that of a conventional optical stepper. Moreover, use of an electron beam to expose fine patterns adds an allowance to the focal depth in the step portion inevitably developed between the element region and the element-isolating region, which makes it possible to form fine patterns with high accuracy. This leads to the elimination of a flattening process for reducing steps, which contributes to shortening the processes. The method is applicable the patterning of the fine regions in not only MOSFETs but also bipolar transistors.
The present invention is not limited to the above-described embodiments. The optical stepper is not restricted to the Deep-UV stepper and may be a stepper for another wavelength region. Although it is most preferable to use an electron-beam exposure machine of the cell projection type, an ordinary drawing type may be used when there are fewer patterns to be formed by electron-beam exposure. The number of optical steppers and electron-beam exposure machines used in parallel may be changed according to specifications. An ion-beam exposure machine, which uses an ion beam instead of an electron beam, may be used.
While in the embodiments, explanation has been given, centering on the gate electrode of a MOSFET, the above-described method is applicable to the patterning of various semiconductor elements, such as element regions, contact holes, and metallic interconnection layers.
The present invention may be practiced or embodied in still other ways without departing from the spirit or essential character thereof.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.

Claims (13)

What is claimed is:
1. A lithographic system for forming a desired pattern on a photosensitive material on a substrate by using both light exposure and charge-beam exposure, comprising:
a light exposure machine;
a charge-beam exposure machine; and
a controller for controlling said light exposure machine and said charge-beam machine so as to form, by light exposure, a rough pattern exceeding the resolution limit of light exposure in said desired pattern and to form, by charge-beam exposure, a fine pattern not exceeding the resolution limit of said light exposure in said desired pattern.
2. A lithographic system according to claim 1, further comprising a developing machine for developing photosensitive material on which said rough pattern and said fine pattern have been formed.
3. A lithographic system according to claim 1, wherein said photosensitive material is a chemical amplification negative resist or positive resist sensitive to both light and a charge beam.
4. A lithographic system according to claim 1, wherein the wavelength of light for said light exposure belongs to a far ultraviolet region.
5. A lithographic system according to claim 1, wherein said charge-beam exposure machine has the function of simultaneously exposing part of the repetitive portions in said desired pattern.
6. A lithographic system according to claim 1, wherein said photosensitive material is composed of an antireflection film and a resist.
7. A lithographic system according to claim 1, wherein at least one of said resist and said antireflection film is conductive.
8. A lithographic system according to claim 1, further comprising a processor for dividing data on said desired pattern into data on said rough pattern and data on said fine pattern on the basis of the critical resolution of said light exposure.
9. A lithographic system according to claim 8, further comprising a processor for adjusting data on position information of said fine pattern on the basis of a shift in the position of said light exposure.
10. A lithographic system according to claim 1, wherein said charge beam is an electron beam.
11. A lithographic system according to claim 1, wherein the ratio of the number of said light exposure machines to the number of said charge-beam exposure machines is determined so that the processing capability of light exposure and that of charge-beam exposure may be substantially in balance.
12. A lithographic system according to claim 1, further comprising a transport mechanism for carrying a substrate coated with said photosensitive material between said light exposure machine and said charge-beam exposure machine in an environment where chemical pollution, physical pollution, temperature, and humidity are controlled.
13. A lithographic system according to claim 1, wherein said charge beam is an electron beam.
US09/410,018 1997-02-28 1999-10-01 Pattern-forming method and lithographic system Expired - Fee Related US6093931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/410,018 US6093931A (en) 1997-02-28 1999-10-01 Pattern-forming method and lithographic system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9046683A JPH10242038A (en) 1997-02-28 1997-02-28 Pattern formation method and lithography system
JP9-046683 1997-02-28
US09/030,888 US5994030A (en) 1997-02-28 1998-02-26 Pattern-forming method and lithographic system
US09/410,018 US6093931A (en) 1997-02-28 1999-10-01 Pattern-forming method and lithographic system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/030,888 Division US5994030A (en) 1997-02-28 1998-02-26 Pattern-forming method and lithographic system

Publications (1)

Publication Number Publication Date
US6093931A true US6093931A (en) 2000-07-25

Family

ID=12754183

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/030,888 Expired - Fee Related US5994030A (en) 1997-02-28 1998-02-26 Pattern-forming method and lithographic system
US09/410,018 Expired - Fee Related US6093931A (en) 1997-02-28 1999-10-01 Pattern-forming method and lithographic system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/030,888 Expired - Fee Related US5994030A (en) 1997-02-28 1998-02-26 Pattern-forming method and lithographic system

Country Status (2)

Country Link
US (2) US5994030A (en)
JP (1) JPH10242038A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003041135A1 (en) * 2001-11-07 2003-05-15 Tokyo Seimitsu Co., Ltd. Electron beam exposure device
US6906303B1 (en) * 2001-09-20 2005-06-14 Litel Instruments Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US20050219516A1 (en) * 2001-09-20 2005-10-06 Adlai Smith Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US20060007431A1 (en) * 2001-09-20 2006-01-12 Smith Adlai H Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US20080038675A1 (en) * 2004-02-20 2008-02-14 Nikon Corporation Exposure Method, Exposure Apparatus, Exposure System and Device Manufacturing Method
US20090045530A1 (en) * 2007-08-14 2009-02-19 International Business Machines Corporation Microelectronic lithographic alignment using high contrast alignment mark

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316163B1 (en) * 1997-10-01 2001-11-13 Kabushiki Kaisha Toshiba Pattern forming method
JP2000100700A (en) * 1998-09-22 2000-04-07 Toshiba Corp Pattern formation method and hybrid exposure method
US6529621B1 (en) * 1998-12-17 2003-03-04 Kla-Tencor Mechanisms for making and inspecting reticles
JP3464925B2 (en) 1998-12-18 2003-11-10 株式会社東芝 Charged beam exposure method and charged beam exposure apparatus
US6516085B1 (en) 1999-05-03 2003-02-04 Kla-Tencor Apparatus and methods for collecting global data during a reticle inspection
US6778695B1 (en) * 1999-12-23 2004-08-17 Franklin M. Schellenberg Design-based reticle defect prioritization
US6492094B1 (en) 2000-04-19 2002-12-10 Seagate Technology Llc Lithography for fast processing of large areas utilizing electron beam exposure
US6696363B2 (en) * 2000-06-06 2004-02-24 Ekc Technology, Inc. Method of and apparatus for substrate pre-treatment
JP4601146B2 (en) * 2000-10-03 2010-12-22 株式会社アドバンテスト Electron beam exposure system
US7316934B2 (en) * 2000-12-18 2008-01-08 Zavitan Semiconductors, Inc. Personalized hardware
US6593066B2 (en) * 2001-02-28 2003-07-15 Creo Il. Ltd. Method and apparatus for printing patterns on substrates
JP2003007613A (en) * 2001-04-16 2003-01-10 Toshiba Corp Method of acquiring exposure parameter, method of evaluating the exposure parameter, and method and system for charged particle beam exposure
US6966047B1 (en) 2002-04-09 2005-11-15 Kla-Tencor Technologies Corporation Capturing designer intent in reticle inspection
KR20080008354A (en) * 2005-05-11 2008-01-23 도오꾜오까고오교 가부시끼가이샤 Negative resist composition and method for forming resist pattern
JP4823562B2 (en) * 2005-05-11 2011-11-24 東京応化工業株式会社 Resist pattern forming method
WO2007077901A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Exposure system, device manufacturing system, exposure method and device manufacturing method
US20090121159A1 (en) * 2007-10-26 2009-05-14 Hermes-Microvision, Inc. Cluster e-beam lithography system
US20100302520A1 (en) * 2007-10-26 2010-12-02 Hermes-Microvision, Inc. Cluster e-beam lithography system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712013A (en) * 1984-09-29 1987-12-08 Kabushiki Kaisha Toshiba Method of forming a fine pattern with a charged particle beam
US4812662A (en) * 1986-02-06 1989-03-14 Canon Kabushiki Kaisha Alignment system using an electron beam
JPH097924A (en) * 1995-06-21 1997-01-10 Nec Corp Equipment and method for manufacturing semiconductor device
US5789140A (en) * 1996-04-25 1998-08-04 Fujitsu Limited Method of forming a pattern or via structure utilizing supplemental electron beam exposure and development to remove image residue
US5989759A (en) * 1997-02-28 1999-11-23 Kabushiki Kaisha Toshiba Pattern forming method using alignment from latent image or base pattern on substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4712013A (en) * 1984-09-29 1987-12-08 Kabushiki Kaisha Toshiba Method of forming a fine pattern with a charged particle beam
US4812662A (en) * 1986-02-06 1989-03-14 Canon Kabushiki Kaisha Alignment system using an electron beam
JPH097924A (en) * 1995-06-21 1997-01-10 Nec Corp Equipment and method for manufacturing semiconductor device
US5789140A (en) * 1996-04-25 1998-08-04 Fujitsu Limited Method of forming a pattern or via structure utilizing supplemental electron beam exposure and development to remove image residue
US5989759A (en) * 1997-02-28 1999-11-23 Kabushiki Kaisha Toshiba Pattern forming method using alignment from latent image or base pattern on substrate

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
F. Benistant et al., "A heavy ion implanted pocket 0.10 μm n-type metal-oxide-semiconductor field effect transistor with hybrid lithography (electron-beam/deep ultraviolet) and specific gate passivation process", J. Vac. Sci. Technol. B 14(6), pp. 4051-4054, Nov./Dec. 1996.
F. Benistant et al., A heavy ion implanted pocket 0.10 m n type metal oxide semiconductor field effect transistor with hybrid lithography (electron beam/deep ultraviolet) and specific gate passivation process , J. Vac. Sci. Technol. B 14(6), pp. 4051 4054, Nov./Dec. 1996. *
R. Jonckheere et al., Electron beam / DUV intra level mix and match lithography for random logic 0.25 m CMOS, Microelectronic Engineering 27, pp. 231 234, 1995. *
R. Jonckheere et al., Electron beam / DUV intra-level mix-and-match lithography for random logic 0.25 μm CMOS, Microelectronic Engineering 27, pp. 231-234, 1995.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6906303B1 (en) * 2001-09-20 2005-06-14 Litel Instruments Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US20050219516A1 (en) * 2001-09-20 2005-10-06 Adlai Smith Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US20060007431A1 (en) * 2001-09-20 2006-01-12 Smith Adlai H Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US20070177132A1 (en) * 2001-09-20 2007-08-02 Adlai Smith Method and Apparatus for Self-Referenced Dynamic Step and Scan Intra-Field Scanning Distortion
US7262398B2 (en) 2001-09-20 2007-08-28 Litel Instruments Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US7268360B2 (en) 2001-09-20 2007-09-11 Litel Instruments Method and apparatus for self-referenced dynamic step and scan intra-field scanning distortion
US7442951B2 (en) 2001-09-20 2008-10-28 Litel Instruments Reticle for use in rapid determination of average intrafield scanning distortion having transmissivity of a complementary alignment attribute being different than the transmissivity of at least one alignment attribute
WO2003041135A1 (en) * 2001-11-07 2003-05-15 Tokyo Seimitsu Co., Ltd. Electron beam exposure device
US20080038675A1 (en) * 2004-02-20 2008-02-14 Nikon Corporation Exposure Method, Exposure Apparatus, Exposure System and Device Manufacturing Method
US20090045530A1 (en) * 2007-08-14 2009-02-19 International Business Machines Corporation Microelectronic lithographic alignment using high contrast alignment mark
US7893549B2 (en) 2007-08-14 2011-02-22 International Business Machines Corporation Microelectronic lithographic alignment using high contrast alignment mark

Also Published As

Publication number Publication date
US5994030A (en) 1999-11-30
JPH10242038A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US6093931A (en) Pattern-forming method and lithographic system
Thompson An introduction to lithography
JP3892565B2 (en) Pattern formation method
US6316163B1 (en) Pattern forming method
US7713664B2 (en) Method for fabricating an attenuated phase shift photomask by separate patterning of negative and positive resist layers with corresponding etching steps for underlying light-shielding and phase shift layers on a transparent substrate
US7968277B2 (en) Imaging post structures using X and Y dipole optics and a single mask
JP2001022051A (en) Reticle and production of semiconductor device
US6218057B1 (en) Lithographic process having sub-wavelength resolution
JPH04155337A (en) Manufacture of photo mask
WO2001051993A1 (en) System, method and photomask for compensating aberrations in a photolithography patterning system
US6589713B1 (en) Process for reducing the pitch of contact holes, vias, and trench structures in integrated circuits
JP4184918B2 (en) Contact hole formation method
US7005215B2 (en) Mask repair using multiple exposures
US7316872B2 (en) Etching bias reduction
US6841307B2 (en) Photomask making method and alignment method
US20020009676A1 (en) Method of forming small contact holes using alternative phase shift masks and negative photoresist
JPH11305415A (en) Production of photomask
US20050277065A1 (en) Method of manufacturing a semiconductor device
US6136479A (en) Method of forming photomask and pattern and method of forming a semiconductor device
US6322934B1 (en) Method for making integrated circuits including features with a relatively small critical dimension
JPH05259046A (en) Method and device for electron beam exposure system
JP3588543B2 (en) Pattern data creation method
US6784070B2 (en) Intra-cell mask alignment for improved overlay
KR20010028305A (en) Method for revising registration
JP4216860B2 (en) Pattern formation method

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120725