US6048522A - Controlled-release, drug-delivery composition - Google Patents

Controlled-release, drug-delivery composition Download PDF

Info

Publication number
US6048522A
US6048522A US09/121,380 US12138098A US6048522A US 6048522 A US6048522 A US 6048522A US 12138098 A US12138098 A US 12138098A US 6048522 A US6048522 A US 6048522A
Authority
US
United States
Prior art keywords
oil
composition according
water
vinyl monomer
vinylpyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/121,380
Other languages
English (en)
Inventor
Krystyna Plochocka
Jui-Chang Chuang
Jenn S. Shih
Anil Menon
Nadhamuni G. Nerella
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISP CAPITAL Inc
Original Assignee
ISP Investments LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/988,121 external-priority patent/US6255421B1/en
Application filed by ISP Investments LLC filed Critical ISP Investments LLC
Priority to US09/121,380 priority Critical patent/US6048522A/en
Assigned to ISP INVESTMENTS INC. reassignment ISP INVESTMENTS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NERELLA, NADHAMUNI G., CHUANG, JUI-CHANG, MENON, ANIL, PLOCHOCKA, KRYSTYNA, SHIH, JENN S.
Priority to AU14137/99A priority patent/AU1413799A/en
Priority to EP98958014A priority patent/EP1037929B1/de
Priority to AT98958014T priority patent/ATE332925T1/de
Priority to DE69835232T priority patent/DE69835232T2/de
Priority to PCT/US1998/024450 priority patent/WO1999029735A1/en
Application granted granted Critical
Publication of US6048522A publication Critical patent/US6048522A/en
Assigned to CHASE MANHATTAN BANK, THE reassignment CHASE MANHATTAN BANK, THE SECURITY AGREEMENT Assignors: ISP CAPITAL, INC.
Assigned to ISP CAPITAL, INC. reassignment ISP CAPITAL, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ISP INVESTMENTS, INC.
Assigned to THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT reassignment THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: AQUALON COMPANY, ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, HERCULES INCORPORATED, ISP INVESTMENT INC.
Assigned to ISP CHEMICAL PRODUCTS, INC., ISP CAPITAL, INC., VERONA, INC. reassignment ISP CHEMICAL PRODUCTS, INC. PATENT RELEASE Assignors: JPMORGAN CHASE BANK, N.A. (F/K/A THE CHASE MANHATTAN BANK)
Assigned to ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, AQUALON COMPANY, HERCULES INCORPORATED, ISP INVESTMENTS INC. reassignment ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC RELEASE OF PATENT SECURITY AGREEMENT Assignors: THE BANK OF NOVA SCOTIA
Assigned to THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT reassignment THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: AVOCA, INC., HERCULES LLC, ISP INVESTMENTS LLC, PHARMACHEM LABORATORIES, INC.
Anticipated expiration legal-status Critical
Assigned to AVOCA LLC, PHARMACHEM LABORATORIES LLC, ISP INVESTMENTS LLC, HERCULES LLC reassignment AVOCA LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE BANK OF NOVA SCOTIA
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/064Water-in-oil emulsions, e.g. Water-in-silicone emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/10N-Vinyl-pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/57Compounds covalently linked to a(n inert) carrier molecule, e.g. conjugates, pro-fragrances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • Y10T428/2987Addition polymer from unsaturated monomers only

Definitions

  • This invention relates to controlled-release, drug-delivery systems for effecting the desired controlled-release of pharmaceutical medicaments in a topical application.
  • this invention is specifically directed toward the goal of prolonging the release of a topically applied drug over a period of several hours.
  • a prolonged release has the following advantages: peak blood levels of the drug which sometimes represent toxic levels are avoided since not all the drug is released at the same time; secondly, drug concentrations in the blood are maintained for a longer time within the therapeutic range, thereby increasing the overall effectiveness of the drug and reducing the overall dose-size necessary for treatment; thirdly, drugs which would have to be taken in conventional form several times daily for the treatment of chronic diseases, can be topically applied in once or twice-a-day dose forms, which are safer and more convenient for the patient.
  • a controlled-release, drug-delivery composition for topical application comprising an effective amount of a pharmaceutical medicament in an emulsion containing polymer.
  • Another object herein is to provide a controlled-release, topically appliable drug-delivery, emulsion composition which includes the polymeric reaction product of a non-aqueous, heterogeneous polymerization process for making vinyl polymers using an oil solvent.
  • FIGS. 1 and 2 are graphical representation of % drug released vs. time for typical compositions of the invention.
  • a controlled-release, drug-delivery, emulsion composition for topical application comprising (a) the reaction product of, by weight, about 5-70%, preferably 10-30% of a vinyl monomer in an oil as solvent, and a free radical initiator, optionally in the presence of a crosslinking agent and/or a surfactant, wherein the oil solvent is present in an amount sufficient to keep the resultant polymer in a stirrable state throughout the polymerization, (b) water, (c) a surfactant and (d) a pharmaceutical medicament.
  • oils make it desirable to include them in aqueous-based compositions.
  • cosmetically and pharmaceutically-acceptable materials such as silicone oils, fluids and gums, mineral oils, and water-insoluble organic esters such as isopropyl palmitate and isopropyl myristate.
  • vinyl polymers useful in controlled-release, topically appliable drug-delivery compositions are prepared in a non-aqueous, heterogeneous polymerization process using an oil as a solvent for the monomer during the polymerization reaction.
  • the oil solvent also acts as a medium to keep the polymer product in a stirrable state throughout the polymerization.
  • the reaction product is a slurry of the vinyl polymer in oil. If desired, the reaction product may be filtered to provide the vinyl polymer as a powder swollen with oil. Thereafter, the reaction product itself, or the polymer powder swollen with oil, may be homogenized with water to form a uniform liquid emulsion or gel which is directly useful in the pharmaceutical composition.
  • the vinyl monomer reactant Generally about 5-70%, preferably 10-30%, by weight, of the vinyl monomer reactant is used in the process, and about 30-95% of the oil is included for the solvent and medium functions in the process.
  • Suitable silicone oils or fluids for use in the invention may be selected from non-volatile silicones, such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers; and volatile silicones such as cyclomethicones also may be used.
  • non-volatile silicones such as polyalkyl siloxanes, polyaryl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers
  • volatile silicones such as cyclomethicones also may be used.
  • Non-volatile polyalkylsiloxanes thus include, for example, polydimethylsiloxanes (Dimethicone) with viscosities ranging from about 5 to about 600,000 centistokes (cS) at 25° C.
  • These siloxanes are available, for example, from the General Electric Company as the VISCASIL series and from Dow Corning as the Dow Corning 200 products. Their viscosity can be measured by the glass capillary viscometer procedure set forth in Dow Corning Corporate Test Method CTM 0004 issued Jul. 20, 1970.
  • the viscosity of these siloxanes selected have a viscosity of about 100 to about 100,000 cS, and most preferably, a viscosity of up to about 15,000 cS.
  • Suitable non-volatile polyalkylaryl siloxanes include, for example, poly(methylphenyl siloxane having viscosities of about 15 to 65 cS at 25° C. These siloxanes are available, for example, from the General Electric as SF 1075 methylphenyl fluid or from Dow Corning as 556 Cosmetic Grade Fluid. Additionally, poly(dimethylsiloxane)-(diphenyl-siloxane) copolymers having a viscosity in the range of about 10 to 100,000 cS at 25° C. are useful.
  • suitable oils for use herein include pharmaceutically-acceptable materials such as light and heavy mineral oils, and water-insoluble organic esters such as isopropyl palmitate and isopropyl myristate.
  • the polymerization process is carried out with a free radical initiator present in the polymerization reaction mixture.
  • the reaction product thus includes the vinyl polymer corresponding to the vinyl monomer or monomers selected.
  • Suitable free radical initiators are diacetyl peroxide, dibenzoyl peroxide, dilauroyl peroxide, t-butyl peroxypivalate, t-butyl peroctoate, t-amyl peroxypivalate, di-(4-t-butylcyclohexyl) peroxydicarbonate, 2,2'-azo-bis(isobutyronitrile), 2,2'-azo-bis(2,4-dimethyl-valeronitrile), or 1,1'-azo-bis(cyanocyclohexane), and mixtures thereof.
  • a crosslinked vinyl polymer may be obtained in the process when the optional crosslinking agent is included in the reaction mixture.
  • the crosslinking agent is present in an amount of about 0.1-10 wt. %, preferably 0.3-2%, based on the amount of vinyl monomer present.
  • the vinyl monomer will form the corresponding crosslinked vinyl polymer, which, upon homogenization with water, will provide a uniform liquid gel product.
  • the oil solvent is charged into a reactor, under agitation, and in a nitrogen atmosphere, and heated to about 40°-150° C., preferably about 65° C. Then the free radical initiator is added. Thereafter the vinyl monomer is added continuously over a period of about 1-12 hours, preferably about 3-6 hours. Preferably, the vinyl monomer and optional crosslinking agent are fed into the reactor at a rate such that substantially no free monomer is present during the polymerization.
  • the polymer is obtained as a slurry in oil.
  • the slurry can be used as is or filtered to remove excess oil where the product consists of solid polymer with significant amount of absorbed oil. Both slurry and filtered polymers are useful in pharmaceutical formulations.
  • Suitable vinyl monomers include, but are not limited to, N-vinylamides and N-vinyllactams, such as N-vinylpyrrolidone, N-vinylcaprolactam and N-vinylformamide, and optinally with comonomers such as vinyl acetate, acrylic acid, methacrylic acid, acrylamide, methacrylamide, an alkyl (meth)acrylate, an N-alkyl (meth)acrylamide, a hydroxyalkyl (meth)acrylate and a hydroxyalkyl (meth)acrylamide, and a N,N-dialkylaminoalkyl (meth)acrylate wherein alkyl is independently a C 1 to C 20 alkyl group and N,N-dialkylaminoalkyl methacrylamide (alkyl being as defined before), and their quaternary derivatives; and mixtures thereof.
  • N-vinylamides and N-vinyllactams such as N-vinylpyrrol
  • Suitable crosslinking agents include, but are not limited to, diallylimidazolidone, divinyl ether of diethylene glycol, pentaerythritol triallyl ether (PETA); triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H)trione (TATT), ethylene glycol diacrylate, 2,4,6-triallyloxy-1,3,5-triazine; N-vinyl-3-(E)-ethylidene-pyrrolidone (EVP), 1,7-octadiene, 1,9-decadiene, divinyl benzene, methylene-bis(methacrylamide), methylene-bis(acrylamide), N,N-divinylimidazolidone, ethylidene-bis(N-vinylpyrrolidone) (EBVP), hexaallyl sucrose, or bis(N,N-acrylamide).
  • PETA pentaerythrito
  • a surfactant is a surfactant.
  • a surfactant is present in the reaction mixture and a water soluble surfactant during the water homogenization, in an amount of about 0.5-10%, preferably 1-5%, based on oil present.
  • Suitable oil soluble surfactants useful for polymerization include, but are not limited to, cetyl dimethicone copolyol (Abil® EM-90, product of Goldschmidt Chemical Corp.); Span® 80 (ICI) and Dow Corning 3225 silicone.
  • the products made herein may be easily converted into emulsions or emulsified hydrogels which contain the polymer (linear or crosslinked) in the aqueous phase.
  • the oil phase consists of the oil used during polymerization.
  • the emulsions can be a water-in-oil (w/o), oil-in-water (o/w), or mixed type (w/o/w).
  • w/o water-in-oil
  • o/w oil-in-water
  • mixed type w/o/w
  • the aqueous phase has attributes of a swollen crosslinked hydrogel.
  • the hydrogel phase can be either dispersed in oil as fine gel particles (w/o), or the oil droplets can be dispersed in a continuous hydrogel phase (o/w).
  • oil-to-water in such emulsions and emulsified hydrogels are predetermined by the desired use compositions; these can be adjusted within a broad range.
  • oil-to-water ratios reside in the range of about 30:70 to about 10:90 by volume in the case of o/w emulsions and emulsified hydrogels.
  • the ratios of oil-to-water are suitably in the range of about 90:10 to about 30:70 by volume.
  • the reaction product that is, the slurry of polymer in oil
  • the reaction product is directly converted into an emulsion or an emulsified hydrogel by addition of a calculated amount of water.
  • the emulsion is made using the filtered reaction product that consists of polymer powder swollen with the absorbed oil.
  • the reaction product When an o/w system is desired, the reaction product is gradually added to water, whereas when a w/o system is desired, water is added gradually to the reaction product, with appropriate rapid agitation or homogenization.
  • Suitable surfactants should be added to these systems, such as, for example, Tween® 20, 21, 40, 61 (ICI) or Igepal® CO-630 (product of Rhone-Poulenc), for o/w emulsions and emulsified hydrogels; and Span® 60, 65, 80, 85 (ICI) or Dow Corning® 3225C formulation aid for w/o systems.
  • the surfactant added optionally to the polymerization reaction mixture also may be sufficient to form the desired emulsion or emulsified hydrogel.
  • Example 1 The process of Example 1 was carried out using 360 g of the silicone oil, 36 g VP and 0.3 g Lupersol® 11, which was added in three equal portions. The reaction product was filtered yielding 140 g of a white, oily PVP polymer powder containing 75% of silicone oil.
  • reaction mixture then was transferred to a 2-liter high pressure reactor and 1 g of 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane (Lupersol® 101) was charged into the reactor. Then the reactor was sealed and heated to 120° C. and held for 8 hours. The reaction product then was cooled to room temperature.
  • Lisol® 101 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane
  • Example 3 The process of Example 3 was carried out using a monomer mixture of 60 g of N-vinylpyrrolidone (VP), 20 g of lauryl methacrylate and 20 g of acrylic acid separately over a period of 3 hours in place of vinylpyrrolidone alone.
  • the reaction product was a terpolymer of VP/lauryl methacrylate/acrylic acid (60/20/20) in silicone oil.
  • Example 3 The process of Example 3 was carried out using a mixture of 400 g of Carnation® light mineral oil solvent and 5 g of cetyl dimethicone copolyol (Abil® EM-90) surfactant in place of silicone oil solvent alone.
  • the reaction product was polyvinylpyrrolidone in mineral oil solvent and cetyl dimethicone copolyol surfactant.
  • Example 3 The process of Example 3 was carried out by using a monomer mixture of 60 g of vinylpyrrolidone, 20 g of lauryl methacrylate and 20 g of acrylic acid, a solvent surfactant mixture of 400 g of light mineral oil and 5 g of cetyl dimethicone copolyol (Abil® EM-90).
  • the reaction product was a terpolymer of VP/lauryl methacrylate/acrylic acid (60/20/20) in mineral oil with surfactant.
  • Example 3 The process of Example 3 was carried out by pumping a mixture of 200 g of N-vinylpyrrolidone monomer and 0.90 g of pentaerythriol triallyl ether as crosslinker and 260 microliter of Lupersol® 11 initiator in 6 hours.
  • the reaction product was crosslinked polyvinylpyrrolidone in silicone oil.
  • Example 3 The process of Example 3 was carried out using added 5 g of cetyl dimethicone copolyol (Abil® EM-90) surfactant.
  • the reaction product was polyvinylpyrrolidone in silicone oil with surfactant present.
  • Example 4 The process of Example 4 was carried out with 5 g of cetyl dimethicone copolyol (Abil® EM-90) present.
  • the reaction product was VP/lauryl methacrylate/acrylic acid (60/20/20) terpolymer in silicone oil with surfactant present.
  • Example 4 The process of Example 4 was carried out in Carnation® light mineral oil with 5 g of cetyl dimethicone copolyol (Abil® EM-90) surfactant and 0.45 g of pentaerythriol triallyl ether crosslinker present.
  • the reaction product was crosslinked terpolymer of VP/lauryl methacrylate/acrylic acid (60/20/20) as above in mineral oil with surfactant present.
  • a mixture of 52.5 g of the filtered reaction product of Example 2 with 60 g of its filtrate added and 33 g of Dow Corning® 3225C silicone as surfactant were charged into a 1-liter vessel and homogenized to provide a uniform slurry. Homogenization was continued while 157 g of water was added dropwise over 30 min. Homogenization was continued for an additional 10 min. A uniform, white liquid emulsion was obtained having a Brookfield viscosity of 270 cPs (Spindle # 4, 20 rpm). The emulsion remained stable upon standing for 2 months; and was dilutable with silicone oil, indicating it was a water-in-oil (w/o) emulsion.
  • a 1-liter resin kettle was charged with 205 g of Dow Corning 200® Fluid silicone oil, sparged with nitrogen and heated to 65° C. Then 0.25 g of Lupersol® 11 was added. Thereafter, a mixture of 36 g of N-vinylpyrrolidone, 0.16 g of triallyl-1,3,5-triazine-2,4,6-trione (TATT) as crosslinker and 0.72 g of Span® 80 surfactant was added over 6 hours, with two additions of 0.25 g each of Lupersol® 11 after 3 and 6 hours. The reaction was continued for an additional 1 hour whereafter the reaction slurry was cooled and filtered to yield 123 g of a waxy precipitate containing about 75% silicone oil. After extraction of the silicone oil from the precipitate, the dried solid was introduced into water (a 5% by wt. solution). A gel product was obtained having a Brookfield viscosity of 2410 cps at 20 rpm.
  • Example 12 The process of Example 12 was repeated using Dow Corning® 3225C as a surfactant instead of Span® 80.
  • the product was crosslinked PVP containing about 73% silicone oil. Then 1 g of the extracted, dried polymer powder was added to 100 g water. After 24 hours at room temperature, the crosslinked polymer powder swelled into 22 ml of a gel phase.
  • a mixture of 52.5 g of the crosslinked PVP of Example 13 was homogenized with 60 g of its filtrate added and 33 g of Dow Corning® 3225C silicone surfactant. Then, continuing homogenization, 157 g of water was added dropwise over 45 minutes. Homogenization was continued for about 20 minutes using an ice bath to cool the resulting emulsion. A smooth, uniform emulsion was obtained which was similar to cosmetic face cream in consistency. Dilution with silicone oil did not change its appearance, indicating a water-in-oil (w/o) emulsion, containing crosslinked polymer in aqueous phase. The emulsion had a Brookfield viscosity of 270 cps at 20 rpm; its viscosity and appearance remained unchanged for 2 months at room temperature.
  • a 1-liter resin kettle was charged with 500 g of Dow Corning 200® Fluid silicone oil. The oil was sparged with nitrogen, heated to 65° C. and maintained under a nitrogen blanket. Then 10 g of silicone surfactant DC 3225C (Dow Corning) and 0.25 g Lupersol® 11 (Elf Atochem) initiator were added, and, over 6 hours, a blend of 55.75 g of N-vinylpyrrolidone, 7.72 g of Ageflex® FA-1 (N,N-dimethylaminoethyl methacrylate, a product of CPS Chemical Co.) and 19.14 g of Ageflex® FM-1Q80DMS (N,N-diethylaminoethyl methacrylate dimethyl sulfate quaternary, 80% active, a product of CPS Chemical Co.) was admitted.
  • silicone surfactant DC 3225C Dow Corning
  • Lupersol® 11 Elf Atochem
  • Drug is used herein in its broadest: sense as including any composition of matter that will produce a pharmacological or biological response.
  • Suitable drugs for use in therapy according to this invention include, without limitations, those listed in U.S. Pat. No. 3,732,865 (columns 10 and 11).
  • Drugs can be in various forms, such as uncharged molecules, components of molecular complexes, or nonirritating pharmacologically acceptable salts, e.g. the hydrochloride, hydrobromide, sulphate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc.
  • pharmacologically acceptable salts e.g. the hydrochloride, hydrobromide, sulphate, phosphate, nitrate, borate, acetate, maleate, tartrate, salicylate, etc.
  • salts of metals, amines, or organic cations e.g. quaternary ammonium
  • simple derivatives of the drugs such as ethers, esters, amides, etc.
  • the amount of drug incorporated in the carrier varies widely depending on the particular drug, the desired therapeutic effect, and the time span for which it takes the drug to be released. Since a variety of carriers in a variety of sizes and shapes are intended to provide complete dosage regimen for therapy for a variety of maladies, there is no critical upper limit on the amount of drug incorporated in the carrier. The lower limit, too, will depend on the activity of the drug and the span of its release from the carrier. Thus, it is not practical to define a range for the therapeutically effective amount of drug to be released by the carrier.
  • Preferred drugs to be incorporated according to the present invention are those which can be topically aplied and are designed for long-term treatment so that multiple daily doses can be avoided.
  • smooth muscle relaxants e.g. analgesics, e.g. acetylsalicyclic acid, phenylbutazone or methadone; antibiotics, e.g. metronidazole; antihistamines, e.g. tripelennamine; antiinfectives, e.g. trimethoprim; antiparasitics, e.g. nifurimox; corticoids, e.g. dexamethasone; cytostatics, e.g.
  • floxuridine e.g. reserpine or thioridazine
  • neuroleptics e.g. reserpine or thioridazine
  • psychoanaleptics e.g. methylpenidate
  • uricosutics e.g. sulfinpyrazone.
  • metronidazole diclofenac-sodium (VOLTRAREN), baclofen (LIORESAL), metropolol.HCl (LOPRESSOR); calcium channel blockers, such as Nifedipine and Verapamil, diisopyramide, ketoconazole, nystatin, clobidazole and erythromycin.
  • Metronidazole was used as a model drug in this study. Metronidazole is an antibacterial whose preparations are indicated for topical application of inflammatory capsules and custules.
  • the primary emulsion was prepared by mixing silicone oil-344 (26.2%) and silicone aid-3225C (32.3%) for 5 minutes and then adding Span® 80 (10.8%) to the mixture. Then distilled water (30.7%) was gradually added with constant agitation. The primary emulsion was stable for 3 weeks.
  • the release studies were carried out in diffusion cells, which simulate a topically applied system.
  • the rate limiting membrane was cellulosic (MW 1000).
  • the membrane was soaked overnight in distilled water.
  • the prepared cells were overturned onto a beaker-placed on a magnetic stirrer containing 125-135 ml of distilled water and periodic samples withdrawn over 7-8 hours for drug release analysis. The results are shown in FIG. 1.
  • the invention emulsion formulation ( ⁇ ) is seen to retard the release of the drug more substantially than the emulsion itself ( ⁇ ).
  • Diisopyramide phosphate a freely water soluble antiarrhythmic drug was chosen as another model compound.
  • the invention test composition was formulated by mixing 10 g of the drug dissolved in 42 g of water under continuous agitation and 48 g of the moderately crosslinked PVP/silicone oil product of Example 7.
  • the drug release studies were carried out using an EnhancerTM cell used in conjunction with a USP paddle type dissolution apparatus which allowed the study of drug release from topical dosage forms.
  • the enhancer cells were packed with 0.2 g of the test emulsion formulation. A cellulosic membrane was used as a barrier membrane between the emulsion compartment of the cell and the dissolution medium. Then the enhancer cells packed with drug loaded emulsion were placed in USP paddle type dissolution apparatus. Dissolution paddles were rotated at 50 rpm. The dissolution medium was water. Samples were periodically withdrawn and % drug released was estimated based on a UV calibration curve.
  • FIG. 2 shows the cumulative release profile of the diisopyramide phosphate drug from the emulsion composition. Over a period of 6 hours only 60% of the drug was released which indicated a controlled release pattern.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Preparation (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US09/121,380 1997-12-10 1998-07-23 Controlled-release, drug-delivery composition Expired - Lifetime US6048522A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/121,380 US6048522A (en) 1997-12-10 1998-07-23 Controlled-release, drug-delivery composition
AU14137/99A AU1413799A (en) 1997-12-10 1998-11-17 Non-aqueous, heterogeneous polymerization process and reaction product obtained thereby
EP98958014A EP1037929B1 (de) 1997-12-10 1998-11-17 Nichtwässriges, heterogenes polymerisationsverfahren und dadurch erhaltenes reaktionsprodukt
AT98958014T ATE332925T1 (de) 1997-12-10 1998-11-17 Nichtwässriges, heterogenes polymerisationsverfahren und dadurch erhaltenes reaktionsprodukt
DE69835232T DE69835232T2 (de) 1997-12-10 1998-11-17 Nichtwässriges, heterogenes polymerisationsverfahren und dadurch erhaltenes reaktionsprodukt
PCT/US1998/024450 WO1999029735A1 (en) 1997-12-10 1998-11-17 Non-aqueous, heterogeneous polymerization process and reaction product obtained thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/988,121 US6255421B1 (en) 1997-12-10 1997-12-10 Non-aqueous, heterogeneous polymerization process and reaction product obtained thereby
US09/121,380 US6048522A (en) 1997-12-10 1998-07-23 Controlled-release, drug-delivery composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/988,121 Continuation-In-Part US6255421B1 (en) 1997-12-10 1997-12-10 Non-aqueous, heterogeneous polymerization process and reaction product obtained thereby

Publications (1)

Publication Number Publication Date
US6048522A true US6048522A (en) 2000-04-11

Family

ID=26819401

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/121,380 Expired - Lifetime US6048522A (en) 1997-12-10 1998-07-23 Controlled-release, drug-delivery composition

Country Status (6)

Country Link
US (1) US6048522A (de)
EP (1) EP1037929B1 (de)
AT (1) ATE332925T1 (de)
AU (1) AU1413799A (de)
DE (1) DE69835232T2 (de)
WO (1) WO1999029735A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300442B1 (en) * 1997-12-10 2001-10-09 Isp Investments Inc. Process for making a cosmetically or pharmaceutically-acceptable emulsion or gel composition
WO2002070015A2 (en) * 2001-03-02 2002-09-12 Caral B.V. Polydimethylsiloxane preparation for nail, cartilage, bone and joint disorders
US6566473B1 (en) * 2002-11-20 2003-05-20 Isp Investments Inc. Process for making a vinyl amide polymer composition for skin and hair compositions
US20030219440A1 (en) * 2002-04-17 2003-11-27 Annette Tobia 3-deoxyglucosone and skin
WO2004000364A1 (en) * 2002-06-20 2003-12-31 Baas, Fhilipus, Albert Preparation containing polydimethylsiloxane for nails, cartilage, bone joint, muscle and tendon disorders
US20070031504A1 (en) * 2005-08-02 2007-02-08 Miv Therapeutics Inc. Microdevices comprising nanocapsules for controlled delivery of drugs and method of manufacturing same
US7239577B2 (en) * 2002-08-30 2007-07-03 Pgs Americas, Inc. Apparatus and methods for multicomponent marine geophysical data gathering
US20070218115A1 (en) * 2003-10-27 2007-09-20 Bott Richard R Preparation for Topical Application and Methods of Delivering an Active Agent to a Substrate
US20070244203A1 (en) * 2003-10-27 2007-10-18 Raul Victor A Controlled-Release Composition for Topical Application and a Method of Delivering an Active Agent to a Substrate
US20080114076A1 (en) * 2006-11-09 2008-05-15 Alcon Manufacturing Ltd. Punctal plug comprising a water-insoluble polymeric matrix
US20080113027A1 (en) * 2006-11-09 2008-05-15 Alcon Manufacturing Ltd. Water insoluble polymer matrix for drug delivery
CN116355344A (zh) * 2023-04-14 2023-06-30 山东农业大学 一种可温度响应的智能控释肥及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059084A1 (de) 2013-10-21 2015-04-30 Basf Se Fällungspolymerisation in gegenwart eines tertiären amins und eines anhydrids
EP2907831A1 (de) 2014-02-14 2015-08-19 Basf Se Polymerdispersionen auf Ölbasis für Styling-Anwendungen und kosmetische Emulsionen
EP2907828A1 (de) 2014-02-14 2015-08-19 Basf Se Verfahren zur Herstellung von kationogen-ampholytischen VP/VI-Copolymeren
EP2907830A1 (de) 2014-02-14 2015-08-19 Basf Se Polymerdispersionen auf Ölbasis für Styling-Anwendungen und kosmetische Emulsionen
WO2015149221A1 (en) * 2014-03-31 2015-10-08 Dow Global Technologies Llc Crosslinkable polymeric compositions with n,n,n',n',n",n"-hexaallyl-1,3,5-triazine-2,4,6-triamine crosslinking coagent, methods for making the same, and articles made therefrom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130121A (en) * 1990-04-17 1992-07-14 Isp Investments Inc. Skin care compositions containing discrete microdroplets of an oil in water stabilized by in situ polymerization of water-soluble vinyl monomer
US5156914A (en) * 1991-05-06 1992-10-20 Isp Investments Inc. Process for producing particulate silicon encapsulated products
US5189102A (en) * 1990-01-30 1993-02-23 Ricoh Company, Ltd. Method for producing a vinyl resin using a silicon oil solvent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4446365A1 (de) * 1994-12-23 1996-06-27 Roehm Gmbh Verfahren zur Herstellung von Kunststoff-Teilchen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189102A (en) * 1990-01-30 1993-02-23 Ricoh Company, Ltd. Method for producing a vinyl resin using a silicon oil solvent
US5130121A (en) * 1990-04-17 1992-07-14 Isp Investments Inc. Skin care compositions containing discrete microdroplets of an oil in water stabilized by in situ polymerization of water-soluble vinyl monomer
US5156914A (en) * 1991-05-06 1992-10-20 Isp Investments Inc. Process for producing particulate silicon encapsulated products

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300442B1 (en) * 1997-12-10 2001-10-09 Isp Investments Inc. Process for making a cosmetically or pharmaceutically-acceptable emulsion or gel composition
WO2002070015A2 (en) * 2001-03-02 2002-09-12 Caral B.V. Polydimethylsiloxane preparation for nail, cartilage, bone and joint disorders
WO2002070015A3 (en) * 2001-03-02 2002-12-05 Caral B V Polydimethylsiloxane preparation for nail, cartilage, bone and joint disorders
US20050069588A1 (en) * 2001-03-02 2005-03-31 Leendert Taal Preparation containing polydimethylsiloxane for nail, cartilage,bone, joint,muscle and tendon disorders
US20080292568A1 (en) * 2002-04-17 2008-11-27 Dynamis Therapeutics, Inc. 3-Deoxyglucosone and skin
US20100310482A1 (en) * 2002-04-17 2010-12-09 Dynamis Therapeutics, Inc. 3-Deoxyglucosone And Skin
US20030219440A1 (en) * 2002-04-17 2003-11-27 Annette Tobia 3-deoxyglucosone and skin
US7749503B2 (en) * 2002-04-17 2010-07-06 Dynamis Therapeutics, Inc. 3-deoxyglucosone and skin
US7622117B2 (en) * 2002-04-17 2009-11-24 Dynamis Therapeutics, Inc. 3-deoxyglucosone and skin
WO2004000364A1 (en) * 2002-06-20 2003-12-31 Baas, Fhilipus, Albert Preparation containing polydimethylsiloxane for nails, cartilage, bone joint, muscle and tendon disorders
EP1374904A1 (de) * 2002-06-20 2004-01-02 Baas, Fhilipus Albert Zubereitung enthaltende Polymethylsiloxane für Nagel, Knorpel, Knochengelenk, Muskeln und Sehnen Erkrankungen
US7239577B2 (en) * 2002-08-30 2007-07-03 Pgs Americas, Inc. Apparatus and methods for multicomponent marine geophysical data gathering
WO2004046212A1 (en) * 2002-11-20 2004-06-03 Isp Investments Inc. Process for making a vinyl amide polymer composition for skin and hair compositions
US6566473B1 (en) * 2002-11-20 2003-05-20 Isp Investments Inc. Process for making a vinyl amide polymer composition for skin and hair compositions
US7939570B2 (en) 2003-10-27 2011-05-10 Dow Corning Corporation Controlled-release composition for topical application and a method of delivering an active agent to a substrate
US20070244203A1 (en) * 2003-10-27 2007-10-18 Raul Victor A Controlled-Release Composition for Topical Application and a Method of Delivering an Active Agent to a Substrate
US20070218115A1 (en) * 2003-10-27 2007-09-20 Bott Richard R Preparation for Topical Application and Methods of Delivering an Active Agent to a Substrate
US20070031504A1 (en) * 2005-08-02 2007-02-08 Miv Therapeutics Inc. Microdevices comprising nanocapsules for controlled delivery of drugs and method of manufacturing same
US20080113027A1 (en) * 2006-11-09 2008-05-15 Alcon Manufacturing Ltd. Water insoluble polymer matrix for drug delivery
US20080114076A1 (en) * 2006-11-09 2008-05-15 Alcon Manufacturing Ltd. Punctal plug comprising a water-insoluble polymeric matrix
US8632809B2 (en) 2006-11-09 2014-01-21 Alcon Research, Ltd. Water insoluble polymer matrix for drug delivery
CN116355344A (zh) * 2023-04-14 2023-06-30 山东农业大学 一种可温度响应的智能控释肥及其制备方法
CN116355344B (zh) * 2023-04-14 2024-03-12 山东农业大学 一种可温度响应的智能控释肥及其制备方法

Also Published As

Publication number Publication date
AU1413799A (en) 1999-06-28
DE69835232T2 (de) 2007-07-05
EP1037929A4 (de) 2004-09-15
WO1999029735A1 (en) 1999-06-17
EP1037929B1 (de) 2006-07-12
ATE332925T1 (de) 2006-08-15
EP1037929A1 (de) 2000-09-27
DE69835232D1 (de) 2006-08-24

Similar Documents

Publication Publication Date Title
US6048522A (en) Controlled-release, drug-delivery composition
DE60020098T2 (de) Flüssige polymerdispersionen, ihre herstellung und verwendung
EP0750899A2 (de) Ein aus einem wasserlöslichen amphiphilen Polyelektrolyten bestehender Emulgator oder Lösungsvermittler und eine diesen enthaltende emulgierte oder solubilisierte Zusammensetzung und ein diesen enthaltendes emulgiertes oder solubilisiertes Kosmetikum
EP0953358B1 (de) Verwendung von N-Vinyllactam und/oder N-Vinylamin haltigen Copolymeren als Matrix zur Herstellung von festen pharmazeutischen und/oder kosmetischen Darreichungsformen
JP2002241216A (ja) 界面活性剤を含む化粧料、皮膚用剤及び薬剤
JP4808829B2 (ja) 水膨潤性の架橋重合体を含有するw/o型エマルションの増粘剤としての使用、このようなエマルションおよび美容または医薬製剤
JP2004524384A (ja) 液体分散ポリマー組成物、それらの調製およびそれらの使用
US6255421B1 (en) Non-aqueous, heterogeneous polymerization process and reaction product obtained thereby
EP0524973B1 (de) Herstellung diskreter mikrotropfen bestehend aus einer öl/wasseremulsion, stabilisiert durch in-situ polymerisation eines wasserlöslichen vinylmonomers
US5073296A (en) Preparation of discrete microdroplets of an oil in water
US6177068B1 (en) Vinyl amide polymer delivery system for hair and skin treating compositions
US6664356B1 (en) Leach resistant oil based carrier for cosmetically and pharmaceutically active agents
US6300442B1 (en) Process for making a cosmetically or pharmaceutically-acceptable emulsion or gel composition
US6566473B1 (en) Process for making a vinyl amide polymer composition for skin and hair compositions
US5252611A (en) Controlled release tablets including strongly swellable, moderately crosslinked polyvinylpyrrolidone
US20050101721A1 (en) Polymeric interpenetrated network carrier and serial polymerization involving a crosslinked polymer network
US5084208A (en) Preparation of discrete microdroplets of a high viscosity oil in water
US5711951A (en) Aqueous product comprising discrete, stabilized, microdroplets of an oil and an in situ polymerized vinyl monomer, containing a thickening agent to homogeneously suspend the microdroplets throughout the medium
US5654385A (en) One-step process for making lightly-crosslinked polyvinylpyrrolidone hydrogel
US5919484A (en) Controlled release, drug-delivery tableted composition including a polymer of a vinyl amide, (meth)acrylic acid, a long chain alkyl (meth)acrylate and a lower alkyl (meth)acrylate
WO1993021931A1 (en) Strongly swellable, moderately crosslinked polyvinylpyrrolidone
JPH10175829A (ja) 乳化型毛髪セット剤組成物
DE69825769T2 (de) Eingekapselte wasserdispergierbare perfluoroetherpolymere

Legal Events

Date Code Title Description
AS Assignment

Owner name: ISP INVESTMENTS INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PLOCHOCKA, KRYSTYNA;CHUANG, JUI-CHANG;SHIH, JENN S.;AND OTHERS;REEL/FRAME:009339/0337;SIGNING DATES FROM 19980715 TO 19980716

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: CHASE MANHATTAN BANK, THE, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ISP CAPITAL, INC.;REEL/FRAME:012124/0001

Effective date: 20010627

Owner name: ISP CAPITAL, INC., DELAWARE

Free format text: CHANGE OF NAME;ASSIGNOR:ISP INVESTMENTS, INC.;REEL/FRAME:012124/0351

Effective date: 20010627

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNORS:ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC;HERCULES INCORPORATED;AQUALON COMPANY;AND OTHERS;REEL/FRAME:026918/0052

Effective date: 20110823

AS Assignment

Owner name: ISP CAPITAL, INC., NEW JERSEY

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (F/K/A THE CHASE MANHATTAN BANK);REEL/FRAME:026930/0774

Effective date: 20110823

Owner name: VERONA, INC., NEW JERSEY

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (F/K/A THE CHASE MANHATTAN BANK);REEL/FRAME:026930/0774

Effective date: 20110823

Owner name: ISP CHEMICAL PRODUCTS, INC., NEW JERSEY

Free format text: PATENT RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A. (F/K/A THE CHASE MANHATTAN BANK);REEL/FRAME:026930/0774

Effective date: 20110823

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, OHIO

Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:030025/0320

Effective date: 20130314

Owner name: HERCULES INCORPORATED, DELAWARE

Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:030025/0320

Effective date: 20130314

Owner name: ISP INVESTMENTS INC., DELAWARE

Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:030025/0320

Effective date: 20130314

Owner name: AQUALON COMPANY, DELAWARE

Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:030025/0320

Effective date: 20130314

Owner name: ASHLAND LICENSING AND INTELLECTUAL PROPERTY LLC, O

Free format text: RELEASE OF PATENT SECURITY AGREEMENT;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:030025/0320

Effective date: 20130314

AS Assignment

Owner name: THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT, CANADA

Free format text: SECURITY AGREEMENT;ASSIGNORS:AVOCA, INC.;HERCULES LLC;ISP INVESTMENTS LLC;AND OTHERS;REEL/FRAME:043084/0753

Effective date: 20170630

Owner name: THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNORS:AVOCA, INC.;HERCULES LLC;ISP INVESTMENTS LLC;AND OTHERS;REEL/FRAME:043084/0753

Effective date: 20170630

AS Assignment

Owner name: AVOCA LLC, NORTH CAROLINA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:051557/0504

Effective date: 20200110

Owner name: PHARMACHEM LABORATORIES LLC, NEW JERSEY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:051557/0504

Effective date: 20200110

Owner name: HERCULES LLC, DELAWARE

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:051557/0504

Effective date: 20200110

Owner name: ISP INVESTMENTS LLC, NEW JERSEY

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE BANK OF NOVA SCOTIA;REEL/FRAME:051557/0504

Effective date: 20200110