US5867485A - Low power microcellular wireless drop interactive network - Google Patents

Low power microcellular wireless drop interactive network Download PDF

Info

Publication number
US5867485A
US5867485A US08/663,651 US66365196A US5867485A US 5867485 A US5867485 A US 5867485A US 66365196 A US66365196 A US 66365196A US 5867485 A US5867485 A US 5867485A
Authority
US
United States
Prior art keywords
signals
subscriber
video
digital
circuitry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/663,651
Other languages
English (en)
Inventor
Craig Brent Chambers
Richard Sammis Bergen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Delaware Intellectual Property Inc
Original Assignee
BellSouth LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BellSouth LLC filed Critical BellSouth LLC
Assigned to BELLSOUTH CORPORATION reassignment BELLSOUTH CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERGEN, RICHARD S., CHAMBERS, CRAIG B.
Priority to US08/663,651 priority Critical patent/US5867485A/en
Priority to CA002257978A priority patent/CA2257978C/fr
Priority to JP10501788A priority patent/JP2000512458A/ja
Priority to AT97931106T priority patent/ATE247347T1/de
Priority to DE69724123T priority patent/DE69724123T2/de
Priority to AU34824/97A priority patent/AU3482497A/en
Priority to EP97931106A priority patent/EP0906672B1/fr
Priority to PCT/US1997/010087 priority patent/WO1997048196A1/fr
Assigned to BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC. reassignment BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BELLSOUTH CORPORATION
Assigned to BELLSOUTH INTELLECTUAL PROPERTY CORPORATION reassignment BELLSOUTH INTELLECTUAL PROPERTY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC.
Publication of US5867485A publication Critical patent/US5867485A/en
Application granted granted Critical
Priority to HK99102758A priority patent/HK1018138A1/xx
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/61Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for local area broadcast, e.g. instore broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/72Wireless systems of terrestrial networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/76Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet
    • H04H60/81Arrangements characterised by transmission systems other than for broadcast, e.g. the Internet characterised by the transmission system itself
    • H04H60/90Wireless transmission systems
    • H04H60/92Wireless transmission systems for local area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the general field of telecommunications, and in particular to microcellular wireless networks for interactive television, data and telephony communications.
  • a number of networks have been developed and are being developed for delivery of interactive television, data and telephony services.
  • a variety of delivery architectures, structures and mechanisms permit a wide range of functionality.
  • some networks which offer only limited interactivity, employ existing coaxial cable infrastructure plus existing telephone lines for return path communications (upstream).
  • Other networks employ Asymmetrical Digital Subscriber-Line (“ADSL”) technology which forwards compressed digital video signals over existing twisted pair telephone lines at up to two Mb/s.
  • a third broad category, the hybrid network employs fiber optic links between the headend and a number of nodes which service neighborhoods of approximately 500 homes, and which connect to subscribers via coaxial cable links.
  • Fiber-to-the-curb In a fourth broad category, known as fiber-to-the-curb, fiber optic links pass the subscribers more closely and connect to subscribers via twisted pair loops. Fiber-to-the-curb networks are more expensive than the hybrid and ADSL networks, but are generally considered more robust and capable of accommodating greater interactivity because they are capable of accommodating greater bandwidth.
  • Such physical links also degrade over time due in part to moisture, temperature and flexure excursions, and the inherent environmental risks on the pole and in the ground. Such degradation can impose considerable efficiency losses over time, particularly as content suppliers require increasingly greater bandwidth capacity and efficiency.
  • wireless cable is impervious to physical degradation.
  • the "last mile" to the customer's home multiplied by the number of subscribers in the network comprises the vast proportion of the physical cable plant. Accordingly, replacement of that cable with wireless communications has received increasing attention in recent years.
  • MMDS Multichannel Multipoint Distribution Service
  • MMDS operates in the 2.1-2.7 Ghz microwave band, with a total of 33 analog 6-Mhz channels.
  • Digital compression allows such MMDS networks with 33 analog channels to transport 100 to 180 digital programs.
  • One entrant in the field has investigated combining MMDS with a telephone line return path for near video on demand capability. As a practical matter, it is apparent that with POTS return, full interactivity is probably not and never will be deployable due to the signaling logistics of TCP/IP networks.
  • MMDS has been viewed as providing insufficient bandwidth for full duplex interactive communications. Accordingly, certain entrants have investigated so called Local Multipoint Distribution Systems ("LMDS"). These operate at approximately 28 Ghz and follow the model of the cellular telephone. The high frequencies and concomitant greater bandwidth are tradeoffs for shorter transmission paths and thus smaller cell sizes. The higher frequencies also subject such networks to increased attenuation from foliage, weather, and other physical manifestations which obstruct the required line of sight path between the node and the subscriber station. In short, LMDS networks are viewed by some as lacking the robust RF link necessary to support emerging residential interactive video, data and telephony communications requirements which customers are demanding and which are becoming part of the required suite of services offered by entrants in this field. In order to obtain critical mass for coverage, LMDS cell sites would, at least in many parts of the country, be entirely too close to each other to be commercially and economically justified.
  • LMDS Local Multipoint Distribution Systems
  • Systems, methods and devices according to the present invention provide a practical implementation of wireless delivery of services including interactive video, data and voice-grade telephony.
  • Network interfaces and delivery platforms according to the present invention replace the fiber/coaxial/twisted pair drop, or "last mile" of copper plant in the ADSL, coaxial, hybrid and fiber to the curb wireline networks mentioned above.
  • Low power Microcellular Wireless Drop (“MWD”) networks according to the present invention provide an economically attractive alternative to the high cost of coaxial distribution plant which is currently deployed en masse, as well as twisted pair and fiber links.
  • MWD architecture allows for service to be connected from a point further away from the customer, such that the target population does not need to be "passed" to be served.
  • MMDS networks use MMDS frequencies, but in a low power, microcellular way that allows for interactivity of the sort demanded by customers and content providers. Unlike LMDS networks, they allow for increased robustness in radiofrequency transmissions at lower frequencies, which permits more reliable telephony signaling and communication so as to approximate the basic lifeline requirements to which at least some of such signaling and communication must comply.
  • the present invention takes advantage of existing allocated frequency spectrum which is currently authorized and in use both domestically and internationally for broadcast video services, and specified as MMDS.
  • the spectrum consists of two bands that are spectrally separate in the frequency ranges of 2150-2162 MHz and 2500-2686 MHz.
  • the bands are allocated for video broadcasting in 6 MHz channels (domestically) to be consistent with current NTSC compliant television channels.
  • the present invention employs a different plan, however: That the lower frequency band of 2150-2162 be converted to an upstream back channel for full-duplex bi-directional capability, and that signals on the higher frequency bands be modulated and multiplexed in new ways to permit analog video, digital video, internet, analog voice, digital voice, and other signals of present and future existing formats and protocols to be handled with maximum flexibility, robustness and reliability.
  • FIG. 1 shows, in schematic form, a network architecture according to a preferred embodiment of the invention.
  • Such transceivers are connected to a fiber optic infrastructure which may be similar or identical to the fiber feeder layout of the conventional hybrid fiber/coaxial networks mentioned above. They are sufficiently small to mount on existing poles such as light poles, power poles, and utility poles.
  • These remote node transceivers convert the modulated and channelized combined optical signal to an electrical radiofrequency ("RF") signal and broadcast that signal to a number of subscribers located within a defined coverage area of preferably 1000-2000 feet.
  • the microcells are cross-polarized between adjacent cells, or if desirable, between adjacent sectors of a given cell, to mitigate harmful interference.
  • the subscriber station features an integrated antenna/transceiver that receives video, digital and telephony signals, downconverts them to an intermediate frequency, and feeds them via coax to a Home Distribution Terminal ("HDT") or Network Interface Unit (“NIU").
  • the transceiver equipment is preferably mounted at roof level to allow for best reception of signal from the remote node transceiver.
  • the HDT is a component that is similar to current state-of-the-art digital set-top decoders, yet also allows termination/distribution in the subscriber's house of digital voice and data traffic.
  • the NIU demultiplexes and splits the incoming signals at a common point (i.e. the house entry point) and distributes those signals to the necessary equipment.
  • the subscriber station equipment preferably but not necessarily the HDT or NIU, combines or multiplexes the upstream data and voice channels so that the information can be sent back upstream in the network.
  • the transceiver also includes equipment for the reception of the upstream data and telephony traffic. The transceiver forwards this upstream traffic over fiber to the headend, where the signal is split into data and telephony components and routed to the proper path.
  • a band split plan according to a preferred embodiment of the present invention is outlined below in Table 1.
  • This table shows how the video, data and telephony signals may be split up and modulated separately to obtain the required performance results for each service.
  • the higher density modulation schemes 64, 256 QAM and 16, 64 VSB
  • Lower density modulations such as BPSK and QPSK offer much more reliability under the same environmental parameters but accommodate much less data throughput capability.
  • higher level modulations are desirable.
  • voice circuits that can approximate non-interruptible "life-line" service is achievable using lower level modulations that sacrifice capacity for reliability. With the broad 6 MHz bandwidth allowed, this capacity even at BPSK modulation would likely never be limiting due to the limited geographical coverage of the microcell.
  • TDMA Time Division Multiple Access
  • a total of 320 simultaneous voice grade circuits is achievable. Assuming two of those circuits are used for control and signaling, a total of 318 simultaneous voice grade circuits are available.
  • the telephony circuits employ both Frequency Division Multiplexing (FDM) to separate upstream/downstream transmission paths and TDMA between users to maximize efficiency and keep costs low.
  • FDM Frequency Division Multiplexing
  • TDMA Time Division Multiplexing
  • PCS Personal Communication Systems
  • FIG. 1 is a schematic high level architectural diagram of a preferred form of wireless cable network according to the present invention.
  • FIG. 2 is a schematic view of a preferred embodiment of a headend control office according to the present invention.
  • FIG. 3 is a schematic view of a preferred embodiment of a remote node transceiver according to the present invention.
  • FIG. 4 is a schematic view of a preferred embodiment of a subscriber station according to the present invention.
  • FIG. 5 is a schematic view of a subscriber Network Interface Unit according to the present invention.
  • FIG. 1 shows, in schematic form, a headend control office 10 connected via fiber optic links 12 to a plurality of remote node transceivers 14.
  • Transceivers 14 convert optical energy into radiofrequency energy, in the microwave, and preferably the MMDS bands, for transmission to subscriber stations 16, each of which may correspond to a subscriber's home.
  • Transceivers 14 also receive transmissions at microwave, preferably MMDS, frequencies from subscriber stations 16, and convert such energy to optical energy for forwarding to headend control office 10 via fiber optic links 12, thus allowing the network to provide full duplex bi-directional interactive video, data and telephone (voice or otherwise) communications.
  • the Headend Control Office (“HCO”) 10 includes all centrally located signal processing equipment in the network.
  • the HCO includes all components in the video delivery chain such as satellite decoders and transcoders, off-air receivers, real-time digital encoders and other components conventionally found in a cable headend (shown using numeral 18 in FIG. 2).
  • It also includes internet and other network servers 20 as may be appropriate, and preferably includes public switched telecommunications network (“PSTN”) interconnects 22 for telephony capability.
  • PSTN public switched telecommunications network
  • Video servers 24 may be included to store and provide video on demand and other video content as required or requested by subscribers using the network.
  • Routers 26, digital multiplexers 28, modulators 30, combiners 32, splitters 34 and other (or fewer) components are employed as may be necessary or appropriate to prepare the video signals 36, data signals 38 and telephony signals 40 for transmission to remote node transceivers 14 via fiber optic links 12 using fiber-optic transmitters 36.
  • the HCO 10 may house components such as the channel management control computer 42, data routers 44 as desired, demultiplexers 46, demodulators 48 and return path fiber optic receivers 50 for processing subscriber data signals 52 and subscriber telephony signals 54.
  • Broadcast video signals 36 may be received through any of a number of sources as mentioned above, including satellite receivers and off the air receivers, MPEG II or otherwise digitally encoded (if analog), groomed and configured in the multiplexer 28, modulated and channelized onto an RF carrier, combined with other channels, split (for transmission to other node transceivers 14) and sent over fiber optic plant 12 to the remote node transceivers 14.
  • the combining process after RF may be done on a non-adjacent carrier basis, as is currently the norm for a high power MMDS transmitter. If not combined on adjacent channels, dual fiber feeders are required.
  • the fibers may be optically excited using state-of-the-art Externally Modulated Distributed Feedback (DFB) laser transmitters.
  • DFB Distributed Feedback
  • DFB's allow extremely broadband RF signals to be optically modulated with the most efficiency, and hence allow for the entire spectrum of downstream voice, data and telephony to be carried on a single fiber. This ensures that low cost can be maintained throughout the network since the F/O transmitters are generally the most expensive single component in the transmission network.
  • a Node Radio Control Unit provides time slot management to the individual voice circuits and handle the contention management protocols such as slotted aloha. Communication between the Remote Node Transceiver and the individual subscriber terminals may be performed via an overhead channel within the downstream and upstream RF channels.
  • the low-cost remote node transceiver 14 connects to the bi-directional fiber optic links 12 that originate at the headend control office 10.
  • This fiber optic plant 12 or infrastructure carries the modulated and channelized RF carriers that contain the video, data and telephony signals (36, 38 and 40 respectively) in bit stream form.
  • a simplified schematic of the low-cost low-power remote node transceivers is 14 shown in FIG. 3.
  • the remote node transceivers may be based on a single broadband booster amplifier that outputs approximately 20 mW of power per channel. This translates into 13 dBm/channel or equivalently -23 dBW/channel.
  • an Effective Isotropic Radiated Power (EIRP) of 29 dBm/channel (or -1 dBW/channel) is broadcast.
  • EIRP Effective Isotropic Radiated Power
  • Convention LMDS architecture typically outputs 28-30 dBm/channel, or at least 50 times the required transmit power per channel as is required by the present invention.
  • That conventional LMDS type of power is only available in Traveling Wave Tube (TWT) amplifiers for broadband transmissions or discrete channel solid state amplifiers.
  • TWT's are renowned for their short life span and high cost, currently approximately $50K each.
  • Solid State amplifiers at 28 GHz are still very much in prototype stage for these kinds of power outputs. They are extremely limited in their bandwidth capability, have thermal dissipation problems and require a single amplifier for each RF channel. This implies 30+ solid state amplifiers (with expensive control circuitry) per LMDS node which affects cost, size, reliability and maintenance, all negatively when compared to the present invention's MWD equipment topography. Conventional LMDS in any event appears to be hard to justify economically, especially in regions of the country that have foliage and high rainfall rates.
  • Additional backup power can be battery backup or generator backup located at the transceiver site.
  • the backup power may be configured to power only the voice channels for emergency lifeline service.
  • Another broad approach is to include intelligence in the transceiver itself that automatically shuts off the video and data channels, passes the voice traffic and automatically adjusts the total broadband output power down to the level of the voice channel only. This may be performed by an automatic level control (“ALC”) circuit in the transceiver architecture, although it adds extra cost and complexity to the transceiver.
  • ALC automatic level control
  • the microcells preferably consist of at least three radiating sectors (120° each) and are cross polarized between adjacent cells to mitigate harmful interference due to the many transmitters in a given geographical area.
  • the low power of the transmitters, the attenuation characteristics of foliage and building blockage, and the isolation gained by cross polarizing should prove adequate for reducing interfering signals in most cases.
  • a four or more sector transceiver (90° each) could be implemented using cross polarization between adjacent sectors. The better isolation may be counteracted by increased cost and complexity, however.
  • Such techniques include simulcasting the broadcast signals by controlling the relative timing of signals at each transmitter and taking advantage of adaptive equalization in the set top to cancel out the interfering signals.
  • simulcasting the broadcast signals by controlling the relative timing of signals at each transmitter and taking advantage of adaptive equalization in the set top to cancel out the interfering signals.
  • ATV Advanced Television
  • Digital MMDS Digital MMDS that are currently being built.
  • the interference is canceled out since the interfering signal appears like multipath to the receiver.
  • Use of the adaptive equalization techniques which are currently deployed in digital microwave systems makes this a readily available implementation that should prove cost effective.
  • downstream and upstream data and voice should be somewhat immune to interference due to the more robust modulation schemes proposed (QPSK, BPSK, etc.) for these services. If more rejection is required, the use of frequency reuse factors greater than one can be engineered which offers much greater performance at a price of more limited capacity. At the small transmission ranges proposed in the architecture, the decrease in customer capacity does not impact the service sets too severely.
  • Subscriber stations include a small low profile antenna integrated with a subscriber transceiver 56 that includes a downconverter/upconverter 58 to convert the downstream video 36, data 38 and telephony 40 signals to a form which may be processed in the home, and to convert the upstream subscriber data 52 and voice 54 channels to the required RF.
  • the antenna is relatively directional and may be of a type currently used with existing MMDS systems, being either a small planar array, corner reflecting dipole or parabolic reflector, among other designs. It is preferably high gain compared to an omni-directional monopole or "whip" antennae.
  • the size of the antenna is directly related to the gain and sidelobe, and/or off-axis performance required.
  • the up and downstream channels are preferably diplexed at both the front end and back end so that a single coaxial cable can feed a Network Interface Unit (“NIU”) 60 which demultiplexes downstream signals, multiplexes upstream signals, and splits the signals to the proper interface or input/output device connections.
  • NIU Network Interface Unit
  • the NIU 60 is the component that exists outside the home (versus the HDT, which resides inside the set-top box) and connects the RF radio transport network to the respective individual service networks inside the home.
  • the NIU 60 performs many functions that enable the subscriber to receive the various service sets (i.e. video, data and telephony) through the common network architecture.
  • the NIU 60 takes advantage of lost-cost integrated circuitry to perform the functions of splitting and combining the bi-directional paths of the required signals both cost effectively and reliably.
  • the NIU 60 also takes advantage of the existing in-house wiring for both video and telephony so that the logistics of re-wiring homes can be kept to a minimum.
  • FIG. 5 shows a signal received at the CPE Transceiver that is downconverted and sent via coax to the NIU 60.
  • the NIU 60 sends the signal through a diplexer where the upstream and downstream signals are isolated and combined on a single coax.
  • the output of the diplexer (downstream) is coupled to a pre-amp (if necessary) and then into a splitter that breaks the signal into three equivalent full spectrum outputs.
  • the outputs of the splitter feed individual IF bandpass filters that reject all but the desired signals for the given service.
  • the video signals are once again sent through a diplexer (for upstream/downstream separation) and feed a digital set top box via existing coax distribution cable.
  • the data traffic goes through a diplexer where it feeds a cable modem which in turn is connected to a PC for high speed data applications, i.e. internet, at home banking, etc.
  • the telephony traffic is routed to a demodulator/ADPCM decoder chipset which is connected to a Signaling Control Unit (SCU) for access control, phone ring generation etc.
  • SCU Signaling Control Unit
  • HCT Headend Telephony Control Unit
  • the SCU outputs an analog RJ-11 for in-home telephony distribution.
  • the SCU may conversely contain a small transceiver similar to a cordless phone base station that would connect to all handsets in the home wirelessly. Contention management may be handled by a contention management protocol such as slotted aloha.
  • a single coaxial feed may be employed to offer both services with distribution being performed at a single point with a bi-directional splitter and amplifier. Services may be separated in frequency as they are in existing and planned HFC networks.
  • Another technique that can be used to simplify the NIU 60 even further is the use of telephony return cable modems so that the NIU 60 would only be required to process video and voice with the return path being a voice-like channel that uses the same interfaces as the voice path. Depending on capacity and traffic management concerns, this may be done using a single time shared telephone line or multiple lines.
  • the cost of a MMDS transceiver is substantially less than at 28 GHz due to the same reasons specified earlier for the remote node transceiver. Since the aggregate cost of subscriber equipment is the single highest cost of a wireless access network, even a savings of $10 per subscriber could negatively impact the capital costs by $10 million, assuming 1 million subscribers. Most likely, the cost of the subscriber transceiver alone may be on the order of several hundred dollars less than a comparatively equipped LMDS transceiver. This makes efficient provisioning of DS-0 POTS telephony to subscribers not only economically feasible but also extremely attractive when compared with the cost of doing likewise with LMDS technology.
  • the video signals 36 are disseminated over coaxial cable for in-house distribution to set-top decoders that feed television sets 62 or other video input/output devices.
  • the digital signals 38 may use ethernet or other appropriate protocol to connect to a PC, internet compatible device, or any other desired input/output device 64 that may be adapted to interface in interactive network sessions.
  • Voice/telephony signals 40 are distributed via RJ-11 twisted pair to telephone sets, telecopiers, answering machines and other telephony input/output devices 66.
  • the upstream subscriber data signals 52 and telephony signals 54 are also combined and processed in the NIU 60 for transmission back to the subscriber transceiver 56. Alternatively, some cost may be saved if the downstream and upstream signals are on dual or siamese coax from the NIU 60 to the subscriber transceiver 56, but this obviously requires additional cable and installation effort and expense.
  • a DC voltage may be placed on the coaxial cable by the NIU 60 to feed the transceiver downconverter and upconverter stages 58.
  • the DC voltage may be isolated from the subscriber side of the NIU 60.
  • Battery backup may also be contained within the NIU 60 and used for powering the sections of the subscriber transceiver 56 needed for the voice transmission from the transceiver 56 to the remote node transceiver 14.
  • the battery may be adapted to power the NIU 60 voice card and allow for ringing as well as two-way voice communication.
  • a solar panel at the antenna may be used to trickle charge the battery when not in use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)
  • Catalysts (AREA)
US08/663,651 1996-06-14 1996-06-14 Low power microcellular wireless drop interactive network Expired - Fee Related US5867485A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US08/663,651 US5867485A (en) 1996-06-14 1996-06-14 Low power microcellular wireless drop interactive network
EP97931106A EP0906672B1 (fr) 1996-06-14 1997-06-09 Reseau microcellulaire interactif de branchements d'abonnes de faible puissance
JP10501788A JP2000512458A (ja) 1996-06-14 1997-06-09 低電力マイクロセル・ワイヤレス・ドロップ・対話式ネットワーク
AT97931106T ATE247347T1 (de) 1996-06-14 1997-06-09 Mikrozellulares drahtloses interaktives ausfügenetzwerk mit geringer leistung
DE69724123T DE69724123T2 (de) 1996-06-14 1997-06-09 Mikrozellulares drahtloses interaktives ausfügenetzwerk mit geringer leistung
AU34824/97A AU3482497A (en) 1996-06-14 1997-06-09 Low power microcellular wireless drop interactive network
CA002257978A CA2257978C (fr) 1996-06-14 1997-06-09 Reseau microcellulaire interactif de branchements d'abonnes de faible puissance
PCT/US1997/010087 WO1997048196A1 (fr) 1996-06-14 1997-06-09 Reseau microcellulaire interactif de branchements d'abonnes de faible puissance
HK99102758A HK1018138A1 (en) 1996-06-14 1999-06-29 Low power microcellular wireless drop interactive network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/663,651 US5867485A (en) 1996-06-14 1996-06-14 Low power microcellular wireless drop interactive network

Publications (1)

Publication Number Publication Date
US5867485A true US5867485A (en) 1999-02-02

Family

ID=24662745

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/663,651 Expired - Fee Related US5867485A (en) 1996-06-14 1996-06-14 Low power microcellular wireless drop interactive network

Country Status (9)

Country Link
US (1) US5867485A (fr)
EP (1) EP0906672B1 (fr)
JP (1) JP2000512458A (fr)
AT (1) ATE247347T1 (fr)
AU (1) AU3482497A (fr)
CA (1) CA2257978C (fr)
DE (1) DE69724123T2 (fr)
HK (1) HK1018138A1 (fr)
WO (1) WO1997048196A1 (fr)

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033494A1 (fr) * 1998-11-30 2000-06-08 Khamsin Technologies, Llc. Procede et logiciel pour interface utilisateur sur boucle locale
WO2000051059A2 (fr) * 1999-02-23 2000-08-31 Khamsin Technologies, Llc Architecture et procede destines a la transmission de donnees sur large bande dans un systeme de telecommunications du 'dernier kilometre'
US6118780A (en) * 1997-03-17 2000-09-12 International Business Machines Corporation Communication network and method of operation for real time user selection of voice and/or data paths in the network
US6144647A (en) * 1996-11-04 2000-11-07 Telefonaktiebolaget Lm Ericsson Communication system, mobile services switching center and method for establishing a multi-dialogue communication between subscriber stations
US6212397B1 (en) * 1996-12-23 2001-04-03 Texas Instruments Incorporated Method and system for controlling remote multipoint stations
US6226794B1 (en) * 1996-09-17 2001-05-01 Sarnoff Corporation Set top terminal for an interactive information distribution system
US6243866B1 (en) * 1996-08-15 2001-06-05 Deutsche Telekom Ag Method and device for video, sound and data transmission
US6349095B1 (en) * 1997-11-20 2002-02-19 Telesis Technologies Laboratory Digital multichannel multipoint distribution system (MMDS) network that supports broadcast video and two-way data transmissions
US6366584B1 (en) * 1999-02-06 2002-04-02 Triton Network Systems, Inc. Commercial network based on point to point radios
US6377782B1 (en) 1999-03-01 2002-04-23 Mediacell, Inc. Method and apparatus for communicating between a client device and a linear broadband network
US20020059642A1 (en) * 2000-11-14 2002-05-16 Russ Samuel H. Networked subscriber television distribution
US20020093926A1 (en) * 2000-12-05 2002-07-18 Kilfoyle Daniel B. Method and system for a remote downlink transmitter for increasing the capacity of a multiple access interference limited spread-spectrum wireless network
EP1226673A1 (fr) * 1999-10-22 2002-07-31 Nextnet Wireless Inc. Reseau metropolitain sans fil ofdm fixe utilisant des installations d'abonnes avec antenne interne
US20020147978A1 (en) * 2001-04-04 2002-10-10 Alex Dolgonos Hybrid cable/wireless communications system
US6477182B2 (en) * 1999-06-08 2002-11-05 Diva Systems Corporation Data transmission method and apparatus
US20020191644A1 (en) * 1999-12-07 2002-12-19 James Swisher Bi-directional customer premises wiring system and method
US20030185169A1 (en) * 2002-03-27 2003-10-02 Higgins James A. Wireless internet access system
US20030204598A1 (en) * 2002-04-25 2003-10-30 Bifano Louis Dominick Method and arrangement for controlling interconnection between cable modem devices and multiple cable modem termination systems
US6650628B1 (en) * 1998-07-09 2003-11-18 Alcatel Canada Inc. Combining QAM and QPSK to optimize license capacity in cellular, multipoint wireless access systems
US6684030B1 (en) 1997-07-29 2004-01-27 Khamsin Technologies, Llc Super-ring architecture and method to support high bandwidth digital “last mile” telecommunications systems for unlimited video addressability in hub/star local loop architectures
US20040025179A1 (en) * 2002-08-02 2004-02-05 Russ Samuel H. Locally-updated interactive program guide
US20040068754A1 (en) * 2002-10-02 2004-04-08 Russ Samuel H. Expandable tuning capability
US20040068752A1 (en) * 2002-10-02 2004-04-08 Parker Leslie T. Systems and methods for providing television signals to multiple televisions located at a customer premises
US20040068739A1 (en) * 2002-10-04 2004-04-08 Russ Samuel H. Networked multimedia system having a multi-room interactive network guide
US20040072048A1 (en) * 1999-06-26 2004-04-15 Abb Research Ltd. Configuration for wire-free supply of electric power to a large number of sensors and/or actuators,sensor or actuator for this purpose and system for a machine having a large number of sensors and/or actuators
US6748218B1 (en) 2000-04-10 2004-06-08 Remec, Inc. Wireless communication methods and systems using multiple sectored cells
US20040133911A1 (en) * 2002-10-04 2004-07-08 Russ Samuel H. Subscriber network in a satellite system
US6765898B1 (en) * 1999-08-20 2004-07-20 Alcatel Micro cell base station with interfering signal attenuation
US20040141747A1 (en) * 2001-07-05 2004-07-22 Wave7 Optics, Inc. Method and system for supporting multiple service providers within a single optical network
US20050005287A1 (en) * 2002-10-04 2005-01-06 Claussen Paul J. Networked multimedia overlay system
US20050022248A1 (en) * 2003-01-15 2005-01-27 Robertson Neil C. Optimization of a full duplex wideband communications system
US20050030910A1 (en) * 2003-01-15 2005-02-10 Robertson Neil C. Full duplex wideband communications system for a local coaxial network
US6876852B1 (en) * 2000-03-09 2005-04-05 Lucent Technologies Inc. Integrated cable and cellular network
US6876673B2 (en) 1999-03-11 2005-04-05 Qwest Communications, International Inc. Local multi-point distribution system architectures
US20050114903A1 (en) * 2000-02-08 2005-05-26 Sherjil Ahmed Method and apparatus for a digitized CATV network for bundled services
US20050125837A1 (en) * 2001-07-05 2005-06-09 Wave7 Optics, Inc. Method and system for providing a return path for signals generated by legacy video service terminals in an optical network
US20050155052A1 (en) * 2002-10-04 2005-07-14 Barbara Ostrowska Parental control for a networked multiroom system
US20050201342A1 (en) * 2002-03-27 2005-09-15 Randy Wilkinson Wireless access point network and management protocol
US20050271128A1 (en) * 2004-06-02 2005-12-08 Williams Jeffery D Distributed SCADA system for remote monitoring and control of access points utilizing an intelligent uninterruptible power supply system for a WISP network
US20060010481A1 (en) * 2002-10-04 2006-01-12 Scientific-Atlanta, Inc. Multiroom point of deployment module
US20060020975A1 (en) * 2001-07-05 2006-01-26 Wave7 Optics, Inc. System and method for propagating satellite TV-band, cable TV-band, and data signals over an optical network
US20060039699A1 (en) * 2004-08-10 2006-02-23 Wave7 Optics, Inc. Countermeasures for idle pattern SRS interference in ethernet optical network systems
US7006461B2 (en) 2001-09-17 2006-02-28 Science Applications International Corporation Method and system for a channel selective repeater with capacity enhancement in a spread-spectrum wireless network
US7016308B1 (en) * 1999-03-19 2006-03-21 Broadband Royalty Corporation Digital return path for hybrid fiber/coax network
US20060075428A1 (en) * 2004-10-04 2006-04-06 Wave7 Optics, Inc. Minimizing channel change time for IP video
US7031335B1 (en) 1999-11-03 2006-04-18 Adc Telecommunications, Inc. Digital node for hybrid fiber/coax network
EP1659712A1 (fr) * 2004-11-17 2006-05-24 Boris Sijanec Système de distribution et de communication hyperfréquence hybride et bidirectionnel
US20060117361A1 (en) * 2004-11-05 2006-06-01 Alex Dolgonos Data communications system using CATV network with wireless return path
US20060117354A1 (en) * 2004-11-29 2006-06-01 Mark Schutte Consolidating video-on-demand (VOD) services with multi-room personal video recording (MR-PVR) services
US7061891B1 (en) 2001-02-02 2006-06-13 Science Applications International Corporation Method and system for a remote downlink transmitter for increasing the capacity and downlink capability of a multiple access interference limited spread-spectrum wireless network
US20060187863A1 (en) * 2004-12-21 2006-08-24 Wave7 Optics, Inc. System and method for operating a wideband return channel in a bi-directional optical communication system
US20060218581A1 (en) * 2005-03-01 2006-09-28 Barbara Ostrowska Interactive network guide with parental monitoring
US20060225105A1 (en) * 2005-04-05 2006-10-05 Scientific-Atlanta, Inc. Networked multi-room system ad insertion
US20060251373A1 (en) * 2002-10-15 2006-11-09 Wave7 Optics, Inc. Reflection suppression for an optical fiber
US20060269285A1 (en) * 2002-01-08 2006-11-30 Wave7 Optics, Inc. Optical network system and method for supporting upstream signals propagated according to a cable modem protocol
US20070008939A1 (en) * 2005-06-10 2007-01-11 Adc Telecommunications, Inc. Providing wireless coverage into substantially closed environments
WO2006050174A3 (fr) * 2004-10-29 2007-01-18 Broadcom Corp Communication multi-canaux hierarchisee
US20070047586A1 (en) * 2004-03-26 2007-03-01 La Jolla Networks, Inc System and method for scalable multifunctional network communication
US20070047959A1 (en) * 2005-08-12 2007-03-01 Wave7 Optics, Inc. System and method for supporting communications between subcriber optical interfaces coupled to the same laser transceiver node in an optical network
US20070077069A1 (en) * 2000-10-04 2007-04-05 Farmer James O System and method for communicating optical signals upstream and downstream between a data service provider and subscribers
US20070143776A1 (en) * 2005-03-01 2007-06-21 Russ Samuel H Viewer data collection in a multi-room network
US20070223928A1 (en) * 2001-08-03 2007-09-27 Farmer James O Method and system for providing a return path for signals generated by legacy terminals in an optical network
US20070248358A1 (en) * 2006-04-19 2007-10-25 Michael Sauer Electrical-optical cable for wireless systems
US20070257796A1 (en) * 2006-05-08 2007-11-08 Easton Martyn N Wireless picocellular RFID systems and methods
US20070269170A1 (en) * 2006-05-19 2007-11-22 Easton Martyn N Fiber optic cable and fiber optic cable assembly for wireless access
US20070292133A1 (en) * 2002-05-20 2007-12-20 Whittlesey Paul F System and method for communicating optical signals to multiple subscribers having various bandwidth demands connected to the same optical waveguide
US20070292137A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Redundant transponder array for a radio-over-fiber optical fiber cable
US20080044186A1 (en) * 2006-08-16 2008-02-21 Jacob George Radio-over-fiber transponder with a dual-band patch antenna system
US20080066085A1 (en) * 2002-10-04 2008-03-13 Davies David B Systems and methods for operating a peripheral record playback device in a networked multimedia system
US20080070502A1 (en) * 2006-09-15 2008-03-20 Jacob George Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US20080080863A1 (en) * 2006-09-28 2008-04-03 Michael Sauer Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US7355848B1 (en) 2002-01-07 2008-04-08 Wave7 Optics, Inc. System and method for removing heat from a subscriber optical interface
US20080085117A1 (en) * 2004-08-19 2008-04-10 Farmer James O System and method for communicating optical signals between a data service provider and subscribers
US7400637B1 (en) * 1998-11-02 2008-07-15 Cisco Technology, Inc. Time slotted logical ring
US20080186143A1 (en) * 2007-02-06 2008-08-07 Jacob George Transponder systems and methods for radio-over-fiber (ROF) wireless picocellular systems
US20080212969A1 (en) * 2006-09-26 2008-09-04 David Fasshauer Method and apparatus for using distributed antennas
US7454141B2 (en) 2003-03-14 2008-11-18 Enablence Usa Fttx Networks Inc. Method and system for providing a return path for signals generated by legacy terminals in an optical network
US20090097855A1 (en) * 2007-10-12 2009-04-16 Dean Michael Thelen Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US7529485B2 (en) 2001-07-05 2009-05-05 Enablence Usa Fttx Networks, Inc. Method and system for supporting multiple services with a subscriber optical interface located outside a subscriber's premises
US20090180426A1 (en) * 2007-12-21 2009-07-16 John Sabat Digital distributed antenna system
US7616901B2 (en) 2005-08-10 2009-11-10 Enablence Usa Fttx Networks Inc. Countermeasures for idle pattern SRS interference in ethernet optical network systems
US7630344B1 (en) 2001-03-30 2009-12-08 Science Applications International Corporation Multistage reception of code division multiple access transmissions
US20090307739A1 (en) * 2008-06-05 2009-12-10 Qualcomm Incorporated Remote distributed antenna
US20100054197A1 (en) * 2006-12-05 2010-03-04 Thomson Licensing Cellular dsl modem
US7876998B2 (en) 2005-10-05 2011-01-25 Wall William E DVD playback over multi-room by copying to HDD
US7908625B2 (en) 2002-10-02 2011-03-15 Robertson Neil C Networked multimedia system
US20110090798A1 (en) * 2009-10-15 2011-04-21 Cisco Technology, Inc. System and method for providing troubleshooting in a network environment
US20110200325A1 (en) * 2010-02-15 2011-08-18 Andrey Kobyakov Dynamic Cell Bonding (DCB) for Radio-over-Fiber (RoF)-Based Networks and Communication Systems and Related Methods
US8005077B1 (en) * 1999-09-08 2011-08-23 Qwest Communications International Inc. Distributively routed VDSL and high-speed information packets
US8127326B2 (en) 2000-11-14 2012-02-28 Claussen Paul J Proximity detection using wireless connectivity in a communications system
US8462683B2 (en) 2011-01-12 2013-06-11 Adc Telecommunications, Inc. Distinct transport path for MIMO transmissions in distributed antenna systems
US8472579B2 (en) 2010-07-28 2013-06-25 Adc Telecommunications, Inc. Distributed digital reference clock
US8532242B2 (en) 2010-10-27 2013-09-10 Adc Telecommunications, Inc. Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US20130279429A1 (en) * 2010-09-09 2013-10-24 Bluwan Multi-waveform and wireless very high throughput radius system
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8693342B2 (en) 2011-10-28 2014-04-08 Adc Telecommunications, Inc. Distributed antenna system using time division duplexing scheme
US8755401B2 (en) 2006-05-10 2014-06-17 Paganini Foundation, L.L.C. System and method for scalable multifunctional network communication
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8890744B1 (en) 1999-04-07 2014-11-18 James L. Geer Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US20150131632A1 (en) * 2012-08-07 2015-05-14 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9106286B2 (en) 2000-06-13 2015-08-11 Comcast Cable Communications, Llc Network communication using diversity
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9178636B2 (en) 2013-02-22 2015-11-03 Adc Telecommunications, Inc. Universal remote radio head
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9520914B2 (en) 2012-06-25 2016-12-13 Samsung Electronics Co., Ltd. Full-duplex wireless communication system using polarization
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9596322B2 (en) 2014-06-11 2017-03-14 Commscope Technologies Llc Bitrate efficient transport through distributed antenna systems
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
WO2017058568A1 (fr) * 2015-09-28 2017-04-06 Commscope Technologies Llc Systèmes de connexion sans fil directionnels pour réseaux à large bande et procédés associés
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9787457B2 (en) 2013-10-07 2017-10-10 Commscope Technologies Llc Systems and methods for integrating asynchronous signals in distributed antenna system with direct digital interface to base station
CN107274460A (zh) * 2017-06-14 2017-10-20 中国科学院遥感与数字地球研究所 一种全谱段高光谱图像模拟方法及装置
US9800909B2 (en) 2004-04-05 2017-10-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for downloading content using channel bonding
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10020850B2 (en) 2013-02-22 2018-07-10 Commscope Technologies Llc Master reference for base station network interface sourced from distributed antenna system
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10499269B2 (en) 2015-11-12 2019-12-03 Commscope Technologies Llc Systems and methods for assigning controlled nodes to channel interfaces of a controller
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0949770A1 (fr) * 1998-04-09 1999-10-13 BetaResearch Gesellschaft für Entwicklung und Vermarktung digitaler Infrastrukturen mbH Système de radiodiffusion bidirectionnel
EP1901462A3 (fr) * 1999-10-22 2008-04-16 Nextnet Wireless Inc. Système fixe de communication sans fil et procédé d' utilisation
US20070286599A1 (en) * 2006-06-12 2007-12-13 Michael Sauer Centralized optical-fiber-based wireless picocellular systems and methods
JP4845148B2 (ja) * 2008-08-26 2011-12-28 八木アンテナ株式会社 ミリ波通信テレビ共同受信方式
WO2010121261A1 (fr) * 2009-04-17 2010-10-21 Maxlinear, Inc. Architecture de syntoniseur large bande
US11303561B2 (en) 2018-04-10 2022-04-12 Starry, Inc. Star topology fixed wireless access network with lower frequency failover

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061577A (en) * 1976-08-18 1977-12-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fiber optic multiplex optical transmission system
US4747160A (en) * 1987-03-13 1988-05-24 Suite 12 Group Low power multi-function cellular television system
US5303229A (en) * 1991-07-31 1994-04-12 Alcatel Network Systems, Inc. Optical network unit
WO1994024783A1 (fr) * 1993-04-16 1994-10-27 Conifer Corporation Systeme de transmission bidirectionnelle pour television et donnees
US5369779A (en) * 1993-06-28 1994-11-29 Zenith Electronics Corp. Two-way MMDS communications system
US5402138A (en) * 1991-05-30 1995-03-28 Conifer Corporation Integrated MMDS/MDS antenna and dual band down converter
WO1995025409A1 (fr) * 1994-03-17 1995-09-21 Endlink, Inc. Systeme de radio communication multi-fonctions a repartition sectorielle
US5485221A (en) * 1993-06-07 1996-01-16 Scientific-Atlanta, Inc. Subscription television system and terminal for enabling simultaneous display of multiple services
US5559808A (en) * 1995-03-16 1996-09-24 Bell Atlantic Network Services, Inc. Simulcasting digital video programs
US5592470A (en) * 1994-12-21 1997-01-07 At&T Broadband wireless system and network architecture providing broadband/narrowband service with optimal static and dynamic bandwidth/channel allocation
US5644622A (en) * 1992-09-17 1997-07-01 Adc Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
US5659353A (en) * 1995-03-17 1997-08-19 Bell Atlantic Network Services, Inc. Television distribution system and method
US5666365A (en) * 1995-03-16 1997-09-09 Bell Atlantic Network Services, Inc. Simulcast transmission of digital programs to shared antenna receiving systems
US5697053A (en) * 1994-07-28 1997-12-09 Lucent Technologies Inc. Method of power control and cell site selection

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061577A (en) * 1976-08-18 1977-12-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Fiber optic multiplex optical transmission system
US4747160A (en) * 1987-03-13 1988-05-24 Suite 12 Group Low power multi-function cellular television system
US5402138A (en) * 1991-05-30 1995-03-28 Conifer Corporation Integrated MMDS/MDS antenna and dual band down converter
US5303229A (en) * 1991-07-31 1994-04-12 Alcatel Network Systems, Inc. Optical network unit
US5644622A (en) * 1992-09-17 1997-07-01 Adc Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
WO1994024783A1 (fr) * 1993-04-16 1994-10-27 Conifer Corporation Systeme de transmission bidirectionnelle pour television et donnees
US5394559A (en) * 1993-04-16 1995-02-28 Conifer Corporation MMDS/ITFS bi-directional over-the-air transmission system and method therefor
US5437052A (en) * 1993-04-16 1995-07-25 Conifer Corporation MMDS over-the-air bi-directional TV/data transmission system and method therefor
US5485221A (en) * 1993-06-07 1996-01-16 Scientific-Atlanta, Inc. Subscription television system and terminal for enabling simultaneous display of multiple services
US5369779A (en) * 1993-06-28 1994-11-29 Zenith Electronics Corp. Two-way MMDS communications system
WO1995025409A1 (fr) * 1994-03-17 1995-09-21 Endlink, Inc. Systeme de radio communication multi-fonctions a repartition sectorielle
US5697053A (en) * 1994-07-28 1997-12-09 Lucent Technologies Inc. Method of power control and cell site selection
US5592470A (en) * 1994-12-21 1997-01-07 At&T Broadband wireless system and network architecture providing broadband/narrowband service with optimal static and dynamic bandwidth/channel allocation
US5610916A (en) * 1995-03-16 1997-03-11 Bell Atlantic Network Services, Inc. Shared receiving systems utilizing telephone cables as video drops
US5559808A (en) * 1995-03-16 1996-09-24 Bell Atlantic Network Services, Inc. Simulcasting digital video programs
US5666365A (en) * 1995-03-16 1997-09-09 Bell Atlantic Network Services, Inc. Simulcast transmission of digital programs to shared antenna receiving systems
US5659353A (en) * 1995-03-17 1997-08-19 Bell Atlantic Network Services, Inc. Television distribution system and method

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Comerford and Perry, "Wired for Interactivity. The trials and travails of Interactive TV," IEEE Spectrum, 22-28 (Apr., 1996).
Comerford and Perry, Wired for Interactivity. The trials and travails of Interactive TV, IEEE Spectrum , 22 28 (Apr., 1996). *
Fan J.C. et al., "Design and Analysis of a Novel Fiber-Based PCS Optical Network," IEEE, Jun. 18, 1995.
Fan J.C. et al., Design and Analysis of a Novel Fiber Based PCS Optical Network, IEEE, Jun. 18, 1995. *
Husted, BellSouth makes $12 million bid for New Orleans cable license, Atlanta Journal (Apr. 25, 1996). *
Ogawa, H., et al., Cascaded External Optical Modulation Link for Radio Distribution, IEEE, May 23, 1994. *
Weiss, S. Merrill, Issues in Advanced Television Technology , Focal Press, pp. 209 222, Boston (1996) (Articles first published in 1993). *
Weiss, S. Merrill, Issues in Advanced Television Technology, Focal Press, pp. 209-222, Boston (1996) (Articles first published in 1993).

Cited By (304)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243866B1 (en) * 1996-08-15 2001-06-05 Deutsche Telekom Ag Method and device for video, sound and data transmission
US6226794B1 (en) * 1996-09-17 2001-05-01 Sarnoff Corporation Set top terminal for an interactive information distribution system
US6144647A (en) * 1996-11-04 2000-11-07 Telefonaktiebolaget Lm Ericsson Communication system, mobile services switching center and method for establishing a multi-dialogue communication between subscriber stations
US6212397B1 (en) * 1996-12-23 2001-04-03 Texas Instruments Incorporated Method and system for controlling remote multipoint stations
US6118780A (en) * 1997-03-17 2000-09-12 International Business Machines Corporation Communication network and method of operation for real time user selection of voice and/or data paths in the network
US6684030B1 (en) 1997-07-29 2004-01-27 Khamsin Technologies, Llc Super-ring architecture and method to support high bandwidth digital “last mile” telecommunications systems for unlimited video addressability in hub/star local loop architectures
US6349095B1 (en) * 1997-11-20 2002-02-19 Telesis Technologies Laboratory Digital multichannel multipoint distribution system (MMDS) network that supports broadcast video and two-way data transmissions
US6650628B1 (en) * 1998-07-09 2003-11-18 Alcatel Canada Inc. Combining QAM and QPSK to optimize license capacity in cellular, multipoint wireless access systems
US7400637B1 (en) * 1998-11-02 2008-07-15 Cisco Technology, Inc. Time slotted logical ring
WO2000033494A1 (fr) * 1998-11-30 2000-06-08 Khamsin Technologies, Llc. Procede et logiciel pour interface utilisateur sur boucle locale
US6366584B1 (en) * 1999-02-06 2002-04-02 Triton Network Systems, Inc. Commercial network based on point to point radios
WO2000051059A2 (fr) * 1999-02-23 2000-08-31 Khamsin Technologies, Llc Architecture et procede destines a la transmission de donnees sur large bande dans un systeme de telecommunications du 'dernier kilometre'
WO2000051059A3 (fr) * 1999-02-23 2000-11-30 Khamsin Technologies Llc Architecture et procede destines a la transmission de donnees sur large bande dans un systeme de telecommunications du 'dernier kilometre'
US6377782B1 (en) 1999-03-01 2002-04-23 Mediacell, Inc. Method and apparatus for communicating between a client device and a linear broadband network
US6876673B2 (en) 1999-03-11 2005-04-05 Qwest Communications, International Inc. Local multi-point distribution system architectures
US7016308B1 (en) * 1999-03-19 2006-03-21 Broadband Royalty Corporation Digital return path for hybrid fiber/coax network
US8890744B1 (en) 1999-04-07 2014-11-18 James L. Geer Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US6477182B2 (en) * 1999-06-08 2002-11-05 Diva Systems Corporation Data transmission method and apparatus
US20040072048A1 (en) * 1999-06-26 2004-04-15 Abb Research Ltd. Configuration for wire-free supply of electric power to a large number of sensors and/or actuators,sensor or actuator for this purpose and system for a machine having a large number of sensors and/or actuators
US6765898B1 (en) * 1999-08-20 2004-07-20 Alcatel Micro cell base station with interfering signal attenuation
US8005077B1 (en) * 1999-09-08 2011-08-23 Qwest Communications International Inc. Distributively routed VDSL and high-speed information packets
US20050176378A1 (en) * 1999-10-22 2005-08-11 Nextnet Wireless, Inc. Fixed OFDM wireless man utilizing CPE having internal antenna
EP1226673A4 (fr) * 1999-10-22 2003-11-12 Nextnet Wireless Inc Reseau metropolitain sans fil ofdm fixe utilisant des installations d'abonnes avec antenne interne
US20050171995A1 (en) * 1999-10-22 2005-08-04 Nextnet Wireless, Inc. Fixed OFDM wireless MAN utilizing CPE having internal antenna
US20050176379A1 (en) * 1999-10-22 2005-08-11 Nextnet Wireless, Inc. Fixed OFDM wireless MAN utilizing CPE having internal antenna
US7633893B2 (en) 1999-10-22 2009-12-15 Nextnet Wireless, Inc. Fixed OFDM wireless man utilizing CPE having internal antenna
US20050186956A1 (en) * 1999-10-22 2005-08-25 Nextnet Wireless, Inc. Fixed OFDM wireless man utilizing CPE having internal antenna
EP1226673A1 (fr) * 1999-10-22 2002-07-31 Nextnet Wireless Inc. Reseau metropolitain sans fil ofdm fixe utilisant des installations d'abonnes avec antenne interne
US7626920B2 (en) * 1999-10-22 2009-12-01 Nextnet Wireless, Inc. Fixed OFDM wireless MAN utilizing CPE having internal antenna
US7031335B1 (en) 1999-11-03 2006-04-18 Adc Telecommunications, Inc. Digital node for hybrid fiber/coax network
US20020191644A1 (en) * 1999-12-07 2002-12-19 James Swisher Bi-directional customer premises wiring system and method
US7984474B2 (en) 2000-02-08 2011-07-19 Quartics, Inc. Method and apparatus for a digitized CATV network for bundled services
US20050114903A1 (en) * 2000-02-08 2005-05-26 Sherjil Ahmed Method and apparatus for a digitized CATV network for bundled services
US6876852B1 (en) * 2000-03-09 2005-04-05 Lucent Technologies Inc. Integrated cable and cellular network
US6748218B1 (en) 2000-04-10 2004-06-08 Remec, Inc. Wireless communication methods and systems using multiple sectored cells
US9401783B1 (en) 2000-06-13 2016-07-26 Comcast Cable Communications, Llc Transmission of data to multiple nodes
US9197297B2 (en) 2000-06-13 2015-11-24 Comcast Cable Communications, Llc Network communication using diversity
US9356666B1 (en) 2000-06-13 2016-05-31 Comcast Cable Communications, Llc Originator and recipient based transmissions in wireless communications
US9344233B2 (en) 2000-06-13 2016-05-17 Comcast Cable Communications, Llc Originator and recipient based transmissions in wireless communications
US9722842B2 (en) 2000-06-13 2017-08-01 Comcast Cable Communications, Llc Transmission of data using a plurality of radio frequency channels
USRE45775E1 (en) 2000-06-13 2015-10-20 Comcast Cable Communications, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US9391745B2 (en) 2000-06-13 2016-07-12 Comcast Cable Communications, Llc Multi-user transmissions
US9820209B1 (en) 2000-06-13 2017-11-14 Comcast Cable Communications, Llc Data routing for OFDM transmissions
USRE45807E1 (en) 2000-06-13 2015-11-17 Comcast Cable Communications, Llc Apparatus for transmitting a signal including transmit data to a multiple-input capable node
US9654323B2 (en) 2000-06-13 2017-05-16 Comcast Cable Communications, Llc Data routing for OFDM transmission based on observed node capacities
US10349332B2 (en) 2000-06-13 2019-07-09 Comcast Cable Communications, Llc Network communication using selected resources
US9106286B2 (en) 2000-06-13 2015-08-11 Comcast Cable Communications, Llc Network communication using diversity
US9209871B2 (en) 2000-06-13 2015-12-08 Comcast Cable Communications, Llc Network communication using diversity
US10257765B2 (en) 2000-06-13 2019-04-09 Comcast Cable Communications, Llc Transmission of OFDM symbols
US9515788B2 (en) 2000-06-13 2016-12-06 Comcast Cable Communications, Llc Originator and recipient based transmissions in wireless communications
US20070077069A1 (en) * 2000-10-04 2007-04-05 Farmer James O System and method for communicating optical signals upstream and downstream between a data service provider and subscribers
US7606492B2 (en) 2000-10-04 2009-10-20 Enablence Usa Fttx Networks Inc. System and method for communicating optical signals upstream and downstream between a data service provider and subscribers
US7849486B2 (en) 2000-11-14 2010-12-07 Russ Samuel H Networked subscriber television distribution
US8549567B2 (en) 2000-11-14 2013-10-01 Samuel H. Russ Media content sharing over a home network
US20020059642A1 (en) * 2000-11-14 2002-05-16 Russ Samuel H. Networked subscriber television distribution
US20090193452A1 (en) * 2000-11-14 2009-07-30 Scientific-Atlanta, Inc. Media content sharing over a home network
US7861272B2 (en) 2000-11-14 2010-12-28 Russ Samuel H Networked subscriber television distribution
US20030097662A1 (en) * 2000-11-14 2003-05-22 Russ Samuel H. Networked subscriber television distribution
US8127326B2 (en) 2000-11-14 2012-02-28 Claussen Paul J Proximity detection using wireless connectivity in a communications system
US20020093926A1 (en) * 2000-12-05 2002-07-18 Kilfoyle Daniel B. Method and system for a remote downlink transmitter for increasing the capacity of a multiple access interference limited spread-spectrum wireless network
US7016332B2 (en) 2000-12-05 2006-03-21 Science Applications International Corporation Method and system for a remote downlink transmitter for increasing the capacity of a multiple access interference limited spread-spectrum wireless network
US7535867B1 (en) 2001-02-02 2009-05-19 Science Applications International Corporation Method and system for a remote downlink transmitter for increasing the capacity and downlink capability of a multiple access interference limited spread-spectrum wireless network
US7061891B1 (en) 2001-02-02 2006-06-13 Science Applications International Corporation Method and system for a remote downlink transmitter for increasing the capacity and downlink capability of a multiple access interference limited spread-spectrum wireless network
US7630344B1 (en) 2001-03-30 2009-12-08 Science Applications International Corporation Multistage reception of code division multiple access transmissions
US20020147978A1 (en) * 2001-04-04 2002-10-10 Alex Dolgonos Hybrid cable/wireless communications system
US20040141747A1 (en) * 2001-07-05 2004-07-22 Wave7 Optics, Inc. Method and system for supporting multiple service providers within a single optical network
US7529485B2 (en) 2001-07-05 2009-05-05 Enablence Usa Fttx Networks, Inc. Method and system for supporting multiple services with a subscriber optical interface located outside a subscriber's premises
US20060020975A1 (en) * 2001-07-05 2006-01-26 Wave7 Optics, Inc. System and method for propagating satellite TV-band, cable TV-band, and data signals over an optical network
US20050125837A1 (en) * 2001-07-05 2005-06-09 Wave7 Optics, Inc. Method and system for providing a return path for signals generated by legacy video service terminals in an optical network
US7333726B2 (en) * 2001-07-05 2008-02-19 Wave7 Optics, Inc. Method and system for supporting multiple service providers within a single optical network
US7877014B2 (en) 2001-07-05 2011-01-25 Enablence Technologies Inc. Method and system for providing a return path for signals generated by legacy video service terminals in an optical network
US7593639B2 (en) 2001-08-03 2009-09-22 Enablence Usa Fttx Networks Inc. Method and system for providing a return path for signals generated by legacy terminals in an optical network
US20070223928A1 (en) * 2001-08-03 2007-09-27 Farmer James O Method and system for providing a return path for signals generated by legacy terminals in an optical network
US7936711B2 (en) 2001-09-17 2011-05-03 Science Applications International Corporation Method and system for a channel selective repeater with capacity enhancement in a spread-spectrum wireless network
US20060077927A1 (en) * 2001-09-17 2006-04-13 Kilfoyle Daniel B Method and system for a channel selective repeater with capacity enhancement in a spread-spectrum wireless network
US20060077920A1 (en) * 2001-09-17 2006-04-13 Kilfoyle Daniel B Method and system for a channel selective repeater with capacity enhancement in a spread-spectrum wireless network
US20060083196A1 (en) * 2001-09-17 2006-04-20 Kilfoyle Daniel B Method and system for a channel selective repeater with capacity enhancement in a spread-spectrum wireless network
US7710913B2 (en) 2001-09-17 2010-05-04 Science Applications International Corporation Method and system for a channel selective repeater with capacity enhancement in a spread-spectrum wireless network
US7006461B2 (en) 2001-09-17 2006-02-28 Science Applications International Corporation Method and system for a channel selective repeater with capacity enhancement in a spread-spectrum wireless network
US7355848B1 (en) 2002-01-07 2008-04-08 Wave7 Optics, Inc. System and method for removing heat from a subscriber optical interface
US7583897B2 (en) 2002-01-08 2009-09-01 Enablence Usa Fttx Networks Inc. Optical network system and method for supporting upstream signals propagated according to a cable modem protocol
US20060269285A1 (en) * 2002-01-08 2006-11-30 Wave7 Optics, Inc. Optical network system and method for supporting upstream signals propagated according to a cable modem protocol
US6831921B2 (en) * 2002-03-27 2004-12-14 James A. Higgins Wireless internet access system
US20050201342A1 (en) * 2002-03-27 2005-09-15 Randy Wilkinson Wireless access point network and management protocol
US20030185169A1 (en) * 2002-03-27 2003-10-02 Higgins James A. Wireless internet access system
US20030204598A1 (en) * 2002-04-25 2003-10-30 Bifano Louis Dominick Method and arrangement for controlling interconnection between cable modem devices and multiple cable modem termination systems
US20070292133A1 (en) * 2002-05-20 2007-12-20 Whittlesey Paul F System and method for communicating optical signals to multiple subscribers having various bandwidth demands connected to the same optical waveguide
US7623786B2 (en) 2002-05-20 2009-11-24 Enablence Usa Fttx Networks, Inc. System and method for communicating optical signals to multiple subscribers having various bandwidth demands connected to the same optical waveguide
US20040025179A1 (en) * 2002-08-02 2004-02-05 Russ Samuel H. Locally-updated interactive program guide
US7870584B2 (en) 2002-08-02 2011-01-11 Russ Samuel H Interactive program guide with selectable updating
US7516470B2 (en) 2002-08-02 2009-04-07 Cisco Technology, Inc. Locally-updated interactive program guide
US20040068752A1 (en) * 2002-10-02 2004-04-08 Parker Leslie T. Systems and methods for providing television signals to multiple televisions located at a customer premises
US7908625B2 (en) 2002-10-02 2011-03-15 Robertson Neil C Networked multimedia system
US20040068754A1 (en) * 2002-10-02 2004-04-08 Russ Samuel H. Expandable tuning capability
US8046806B2 (en) 2002-10-04 2011-10-25 Wall William E Multiroom point of deployment module
US20040133911A1 (en) * 2002-10-04 2004-07-08 Russ Samuel H. Subscriber network in a satellite system
US8627385B2 (en) 2002-10-04 2014-01-07 David B. Davies Systems and methods for operating a peripheral record playback device in a networked multimedia system
US20080301738A1 (en) * 2002-10-04 2008-12-04 Davies David B Access of Stored Video From Peer Devices in a Local Network
US9762970B2 (en) 2002-10-04 2017-09-12 Tech 5 Access of stored video from peer devices in a local network
US20040068739A1 (en) * 2002-10-04 2004-04-08 Russ Samuel H. Networked multimedia system having a multi-room interactive network guide
US20080201758A1 (en) * 2002-10-04 2008-08-21 Davies David B Home Communication Systems
US20050155052A1 (en) * 2002-10-04 2005-07-14 Barbara Ostrowska Parental control for a networked multiroom system
US20050005287A1 (en) * 2002-10-04 2005-01-06 Claussen Paul J. Networked multimedia overlay system
US20060010481A1 (en) * 2002-10-04 2006-01-12 Scientific-Atlanta, Inc. Multiroom point of deployment module
US7545935B2 (en) 2002-10-04 2009-06-09 Scientific-Atlanta, Inc. Networked multimedia overlay system
US8966550B2 (en) 2002-10-04 2015-02-24 Cisco Technology, Inc. Home communication systems
US20080066085A1 (en) * 2002-10-04 2008-03-13 Davies David B Systems and methods for operating a peripheral record playback device in a networked multimedia system
US7389031B2 (en) 2002-10-15 2008-06-17 Wave7 Optics, Inc. Reflection suppression for an optical fiber
US20060251373A1 (en) * 2002-10-15 2006-11-09 Wave7 Optics, Inc. Reflection suppression for an optical fiber
US8094640B2 (en) 2003-01-15 2012-01-10 Robertson Neil C Full duplex wideband communications system for a local coaxial network
US20080148325A1 (en) * 2003-01-15 2008-06-19 Robertson Neil C Full duplex wideband communications system for a local coaxial network
US7865925B2 (en) 2003-01-15 2011-01-04 Robertson Neil C Optimization of a full duplex wideband communications system
US20050030910A1 (en) * 2003-01-15 2005-02-10 Robertson Neil C. Full duplex wideband communications system for a local coaxial network
US7487532B2 (en) 2003-01-15 2009-02-03 Cisco Technology, Inc. Optimization of a full duplex wideband communications system
US20050022248A1 (en) * 2003-01-15 2005-01-27 Robertson Neil C. Optimization of a full duplex wideband communications system
US8230470B2 (en) 2003-01-15 2012-07-24 Robertson Neil C Full duplex wideband communications system for a local coaxial network
US7454141B2 (en) 2003-03-14 2008-11-18 Enablence Usa Fttx Networks Inc. Method and system for providing a return path for signals generated by legacy terminals in an optical network
US8682162B2 (en) 2003-03-14 2014-03-25 Aurora Networks, Inc. Method and system for providing a return path for signals generated by legacy terminals in an optical network
US20090196611A1 (en) * 2003-03-14 2009-08-06 Enablence Usa Fttx Networks Inc. Method and system for providing a return path for signals generated by legacy terminals in an optical network
US7986880B2 (en) 2003-03-14 2011-07-26 Enablence Usa Fttx Networks Inc. Method and system for providing a return path for signals generated by legacy terminals in an optical network
US20070047586A1 (en) * 2004-03-26 2007-03-01 La Jolla Networks, Inc System and method for scalable multifunctional network communication
US8243747B2 (en) 2004-03-26 2012-08-14 La Jolla Networks, Inc. System and method for scalable multifunctional network communication
US9800909B2 (en) 2004-04-05 2017-10-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Method and apparatus for downloading content using channel bonding
US20050271128A1 (en) * 2004-06-02 2005-12-08 Williams Jeffery D Distributed SCADA system for remote monitoring and control of access points utilizing an intelligent uninterruptible power supply system for a WISP network
US7340180B2 (en) 2004-08-10 2008-03-04 Wave7 Optics, Inc. Countermeasures for idle pattern SRS interference in ethernet optical network systems
US20060039699A1 (en) * 2004-08-10 2006-02-23 Wave7 Optics, Inc. Countermeasures for idle pattern SRS interference in ethernet optical network systems
US7953325B2 (en) 2004-08-19 2011-05-31 Enablence Usa Fttx Networks, Inc. System and method for communicating optical signals between a data service provider and subscribers
US20080085117A1 (en) * 2004-08-19 2008-04-10 Farmer James O System and method for communicating optical signals between a data service provider and subscribers
US7599622B2 (en) 2004-08-19 2009-10-06 Enablence Usa Fttx Networks Inc. System and method for communicating optical signals between a data service provider and subscribers
US20060075428A1 (en) * 2004-10-04 2006-04-06 Wave7 Optics, Inc. Minimizing channel change time for IP video
US8953445B2 (en) 2004-10-29 2015-02-10 Broadcom Corporation Hierarchical flow-level multi-channel communication
US20100296511A1 (en) * 2004-10-29 2010-11-25 Broadcom Corporation Hierarchical Flow-Level Multi-Channel Communication
WO2006050174A3 (fr) * 2004-10-29 2007-01-18 Broadcom Corp Communication multi-canaux hierarchisee
US20070098007A1 (en) * 2004-10-29 2007-05-03 Broadcom Corporation Hierarchical flow-level multi-channel communication
US8537680B2 (en) 2004-10-29 2013-09-17 Broadcom Corporation Hierarchical flow-level multi-channel communication
US7792034B2 (en) 2004-10-29 2010-09-07 Broadcom Corporation Hierarchical flow-level multi-channel communication
US20060117361A1 (en) * 2004-11-05 2006-06-01 Alex Dolgonos Data communications system using CATV network with wireless return path
WO2006054955A1 (fr) * 2004-11-17 2006-05-26 Boris Sijanec Systeme de communication a distribution bidirectionnelle hybride a ondes millimetriques
EP1659712A1 (fr) * 2004-11-17 2006-05-24 Boris Sijanec Système de distribution et de communication hyperfréquence hybride et bidirectionnel
US20060117354A1 (en) * 2004-11-29 2006-06-01 Mark Schutte Consolidating video-on-demand (VOD) services with multi-room personal video recording (MR-PVR) services
US20060187863A1 (en) * 2004-12-21 2006-08-24 Wave7 Optics, Inc. System and method for operating a wideband return channel in a bi-directional optical communication system
US20070143776A1 (en) * 2005-03-01 2007-06-21 Russ Samuel H Viewer data collection in a multi-room network
US20060218581A1 (en) * 2005-03-01 2006-09-28 Barbara Ostrowska Interactive network guide with parental monitoring
US20060225105A1 (en) * 2005-04-05 2006-10-05 Scientific-Atlanta, Inc. Networked multi-room system ad insertion
US20070008939A1 (en) * 2005-06-10 2007-01-11 Adc Telecommunications, Inc. Providing wireless coverage into substantially closed environments
US20100215028A1 (en) * 2005-06-10 2010-08-26 Adc Telecommunications, Inc. Providing wireless coverage into substantially closed environments
US7616901B2 (en) 2005-08-10 2009-11-10 Enablence Usa Fttx Networks Inc. Countermeasures for idle pattern SRS interference in ethernet optical network systems
US20070047959A1 (en) * 2005-08-12 2007-03-01 Wave7 Optics, Inc. System and method for supporting communications between subcriber optical interfaces coupled to the same laser transceiver node in an optical network
US8280229B2 (en) 2005-10-05 2012-10-02 Wall William E DVD playback over multi-room by copying to HDD
US7876998B2 (en) 2005-10-05 2011-01-25 Wall William E DVD playback over multi-room by copying to HDD
US20070248358A1 (en) * 2006-04-19 2007-10-25 Michael Sauer Electrical-optical cable for wireless systems
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US20070257796A1 (en) * 2006-05-08 2007-11-08 Easton Martyn N Wireless picocellular RFID systems and methods
US8755401B2 (en) 2006-05-10 2014-06-17 Paganini Foundation, L.L.C. System and method for scalable multifunctional network communication
US8472767B2 (en) 2006-05-19 2013-06-25 Corning Cable Systems Llc Fiber optic cable and fiber optic cable assembly for wireless access
US20070269170A1 (en) * 2006-05-19 2007-11-22 Easton Martyn N Fiber optic cable and fiber optic cable assembly for wireless access
US20070292136A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US7590354B2 (en) 2006-06-16 2009-09-15 Corning Cable Systems Llc Redundant transponder array for a radio-over-fiber optical fiber cable
US20070292137A1 (en) * 2006-06-16 2007-12-20 Michael Sauer Redundant transponder array for a radio-over-fiber optical fiber cable
US7627250B2 (en) 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US20080044186A1 (en) * 2006-08-16 2008-02-21 Jacob George Radio-over-fiber transponder with a dual-band patch antenna system
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US20080070502A1 (en) * 2006-09-15 2008-03-20 Jacob George Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
US8023826B2 (en) * 2006-09-26 2011-09-20 Extenet Systems Inc. Method and apparatus for using distributed antennas
US20080212969A1 (en) * 2006-09-26 2008-09-04 David Fasshauer Method and apparatus for using distributed antennas
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US20080080863A1 (en) * 2006-09-28 2008-04-03 Michael Sauer Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US8223774B2 (en) 2006-12-05 2012-07-17 Thomson Licensing Cellular DSL modem
US20100054197A1 (en) * 2006-12-05 2010-03-04 Thomson Licensing Cellular dsl modem
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US20080186143A1 (en) * 2007-02-06 2008-08-07 Jacob George Transponder systems and methods for radio-over-fiber (ROF) wireless picocellular systems
US8111998B2 (en) 2007-02-06 2012-02-07 Corning Cable Systems Llc Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8718478B2 (en) 2007-10-12 2014-05-06 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US20090097855A1 (en) * 2007-10-12 2009-04-16 Dean Michael Thelen Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
US8644844B2 (en) 2007-12-20 2014-02-04 Corning Mobileaccess Ltd. Extending outdoor location based services and applications into enclosed areas
US8855036B2 (en) * 2007-12-21 2014-10-07 Powerwave Technologies S.A.R.L. Digital distributed antenna system
US20090180426A1 (en) * 2007-12-21 2009-07-16 John Sabat Digital distributed antenna system
US20090307739A1 (en) * 2008-06-05 2009-12-10 Qualcomm Incorporated Remote distributed antenna
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US8548330B2 (en) 2009-07-31 2013-10-01 Corning Cable Systems Llc Sectorization in distributed antenna systems, and related components and methods
US8619586B2 (en) 2009-10-15 2013-12-31 Cisco Technology, Inc. System and method for providing troubleshooting in a network environment
US20110090798A1 (en) * 2009-10-15 2011-04-21 Cisco Technology, Inc. System and method for providing troubleshooting in a network environment
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US20110200325A1 (en) * 2010-02-15 2011-08-18 Andrey Kobyakov Dynamic Cell Bonding (DCB) for Radio-over-Fiber (RoF)-Based Networks and Communication Systems and Related Methods
US8831428B2 (en) 2010-02-15 2014-09-09 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US8275265B2 (en) 2010-02-15 2012-09-25 Corning Cable Systems Llc Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
USRE48342E1 (en) 2010-07-28 2020-12-01 Commscope Technologies Llc Distributed digital reference clock
US8472579B2 (en) 2010-07-28 2013-06-25 Adc Telecommunications, Inc. Distributed digital reference clock
USRE48351E1 (en) 2010-07-28 2020-12-08 Commscope Technologies Llc Distributed digital reference clock
US8837659B2 (en) 2010-07-28 2014-09-16 Adc Telecommunications, Inc. Distributed digital reference clock
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US20130279429A1 (en) * 2010-09-09 2013-10-24 Bluwan Multi-waveform and wireless very high throughput radius system
US9226269B2 (en) * 2010-09-09 2015-12-29 Bluwan Multi-waveform and wireless very high throughput radio system
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8532242B2 (en) 2010-10-27 2013-09-10 Adc Telecommunications, Inc. Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
USRE47160E1 (en) 2010-10-27 2018-12-11 Commscope Technologies Llc Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
USRE48757E1 (en) 2010-10-27 2021-09-28 Commscope Technologies Llc Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US8462683B2 (en) 2011-01-12 2013-06-11 Adc Telecommunications, Inc. Distinct transport path for MIMO transmissions in distributed antenna systems
US8743756B2 (en) 2011-01-12 2014-06-03 Adc Telecommunications, Inc. Distinct transport path for MIMO transmissions in distributed antenna systems
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US8693342B2 (en) 2011-10-28 2014-04-08 Adc Telecommunications, Inc. Distributed antenna system using time division duplexing scheme
US9219520B2 (en) 2011-10-28 2015-12-22 Adc Telecommunications, Inc. Distributed antenna system using time division duplexing scheme
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9520914B2 (en) 2012-06-25 2016-12-13 Samsung Electronics Co., Ltd. Full-duplex wireless communication system using polarization
US20170181031A1 (en) * 2012-08-07 2017-06-22 Corning Optical Communications Wireless Ltd. Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US10405356B2 (en) * 2012-08-07 2019-09-03 Corning Optical Communications LLC Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9973968B2 (en) * 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US20150131632A1 (en) * 2012-08-07 2015-05-14 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods
US9621293B2 (en) * 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9178636B2 (en) 2013-02-22 2015-11-03 Adc Telecommunications, Inc. Universal remote radio head
US11329701B2 (en) 2013-02-22 2022-05-10 Commscope Technologies Llc Master reference for base station network interface sourced from distributed antenna system
US10855338B2 (en) 2013-02-22 2020-12-01 Commscope Technologies Llc Master reference for base station network interface sourced from distributed antenna system
US9504039B2 (en) 2013-02-22 2016-11-22 Commscope Technologies Llc Universal remote radio head
US10128918B2 (en) 2013-02-22 2018-11-13 Commscope Technologies Llc Universal remote radio head
US10020850B2 (en) 2013-02-22 2018-07-10 Commscope Technologies Llc Master reference for base station network interface sourced from distributed antenna system
US10567044B2 (en) 2013-02-22 2020-02-18 Commscope Technologies Llc Universal remote radio head
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9787457B2 (en) 2013-10-07 2017-10-10 Commscope Technologies Llc Systems and methods for integrating asynchronous signals in distributed antenna system with direct digital interface to base station
US10205584B2 (en) 2013-10-07 2019-02-12 Commscope Technologies Llc Systems and methods for integrating asynchronous signals in distributed antenna system with direct digital interface to base station
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9596322B2 (en) 2014-06-11 2017-03-14 Commscope Technologies Llc Bitrate efficient transport through distributed antenna systems
US10333591B2 (en) 2014-06-11 2019-06-25 Commscope Technologies Llc Bitrate efficient transport through distributed antenna systems
US9686379B2 (en) 2014-06-11 2017-06-20 Commscope Technologies Llc Bitrate efficient transport through distributed antenna systems
US9954584B2 (en) 2014-06-11 2018-04-24 Commscope Technologies Llc Bitrate efficient transport through distributed antenna systems
US10020851B2 (en) 2014-06-11 2018-07-10 Commscope Technologies Llc Bitrate efficient transport through distributed antenna systems
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US11336483B2 (en) 2015-09-28 2022-05-17 CommScope Technology LLC Directional wireless drop systems for broadband networks and related methods
WO2017058568A1 (fr) * 2015-09-28 2017-04-06 Commscope Technologies Llc Systèmes de connexion sans fil directionnels pour réseaux à large bande et procédés associés
US10904031B2 (en) 2015-09-28 2021-01-26 Commscope Technologies Llc Directional wireless drop systems for broadband networks and related methods
US10263805B2 (en) 2015-09-28 2019-04-16 Commscope Technologies Llc Directional wireless drop systems for broadband networks and related methods
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10581631B2 (en) 2015-09-28 2020-03-03 Commscope Technologies Llc Directional wireless drop systems for broadband networks and related methods
US10499269B2 (en) 2015-11-12 2019-12-03 Commscope Technologies Llc Systems and methods for assigning controlled nodes to channel interfaces of a controller
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
CN107274460A (zh) * 2017-06-14 2017-10-20 中国科学院遥感与数字地球研究所 一种全谱段高光谱图像模拟方法及装置

Also Published As

Publication number Publication date
CA2257978A1 (fr) 1997-12-18
DE69724123T2 (de) 2004-06-09
WO1997048196A1 (fr) 1997-12-18
AU3482497A (en) 1998-01-07
CA2257978C (fr) 2003-08-26
DE69724123D1 (de) 2003-09-18
ATE247347T1 (de) 2003-08-15
JP2000512458A (ja) 2000-09-19
EP0906672B1 (fr) 2003-08-13
HK1018138A1 (en) 1999-12-10
EP0906672A1 (fr) 1999-04-07

Similar Documents

Publication Publication Date Title
US5867485A (en) Low power microcellular wireless drop interactive network
WO1997048196A9 (fr) Reseau microcellulaire interactif de branchements d'abonnes de faible puissance
US11336483B2 (en) Directional wireless drop systems for broadband networks and related methods
CA2318757C (fr) Procede et systeme de distribution de services d'abonnes par boucles bidirectionnelles sans fil a bande large
US9554284B2 (en) Wireless over PON
US20050068915A1 (en) Wireless infrastructure for broadcasting with return channel
US20050055729A1 (en) Video broadcasting with return channel
US20050249139A1 (en) System to deliver internet media streams, data & telecommunications
US6560213B1 (en) Wideband wireless access local loop based on millimeter wave technology
SE510860C2 (sv) System, anordning och metod för integration av ett mikrovågssystem med ett millimetervågssystem
US10051324B2 (en) Apparatus and method for providing a joint IP data-stream
CN115833902B (zh) 具有无线链路的卫星终端系统
US20010033610A1 (en) Method for transmitting and receiving digital information over unused portions of licensed communication channels
US8695043B2 (en) Method for transmitting information over an integrated telecommunications and broadcast system and integrated telecommunications and broadcast system
WO2001056289A1 (fr) Systemes et procedes de communication bidirectionnelle hybrides cables/sans fil
EP1671435A2 (fr) Systeme de radiotelevision a voie de retour
EP1759501B1 (fr) Systeme d'acces multimedia et internet -b-wan
WO1998037596A1 (fr) Systeme de transmission bidirectionnel mettant en oeuvre une petite antenne en bande c pour la liaison descendante et en bande l pour la liaison ascendante
Norbury Towards the next generation LMDS systems architecture
Tjelta et al. Broadband radio access for multimedia services
US20060171375A1 (en) System and method for high speed distributed cable broadband system
AU702701B2 (en) Apparatus and method for supporting two-way communications on CATV networks
Gutierrez et al. BROADBAND ACCESS TECHNOLOGIES: AN OVERVIEW
Biagini et al. Wireless multimedia communication through multichannel multipoint distribution service
Rizk et al. MVDDS network layers adapted with DVB-RCS as a terrestrial RC solution

Legal Events

Date Code Title Description
AS Assignment

Owner name: BELLSOUTH CORPORATION, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHAMBERS, CRAIG B.;BERGEN, RICHARD S.;REEL/FRAME:008051/0752;SIGNING DATES FROM 19960612 TO 19960613

AS Assignment

Owner name: BELLSOUTH INTELLECTUAL PROPERTY CORPORATION, DELAW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC.;REEL/FRAME:009678/0367

Effective date: 19980901

Owner name: BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC., GEORG

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BELLSOUTH CORPORATION;REEL/FRAME:009670/0482

Effective date: 19980901

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20110202