US5815481A - Apparatus for transverse image registration of a photoreceptor belt - Google Patents

Apparatus for transverse image registration of a photoreceptor belt Download PDF

Info

Publication number
US5815481A
US5815481A US08/185,294 US18529494A US5815481A US 5815481 A US5815481 A US 5815481A US 18529494 A US18529494 A US 18529494A US 5815481 A US5815481 A US 5815481A
Authority
US
United States
Prior art keywords
belt
transverse
sub
tan
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/185,294
Other languages
English (en)
Inventor
Ssujan Hou
Lam F. Wong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US08/185,294 priority Critical patent/US5815481A/en
Application granted granted Critical
Publication of US5815481A publication Critical patent/US5815481A/en
Assigned to BANK ONE, NA, AS ADMINISTRATIVE AGENT reassignment BANK ONE, NA, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XEROX CORPORATION
Assigned to JPMORGAN CHASE BANK, AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: XEROX CORPORATION
Anticipated expiration legal-status Critical
Assigned to XEROX CORPORATION reassignment XEROX CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0142Structure of complete machines
    • G03G15/0147Structure of complete machines using a single reusable electrographic recording member
    • G03G15/0152Structure of complete machines using a single reusable electrographic recording member onto which the monocolour toner images are superposed before common transfer from the recording member
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/047Detection, control or error compensation of scanning velocity or position
    • H04N1/053Detection, control or error compensation of scanning velocity or position in main scanning direction, e.g. synchronisation of line start or picture elements in a line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/50Picture reproducers
    • H04N1/506Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction
    • H04N1/508Reproducing the colour component signals picture-sequentially, e.g. with reproducing heads spaced apart from one another in the subscanning direction using the same reproducing head for two or more colour components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00135Handling of parts of the apparatus
    • G03G2215/00139Belt
    • G03G2215/00143Meandering prevention
    • G03G2215/0016Meandering prevention by mark detection, e.g. optical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/113Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors
    • H04N1/1135Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using oscillating or rotating mirrors for the main-scan only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/12Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/024Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof deleted
    • H04N2201/02406Arrangements for positioning elements within a head
    • H04N2201/02439Positioning method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/0471Detection of scanning velocity or position using dedicated detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/04715Detection of scanning velocity or position by detecting marks or the like, e.g. slits
    • H04N2201/04722Detection of scanning velocity or position by detecting marks or the like, e.g. slits on a photoconductive drum or belt
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/04744Detection of scanning velocity or position by detecting the scanned beam or a reference beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04701Detection of scanning velocity or position
    • H04N2201/04749Detecting position relative to a gradient, e.g. using triangular-shaped masks, marks or gratings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04753Control or error compensation of scanning position or velocity
    • H04N2201/04755Control or error compensation of scanning position or velocity by controlling the position or movement of a scanning element or carriage, e.g. of a polygonal mirror, of a drive motor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04753Control or error compensation of scanning position or velocity
    • H04N2201/04758Control or error compensation of scanning position or velocity by controlling the position of the scanned image area
    • H04N2201/04767Control or error compensation of scanning position or velocity by controlling the position of the scanned image area by controlling the timing of the signals, e.g. by controlling the frequency o phase of the pixel clock
    • H04N2201/04781Controlling the phase of the signals
    • H04N2201/04786Controlling a start time, e.g. for output of a line of data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/047Detection, control or error compensation of scanning velocity or position
    • H04N2201/04753Control or error compensation of scanning position or velocity
    • H04N2201/04794Varying the control or compensation during the scan, e.g. using continuous feedback or from line to line

Definitions

  • the present invention relates to registration of plural image exposures formed on a photoreceptor belt and, more particularly, to transverse registration of images formed by exposure to transverse line scanning on a longitudinally moving belt subject to lateral deviation from linear travel.
  • each image area on a photoreceptive belt must make at least four passes relative to a transverse line scan by a modulated laser beam or a linear array of light emitting diodes and registered to within a 0.1 millimeter circle or within a tolerance of ⁇ 0.05 mm.
  • the use of timing marks spaced longitudinally on the belt in correspondence with the image areas, coupled with available electronic sensors and associated circuitry, has enable longitudinal registration of the image areas, or registration in the direction of belt travel, acceptably within this degree of precision. Registration of image elements or "pixels" in a transverse direction, or in a direction perpendicular to the direction of belt travel, has been more difficult to attain due to manufacturing tolerances in belt width, supporting roller geometry, uneven belt stretch or a combination of such tolerances.
  • the transverse slots which are formed by cutting slots into the inboard or outboard end of the belt, tend to curl upwards, due to stresses produced on the slots as they are driven around the photoreceptor drive rollers, drive end, or idler rollers.
  • the slot edges being perpendicular to the belt travel (process) direction tend to curl upwards.
  • the upward curls result in protrusions above the belt surface, which may be caught and damaged by the sensor, which is normally located proximate to the belt surface.
  • the curled edge also appears "wave-like" to the sensor, resulting in depth of field sensing errors.
  • the "Z" shaped pattern tends to fracture or tear, due to the cyclic bending stress and concentration at the corners of the transverse slots.
  • the present invention relates to an improved imaging system for forming multiple image exposure frames on a photoconductive member including:
  • a photoreceptor belt adapted to accommodate the formation of an integral number of image exposure frames, said belt having a plurality of target apertures formed outside of the exposure area and associated with each exposure frame respectively,
  • detecting means associated with said target apertures for detecting changes in the lateral position of each aperture, the apertures in said belt moving through a process direction, and
  • the improved apertures comprise a set of three inclined slots, each slot inclined at an angle ⁇ with respect to a transverse line perpendicular to the process direction, each slot separated from each other by a distance S in the process direction when the belt is properly registered.
  • FIG. 1 is a schematic perspective view illustrating a system incorporating the invention and for providing multiple exposures on a photoreceptive belt by multiple passes of image areas on the belt in relation to a single raster output scanner.
  • FIG. 2 is an illustration of a target pattern in accordance with the present invention.
  • FIG. 3 shows the voltage waveform signals produced by the pattern shown in FIG. 2 and the manner by which said signals are converted to a measure of lateral displacement.
  • FIGS. 4A and 4B show the stress forces operating on the target pattern of FIG. 2 compared with the stress forces operating on prior art target patterns.
  • FIG. 1 of the drawings an embodiment of the present invention is incorporated in a multi-pass xerographic printing system depicted schematically and designated generally by reference numeral 10.
  • the system 10 includes a photoreceptive belt trained about guide rollers 14 and 16, at least one of which is driven to advance the belt 12 in a longitudinal (process) direction depicted by the arrow 18.
  • the length of the belt 12 is designed to accept an integral number of spaced image areas I 1 -I n represented by dashed line rectangles in FIG. 1.
  • a transverse line of scan represented by a dashed arrow 20
  • it is progressively exposed on closely spaced transverse raster lines 22 shown with exaggerated longitudinal spacing on the image area I 1 in FIG. 1.
  • the line 20 is scanned by a ROS (raster output scanner) so that a modulated laser beam 24 is reflected to the line 20 by successive facets 25 on a rotatable polygon-shaped mirror 26.
  • the beam 24 is emitted by a laser device 28 such as a laser diode, operated by a laser drive module 30 forming part of a control processor generally designated by the reference numeral 32.
  • the processor 32 includes other circuit or logic modules indicated by legends in FIG. 1 and includes a scanner drive command circuit 34 by which operation of a motor (not shown) for rotating the polygon mirror 26 is controlled.
  • the processor 32 responds to a video signal to expose each raster line 22 to a linear segment of the video signal image.
  • each image area I 1 -I n must be exposed in the same manner to four successive exposures, one for each of the three basic colors and black.
  • complete exposure of each image area requires four revolutions of the belt 12.
  • a single pass system would expose each image area successively by four raster output scanners each including its own polygon mirror.
  • the image areas, I 1 -I n are successively exposed on successive raster lines 22 as each raster line registers with a transverse scan line 20 as a result of longitudinal movement of belt 12.
  • the length of the transverse scan line 20 or transverse scan lines 20a-20d is longer than the transverse dimension of the image areas I.
  • Scan line length in this respect, is determined by the length of each mirror facet 25 and exceeds the length of the raster lines 22.
  • the length of each raster line is determined by the time during which the laser diode is active to reflect a modulated beam from each facet 25 on the rotating polygon 26 as determined by the laser drive module 30.
  • the active portion of each transverse scan line may be shifted in a transverse direction by control of the laser drive module 30 and the transverse position of the exposed raster lines 22, and image areas I 1 -I n shifted in relation to the belt 12.
  • signals indicating deviation of belt travel from a straight line are developed and used to determine the precise transverse location of the first of successive image exposures in relation to the photoreceptive belt and to adjust the active portion of the transverse scan line 20 for each succeeding image as needed to assure precise longitudinal alignment or transverse registration of the succeeding images with the first image irrespective of the lateral position of the belt during exposure of the images.
  • This operation is achieved by the provision of "italicized" targets T 1 -T n , to be described in more detail below with reference to FIGS. 2 and 3.
  • targets are located along a marginal edge of the belt 12, aligned in a longitudinal direction, and are spaced to be located slightly ahead of each image area I 1 -I n or upstream from each such area in the context of belt travel.
  • a single sensor 36 is located to be aligned with targets T 1 -T n .
  • the senor 36 has a bifurcated or horseshoe configuration to establish upper and lower legs 38 and 40, respectively, adapted to be positioned about the marginal edge of the belt 12 on which the targets T 1 -T n are located without interference with longitudinal belt travel.
  • the upper leg 38 supports a light source, such as a light emitting diode 42
  • the lower leg 40 supports a light detector such as a photodiode 44, conventionally included in circuitry (not shown) by which a voltage signal is developed in response to light seen by the photodiode.
  • the light emitting and light detecting diodes are aligned on a common optical sensing axis.
  • the target is formed by three aperture slots 50, 52, 54, cut or otherwise formed in belt 12.
  • Each aperture is formed at some angle ⁇ with respect to a line perpendicular to the direction of travel. The ends of each slot are preferable rounded.
  • leading slot 50 inclined at an angle ⁇ , is spaced from trailing inclined slot 54 by a third inclined slot 52.
  • Light from the light emitting diode 42 in sensor 36 is then intercepted by the leading edge of the three slots.
  • the points at which each slot is detected and sensed by photodiode 44 is translated into information which establishes transverse direction.
  • the sensing axis will have a line L as the target when belt 12 is centered.
  • the detection points between slots 50, 52, and slots 52 and 54 are separated by a distance S.
  • a distance S For illustrative purposes, if the belt shifts to the left in reference to a center position L, the direction of travel, a new line M will be formed. Obviously, the belt shift could take place to the right as well or to other locations in between. For the example given, if the belt has shifted to the left a distance X, the leading edge of each slot will be detected at a path further to the right along axis M.
  • S 1 consists of original distance S plus distances Y 1 , Y 2
  • S 2 consists of original distance S minus distances Y 2 , Y 3
  • FIG. 3 shows two voltage signals originated by the photodiode 44 of sensor 36 after level sensing and squaring.
  • the two signals are designated V L , V M , and correspond directly to the voltage signals developed by the photodiode 44 when the target T is positioned in relation to the respective trace lines L and M.
  • the voltage signals are used to control an encoder clock pulse counter 58, depicted schematically in FIG. 3, by a series of parallel lines representing clock pulse increments.
  • the counter 58 is included as a component of the control processor 32 (FIG. 1).
  • the sensing axis will lie on the trace line L during movement of the target T past the sensor.
  • photodiode 44 generates an output waveform signal, the waveform separated in space by a value which can be correlated to the separation distance S between each slot.
  • the output voltages generated by the sensor are separated by a time interval which corresponds to the distances Y 1 , Y 2 , Y 3 .
  • the output signals are operated upon in a timing/computation circuit 60 which is adapted to perform the mathematical operations to solve for X in equation 1.
  • the counter 58 generates clock pulses which have the following relationship to slots 50, 52, and 54.
  • a first number of encoder pulses n 1 which will be gated by the leading edges of slots 50, 52.
  • a second number of encoder pulses n 2 will be gated by the leading edge of slots 52 and 54. If the encoder resolution C is equal to belt speed/encoder frequency (mm/pulses), the following relationships exist:
  • a correction voltage is sent in a feedback loop to the laser driver 30 (FIG. 1), to adjust the start of scan and provide appropriate registration for the new, lateral position of the belt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Laser Beam Printer (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Color Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)
US08/185,294 1992-03-30 1994-01-24 Apparatus for transverse image registration of a photoreceptor belt Expired - Fee Related US5815481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/185,294 US5815481A (en) 1992-03-30 1994-01-24 Apparatus for transverse image registration of a photoreceptor belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85974692A 1992-03-30 1992-03-30
US08/185,294 US5815481A (en) 1992-03-30 1994-01-24 Apparatus for transverse image registration of a photoreceptor belt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US85974692A Continuation 1992-03-30 1992-03-30

Publications (1)

Publication Number Publication Date
US5815481A true US5815481A (en) 1998-09-29

Family

ID=25331611

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/185,294 Expired - Fee Related US5815481A (en) 1992-03-30 1994-01-24 Apparatus for transverse image registration of a photoreceptor belt

Country Status (2)

Country Link
US (1) US5815481A (ja)
JP (1) JP3247751B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275244B1 (en) 2000-09-14 2001-08-14 Xerox Corporation Color printing image bearing member color registration system
US6909516B1 (en) 2000-10-20 2005-06-21 Xerox Corporation Two dimensional surface motion sensing system using registration marks and linear array sensor
EP2039636A1 (de) * 2007-09-20 2009-03-25 Fischer & Krecke GmbH Verfahren und Vorrichtung zur Messung der Querlage einer fortlaufend transportierten Bahn
US20110139590A1 (en) * 2009-12-15 2011-06-16 Hurst James H Belt edge sensor and actuator for controlling tracking of such belt

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA01008717A (es) * 2000-09-14 2004-08-12 Xerox Corp Sistema de registro de color de direccion de proceso de impresion de color con colas de milano expandidas.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559568A (en) * 1969-01-14 1971-02-02 Armstrong Cork Co Method of controlling pattern repeat length
US3783293A (en) * 1969-04-17 1974-01-01 Crosfield Electronics Ltd Register control systems
US4146797A (en) * 1976-12-30 1979-03-27 Tokyo Kikai Seisakusho, Ltd. Device for detecting the position of web side edge
US4184080A (en) * 1977-06-30 1980-01-15 Molins Machine Company, Inc. Ratiometric edge detector system
US4226123A (en) * 1978-12-06 1980-10-07 Ford Motor Company Non-synchronous four speed automatic transmission with overdrive
US4315201A (en) * 1977-03-10 1982-02-09 Canon Kabushiki Kaisha Alignment apparatus for mask and wafer used in manufacturing semiconductor circuit elements
US4641070A (en) * 1982-05-19 1987-02-03 Heidelberger Druckmaschinen Ag Device for determining and adjusting the position of a web
US4745288A (en) * 1986-08-18 1988-05-17 Zerand Corporation Photo responsive self adjusting registration controller accounting for changes in the reflectiveness of a web
US4857745A (en) * 1987-04-28 1989-08-15 Crosfield Electronics Limited Method and apparatus for monitoring the passage of marks on a web
US4864631A (en) * 1984-11-02 1989-09-05 Adolph Coors Company Obstructed-field-indicia-sensing device
US5208796A (en) * 1991-01-03 1993-05-04 Xerox Corporation Method and apparatus for transverse image registration on photoreceptive belts

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559568A (en) * 1969-01-14 1971-02-02 Armstrong Cork Co Method of controlling pattern repeat length
US3783293A (en) * 1969-04-17 1974-01-01 Crosfield Electronics Ltd Register control systems
US4146797A (en) * 1976-12-30 1979-03-27 Tokyo Kikai Seisakusho, Ltd. Device for detecting the position of web side edge
US4315201A (en) * 1977-03-10 1982-02-09 Canon Kabushiki Kaisha Alignment apparatus for mask and wafer used in manufacturing semiconductor circuit elements
US4184080A (en) * 1977-06-30 1980-01-15 Molins Machine Company, Inc. Ratiometric edge detector system
US4226123A (en) * 1978-12-06 1980-10-07 Ford Motor Company Non-synchronous four speed automatic transmission with overdrive
US4641070A (en) * 1982-05-19 1987-02-03 Heidelberger Druckmaschinen Ag Device for determining and adjusting the position of a web
US4864631A (en) * 1984-11-02 1989-09-05 Adolph Coors Company Obstructed-field-indicia-sensing device
US4745288A (en) * 1986-08-18 1988-05-17 Zerand Corporation Photo responsive self adjusting registration controller accounting for changes in the reflectiveness of a web
US4857745A (en) * 1987-04-28 1989-08-15 Crosfield Electronics Limited Method and apparatus for monitoring the passage of marks on a web
US5208796A (en) * 1991-01-03 1993-05-04 Xerox Corporation Method and apparatus for transverse image registration on photoreceptive belts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275244B1 (en) 2000-09-14 2001-08-14 Xerox Corporation Color printing image bearing member color registration system
US6909516B1 (en) 2000-10-20 2005-06-21 Xerox Corporation Two dimensional surface motion sensing system using registration marks and linear array sensor
EP2039636A1 (de) * 2007-09-20 2009-03-25 Fischer & Krecke GmbH Verfahren und Vorrichtung zur Messung der Querlage einer fortlaufend transportierten Bahn
US20110139590A1 (en) * 2009-12-15 2011-06-16 Hurst James H Belt edge sensor and actuator for controlling tracking of such belt
US8177052B2 (en) * 2009-12-15 2012-05-15 Eastman Kodak Company Belt edge sensor and actuator for controlling tracking of such belt

Also Published As

Publication number Publication date
JPH0671935A (ja) 1994-03-15
JP3247751B2 (ja) 2002-01-21

Similar Documents

Publication Publication Date Title
US5208796A (en) Method and apparatus for transverse image registration on photoreceptive belts
EP0679018B1 (en) Method and apparatus for lateral registration control in color printing
US5302973A (en) Method and apparatus for image registration in a single pass ROS system
US5260725A (en) Method and apparatus for registration of sequential images in a single pass, color xerographic printer
CA1145170A (en) Apparatus and method for correcting imperfection in a polygon used for laser scanning
EP0998128B1 (en) Printer and method of correcting color registration error thereof
US4386272A (en) Apparatus and method for generating images by producing light spots of different sizes
US5383014A (en) Photoreceptor belt motion sensor using linear position sensors
US5418556A (en) Method and apparatus for registering multiple images in a color xerographic system
EP0596641B1 (en) Method and apparatus for image registration
US5808658A (en) Regulator with phase shift for polygon rephase without divide
US20010010533A1 (en) Method for detecting quantity of laser scanning positional deviation on photosensitive body, correcting method thereof and laser color image forming apparatus
US5815481A (en) Apparatus for transverse image registration of a photoreceptor belt
US5321434A (en) Digital color printer with improved lateral registration
US6525751B2 (en) Raster output scanner fraction-of-scan polygon rephasing and algorithm
US5412409A (en) Image registration for a raster output scanner (ROS) color printer
US5264872A (en) Raster output scanner with improved process direction registration
US5654951A (en) Dynamic switching speed control
US5710751A (en) Polygon facet error effects elimination in multi-pass color systems
US5451778A (en) Apparatus and method for beam steering in a raster output scanner
US7949289B2 (en) Image forming apparatus and image forming adjustment method
US5394175A (en) Transverse image registration for a digital color printer
US8400488B2 (en) Optical scanning apparatus and control method therefor
EP0908791B1 (en) Subpixel misregistration correction by means of ros rephasing a multiphase image on an image color printer
EP0917342A2 (en) Printer and scanning synchronization data calculating method therefor

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BANK ONE, NA, AS ADMINISTRATIVE AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:013153/0001

Effective date: 20020621

AS Assignment

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,TEXAS

Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476

Effective date: 20030625

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20060929

AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK;REEL/FRAME:066728/0193

Effective date: 20220822