US5677163A - Cleaning compositions comprising the subtilisin enzyme encoded by the gene sprC - Google Patents

Cleaning compositions comprising the subtilisin enzyme encoded by the gene sprC Download PDF

Info

Publication number
US5677163A
US5677163A US08/431,387 US43138795A US5677163A US 5677163 A US5677163 A US 5677163A US 43138795 A US43138795 A US 43138795A US 5677163 A US5677163 A US 5677163A
Authority
US
United States
Prior art keywords
composition
enzyme
cleaning
protease
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/431,387
Other languages
English (en)
Inventor
Stanley E. Mainzer
Pushkaraj L. Lad
Brian F. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danisco US Inc
Original Assignee
Genencor International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genencor International Inc filed Critical Genencor International Inc
Priority to US08/431,387 priority Critical patent/US5677163A/en
Application granted granted Critical
Publication of US5677163A publication Critical patent/US5677163A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase

Definitions

  • compositions comprising a proteolytic enzyme having enhanced alkaline and/or thermal stability.
  • compositions comprise a substantially pure subtilisin isolated from Bacillus sp. or a variant Bacillus organism, which subtilisin has enhanced alkaline and thermal stability.
  • enzymes and particularly subtilisins, are well known for use in cleaning compositions such as detergents, dishcare formulations, detergent additives, hard surface cleaners and the like, for laundry cleaning, household and industrial cleaning.
  • Bacillus subtilisin enzymes are commercially available for use in cleaning compositions, for example, B. amyloliquefaciens commercially available from Novo Industries, B. lentus (i.e., SavinaseTM and EsperaseTM) commercially available from Novo Industries, and B. alcalophilus (MaxacalTM) commercially available from Gist-brocades.
  • B. amyloliquefaciens commercially available from Novo Industries
  • B. lentus i.e., SavinaseTM and EsperaseTM
  • B. alcalophilus MaxacalTM
  • This invention relates to cleaning compositions comprising a cleaning effective amount of a substantially pure proteolytic enzyme having enhanced thermal stability and an appropriate cleaning formulation.
  • the cleaning compositions of the present invention may be liquid or solid (granular) and may be used for laundry cleaning, household cleaning (i.e., cleaning hard surfaces, dishcare and the like) or industrial cleaning.
  • compositions comprise a substantially pure, thermally stable proteolytic enzyme characterized by the following amino acid sequence: ##STR1##
  • the enzyme useful in the cleaning composition is from a variant production strain, preferably a Bacillus strain. Specifically, such embodiment comprises using an enzyme wherein the gene coding for the enzyme LG-12, (sprC) is cloned and expressed in a Bacillus organism, preferably Bacillus subtilis.
  • the enzyme useful in the cleaning compositions is a mutant or variant enzyme as defined herein and/or the strain producing such enzyme is a mutant or variant strain, as defined herein.
  • FIG. 1 shows the amino acid sequence of subtilisins from B. licheniformis (SEQ ID NO:2), B. sp. (LG-12) (SEQ ID NO:1), B. amyloliquefaciens (SEQ ID NO:3), B. lentus (EsperaseTM) (SEQ ID NO:4) and B. lentus (SavinaseTM) (SEQ ID NO:5).
  • FIG. 2 shows the homology between the amino acid sequences of subtilisins from B. amyloliquefaciens (SEQ ID NO:3), B. alcalophilus (SEQ ID NO:6), B. sp. (LG-12) (SEQ ID NO:1) and B. sp. (LGX) (SEQ ID NO:7).
  • FIG. 3 shows a restriction map of the spr genes.
  • FIG. 4 shows a map of plasmid pBN2.
  • FIGS. 5a and b show a map for the cloning of sprC.
  • novel subtilisin enzymes isolated from B. sp. strain designated LG-12, and particularly the subtilisin enzyme from the gene sprC, designated in FIG. 1 as LG-12, have enhanced thermal stability and, therefore, are useful in cleaning compositions.
  • These compositions may take on a variety of forms such as for laundry cleaning, household and industrial cleaning, and the like.
  • the cleaning compositions comprise suitable cleaning formulations as defined herein, and a proteolytic enzyme (subtilisin) having enhanced thermal stability which can be used to clean a wide variety of materials.
  • the compositions can be added to aqueous solution or solid powder and used according to conventional cleaning techniques.
  • a preferred enzyme useful in the present invention is a Bacillus sp. subtilisin characterized by the amino acid sequence designated as LG-12 in FIG. 1.
  • the isolated and purified enzyme is similar in sequence (degree of homology) and synthetic substrate hydrolysis to B. amyloliquefaciens subtilisins, yet has thermal and pH stability profiles similar to B. lentus subtilisins, and particularly EsperaseTM, commercially available from Novo Industries.
  • protease producing strains were isolated from soil known to have neutral to alkaline conditions and then purified.
  • microorganism of the present invention is not limited to the Bacillus strain (LG-12) as natural and artificial mutants or variants of the microorganism can be used. Further, genetic engineering techniques applicable to subtilisin production, such as transformation of corresponding genes (for example, sprC) of the present strain (LG-12) to other host cells, may also be applied and the subtilisin produced by these techniques and then isolated, are included in the present invention. These strains are referred to herein as variant strains.
  • a mutant or variant strain of LG-12 may be obtained by environmental selection pressure techniques, by UV irradiation, or by the use of mutagenic chemicals as known to those skilled in the art.
  • a mutant or variant strain may also be produced by genetic manipulation techniques, for example by the transfer of plasmid DNA to a multicopy host or by the excision of the chromosomal genes coding for the protease from the cells of a protease producing bacteria, followed by the cloning of said genes into a suitable vector molecule.
  • Modified enzymes of the present invention encompass such mutant, variant or cloned strains with retained, altered or enhanced ability to produce protease.
  • the LG-12 protease may be mutated by the introduction of a mutation into isolated DNA encoding the protease, which, upon expression of the DNA, results in the substitution, deletion or insertion of at least one amino acid at a predetermined site in the protease.
  • This method is useful in creating mutants of wild-type proteins (where the "precursor” protein is the wild-type) or reverting mutants to the wild-type (where the "precursor” is the mutant).
  • Such methods are known to those skilled to the art and are described fully in U.S. Pat. No. 4,760,025 now RE 34,606 (issued May 10, 1994) (Estell, et al.) and WO 91/06637 corresponding to U.S. Pat. No. 5,185,258, which are incorporated herein by reference.
  • a subtilisin producing microorganism belonging to the genus Bacillus may be cultured in a medium for enzyme isolation and purification, as described herein and as known to those skilled in the art. Liquid or solid culture can be used. Culturing conditions and temperatures may vary depending on the desired rate of growth of the microorganism and such methods are known to those skilled in the art.
  • a soil sample was collected from the Los Gatos Creek in Northern California, which runs at high pH's in the winter months. The sample was incubated at 55° C. for two and a half hours to select for the spore formers. It was then inoculated into five different enrichment media which included: gravy; starch carbonate broths, one with raw soy meal and one without; a carbonate only media and a media with raw soy meal. All of the enrichment media were at pH 10, and were made with tap water. The cultures were then plated onto media at pH 7.5 and pH 10.
  • protease producers were then grown up to 100 ml and concentrated using ammonium sulphate precipitations. (Dixon, M. and Webb, E. C. (1979) Enzymes, pp. 31-33).
  • the purified isolates were then assayed for their activities on synthetic substrates, sAAPFpNA and sAAApNA, by methods as described in Estell, et al., J. Biol. Chem 260:6518, 1985. From the activity screen, LG-12 was selected for further study.
  • LG-12 protease was estimated to be a protein of approximately 27,000-29,000 molecular weight.
  • antisera against proteases from B. amyloliquefaciens, B. licheniformis and B. subtilis exhibited some cross-reactivity with LG-12 protease.
  • antisera against B. lentus protease, (SavinaseTM and MaxacalTM) showed no cross-reactivity.
  • LG-12 protease The ability of LG-12 protease to hydrolyze various commercial synthetic substrates was tested as compared to other proteases from different Bacillus organisms, as described herein. From such comparative testing it was determined that LG-12 protease has a substrate profile more similar to B. amyloliquefaciens protease than B. lentus protease. As described below, this substrate profile is significant in terms of distinguishing this novel enzyme from previously described Bacillus enzymes, since LG-12 protease has an alkaline and thermal stability profile similar to B. lentus proteases but a substrate profile similar to B. amyloliquefaciens. Biochemical characterization of LG-12 protease indicated its value for the industrial applications.
  • the alkalophilic Bacillus sp. designated as LG-12, was isolated as described above and found to produce at least two extracellular proteases.
  • LG-12 The 3' portion of a protease gene (sprD) from Bacillus sp. strain LG-12 was cloned on a 0.9 kilobase pair (kb) HindIII fragment, shown in FIG. 3.
  • Three additional serine protease genes sprA, sprB, and sprC
  • LG-12 protease was identified as the product of the sprC gene.
  • the product of sprD is referred to as LGX.
  • LG-12 and LGX are 77% identical to each other and about 65% identical to the B. amyloliquefaciens subtilisin.
  • LG-12 and LGX are substantially homologous from a sequence perspective, these enzymes have different biochemical properties.
  • One of the differences is that in a standard purification protocol, at pH 6.2 LGX binds to DEAE-Trisacryl, but LG-12 does not. LGX bound to DEAE-Trisacryl is eluted with 0.2-0.4M NaCl. This suggests that compared to LG-12, LGX has a greater number of net negative charges on the surface (at pH 6.2).
  • LGX When characterized immunochemically, LGX showed no cross-reactivity with antisera against protease from LG-12, B. amyloliquefaciens, B. licheniformis or B. lentus. LGX exhibited different kinetic properties than LG-12 and exhibited poor thermal stability.
  • FIG. 2 comparing the sequence of LG-12 protease and LGX protease with known sequences of B. amyloliquefaciens and B. alcalophilus (lentus) proteases, demonstrates that LG-12 is 65% homologous with B. amyloliquefaciens and 64% homologous with B. lentus.
  • the sequences of LG-12 and LGX are compared with subtilisins from B. licheniformis, B. amyloliquefaciens, and B. lentus.
  • the sequences for B. licheniformis and B. amyloliquefaciens are from genes cloned at Genencor International, Inc.
  • Sequences for B. lentus (SavinaseTM and EsperaseTM) are from PCT patent application WO 89/06279, published Jul. 13, 1989, by Hastrup, et al.
  • LG-12 protease was recovered by dialyzing cell broth against 10 mM TES buffer, at pH 6.2. The dialyzed broth was loaded on a DEAE-Trisacryl column. Unbound material was loaded on a CM-Trisacryl column. Absorbed enzyme was eluted with 10 mM TES, 0.4M NaCl at pH 6.2. This recovery and purification procedure was carried out substantially as described in Estell, et al., supra, incorporated herein.
  • LG-12 enzyme isolated and purified by methods described herein was used in the experiments detailed below. Cloned LG-12 expressed in Bacillus subtilis was used to measure thermal stability.
  • the subtilisin enzymes useful in the present invention can be formulated as a purposefully added ingredient into any known powdered (granular) or liquid cleaning composition having a pH between about 6.5-12.0 at levels of about 0.01 to about 5% (preferably 0.05 to 0.5%) by weight of the cleaning composition.
  • a "cleaning effective amount" means between about 0.01 to about 5% enzyme by weight of the cleaning composition.
  • These cleaning compositions can also include other enzymes such as other known proteases, amylases, lipases or cellulases (or components thereof), as well as bleaches, colorants, builders, stabilizers, emulsifiers, surfactants and any other known excipients.
  • LG-12 subtilisin does not create any special use limitation.
  • any temperature and pH suitable for such cleaning compositions containing enzymes is also suitable for the present compositions.
  • the present compositions may be used at higher temperatures and at higher pH.
  • the enzymes of the present invention when encompassed in detergent formulations, they may be formulated with detergents or other surfactants in accord with methods known in the art for use in industrial processes, especially laundry.
  • laundry detergent compositions the enzymes are combined with detergents, builders, bleach and/or fluorescent whitening agents.
  • Suitable detergents include linear alkyl benzene sulfonates, alkyl ethoxylated sulfate, sulfated linear alcohol or ethoxylated linear alcohol.
  • the compositions may be formulated in granular or liquid form.
  • LG-12 Based on the profile of the preferred enzyme (LG-12), it is contemplated that this enzyme will be particularly useful in dishcare applications, which often require high temperatures and/or more alkaline pH. Such dishcare products can be liquid or granular for automatic dishwashers or for manual dishwashing.
  • One embodiment of the present invention comprises an automatic dishwashing detergent composition
  • a nonionic surface-active agent surfactant
  • a proteolytic enzyme comprising a nonionic surface-active agent (surfactant) and a proteolytic enzyme.
  • the surface-active component comprises at least about 0.5% of a nonionic surface-active agent.
  • the surfactant level desirably is kept below about 20% in the case of a granular detergent composition. Using more than about 20% in the case of granular detergent can contribute to a lumping and caking tendency of the product.
  • suitable automatic dishwashing detergents are described in U.S. Pat. No. 4,162,987, the disclosure of which is incorporated herein by reference.
  • Other known dishwashing compositions are described in U.S. Pat. Nos. 4,753,748; 3,697,451; 4,501,681 and 4,591,448; which are incorporated herein by reference.
  • the enzyme of the present invention may be used in any of these dishcare formulations
  • emulsifiers or surfactants anionic, nonionic, or zwitterionic
  • surfactants anionic, nonionic, or zwitterionic
  • compositions of the present invention may include fragrances, dyes, builders (including alumino-silicate (Zeolite) builders), stabilizers, buffers, etc.
  • Stabilizers may be included to achieve a number of purposes.
  • the stabilizers may be directed toward establishing and maintaining effectiveness of the enzymes from original formulation components or even intermediate products existing after the formulation is placed in an aqueous solution. Since enzymes may be hindered in hydrolysis of substrates because of heavy metals, organic compounds, etc., suitable stabilizers which are generally known in the art may be employed to counter such effects and achieve maximum effectiveness of the enzymes within the formulation.
  • Buffering agents maybe utilized to maintain desired pH levels for aqueous solutions.
  • Buffering agents generally include all such materials which are well known to those skilled in the detergent art and include, but are not limited to, carbonates, phosphates, silicates, borates and hydroxides.
  • the source for chromosomal DNA for cloning is Bacillus sp. LG-12.
  • the host E. coli strains are MM294 and JM101 (see Sambrook, et al., Molecular Cloning, a Laboratory Manual (1989)) and the host Bacillus strain is BG2036, a variant of I168 which has been deleted for the two proteases, Npr and Apr, using methods described in Stahl, M. L., J. Bact. (1984) 158:411-418. All bacteria in this example are grown on Luria-Bertani medium or on 1.5% agar plates of the same composition, containing either ampicillin or neomycin where appropriate.
  • DNA sequencing refers to the determination of the DNA nucleotide sequence through dideoxynucleotide tezmination sequencing (Ausubel, F. M.; Brent, R.; Kingston, R. E.; Moore, D. D.; Seidman, J. G.; Smith, J. A. and Struhl, K.; Short Protocols in Molecular Biology, (1989) 217-225).
  • Bacillus shuttle vector pBN2 was derived by directly ligating the SnaBI/EcoRI fragment of pUB110, the HindIII/PvuII fragment of pBR322 and the HindIII/EcoRI polylinker fragment of M13mp19 (FIG. 4).
  • the nick translated (Perbal, B., ibid., p. 439) probe used in the Souther analysis was a plasmid, pS4.5, containing the Bacillus amyloliquefaciens subtilisin aprE gene (Wells, J. A., et al., Nuc. Acids Res. 11:7911-7922 (1983).
  • An 0.9 kb HindIII fragment, identified by this procedure was cloned into pBR322 which had been previously digested with HindIII and dephosphorylated with calf intestine alkaline phosphatase (Perbal, B., ibid., 403-404).
  • the positive clones were identified by colony hybridization (Perbal, B., ibid., p. 439) and partially sequenced by subcloning into M13mp18 and M13mp19 (Perbal, B., ibid., 585-618). Sequencing of the fragment revealed an open reading frame with 50% identity to the C-terminal half of the probe amino acid sequence.
  • the upstream sequence together with several additional open reading frames was obtained by probing a BglII restricted Southern blot of the LG-12 chromosomal DNA with the nick translated 0.9 kb HindIII gene fragment.
  • a 6.8 kb BglII fragment was cloned into the BamHI site of pBR322 and the appropriate transformant identified by colony hybridization (pBR-BglLG-12). This fragment was subcloned into M13mp18 and M13mp19 and the entire sequence determined in both directions.
  • a representative restriction map of this area is shown in FIG. 3.
  • the sprC gene was then subcloned on a HpaI fragment into the SmaI site of the Bacillus shuttle vector, pBN2, for expression in Bacillus subtilis (pBN-SmaLG-12).
  • the final construction was transformed into Bacillus subtilis BG2036 (Anagnostopoulos, C., J. Bact. (1961) 81:741-746) and maintained as a replicating plasmid under neomycin selection.
  • the substrate profile for LG-12 protease is more similar to B. amyloliquefaciens protease than the B. lentus (SavinaseTM) protease.
  • SavinaseTM hydrolyzed sAAA at a proportionally higher rate (ratio of 6.5) than B. amyloliquefaciens protease and LG-12 protease (ratios of 75 and 62 respectively).
  • LG-12 and B. amyloliquefaciens protease hydrolyzed sAAPLpNA ratios 1.5 to 1.8
  • SavinaseTM ratio of 6
  • Parameters 15 ppm enzyme, 10 minutes at 60° C. without Ca++ and/or with 50 mM CaCl 2 , measure stability at each pH unit from 4-11.
  • Buffer blend was prepared by mixing 50 mM each glycine, TAPS, PIPES and acetate. The pH of the buffer blend was adjusted at each unit between 4-11 so that the pH was corrected for the temperature effect as follows: a) 0.016 pH/° C. if buffer blend is pH 11-8; b) 0.011 pH/° C. if buffer blend is pH 7-6; and c) 0.006 pH/° C. if buffer blend is pH 5-4.
  • the protease sample was diluted to 30 ppm with the appropriate buffer blend from above.
  • the sample was desalted using a Pharmacia PD-10 column, equilibrated with 25 mL of the appropriate buffer blend. To the column were added 2.5 mL of each 30 ppm sample and the samples were eluted with 3.5 mL buffer blend.
  • Samples were assayed using the sAAPFpNA assay (pH 8.6, 25° C.). The samples were adjusted to 15 ppm with buffer blend and CaCl 2 was added to achieve 50 mM CaCl 2 as needed. The sAAPFpNA activity was measured in duplicate at time 0, and then an aliquot of 200 uL was placed into 2 greased mini-Eppendorf centrifuge tubes. The tubes were placed in a Hybaid Thermal Reactor programmed to be at 60° C. for 10 minutes. After 10 minutes at the appropriate temperature the samples were immediately placed in an ice bath and cooled for 2 minutes and then assayed for remaining activity.
  • sAAPFpNA assay pH 8.6, 25° C.
  • LG-12 enzyme without Ca++ at a pH>6, has an increased amount of enzymatic activity remaining and thus has a broader pH stability than SavinaseTM.
  • Table III LG-12 enzyme without Ca++, at a pH>6, has an increased amount of enzymatic activity remaining and thus has a broader pH stability than SavinaseTM.
  • LG-12 has 79% activity reining whereas SavinaseTM has only 54% activity remaining.
  • all enzymes had enhanced pH stability in the presence of Ca++, but LG-12 had the best stability.
  • Parameters 15 ppm enzyme, pH 10.0, 10 minutes at 60° C. without Ca++, 60° C. with 50 mM CaCl 2 or 70° C. with 50 mM CaCl 2 .
  • Protease samples were diluted to 30 ppm with 100 mM glycine, pH 10.0 at 25° C.
  • the samples were desalted using a Pharmacia PD-10 column, equilibrated with 25 mL 100 mM glycine, pH 10.0.
  • To the column were added 2.5 mL of each 30 ppm sample, and each sample was eluted with 3.5 mL 100 mM glycine, pH 10.0.
  • Samples were assayed using the sAAPFpNA assay (pH 8.6, 25° C.). The samples were adjusted to 15 ppm with 100 mM glycine, pH 10.0, and CaCl 2 was added to achieve 50 mM CaCl 2 as needed.
  • the sAAPFpNA activity of solutions with and without Ca++ was measured in duplicate at time 0 and an aliquot of 200 uL was added into greased mini-Eppendorf centrifuge tubes as follows: 1) 2 tubes for the 0 Ca++; b) 4 tubes for the 50 mM Ca++ (2 for 60° C. and 2 for 70° C.). The tubes were placed in a Hybaid Thermal Reactor programmed at 60° C. or 70° C. for 10 minutes. After 10 minutes at the appropriate temperature the tubes were immediately placed in an ice bath and cooled for 2 minutes, and then assayed for remaining activity.
  • LG-12 enzyme and EsperaseTM exhibited enhanced stability in the presence or absence of calcium ions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Detergent Compositions (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
US08/431,387 1992-09-24 1995-04-28 Cleaning compositions comprising the subtilisin enzyme encoded by the gene sprC Expired - Lifetime US5677163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/431,387 US5677163A (en) 1992-09-24 1995-04-28 Cleaning compositions comprising the subtilisin enzyme encoded by the gene sprC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95085692A 1992-09-24 1992-09-24
US08/431,387 US5677163A (en) 1992-09-24 1995-04-28 Cleaning compositions comprising the subtilisin enzyme encoded by the gene sprC

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US95085692A Continuation 1992-09-24 1992-09-24

Publications (1)

Publication Number Publication Date
US5677163A true US5677163A (en) 1997-10-14

Family

ID=25490936

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/431,387 Expired - Lifetime US5677163A (en) 1992-09-24 1995-04-28 Cleaning compositions comprising the subtilisin enzyme encoded by the gene sprC

Country Status (8)

Country Link
US (1) US5677163A (es)
EP (1) EP0662136B1 (es)
AT (1) ATE217346T1 (es)
CA (1) CA2145420C (es)
DE (1) DE69331907T2 (es)
ES (1) ES2174853T3 (es)
MX (1) MX9305916A (es)
WO (1) WO1994006915A1 (es)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003072746A2 (en) * 2002-02-26 2003-09-04 Genencor International, Inc. Subtilisin carlsberg proteins with reduced immunogenicity
US20070148199A1 (en) * 2003-09-10 2007-06-28 Bott Richard R Preparations for topical skin use and treatment
US20070270574A1 (en) * 2000-04-03 2007-11-22 Novozymes A/S Subtilisin variants
US20080199417A1 (en) * 2005-05-23 2008-08-21 Dow Corning Corporation Personal Care Composition Comprising Saccharide-Siloxane Copolymers
US20080209645A1 (en) * 2005-05-23 2008-09-04 Dow Corning Corporation Surface Treatment Compositions Comprising Saccharide-Siloxane Copolymers
US20090258058A1 (en) * 2006-05-23 2009-10-15 Dow Corning Corporation Novel silicone film former for delivery of actives
EP2647701A3 (en) * 2008-06-06 2013-12-25 The Procter and Gamble Company Compositions and methods comprising variant microbial proteases
US8853372B2 (en) 2010-08-23 2014-10-07 Dow Corning Corporation Saccharide siloxanes stable in aqueous environments and methods for the preparation and use of such saccharide siloxanes
US8907026B2 (en) 2004-12-23 2014-12-09 Dow Corning Corporation Crosslinkable saccharide-siloxane compositions, and networks, coatings and articles formed therefrom
US20150376554A1 (en) * 2013-02-14 2015-12-31 Novozymes A/S Industrial and Institutional Laundering Using Multi-Enzyme Compositions
WO2016069552A1 (en) * 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
US20170342348A1 (en) * 2014-12-10 2017-11-30 Henkel Ag & Co. Kgaa Detergents and cleaning agents comprising a combination of amylase and protease
EP4159833A3 (en) * 2009-12-09 2023-07-26 The Procter & Gamble Company Fabric and home care products

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160222368A1 (en) * 2013-09-12 2016-08-04 Danisco Us Inc. Compositions and Methods Comprising LG12-CLADE Protease Variants
WO2016079110A2 (en) * 2014-11-19 2016-05-26 Novozymes A/S Use of enzyme for cleaning
DK3268471T3 (da) * 2015-03-12 2019-12-02 Danisco Us Inc Sammensætninger og fremgangsmåder omfattende lg12-clade-proteasevarianter
CN110777136B (zh) * 2019-11-26 2022-12-30 山西大学 一种洗涤用的碱性蛋白酶突变体及其在液体洗涤剂中的应用
CN112458072B (zh) * 2020-12-21 2022-04-08 山东隆科特酶制剂有限公司 一种碱性蛋白酶突变体及其制备
CN112662652A (zh) * 2021-01-20 2021-04-16 天津科技大学 一种胶原降解活力降低的碱性蛋白酶突变体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480037A (en) * 1982-02-08 1984-10-30 Showa Denko Kabushiki Kaisha Alkaline protease and preparation method thereof
WO1988001293A1 (en) * 1986-08-14 1988-02-25 Novo Industri A/S Alkaline protease derived from bacilles production and use thereof
US4764470A (en) * 1986-02-05 1988-08-16 Genex Corporation Alkaline protease produced by a bacillus
US4771003A (en) * 1985-10-22 1988-09-13 Genex Corporation Heat stable alkaline proteases produced by a bacillus
US4797362A (en) * 1985-06-06 1989-01-10 Lion Corporation Alkaline proteases and microorganisms producing same
WO1992007067A1 (en) * 1990-10-12 1992-04-30 Novo Nordisk A/S Novel proteases
EP0496361A2 (en) * 1991-01-22 1992-07-29 Kao Corporation Detergent composition
WO1992017579A1 (en) * 1991-03-29 1992-10-15 Genencor International, Inc. Alkaline protease 3733, its production and use in cleaning contact lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480037A (en) * 1982-02-08 1984-10-30 Showa Denko Kabushiki Kaisha Alkaline protease and preparation method thereof
US4797362A (en) * 1985-06-06 1989-01-10 Lion Corporation Alkaline proteases and microorganisms producing same
US4771003A (en) * 1985-10-22 1988-09-13 Genex Corporation Heat stable alkaline proteases produced by a bacillus
US4764470A (en) * 1986-02-05 1988-08-16 Genex Corporation Alkaline protease produced by a bacillus
WO1988001293A1 (en) * 1986-08-14 1988-02-25 Novo Industri A/S Alkaline protease derived from bacilles production and use thereof
WO1992007067A1 (en) * 1990-10-12 1992-04-30 Novo Nordisk A/S Novel proteases
EP0496361A2 (en) * 1991-01-22 1992-07-29 Kao Corporation Detergent composition
WO1992017579A1 (en) * 1991-03-29 1992-10-15 Genencor International, Inc. Alkaline protease 3733, its production and use in cleaning contact lens

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Schmidt, et al., Alkalophilic Bacillus sp. Strain LG12 has a Series of Serine Protease Genes, 6th International Conference on Bacilli, Jul. 1991. *
Woodhouse, et al., Novel Alkaline Protease from Bacillus Isolated from Soil Samples, SIM Abstract, 1989 Annual Meeting. *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7605115B2 (en) * 2000-04-03 2009-10-20 Novozymas Als Subtilisin variants
US20070270574A1 (en) * 2000-04-03 2007-11-22 Novozymes A/S Subtilisin variants
WO2003072746A3 (en) * 2002-02-26 2005-03-24 Genencor Int Subtilisin carlsberg proteins with reduced immunogenicity
US20050239043A1 (en) * 2002-02-26 2005-10-27 Harding Fiona A Subtilisin carlsberg proteins with reduced immunogenicity
WO2003072746A2 (en) * 2002-02-26 2003-09-04 Genencor International, Inc. Subtilisin carlsberg proteins with reduced immunogenicity
US20070190152A1 (en) * 2002-03-11 2007-08-16 Bott Richard R Method for providing an active agent topically to the skin
EP1663177B1 (en) * 2003-09-10 2010-03-17 Dow Corning Corporation Topical preparations comprising a hydrophilic carrier and a silicone matrix
US20070148199A1 (en) * 2003-09-10 2007-06-28 Bott Richard R Preparations for topical skin use and treatment
US8907026B2 (en) 2004-12-23 2014-12-09 Dow Corning Corporation Crosslinkable saccharide-siloxane compositions, and networks, coatings and articles formed therefrom
US8877216B2 (en) 2005-05-23 2014-11-04 Dow Corning Corporation Cosmetic and skin-care compositions comprising saccharide-siloxane copolymers
US20080199417A1 (en) * 2005-05-23 2008-08-21 Dow Corning Corporation Personal Care Composition Comprising Saccharide-Siloxane Copolymers
US20080209645A1 (en) * 2005-05-23 2008-09-04 Dow Corning Corporation Surface Treatment Compositions Comprising Saccharide-Siloxane Copolymers
US20090258058A1 (en) * 2006-05-23 2009-10-15 Dow Corning Corporation Novel silicone film former for delivery of actives
US8968773B2 (en) 2006-05-23 2015-03-03 Dow Corning Corporation Silicone film former for delivery of actives
EP2647701A3 (en) * 2008-06-06 2013-12-25 The Procter and Gamble Company Compositions and methods comprising variant microbial proteases
EP2947147A3 (en) * 2008-06-06 2015-12-23 Danisco US Inc. Compositions and methods comprising variant microbial proteases
US10563189B2 (en) 2008-06-06 2020-02-18 The Procter & Gamble Company Compositions and methods comprising variant microbial proteases
EP4159833A3 (en) * 2009-12-09 2023-07-26 The Procter & Gamble Company Fabric and home care products
US8853372B2 (en) 2010-08-23 2014-10-07 Dow Corning Corporation Saccharide siloxanes stable in aqueous environments and methods for the preparation and use of such saccharide siloxanes
US20150376554A1 (en) * 2013-02-14 2015-12-31 Novozymes A/S Industrial and Institutional Laundering Using Multi-Enzyme Compositions
WO2016069552A1 (en) * 2014-10-27 2016-05-06 Danisco Us Inc. Serine proteases
US20170342348A1 (en) * 2014-12-10 2017-11-30 Henkel Ag & Co. Kgaa Detergents and cleaning agents comprising a combination of amylase and protease

Also Published As

Publication number Publication date
ES2174853T3 (es) 2002-11-16
DE69331907D1 (de) 2002-06-13
DE69331907T2 (de) 2002-09-05
ATE217346T1 (de) 2002-05-15
EP0662136B1 (en) 2002-05-08
CA2145420C (en) 2005-01-04
EP0662136A1 (en) 1995-07-12
MX9305916A (es) 1994-03-31
WO1994006915A1 (en) 1994-03-31
CA2145420A1 (en) 1994-03-31

Similar Documents

Publication Publication Date Title
US5677163A (en) Cleaning compositions comprising the subtilisin enzyme encoded by the gene sprC
EP0571049B1 (en) Novel proteolytic enzymes and their use in detergents
JP4897186B2 (ja) 変異アルカリセルラーゼ
US5324653A (en) Recombinant genetic means for the production of serine protease muteins
AU614929B2 (en) Non-human carbonyl hydrolase mutants,DNA sequences and vectors encoding same and hosts transformed with vectors
DE69034159T2 (de) Enzymatische Waschmittelzusammensetzungen
DE69535736T2 (de) Verbesserte enzyme und diese enthaltene detergentien
JP2726799B2 (ja) 変異ズブチリシン
US6271012B1 (en) Protease muteins and their use in detergents
WO1991000345A1 (en) A mutated subtilisin protease
KR20140021051A (ko) 서브틸라제 변이체
US5646028A (en) Alkaline serine protease streptomyces griseus var. alkaliphus having enhanced stability against urea or guanidine
CA2097523C (en) Alkaline proteases from bacillus pumilus
US7858354B2 (en) Subtilases
EP0535069B1 (en) Thermostable protease from staphylothermus
JP5329958B2 (ja) サブチラーゼ
JP5202716B2 (ja) 変異アルカリセルラーゼ
JP4050654B6 (ja) 安定化酵素及び洗剤
JP4050654B2 (ja) 安定化酵素及び洗剤

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12