US5644180A - Rear motor bearing for worm gear drive motors - Google Patents

Rear motor bearing for worm gear drive motors Download PDF

Info

Publication number
US5644180A
US5644180A US08/469,520 US46952095A US5644180A US 5644180 A US5644180 A US 5644180A US 46952095 A US46952095 A US 46952095A US 5644180 A US5644180 A US 5644180A
Authority
US
United States
Prior art keywords
bearing
shaft
case
motor
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/469,520
Inventor
Harry C. Buchanan, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Electrical Systems Inc
Original Assignee
ITT Automotive Electrical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITT Automotive Electrical Systems Inc filed Critical ITT Automotive Electrical Systems Inc
Priority to US08/469,520 priority Critical patent/US5644180A/en
Assigned to ITT AUTOMOTIVE ELECTRICAL SYSTEMS, INC. reassignment ITT AUTOMOTIVE ELECTRICAL SYSTEMS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUCHANAN, HARRY C., JR.
Priority to EP96918274A priority patent/EP0830724B1/en
Priority to PCT/US1996/009347 priority patent/WO1996039738A1/en
Priority to JP9501687A priority patent/JPH11507497A/en
Priority to DE69618638T priority patent/DE69618638T2/en
Application granted granted Critical
Publication of US5644180A publication Critical patent/US5644180A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/081Structural association with bearings specially adapted for worm gear drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • F16C2380/27Motor coupled with a gear, e.g. worm gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • F16H2057/0213Support of worm gear shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/03Machines characterised by thrust bearings

Definitions

  • the rear bearings for most worm gear electric drive motors are generally designed for loads that greatly exceed the actual requirements of such drive motors. Therefore, the bearing supports and bearings are overrated and result in an unnecessary increase in the cost of production of electric drive motors for worm drive assemblies.
  • a low-cost bearing which is received, such as by press fitting, into an axial recess centrally formed in the rear end of the armature shaft, and bearing receives a non-rotating shaft in the form of a pin secured to the rear or end wall of the motor case. Since the case is formed of drawn metal, the shaft or pin can deflect slightly, in response to misalignment, accompanied by limited elastic deformation or bending of the rear motor wall.
  • the stationery bearing support pin forming a bearing shaft
  • the stationery bearing support pin may be provided with a spherical head received and retained within a semi-spherical recess in the case rear wall.
  • the spherical head permits the pin to be slightly rotated within the recess, as necessary, to compensate for alignment.
  • the sleeve bearing is provided with a flanged outer end providing for thrust loadings.
  • the rear bearing loading in an electric motor worm drive, is defined by a force that is applied orthoganally to the axis of the armature shaft. This force is the result of the separation force which occurs between the worm drive on the armature shaft and the large output gear.
  • axial thrust is mainly carried by a thrust bearing in the motor front case.
  • the separation force between the worm and the gear is a function of the worm thrust and the gear tooth design.
  • the actual bearing loading is relatively low, since the force is applied through a lever arm which represents the fixed spacing between the worm drive at the output gear, on the one hand, and the thrust bearing, on the other hand.
  • This lever arm is generally short compared to the lever arm between the thrust bearing and the rear bearing, usually by a factor of about 1 to 3.
  • the maximum loading, for any installation, can be calculated for any pressure and speed, and the life of the bearing can be predicted.
  • the concept of utilizing a bearing mounted within the recess in the armature shaft, and piloted on a non-rotating stub pin-like shaft, provides more than adequate service life for intermittent operating automotive and motor vehicle worm gear installations or other low loaded rear bearing-type motors.
  • a still further object of the invention is the provision of a rear bearing support, for an electric motor, in which a bearing is received within and secured to the armature shaft of the motor, and which bearing is piloted on a stationery support shaft carried on the motor rear case.
  • Another object of the invention is the provision of a rear bearing support, as outlined above, in which the bearing piloting shaft can move to compensate for misalignment through the bending of the motor case wall or through a pivotal connection between the wall and the support pin.
  • a further advantage of the invention resides in the fact that since the rear support bearing material is recessed within the armature shaft, the overall length of the drive motor may be correspondingly shortened, thus further reducing material costs and providing a capability of fitting the motor into smaller spaces.
  • FIG. 1 is a sectional view of a typical prior worm drive having a conventional rear bearing support
  • FIG. 2 is a sectional view of a rear bearing and support, according to this invention.
  • FIG. 3 is a modified form of the support of this invention.
  • FIG. 4 is a further modification providing for thrust loading of the armature shaft.
  • FIG. 1 of the drawings which illustrates a prior art electric motor worm drive
  • a motor casing or housing 10 supports internal permanent field magnets 11 or other suitable magnet means, and a rotating armature 12.
  • the armature 12 has an output shaft 13 carried through a thrust bearing 15 mounted in a Wear housing 16 for the bull gear or large gear 18 of the worm drive.
  • the shaft 13 is provided with threads 20 which engage the threads of the gear 18 when the armature is rotated.
  • the rear bearing of the motor includes a self-aligning semi-spherical bearing 25 mounted within a rear extension 26 of the motor housing 10 and retained in place within the extension 26 by a retainer ring 28.
  • the rear end 30 of the motor armature shaft is retained and supported within the bearing 25.
  • the bearing design is far in excess of the needs of a rear bearing support for a worm drive motor since the rear bearing load requirements are only those which can be transmitted to the bearing by the separation force between the drive worm or threads 20 and the gear 18.
  • the axial trust is carried by the bearing 15.
  • a metal motor housing case 35 which may be a deep drawn case, is formed with a rear wall 36.
  • the armature shaft 40 (FIG. 4) has a rear end which is provided with an axially aligned cylindrical recess. The recess opens toward and faces the case end wall 36.
  • a cylindrical sleeve bearing 50 is press fitted within the recess 44 and therefore is formed with an outer surface which forms a close interference fit with the shaft 40.
  • the inside surface of the bearing 50 is piloted on one end of a shaft-supporting shaft or pin 52.
  • the pin is relatively fixed or non-rotating, and the opposite end of the pin 52 is secured to the end wall 36 by any suitable attachment means, such as by radial riveting of the pin head, as shown at 34.
  • the pin may be shouldered at 60 to form a stop against the inside wall of the case, thereby supporting the pin 52 in relatively fixed relation on the case, with the extended or free end thereof received within the bearing 50.
  • a suitable sleeve bearing one formed of DU material that is a PTFE/lead composite, designed and developed to be used a dry self-lubricating bearing material.
  • auxiliary lubrication may be provided by a suitable felt or other means located within the spacing 62 located at the inner end of the recess 44 and the adjacent inner end of the bearing 50.
  • other generally self-lubricating bearing materials may be used, such as sintered bronze.
  • small ball-type bearings may also be used.
  • the assembly cost may also be reduced as well, since automated machinery may be used to provide the armature recess, to insert the sleeve bearing, and to insert and fix the supporting pin 52 within the end wall.
  • the modification as illustrated in FIG. 3 may be used for providing for self-alignment of the support pin where case deflection is not required or is not feasible.
  • a pin 52A is provided with an integral spherical end 66 received within the conforming interior of a mating protrusion 68 formed on the rear wall of the case 36. In this manner, the pin 52A is captured and supported on the wall 36a while permitting limited self-aligning movement with respect to the rear wall.
  • the shaft and bearing assembly of this invention may be modified, as shown in FIG. 4, to permit the armature shaft 40 to carry thrust.
  • the sleeve bearing 50 may be modified as shown at 50a in FIG. 4 with a generally radially extending flange 50b.
  • the flange 50b is positioned at the end of the shaft 40 so that it may run in thrust abutment with the collar or shoulder 60 of the pin 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Motor Or Generator Frames (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

An electric motor, such as a motor for operating a worm drive, has a rear bearing and rear bearing support in the form of a sleeve bearing which is received within a rearwardly facing axial opening formed in the end of the motor armature shaft. The bearing receives one end of a non-rotating pin which has its opposite end secured to the rear end wall of the motor and thus supports the armature shaft on the end wall. Minor misalignments are provided for by aligning movements of the bearing support pin accompanied by slight bending of the end wall of the motor case. In another embodiment, the pin is provided with a spherical end received within a conforming or mating recess and providing for pivotal aligning movement of the bearing support pin with respect to the motor case. The bearing may also be shouldered or flanged so that thrust forces on the shaft are transmitted to an adjacent shoulder on the bearing support pin.

Description

BACKGROUND OF THE INVENTION
The rear bearings for most worm gear electric drive motors, such as used in large quantity in the automotive field for operating window lifts, sun roofs, seat positioners, mirrors, and the like, are generally designed for loads that greatly exceed the actual requirements of such drive motors. Therefore, the bearing supports and bearings are overrated and result in an unnecessary increase in the cost of production of electric drive motors for worm drive assemblies.
A further cost factor, typical of worm drives, is the fact that the rear motor bearing must provide a self-aligning function. Since the self-aligning bearing itself must be free to move within the rear motor case or housing, complementary semi-spherical surfaces are provided for the common sleeve-type bearing which surfaces must be matched respectively in the bearing support end wall, thereby increasing the production cost. Also, since the bearing must be free to move or align itself, a retainer is required since it is not possible simply to press fit the bearing into place in the motor case.
A need therefor exists for a dependable, easy-to-fabricate, low cost, and adequate bearing support for the rear bearings for worm drive motors or similar motors which represent a cost savings, which is easier and less expensive to make, of less complexity, and with inherent self-alignment capability.
SUMMARY OF THE INVENTION
The above objects are accomplished, in this invention, by providing a low-cost bearing which is received, such as by press fitting, into an axial recess centrally formed in the rear end of the armature shaft, and bearing receives a non-rotating shaft in the form of a pin secured to the rear or end wall of the motor case. Since the case is formed of drawn metal, the shaft or pin can deflect slightly, in response to misalignment, accompanied by limited elastic deformation or bending of the rear motor wall.
In one modified form of the invention, the stationery bearing support pin, forming a bearing shaft, may be provided with a spherical head received and retained within a semi-spherical recess in the case rear wall. The spherical head permits the pin to be slightly rotated within the recess, as necessary, to compensate for alignment. In another modification, the sleeve bearing is provided with a flanged outer end providing for thrust loadings.
The rear bearing loading, in an electric motor worm drive, is defined by a force that is applied orthoganally to the axis of the armature shaft. This force is the result of the separation force which occurs between the worm drive on the armature shaft and the large output gear. In such drives, axial thrust is mainly carried by a thrust bearing in the motor front case.
The separation force between the worm and the gear is a function of the worm thrust and the gear tooth design. The actual bearing loading is relatively low, since the force is applied through a lever arm which represents the fixed spacing between the worm drive at the output gear, on the one hand, and the thrust bearing, on the other hand. This lever arm is generally short compared to the lever arm between the thrust bearing and the rear bearing, usually by a factor of about 1 to 3.
The maximum loading, for any installation, can be calculated for any pressure and speed, and the life of the bearing can be predicted. The concept of utilizing a bearing mounted within the recess in the armature shaft, and piloted on a non-rotating stub pin-like shaft, provides more than adequate service life for intermittent operating automotive and motor vehicle worm gear installations or other low loaded rear bearing-type motors.
It is accordingly an important object of this invention to provide a lower cost rear bearing support for worm drive motors.
A still further object of the invention is the provision of a rear bearing support, for an electric motor, in which a bearing is received within and secured to the armature shaft of the motor, and which bearing is piloted on a stationery support shaft carried on the motor rear case.
Another object of the invention is the provision of a rear bearing support, as outlined above, in which the bearing piloting shaft can move to compensate for misalignment through the bending of the motor case wall or through a pivotal connection between the wall and the support pin.
A further advantage of the invention resides in the fact that since the rear support bearing material is recessed within the armature shaft, the overall length of the drive motor may be correspondingly shortened, thus further reducing material costs and providing a capability of fitting the motor into smaller spaces.
Other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
FIG. 1 is a sectional view of a typical prior worm drive having a conventional rear bearing support;
FIG. 2 is a sectional view of a rear bearing and support, according to this invention;
FIG. 3 is a modified form of the support of this invention; and
FIG. 4 is a further modification providing for thrust loading of the armature shaft.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring first to FIG. 1 of the drawings which illustrates a prior art electric motor worm drive, a motor casing or housing 10 supports internal permanent field magnets 11 or other suitable magnet means, and a rotating armature 12. The armature 12 has an output shaft 13 carried through a thrust bearing 15 mounted in a Wear housing 16 for the bull gear or large gear 18 of the worm drive. The shaft 13 is provided with threads 20 which engage the threads of the gear 18 when the armature is rotated.
The rear bearing of the motor includes a self-aligning semi-spherical bearing 25 mounted within a rear extension 26 of the motor housing 10 and retained in place within the extension 26 by a retainer ring 28. The rear end 30 of the motor armature shaft is retained and supported within the bearing 25.
Typically, the bearing design is far in excess of the needs of a rear bearing support for a worm drive motor since the rear bearing load requirements are only those which can be transmitted to the bearing by the separation force between the drive worm or threads 20 and the gear 18. The axial trust is carried by the bearing 15.
The bearing arrangement of this invention not only reduces the cost, but also reduces the overall length which is necessary for the motor housing 10 as shown in the fragmentary sectional view of FIG. 2. In FIG. 2, a metal motor housing case 35, which may be a deep drawn case, is formed with a rear wall 36. The armature shaft 40 (FIG. 4) has a rear end which is provided with an axially aligned cylindrical recess. The recess opens toward and faces the case end wall 36.
A cylindrical sleeve bearing 50 is press fitted within the recess 44 and therefore is formed with an outer surface which forms a close interference fit with the shaft 40.
The inside surface of the bearing 50 is piloted on one end of a shaft-supporting shaft or pin 52. The pin is relatively fixed or non-rotating, and the opposite end of the pin 52 is secured to the end wall 36 by any suitable attachment means, such as by radial riveting of the pin head, as shown at 34. The pin may be shouldered at 60 to form a stop against the inside wall of the case, thereby supporting the pin 52 in relatively fixed relation on the case, with the extended or free end thereof received within the bearing 50.
In most applications, a suitable sleeve bearing, one formed of DU material that is a PTFE/lead composite, designed and developed to be used a dry self-lubricating bearing material. If desired, auxiliary lubrication may be provided by a suitable felt or other means located within the spacing 62 located at the inner end of the recess 44 and the adjacent inner end of the bearing 50. Under suitable circumstances, other generally self-lubricating bearing materials may be used, such as sintered bronze. Also, small ball-type bearings may also be used.
Among the many advantages resides in the fact that overall motor length has been reduced, commensurate with the elimination of the length which had been occupied by the conventional self-aligning bearing as illustrated at 25 in FIG. 1. Further, the design of the case 35 is simplified as compared to that of the case 10 since there is no need to form a shaped bearing support recess which would permit self-aligning movement of the bearing. In the embodiment as shown in FIG. 2, limited aligning movements of the shaft supporting pin 52 are accomplished by small deflections of the motor rear wall 36 in response to alignment requirements for the pin.
The assembly cost may also be reduced as well, since automated machinery may be used to provide the armature recess, to insert the sleeve bearing, and to insert and fix the supporting pin 52 within the end wall.
Optionally, the modification as illustrated in FIG. 3 may be used for providing for self-alignment of the support pin where case deflection is not required or is not feasible. In that case, a pin 52A is provided with an integral spherical end 66 received within the conforming interior of a mating protrusion 68 formed on the rear wall of the case 36. In this manner, the pin 52A is captured and supported on the wall 36a while permitting limited self-aligning movement with respect to the rear wall.
The shaft and bearing assembly of this invention may be modified, as shown in FIG. 4, to permit the armature shaft 40 to carry thrust. For this purpose, the sleeve bearing 50 may be modified as shown at 50a in FIG. 4 with a generally radially extending flange 50b. The flange 50b is positioned at the end of the shaft 40 so that it may run in thrust abutment with the collar or shoulder 60 of the pin 52.
While the forms of apparatus herein described constitute preferred embodiments of this invention, it is to be understood that the invention is not limited to these precise forms of apparatus, and that changes may be made therein without departing from the scope of the invention which is defined in the appended claims.

Claims (6)

What is claimed is:
1. In an electric motor having an outer case forming a rear wall of the motor, and a rotating armature shaft therein with an end facing said rear wall, the improvement comprising an axial opening formed in said armature shaft end, a sleeve bearing in said opening having an outer surface in engagement with said armature shaft, and a shaft supporting pin having one end rotatably received in said sleeve bearing and having a remote end supported on said motor rear wall.
2. A shaft and bearing assembly for the support of an armature shaft of an electric motor for rotation with respect to a rear wall of the motor case; comprising an axial opening formed in the armature shaft and adjacent said rear case wall; a cylindrical sleeve bearing having an outer surface tightly fitted within said opening and having an inner shaft-receiving opening; and a bearing support shaft having a first end received within said shaft-receiving opening of said bearing and having a second end supported on said rear case wall.
3. The shaft and bearing assembly of claim 2, in which said bearing support shaft is movable by deflection of said case rear wall to provide for alignment of said armature shaft within said case.
4. The shaft and bearing assembly of claim 3, in which said bearing support shaft second end is formed with an integral spherical surface, and in which said case rear wall is formed with a recess receiving said shaft second end and providing for pivotal self-aligning movement of said bearing support shaft with respect to said case wall.
5. The shaft and bearing assembly of claim 2 in which said bearing support shaft is formed with a flange positioned adjacent an inside rear surface of said case wall, and in which said sleeve bearing is formed with a generally radially extending shoulder positioned exteriorly of said shaft between said shaft and said flange for transmitting thrust from said shaft to said motor rear case wall.
6. In an electric motor having an outer case forming a rear wall of the motor, and a rotating armature shaft therein with an end facing said rear wall, the improvement comprising an axial opening formed in said armature shaft end, and a bearing having an outer annular surface forming a close fit with said armature shaft opening thereby supporting said bearing within said opening for rotation with said shaft, said bearing further having a central opening, and a relatively fixed non-rotating pin having one end received in said bearing central opening for supporting said bearing thereon and having another end attached to and supported on said case rear wall.
US08/469,520 1995-06-06 1995-06-06 Rear motor bearing for worm gear drive motors Expired - Fee Related US5644180A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/469,520 US5644180A (en) 1995-06-06 1995-06-06 Rear motor bearing for worm gear drive motors
EP96918274A EP0830724B1 (en) 1995-06-06 1996-06-05 Rear motor bearing for worm gear drive motors
PCT/US1996/009347 WO1996039738A1 (en) 1995-06-06 1996-06-05 Rear motor bearing for worm gear drive motors
JP9501687A JPH11507497A (en) 1995-06-06 1996-06-05 Rear bearing for worm gear drive motor
DE69618638T DE69618638T2 (en) 1995-06-06 1996-06-05 REAR BEARING FOR SCREW DRIVE ELECTRIC MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/469,520 US5644180A (en) 1995-06-06 1995-06-06 Rear motor bearing for worm gear drive motors

Publications (1)

Publication Number Publication Date
US5644180A true US5644180A (en) 1997-07-01

Family

ID=23864099

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/469,520 Expired - Fee Related US5644180A (en) 1995-06-06 1995-06-06 Rear motor bearing for worm gear drive motors

Country Status (5)

Country Link
US (1) US5644180A (en)
EP (1) EP0830724B1 (en)
JP (1) JPH11507497A (en)
DE (1) DE69618638T2 (en)
WO (1) WO1996039738A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060807A (en) * 1996-02-15 2000-05-09 Seiko Epson Corporation Rotating shaft support member and small motor
US20010033113A1 (en) * 2000-04-10 2001-10-25 Tadashi Takano Rotating electrical machine
US6509668B2 (en) * 1999-12-30 2003-01-21 Robert Bosch Gmbh Electric motor, in particular for hand power tools
EP1038745A3 (en) * 1999-03-24 2003-04-02 Nissin Kogyo Co., Ltd. Pump actuation motor for automotive antilock brake system
US6713917B2 (en) * 2000-06-06 2004-03-30 Valeo Auto-Electric Wischer Und Motoren Gmbh Drive device
US6719103B1 (en) * 1999-11-23 2004-04-13 Skf Engineering And Research Actuator with misalignment compensation
US20060290215A1 (en) * 2005-06-22 2006-12-28 Edward Douglas Pettitt Method to increase actuator torque
DE102008007720A1 (en) * 2008-02-06 2009-08-13 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electromotive drive with internal press fit of a bearing
DE10001138B4 (en) * 1999-01-14 2009-11-26 Asmo Co., Ltd. Motor and actuator
DE102009027092A1 (en) * 2009-06-23 2010-12-30 Robert Bosch Gmbh commutator
US8084905B2 (en) 2008-03-07 2011-12-27 Robert Bosch Gmbh Bearing for an electric actuator motor
CN103545975A (en) * 2012-07-10 2014-01-29 株式会社万都 Motor structure
DE102012222281A1 (en) * 2012-12-05 2014-06-05 Robert Bosch Gmbh Starter for cranking internal combustion engine of vehicle, has electric motor whose posterior end of armature shaft is supported by inner bearing provided in center portion of cylindrical housing
US10087984B2 (en) 2015-06-30 2018-10-02 Saint-Gobain Performance Plastics Corporation Plain bearing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813757B1 (en) * 2006-01-25 2012-02-22 VKR Holding A/S Push-pull chain window actuator
DE102008043173A1 (en) * 2008-07-04 2010-01-07 Robert Bosch Gmbh Transmission drive unit with a self-locking device

Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34667A (en) * 1862-03-18 Washing-machine
CH347680A (en) * 1957-02-07 1960-07-15 Mishima Matsuo Radial ball bearing and use of this bearing
US2975649A (en) * 1959-05-18 1961-03-21 Beaver Prec Products Inc Ball screw assembly with internal ball return
US3068714A (en) * 1959-10-08 1962-12-18 Nat Broach & Mach Nut and screw drive device of the recirculating ball type
US3068713A (en) * 1959-10-08 1962-12-18 Nat Broach & Mach Nut and screw drive device of the recirculating ball type
US3302477A (en) * 1964-11-23 1967-02-07 Gen Motors Corp Nut and screw assembly
US3333484A (en) * 1965-08-27 1967-08-01 Farrel Corp Drive mechanism with recirculating ball bearing connection
DE1477179A1 (en) * 1965-04-30 1969-03-20 Bosch Gmbh Robert Hand machine tool of particularly compact design
FR1566801A (en) * 1967-04-28 1969-05-09
US3476966A (en) * 1967-11-14 1969-11-04 Gen Electric Retaining ring locking structure
US3855486A (en) * 1972-10-11 1974-12-17 Binder Magrete Gmbh Step motor
US3937097A (en) * 1973-10-30 1976-02-10 La Technique Integrale S.A. Ball-equipped screw and nut mechanisms
US4227104A (en) * 1978-03-13 1980-10-07 Eaton Stamping Electric motor drive unit
US4258584A (en) * 1977-09-14 1981-03-31 Zahnradfabrik Friedrichshafen, Ag. Ball circulation screw gear
US4400639A (en) * 1979-11-28 1983-08-23 Hitachi, Ltd. Rotor core of electric rotary machine
US4780632A (en) * 1986-04-17 1988-10-25 Mkh Partners Alternator having improved efficiency
US4823032A (en) * 1988-08-01 1989-04-18 General Motors Corporation End frame and stator assembly for a dynamoelectric machine
US4839552A (en) * 1986-06-11 1989-06-13 Tamagawa Seiki Kabushiki Kaisha Brushless DC motor
US4868436A (en) * 1987-05-07 1989-09-19 Gruppo Industriale Ercole Marelli, S.P.A. Rotating electric machine with external rotor
US4887480A (en) * 1987-12-14 1989-12-19 American Ball Screw Externally serviceable ball screw having internal return means
US4920289A (en) * 1988-01-12 1990-04-24 Jidosha Denki Kogyo Kabushiki Kaisha Bearing holder with resilient retaining pawls
US4972113A (en) * 1989-07-14 1990-11-20 Emerson Electric Co. Structure and method of assembly of bearing support means to the stator assembly of an electric motor
US5006747A (en) * 1990-04-02 1991-04-09 United Technologies Motor Systems, Inc. Dynamoelectric machine brush rigging and method of assembly
US5008572A (en) * 1989-03-13 1991-04-16 Pacific Scientific Company Encapsulated motor with precision bearing registration
US5010266A (en) * 1987-09-03 1991-04-23 Fanuc Ltd Anti-clogging offset for rotor of synchronous motor
US5049771A (en) * 1990-06-21 1991-09-17 Iap Research, Inc. Electrical machine
US5068557A (en) * 1990-10-24 1991-11-26 Allied-Signal Inc. Generator with bearing-retaining stator
US5068556A (en) * 1989-09-07 1991-11-26 A. O. Smith Corporation Bearing bracket for a dynamoelectric machine
US5087847A (en) * 1990-06-21 1992-02-11 Robert Bosch Gmbh Bearing retainer for electromagnetic rotating actuator
US5088362A (en) * 1989-01-28 1992-02-18 Gildemeister Aktiengesellschaft Drive for workpiece spindle of machine tool
US5113114A (en) * 1990-12-18 1992-05-12 General Electric Company Multilam or belleville spring contact for retaining rings on dynamoelectric machine
US5128571A (en) * 1989-10-31 1992-07-07 Nippon Seiko K.K. Hard disk driving motor
US5144738A (en) * 1991-04-29 1992-09-08 Ford Motor Company Automatic retention adjustment of motor armature assembly
US5296773A (en) * 1993-04-20 1994-03-22 General Motors Corporation Composite rotor for a synchronous reluctance machine
US5321328A (en) * 1992-12-16 1994-06-14 Ide Russell D Motor bearing with rotatable guide
US5325736A (en) * 1992-02-27 1994-07-05 Asmo Co., Ltd. Bearing device for supporting a motor shaft
US5357160A (en) * 1992-01-24 1994-10-18 Nippon Densan Corporation IC controlled DC motor
WO1994027045A1 (en) * 1993-05-12 1994-11-24 Itt Automotive Europe Gmbh Electromotor-pump assembly
US5394043A (en) * 1993-06-29 1995-02-28 American Precision Industries Inc. High speed brushless motor
US5485044A (en) * 1993-09-30 1996-01-16 United Technologies Automotive, Inc. Motor with end play insert
US5517070A (en) * 1993-01-27 1996-05-14 Siemens Aktiengesellschaft Drive unit, in particular an electromotive window - lift drive for a motor vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4405367A1 (en) * 1994-02-19 1995-08-24 Licentia Gmbh Compact sealed moisture-proof electric motor e.g. commutator motor

Patent Citations (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34667A (en) * 1862-03-18 Washing-machine
CH347680A (en) * 1957-02-07 1960-07-15 Mishima Matsuo Radial ball bearing and use of this bearing
US2975649A (en) * 1959-05-18 1961-03-21 Beaver Prec Products Inc Ball screw assembly with internal ball return
US3068714A (en) * 1959-10-08 1962-12-18 Nat Broach & Mach Nut and screw drive device of the recirculating ball type
US3068713A (en) * 1959-10-08 1962-12-18 Nat Broach & Mach Nut and screw drive device of the recirculating ball type
US3302477A (en) * 1964-11-23 1967-02-07 Gen Motors Corp Nut and screw assembly
DE1477179A1 (en) * 1965-04-30 1969-03-20 Bosch Gmbh Robert Hand machine tool of particularly compact design
US3333484A (en) * 1965-08-27 1967-08-01 Farrel Corp Drive mechanism with recirculating ball bearing connection
FR1566801A (en) * 1967-04-28 1969-05-09
US3476966A (en) * 1967-11-14 1969-11-04 Gen Electric Retaining ring locking structure
US3855486A (en) * 1972-10-11 1974-12-17 Binder Magrete Gmbh Step motor
US3937097A (en) * 1973-10-30 1976-02-10 La Technique Integrale S.A. Ball-equipped screw and nut mechanisms
US4258584A (en) * 1977-09-14 1981-03-31 Zahnradfabrik Friedrichshafen, Ag. Ball circulation screw gear
US4227104A (en) * 1978-03-13 1980-10-07 Eaton Stamping Electric motor drive unit
US4400639A (en) * 1979-11-28 1983-08-23 Hitachi, Ltd. Rotor core of electric rotary machine
US4780632A (en) * 1986-04-17 1988-10-25 Mkh Partners Alternator having improved efficiency
US4839552A (en) * 1986-06-11 1989-06-13 Tamagawa Seiki Kabushiki Kaisha Brushless DC motor
US4868436A (en) * 1987-05-07 1989-09-19 Gruppo Industriale Ercole Marelli, S.P.A. Rotating electric machine with external rotor
US5010266A (en) * 1987-09-03 1991-04-23 Fanuc Ltd Anti-clogging offset for rotor of synchronous motor
US4887480A (en) * 1987-12-14 1989-12-19 American Ball Screw Externally serviceable ball screw having internal return means
US4920289A (en) * 1988-01-12 1990-04-24 Jidosha Denki Kogyo Kabushiki Kaisha Bearing holder with resilient retaining pawls
US4823032A (en) * 1988-08-01 1989-04-18 General Motors Corporation End frame and stator assembly for a dynamoelectric machine
US5088362A (en) * 1989-01-28 1992-02-18 Gildemeister Aktiengesellschaft Drive for workpiece spindle of machine tool
US5008572A (en) * 1989-03-13 1991-04-16 Pacific Scientific Company Encapsulated motor with precision bearing registration
US4972113A (en) * 1989-07-14 1990-11-20 Emerson Electric Co. Structure and method of assembly of bearing support means to the stator assembly of an electric motor
US5068556A (en) * 1989-09-07 1991-11-26 A. O. Smith Corporation Bearing bracket for a dynamoelectric machine
US5128571A (en) * 1989-10-31 1992-07-07 Nippon Seiko K.K. Hard disk driving motor
US5006747A (en) * 1990-04-02 1991-04-09 United Technologies Motor Systems, Inc. Dynamoelectric machine brush rigging and method of assembly
US5049771A (en) * 1990-06-21 1991-09-17 Iap Research, Inc. Electrical machine
US5087847A (en) * 1990-06-21 1992-02-11 Robert Bosch Gmbh Bearing retainer for electromagnetic rotating actuator
US5068557A (en) * 1990-10-24 1991-11-26 Allied-Signal Inc. Generator with bearing-retaining stator
US5113114A (en) * 1990-12-18 1992-05-12 General Electric Company Multilam or belleville spring contact for retaining rings on dynamoelectric machine
US5144738A (en) * 1991-04-29 1992-09-08 Ford Motor Company Automatic retention adjustment of motor armature assembly
US5357160A (en) * 1992-01-24 1994-10-18 Nippon Densan Corporation IC controlled DC motor
US5325736A (en) * 1992-02-27 1994-07-05 Asmo Co., Ltd. Bearing device for supporting a motor shaft
US5321328A (en) * 1992-12-16 1994-06-14 Ide Russell D Motor bearing with rotatable guide
US5517070A (en) * 1993-01-27 1996-05-14 Siemens Aktiengesellschaft Drive unit, in particular an electromotive window - lift drive for a motor vehicle
US5296773A (en) * 1993-04-20 1994-03-22 General Motors Corporation Composite rotor for a synchronous reluctance machine
WO1994027045A1 (en) * 1993-05-12 1994-11-24 Itt Automotive Europe Gmbh Electromotor-pump assembly
US5394043A (en) * 1993-06-29 1995-02-28 American Precision Industries Inc. High speed brushless motor
US5485044A (en) * 1993-09-30 1996-01-16 United Technologies Automotive, Inc. Motor with end play insert

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060807A (en) * 1996-02-15 2000-05-09 Seiko Epson Corporation Rotating shaft support member and small motor
DE10001138B4 (en) * 1999-01-14 2009-11-26 Asmo Co., Ltd. Motor and actuator
EP1038745A3 (en) * 1999-03-24 2003-04-02 Nissin Kogyo Co., Ltd. Pump actuation motor for automotive antilock brake system
US6719103B1 (en) * 1999-11-23 2004-04-13 Skf Engineering And Research Actuator with misalignment compensation
US6509668B2 (en) * 1999-12-30 2003-01-21 Robert Bosch Gmbh Electric motor, in particular for hand power tools
US20010033113A1 (en) * 2000-04-10 2001-10-25 Tadashi Takano Rotating electrical machine
US6713917B2 (en) * 2000-06-06 2004-03-30 Valeo Auto-Electric Wischer Und Motoren Gmbh Drive device
US20060290215A1 (en) * 2005-06-22 2006-12-28 Edward Douglas Pettitt Method to increase actuator torque
US7245053B2 (en) 2005-06-22 2007-07-17 Delphi Technologies, Inc. Method to increase actuator torque
DE102008007720A1 (en) * 2008-02-06 2009-08-13 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electromotive drive with internal press fit of a bearing
DE102008007720B4 (en) * 2008-02-06 2016-06-09 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Electromotive drive
US8084905B2 (en) 2008-03-07 2011-12-27 Robert Bosch Gmbh Bearing for an electric actuator motor
DE102009027092A1 (en) * 2009-06-23 2010-12-30 Robert Bosch Gmbh commutator
CN103545975A (en) * 2012-07-10 2014-01-29 株式会社万都 Motor structure
DE102012222281A1 (en) * 2012-12-05 2014-06-05 Robert Bosch Gmbh Starter for cranking internal combustion engine of vehicle, has electric motor whose posterior end of armature shaft is supported by inner bearing provided in center portion of cylindrical housing
US10087984B2 (en) 2015-06-30 2018-10-02 Saint-Gobain Performance Plastics Corporation Plain bearing

Also Published As

Publication number Publication date
DE69618638D1 (en) 2002-02-28
WO1996039738A1 (en) 1996-12-12
JPH11507497A (en) 1999-06-29
EP0830724B1 (en) 2002-01-02
EP0830724A1 (en) 1998-03-25
DE69618638T2 (en) 2002-07-18

Similar Documents

Publication Publication Date Title
US5644180A (en) Rear motor bearing for worm gear drive motors
US5201529A (en) Sealing device
US8084905B2 (en) Bearing for an electric actuator motor
CA1125196A (en) Devices with an electromagnetic clutch
EP1939020A1 (en) Telescopic actuator
US3960248A (en) Speed sensing device
US5677584A (en) Bearing assembly for dynamoelectric machines
US6830380B2 (en) Thrust bearing assembly with preload spring
EP0733170A1 (en) Bearing assembly with axial retention
US20070009194A1 (en) Bearing unit for a revolving radial load
EP0731285A2 (en) Assembly of a one-way clutch and a bearing
US4605235A (en) High thrust capacity shaft seal assembly for fuel pumps
US8061902B2 (en) Corrosion-resistant bearing
US4771874A (en) Self-aligning bearing
US5924698A (en) Mechanical seal
US6888276B2 (en) Electric motor
US4033556A (en) End thrust bearing arrangements for screw extruders
EP1306566B1 (en) Electric motor
CN216742783U (en) Torque transmission assembly and motor actuator
US6809447B1 (en) Windshield wiper motor with molded sleeve and thrust elements
JPS61145761A (en) Spindle, especially board lid laid spindle
CN220139379U (en) Coder seat coupling mechanism
US6641324B2 (en) Joint assembly and joint socket sleeve
JPS6139847Y2 (en)
US7021831B2 (en) Zero radial and axial clearance bearing assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: ITT AUTOMOTIVE ELECTRICAL SYSTEMS, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BUCHANAN, HARRY C., JR.;REEL/FRAME:007628/0773

Effective date: 19950802

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
REMI Maintenance fee reminder mailed
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20050701