US5612332A - Di- and triaminoguanidines, and methods of use - Google Patents

Di- and triaminoguanidines, and methods of use Download PDF

Info

Publication number
US5612332A
US5612332A US08/487,059 US48705995A US5612332A US 5612332 A US5612332 A US 5612332A US 48705995 A US48705995 A US 48705995A US 5612332 A US5612332 A US 5612332A
Authority
US
United States
Prior art keywords
hydrogen
formula
group
compound
pharmaceutically acceptable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/487,059
Inventor
Dilip R. Wagle
Peter C. Ulrich
Anthony Cerami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockefeller University
Synvista Therapeutics Inc
Original Assignee
Rockefeller University
Alteon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/590,820 external-priority patent/US4665192A/en
Priority claimed from US06/798,032 external-priority patent/US4758583A/en
Priority claimed from US07/119,958 external-priority patent/US4908446A/en
Priority claimed from US07/264,930 external-priority patent/US4983604A/en
Priority claimed from US07/605,654 external-priority patent/US5140048A/en
Priority claimed from US07/889,141 external-priority patent/US5356895A/en
Priority to US08/487,059 priority Critical patent/US5612332A/en
Application filed by Rockefeller University, Alteon Inc filed Critical Rockefeller University
Assigned to ALTEON INC. reassignment ALTEON INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WAGLE, DILIP R., ULRICH, PETER C.
Assigned to ROCKEFELLER UNIVERSITY, THE reassignment ROCKEFELLER UNIVERSITY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CERAMI, ANTHONY
Priority to PCT/US1996/009376 priority patent/WO1996040663A1/en
Priority to AU61586/96A priority patent/AU6158696A/en
Priority to US08/784,861 priority patent/US5852009A/en
Publication of US5612332A publication Critical patent/US5612332A/en
Application granted granted Critical
Priority to US09/215,612 priority patent/US6114323A/en
Priority to US09/954,514 priority patent/US20020115724A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/15Oximes (>C=N—O—); Hydrazines (>N—N<); Hydrazones (>N—N=) ; Imines (C—N=C)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4468Non condensed piperidines, e.g. piperocaine having a nitrogen directly attached in position 4, e.g. clebopride, fentanyl
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/191Tumor necrosis factors [TNF], e.g. lymphotoxin [LT], i.e. TNF-beta
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2006IL-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • A61K38/217IFN-gamma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/38Albumins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/43Guanidines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C281/00Derivatives of carbonic acid containing functional groups covered by groups C07C269/00 - C07C279/00 in which at least one nitrogen atom of these functional groups is further bound to another nitrogen atom not being part of a nitro or nitroso group
    • C07C281/16Compounds containing any of the groups, e.g. aminoguanidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/04Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D243/00Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms
    • C07D243/04Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/20Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof
    • C07D295/215Radicals derived from nitrogen analogues of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/28Nitrogen atoms
    • C07D295/32Nitrogen atoms acylated with carboxylic or carbonic acids, or their nitrogen or sulfur analogues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6081Albumin; Keyhole limpet haemocyanin [KLH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)
    • G01N2333/922Ribonucleases (RNAses); Deoxyribonucleases (DNAses)

Definitions

  • the present invention relates generally to the aging of proteins resulting from their reaction with glucose and other reducing sugars, and more particularly, to the inhibition of the reaction of nonenzymatically glycosylated proteins and the often resultant formation of advanced glycosylation endproducts and cross-links.
  • brown pigments with spectral and fluorescent properties similar to those of late-stage Maillard products have also been observed in vivo in association with several long-lived proteins, such as lens proteins and collagen from aged individuals.
  • An age-related linear increase in pigment was observed in human dura collagen between the ages of 20 to 90 years.
  • the aging of collagen can be mimicked in vitro by the cross-linking induced by glucose; and the capture of other proteins and the formation of adducts by collagen, also noted, is theorized to occur by a cross-linking reaction, and is believed to account for the observed accumulation of albumin and antibodies in kidney basement membrane.
  • compositions for the inhibition of the advanced glycosylation of proteins (protein aging).
  • the compositions comprise agents for inhibiting nonenzymatic cross-linking (protein aging) due to the formation of advanced glycosylation endproducts.
  • the agents may be selected from those materials capable of reacting with the early glycosylation product from the reaction of glucose with proteins and preventing further reactions.
  • Cross-linking caused by other reactive sugars present in vivo or in foodstuffs, including ribose, galactose and fructose would also be prevented by the methods and compositions of the present invention.
  • the agents comprise compounds having the following structural formula: ##STR1## wherein R is a lower alkyl group, or a group of the formula ##STR2## wherein R 4 is hydrogen, and R 5 is a lower alkyl group or a hydroxy(lower)alkyl group; or R 4 and R 5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
  • R 1 is hydrogen or an amino group
  • R 2 is hydrogen or an amino group
  • R 3 is hydrogen or a lower alkyl group
  • R 1 , R 2 , and R 3 are other than hydrogen; and with the further proviso that R and R 1 cannot both be amino groups; and their pharmaceutically acceptable acid addition salts; and mixtures thereof.
  • compositions of this invention appear to react with an early glycosylation product thereby preventing the same from later forming the advanced glycosylation end products which lead to protein cross-links, and thereby, to protein aging.
  • the present invention also relates to a method for inhibiting protein aging by contacting the initially glycosylated protein at the stage of the early glycosylation product with a quantity of one or more of the agents of the present invention, or a composition containing the same.
  • one or more of the agents may be applied to the proteins in question, either by introduction into a mixture of the same in the instance of a protein extract, or by application or introduction into foodstuffs containing the protein or proteins, all to prevent premature aging and spoilage of the particular foodstuffs.
  • the present method has particular therapeutic application as the Maillard process acutely affects several of the significant protein masses in the body, among them collagen, elastin, lens proteins, and the kidney glomerular basement membranes. These proteins deteriorate both with age (hence the application of the term "protein aging") and as a consequence of diabetes. Accordingly, the ability to either retard or substantially inhibit the formation of advanced glycosylation endproducts carries the promise of treatment for diabetes and, of course, improving the quality and, perhaps, duration of animal life.
  • the present agents are also useful in the area of personal appearance and hygiene, as they prevent the staining of teeth by cationic anti-microbial agents with anti-plaque properties, such as chlorhexidine.
  • compositions including pharmaceutical compositions, all incorporating the agents of the present invention.
  • agents, compositions, including pharmaceutical compositions containing said agents, and associated methods have been developed which are believed to inhibit the formation of advanced glycosylation endproducts in a number of target proteins existing in both animals and plant material.
  • the invention relates to a composition which may contain one or more agents comprising compounds having the structural formula ##STR3## wherein R is a lower alkyl group, or a group of the formula ##STR4## wherein R 4 is hydrogen, and R 5 is a lower alkyl group or a hydroxy(lower)alkyl group; or R 4 and R 5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
  • R 1 is hydrogen or an amino group
  • R 2 is hydrogen or an amino group
  • R 3 is hydrogen or a lower alkyl group
  • R 1 , R 2 , and R 3 are other than hydrogen; and with the further proviso that R and R 1 cannot both be amino groups; their pharmaceutically acceptable acid addition salts; and mixtures thereof, and a carrier therefor.
  • the lower alkyl groups referred to herein contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof.
  • heterocyclic groups formed by the N-R 4 R 5 group are 4-7 membered rings having at 0-1 additional heteroatoms, e.g., oxygen, nitrogen, or sulfur, therein, and including various degrees of unsaturation.
  • additional heteroatoms e.g., oxygen, nitrogen, or sulfur, therein, and including various degrees of unsaturation.
  • Representatives of such heterocyclic groups are those such as morpholino, piperidino, hexahydroazepino, piperazino, methylpiperazino, hexamethylenimino, pyridyl, methylpyridyl, imidazolyl, pyrrolidinyl, 2,6-dimethylmorpholino, 1,2,4-triazoylyl, thiazolyl, thiazolinyl, and the like.
  • salts thereof can be derived from a variety of organic and inorganic acids, including, but not limited to, methanesulfonic, hydrochloric, hydrobromic, hydroiodic, toluenesulfonic, sulfuric, maleic, acetic and phosphoric acids.
  • Representative compounds of the present invention include:
  • the above compounds are capable of inhibiting the formation of advanced glycosylation endproducts on target proteins.
  • the cross-linking of the protein to form the advanced glycosylation endproduct contributes to the entrapment of other proteins and results in the development in vivo of conditions such as reduced elasticity and wrinkling of the skin, certain kidney diseases, atherosclerosis, osteoarthritis and the like.
  • plant material that undergoes nonenzymatic browning deteriorates and, in the case of foodstuffs, become spoiled or toughened and, consequently, inedible.
  • the compounds employed in accordance with this invention inhibit this late stage Maillard effect and intervene in the deleterious changes described above.
  • the rationale of the present invention is to use agents which block the post-glycosylation step, i.e., the formation of fluorescent chromophores, the presence of which chromophores is associated with, and leads to adverse sequelae of diabetes and aging.
  • An ideal agent would prevent the formation of the chromophore and its associate cross-links of proteins to proteins and trapping of proteins on the other proteins, such as occurs in arteries and in the kidney.
  • early glycosylation product(s) as used herein is intended to include any and all such variations within its scope.
  • early glycosylation products with carbonyl moieties that are involved in the formation of advanced glycosylation endproducts, and that may be blocked by reaction with the compounds of the present invention have been postulated.
  • the early glycosylation product may comprise the reactive carbonyl moieties of Amadori products or their further condensation, dehydration and/or rearrangement products, which may condense to form advanced glycosylation endproducts.
  • reactive carbonyl compounds containing one or more carbonyl moieties (such as glycolaldehyde, glyceraldehyde or 3-deoxyglucosone) may form from the cleavage of Amadori or other early glycosylation endproducts, and by subsequent reactions with an amine or Amadori product, may form carbonyl containing advanced glycosylation products such as alkylformyl-glycosylpyrroles.
  • carbonyl moieties such as glycolaldehyde, glyceraldehyde or 3-deoxyglucosone
  • lysine as an inhibitor in the Eble et al. model system has no bearing upon the utility of the compounds of the present invention in the inhibition of advanced glycosylated endproducts formation in the presence of glucose in vivo, and the amelioration of complications of diabetes and aging.
  • compositions useful in the present invention comprise or contain agents capable of reacting with the active carbonyl intermediate of an early glycosylation product. Suitable agents are the compounds of Formula I of the present invention.
  • the present invention likewise relates to methods for inhibiting the formation of advanced glycosylation endproducts, which comprise contacting the target proteins with a composition of the present invention.
  • a composition of the present invention In the instance where the target proteins are contained in foodstuffs, whether of plant or animal origin, these foodstuffs could have applied to them by various conventional means a composition containing the present agents.
  • compositions and agents offer a nontoxic alternative to sulfites in the treatment of foods in this manner.
  • the present methods and compositions hold the promise for arresting the aging of key proteins both in animals and plants, and concomitantly, conferring both economic and medical benefits as a result thereof.
  • the administration of the present composition holds the promise for retarding food spoilage thereby making foodstuffs of increased shelf life and greater availability to consumers.
  • Replacement of currently-used preservatives, such as sulfur dioxide known to cause allergies and asthma in humans, with non-toxic, biocompatible compounds is a further advantage of the present invention.
  • the therapeutic implications of the present invention relate to the arrest of the aging process which has, as indicated earlier, been identified in the aging of key proteins by advanced glycosylation and cross-linking.
  • body proteins, and particularly structural body proteins, such as collagen, elastin, lens proteins, nerve proteins, kidney glomerular basement membranes and other extravascular matrix components would all benefit in their longevity and operation from the practice of the present invention.
  • the present invention thus reduces the incidence of pathologies involving the entrapment of proteins by cross-linked target proteins, such as retinopathy, cataracts, diabetic kidney disease, glomerulosclerosis, peripheral vascular disease, arteriosclerosis obliterans, peripheral neuropathy, stroke, hypertension, atherosclerosis, osteoarthritis, periarticular rigidity, loss of elasticity and wrinkling of skin, stiffening of joints, glomerulonephritis, etc. Likewise, all of these conditions are in evidence in patients afflicted with diabetes mellitus. Thus, the present therapeutic method is relevant to treatment of the noted conditions in patients either of advanced age or those suffering from one of the mentioned pathologies.
  • target proteins such as retinopathy, cataracts, diabetic kidney disease, glomerulosclerosis, peripheral vascular disease, arteriosclerosis obliterans, peripheral neuropathy, stroke, hypertension, atherosclerosis, osteoarthritis, periarticular rigidity, loss of elasticity and wrinkling of skin,
  • Protein cross-linking through advanced glycosylation product formation can decrease solubility of structural proteins such as collagen in vessel walls (see Brownlee et al., Science, 232, pp. 1629-1632, (1986)), and can also trap serum proteins, such as lipoproteins to the collagen. Also, this may result in increased permeability of the endothelium and consequently covalent trapping of extravasated plasma proteins in subendothelial matrix, and reduction in susceptibility of both plasma and matrix proteins to physiologic degradation by enzymes. (See Brownlee et al., Diabetes, 35, Suppl. 1, p. 42A (1986)).
  • Aminoguanidine Treatment Normalizes Increased Steady-state Levels of Laminin B1 MRNA in Kidneys of Long-term Streptozotocin-diabetic Rats" Diabetes, 38, Supplement 2:83A Forty-ninth Annual Meeting, American Diabetes Association (1989) showed that aminoguanidine treatment to diabetic rats prevents the diabetes-induced increase in laminin B 1 MRNA in the kidney. This indicates that aminoguanidine may prevent overproduction of matrix, which leads to basement membrane thickening and morphologic and functional deterioration of vasculature in kidneys and other organs.
  • diabetes A further consequence of diabetes is the hyperglycemia-induced matrix bone differentiation resulting in decreased bone formation usually associated with chronic diabetes. In animal models, diabetes reduces matrix-induced bone differentiation by 70% (Am. J. Phys., 238 (1980)).
  • compositions of the present invention are utilized for in vivo or therapeutic purposes, it may be noted that the compounds or agents used therein are biocompatible.
  • Pharmaceutical compositions may be prepared with a therapeutically effective quantity of the agents or compounds of the present invention and may include a pharmaceutically acceptable carrier, selected from known materials utilized for this purpose. Such compositions may be prepared in a variety of forms, depending on the method of administration. Also, various pharmaceutically acceptable addition salts of the compounds of Formula I may be utilized.
  • a liquid form would be utilized in the instance where administration is by intravenous, intramuscular or intraperitoneal injection.
  • solid dosage forms such as tablets, capsules, or liquid dosage formulations such as solutions and suspensions, etc.
  • a solution, a lotion or ointment may be formulated with the agent in a suitable vehicle such as water, ethanol, propylene glycol, perhaps including a carrier to aid in penetration into the skin or eye.
  • a topical preparation could include up to about 10% of the compound of Formula I.
  • Other suitable forms for administration to other body tissues are also contemplated.
  • the animal host intended for treatment may have administered to it a quantity of one or more of the agents, in a suitable pharmaceutical form.
  • Administration may be accomplished by known techniques, such as oral, topical and parenteral techniques such as intradermal, subcutaneous, intravenous or intraperitoneal injection, as well as by other conventional means.
  • Administration of the agents may take place over an extended period of time at a dosage level of, for example, up to about 25 mg/kg.
  • the invention also extends to a method of inhibiting the discoloration of teeth resulting from nonenzymatic browning in the oral cavity which comprises administration to a subject in need of such therapy an amount effective to inhibit the formation of advanced glycosylation endproducts of a composition comprising an agent of structural Formula I.
  • the nonenzymatic browning reaction which occurs in the oral cavity results in the discoloration of teeth.
  • anti-plaque agents accelerate this nonenzymatic browning reaction and further the staining of the teeth.
  • a class of cationic anti-microbial agents with remarkable anti-plaque properties have been formulated in oral rinses for regular use to kill bacteria in the mouth.
  • the cationic antiseptics include such agents as alexidine, cetyl pyridinium chloride, chlorhexidine gluconate, hexetidine, and benzalkonium chloride.
  • Tooth staining by chlorhexidine and other anti-plaque agents apparently results from the enhancement of the Maillard reaction.
  • Nordbo, J. Dent. Res., 58, p. 1429 (1979) reported that chlorhexidine and benzalkonium chloride catalyze browning reactions in vitro. Chlorhexidine added to mixtures containing a sugar derivative and a source of amino groups underwent increased color formation, attributed to the Maillard reaction. It is also known that use of chlorhexidine results in an increased dental pellicle. Nordbo proposed that chlorhexidine resulted in tooth staining in two ways: first, by increasing formation of pellicle which contains more amino groups, and secondly, by catalysis of the Maillard reaction leading to colored products.
  • the compounds of Formula I are formulated into compositions adapted for use in the oral cavity.
  • Particularly suitable formulations are oral rinses and toothpastes incorporating the active agent.
  • the agent of Formula I is formulated in compositions in an amount effective to inhibit the formation of advanced glycosylation endproducts. This amount will, of course, vary with the particular agent being utilized and the particular dosage form, but typically is in the range of 0.01% to 1.0%, by weight, of the particular formulation.
  • the agents of the aforesaid method are concentrated in the salivary glands upon oral ingestion or parenteral administration, they can be so administered. This concentration in the salivary glands results in their secretion into saliva, the net result being that they are functionally placed in the oral cavity where they can effect their desired method.
  • the particular agent can be formulated in any conventional oral or parenteral dosage form.
  • a particularly desirable dosage form is the incorporation of the agent into a vitamin tablet or fluoride tablet so as to maximize patient, and particularly juvenile patient, compliance.
  • the compounds encompassed by Formula I are conveniently prepared by methods of chemical syntheses described in the art. Certain of the compounds encompassed by Formula I are known compounds preparable by synthetic methods specifically published therefor. For instance, the following compound has been described in the chemical and/or patent literature: 1-methylcarboimidic dihydrazide hydrobromide (Liebigs Ann. Chem., 664:146 (1963));
  • the compounds of the formula I wherein R 2 is hydrogen can be conveniently prepared by reaction of an appropriately substituted S-alkyl thiosemicarbazide salt of the formula ##STR5## wherein alkyl is a lower alkyl group of 1-3, and preferably 1-2, carbon atoms, with a substituted hydrazine of the formula ##STR6## wherein R is as hereinbefore defined.
  • the hydrazine of formula (III) will couple with the compound of formula (II), replacing the S-alkyl group, at either or both of the two nitrogen atoms, thus affording compounds of formula I wherein R 1 is amino when the coupling occurs at the central nitrogen atom, and the compounds of formula I wherein R 1 is hydrogen when the coupling occurs at the terminal nitrogen atom.
  • R 1 is amino when the coupling occurs at the central nitrogen atom
  • R 1 is hydrogen when the coupling occurs at the terminal nitrogen atom.
  • the use of a hydrazine of formula III containing a bulkier substituent will result in the formation of predominately compounds wherein R 1 is hydrogen, while the use of a less hindered hydrazine will result in the formation of predominately the compounds wherein R 1 is an amino group.
  • the a minor amount of the other addition product will also be formed, and varying the type of solvent can result in its isolation as well.
  • this reaction is conducted at the reflux temperature of the solvent, which is preferably a polar alcohol such as methyl or ethyl alcohol. Typical reaction times vary from about 4 to about 24 hours.
  • the compounds of formula I wherein R 2 is an amino group are prepared by reaction of a salt, preferably a p-toluenesulfonate salt, of a compound of the formula ##STR7## wherein alkyl is a lower alkyl group of 1-3, and preferably 1-2 carbon atoms, with a substituted hydrazine of the formula ##STR8## wherein R is as hereinbefore defined.
  • this reaction is conducted at the reflux temperature of the solvent, which is preferably a polar alcohol such as methyl or ethyl alcohol. Typical reaction times vary from about 1 to about 4 hours.
  • the substituted hydrazine is prepared in situ by the use of anhydrous hydrazine and the alcohol R--OH wherein R is as hereinbefore defined.
  • novel compounds are novel compounds, and, as such, constitute a further embodiment of the present invention.
  • the novel compounds are those of formula I wherein R is an --NR 4 R 5 group wherein R 4 and R 5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms; and the compounds of formula I wherein R is a hydroxylower alkyl group.
  • Example 1 Using the substituted S-methylthiosemicarbazide p-toluenesulfonate of either Example A or B and the appropriately substituted hydrazine compound, and repetition of the procedure detailed in Example 1 affords the following compounds:
  • BSA bovine serum albumin
  • Fluorescence (excitation, 370 nm; emission, 440 nm) was measured on each sample after a 100-fold dilution in distilled water.
  • Drug therapy may be used to prevent the increased trapping and cross-linking of proteins that occurs in diabetes and aging which leads to sequelae such as retinal damage, and extra-vascularly, damage to tendons, ligaments and other joints. This therapy might retard atherosclerosis and connective tissue changes that occur with diabetes and aging. Both topical, oral, and parenteral routes of administration to provide therapy locally and systemically are contemplated.
  • the following method was used to evaluate the ability of the compounds of the present invention to inhibit the cross-linking of glycated bovine serum albumin (AGE-BSA) to the rat tail tendon collagen coated 96-well plate.
  • AGE-BSA glycated bovine serum albumin
  • the AGE-BSA was prepared by incubating BSA at a concentration of 200 mg per ml with 200 mM glucose in 0.4M sodium phosphate buffer, pH 7.4 at 37° C. for 12 weeks. The glycated BSA was then extensively dialyzed against phosphate buffer solution (PAS) for 48 hours with additional 5 times buffer exchanges. The rat tail tendon collagen coated plate was blocked first with 300 ⁇ l of superbloc blocking buffer (Pierce #37515X) for one hour. The blocking solution was removed from the wells by washing the plate twice with PAS-Tween 20 solution (0.05% Tween 20) using a NUNC-multiprobe or Dynatech ELISA-plate washer.
  • PAS phosphate buffer solution
  • the bound AGE antibody was then detected with the addition of horseradish peroxidase-conjugated secondary antibody--goat anti-rabbit immunoglobulin and incubation for 30 minutes.
  • the substrate of 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid) (ABTS chromogen) (Zymed #00-2011) was added. The reaction was allowed for an additional 15 minutes and the absorbance was read at 410 nm in a Dynatech plate reader.
  • the IC 50 relative inhibition by various test compounds at 10 mM is as follows:
  • Drug therapy may be used to prevent the increased trapping and cross-linking of proteins that occurs in diabetes and aging which leads to sequelae such as retinal damage, and extra-vascularly, damage to tendons, ligaments and other joints. This therapy might retard atherosclerosis and connective tissue changes that occur with diabetes and aging. Both topical, oral, and parenteral routes of administration to provide therapy locally and systemically are contemplated.
  • the slight brown color formed by the action of glucose-6-phosphate on the gelatin surface alone and its prevention by a compound of Formula I demonstrates the utility of the present invention in preventing nonenzymatic browning of tooth surfaces.
  • the enhanced browning in the presence of chlorhexidine and its prevention with a compound of Formula I demonstrates the utility of the present invention in preventing the anti-plaque agent-enhanced nonenzymatic browning which occurs with chlorhexidine.
  • the compound, a portion of the starch and the lactose are combined and wet granulated with starch paste.
  • the wet granulation is placed on trays and allowed to dry overnight at a temperature of 45° C.
  • the dried granulation is comminuted in a comminutor to a particle size of approximately 20 mesh.
  • Magnesium stearate, stearic acid and the balance of the starch are added and the entire mix blended prior to compression on a suitable tablet press.
  • the tablets are compressed at a weight of 232 mg. using a 11/32" punch with a hardness of 4 kg. These tablets will disintegrate within a half hour according to the method described in USP XVI.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Mycology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Birds (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Dermatology (AREA)
  • Genetics & Genomics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to compounds, compositions and methods for inhibiting nonenzymatic cross-linking (protein aging). Accordingly, a composition is disclosed which comprises a di- or tri-aminoguanidine capable of inhibiting the formation of advanced glycosylation endproducts of target proteins. The method comprises contacting the target protein with the composition. Both industrial and therapeutic applications for the invention are envisioned, as food spoilage and animal protein aging can be treated.

Description

The present application is a continuation-in-part of application Ser. No. 08/274,243, filed Jul. 13, 1994, now abandoned, which is a division of application Ser. No. 07/889,141, filed May 27, 1992, now U.S. Pat. No. 5,356,895; which is a division of U.S. Ser. No. 07/605,654, filed Oct. 30, 1990, now U.S. Pat. No. 5,140,048; which is a continuation-in-part of 07/264,930, filed Nov. 2, 1988, now U.S. Pat. No. 4,983,604; which is a continuation-in-part of U.S. Ser. No. 07/119,958, filed Nov. 13, 1987, now U.S. Pat. No. 4,908,446; which is a continuation-in-part of U.S. Ser. No. 798,032, filed Nov. 14, 1985 and now U.S. Pat. No. 4,758,583; which is a continuation-in-part of U.S. Ser. No. 590,820, filed Mar. 19, 1984, and now U.S. Pat. No. 4,665,192. Applicants claim the benefits of these Applications under 35 U.S.C. §120.
RELATED PUBLICATIONS
Certain of the Applicants are co-authors of the following articles directed to the subject matter of the present invention: "COVALENT ATTACHMENT OF SOLUBLE PROTEINS BY NONENZYMATICALLY GLYCOSYLATED COLLAGEN: ROLE IN THE IN SITU FORMATION OF IMMUNE COMPLEXES", Brownlee et al., J. Exp. Med., 158, pp. 1730-1744 (1983); and "AGING OF PROTEINS: ISOLATION AND IDENTIFICATION OF FLUORESCENT CHROMOPHORE FROM THE REACTION OF POLYPEPTIDES WITH GLUCOSE", Pongor et al., Proc. Natl. Acad. Sci. U.S.A. 81, pp. 2684-2688, (1984), and "ADVANCED GLYCOSYLATION ENDPRODUCTS IN TISSUE AND THE BIOCHEMICAL BASIS OF DIABETIC COMPLICATIONS", Brownlee et al., The New Eng. J. of Med., 318, pp. 1315-1321 (1988).
BACKGROUND OF THE INVENTION
The present invention relates generally to the aging of proteins resulting from their reaction with glucose and other reducing sugars, and more particularly, to the inhibition of the reaction of nonenzymatically glycosylated proteins and the often resultant formation of advanced glycosylation endproducts and cross-links.
The reaction between glucose and proteins has been known for some time. Its earliest manifestation was in the appearance of brown pigments during the cooking of food, which was identified by Maillard in 1912, who observed that glucose or other reducing sugars react with amino acids to form adducts that undergo a series of dehydrations and rearrangements to form stable brown pigments. Maillard, C.R. Acad. Sci., 154, pp. 66-68, (1912). Further studies have suggested that stored and heat treated foods undergo nonenzymatic browning as a result of the reaction between glucose and the polypeptide chain, and that the proteins are resultingly cross-linked and correspondingly exhibit decreased bioavailability.
This reaction between reducing sugars and food proteins was found to have its parallel in vivo. Thus, the nonenzymatic reaction between glucose and the free amino groups on proteins to form a stable, 1-deoxyketosyl adduct, known as the Amadori product, has been shown to occur with hemoglobin, wherein a rearrangement of the amino terminal of the beta-chain of hemoglobin by reaction with glucose, forms the adduct known as hemoglobin A1c. The reaction has also been found to occur with a variety of other body proteins, such as lens crystallins, collagen and nerve proteins. See, Bucala et al., "Advanced Glycosylation: Chemistry, Biology, and Implications for Diabetes and Aging," in Advances in Pharmacology, Vol. 23, pp. 1-34, Academic Press (1992).
Moreover, brown pigments with spectral and fluorescent properties similar to those of late-stage Maillard products have also been observed in vivo in association with several long-lived proteins, such as lens proteins and collagen from aged individuals. An age-related linear increase in pigment was observed in human dura collagen between the ages of 20 to 90 years. Interestingly, the aging of collagen can be mimicked in vitro by the cross-linking induced by glucose; and the capture of other proteins and the formation of adducts by collagen, also noted, is theorized to occur by a cross-linking reaction, and is believed to account for the observed accumulation of albumin and antibodies in kidney basement membrane.
In parent application Ser. No. 798,032, now U.S. Pat. No. 4,758,583, a method and associated agents were disclosed that served to inhibit the formation of advanced glycosylation endproducts by reacting with the early glycosylation product that results from the original reaction between the target protein and glucose. Accordingly, inhibition was postulated to take place as the reaction between the inhibitor and an early glycosylation product appeared to interrupt the subsequent reaction of the glycosylated protein with additional protein material to form the cross-linked late stage product. One of the agents identified as an inhibitor was aminoguanidine, and the results of further testing have borne out its efficacy in this regard.
While the success that has been achieved with aminoguanidine and similar compounds is promising, a need continues to exist to identify and develop additional inhibitors that broaden the availability and perhaps the scope of this potential activity and its diagnostic and therapeutic utility.
SUMMARY OF THE INVENTION
In accordance with the present invention, a method and compositions are disclosed for the inhibition of the advanced glycosylation of proteins (protein aging). In particular, the compositions comprise agents for inhibiting nonenzymatic cross-linking (protein aging) due to the formation of advanced glycosylation endproducts. The agents may be selected from those materials capable of reacting with the early glycosylation product from the reaction of glucose with proteins and preventing further reactions. Cross-linking caused by other reactive sugars present in vivo or in foodstuffs, including ribose, galactose and fructose would also be prevented by the methods and compositions of the present invention.
The agents comprise compounds having the following structural formula: ##STR1## wherein R is a lower alkyl group, or a group of the formula ##STR2## wherein R4 is hydrogen, and R5 is a lower alkyl group or a hydroxy(lower)alkyl group; or R4 and R5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
R1 is hydrogen or an amino group;
R2 is hydrogen or an amino group;
R3 is hydrogen or a lower alkyl group;
with the proviso that at least one of R1, R2, and R3 is other than hydrogen; and with the further proviso that R and R1 cannot both be amino groups; and their pharmaceutically acceptable acid addition salts; and mixtures thereof.
The compounds utilized in the compositions of this invention appear to react with an early glycosylation product thereby preventing the same from later forming the advanced glycosylation end products which lead to protein cross-links, and thereby, to protein aging.
The present invention also relates to a method for inhibiting protein aging by contacting the initially glycosylated protein at the stage of the early glycosylation product with a quantity of one or more of the agents of the present invention, or a composition containing the same. In the instance where the present method has industrial application, one or more of the agents may be applied to the proteins in question, either by introduction into a mixture of the same in the instance of a protein extract, or by application or introduction into foodstuffs containing the protein or proteins, all to prevent premature aging and spoilage of the particular foodstuffs.
The ability to inhibit the formation of advanced glycosylation endproducts carries with it significant implications in all applications where protein aging is a serious detriment. Thus, in the area of food technology, the retardation of food spoilage would confer an obvious economic and social benefit by making certain foods of marginal stability less perishable and therefore more available for consumers. Spoilage would be reduced as would the expense of inspection, removal, and replacement, and the extended availability of the foods could aid in stabilizing their price in the marketplace. Similarly, in other industrial applications where the perishability of proteins is a problem, the admixture of the agents of the present invention in compositions containing such proteins would facilitate the extended useful life of the same. Presently used food preservatives and discoloration preventatives such as sulfur dioxide, known to cause toxicity including allergy and asthma in animals, can be replaced with compounds such as those described herein.
The present method has particular therapeutic application as the Maillard process acutely affects several of the significant protein masses in the body, among them collagen, elastin, lens proteins, and the kidney glomerular basement membranes. These proteins deteriorate both with age (hence the application of the term "protein aging") and as a consequence of diabetes. Accordingly, the ability to either retard or substantially inhibit the formation of advanced glycosylation endproducts carries the promise of treatment for diabetes and, of course, improving the quality and, perhaps, duration of animal life.
The present agents are also useful in the area of personal appearance and hygiene, as they prevent the staining of teeth by cationic anti-microbial agents with anti-plaque properties, such as chlorhexidine.
Accordingly, it is a principal object of the present invention to provide a method for inhibiting the extensive cross-linking of proteins that occurs as an ultimate consequence of the reaction of the proteins with glucose and other reactive sugars, by correspondingly inhibiting the formation of advanced glycosylation endproducts.
It is a further object of the present invention to provide a method as aforesaid which is characterized by a reaction with an initially glycosylated protein identified as an early glycosylation product.
It is a further object of the present invention to provide a method as aforesaid which prevents the rearrangement and cross-linking of the said early glycosylation products to form the said advanced glycosylation endproducts.
It is a yet further object of the present invention to provide agents capable of participating in the reaction with the said early glycosylation products in the method as aforesaid.
It is a still further object of the present invention to provide therapeutic methods of treating the adverse consequences of protein aging by resort to the aforesaid method and agents.
It is a still further object of the present invention to provide a method of inhibiting the discoloration of teeth by resort to the aforesaid method and agents.
It is a still further object of the present invention to provide compositions including pharmaceutical compositions, all incorporating the agents of the present invention.
It is a still further object of the present invention to provide novel compounds useful in the methods of this invention, as well as processes for their preparation.
Other objects and advantages will become apparent to those skilled in the art from a consideration of the ensuing description.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In accordance with the present invention, agents, compositions, including pharmaceutical compositions containing said agents, and associated methods, have been developed which are believed to inhibit the formation of advanced glycosylation endproducts in a number of target proteins existing in both animals and plant material. In particular, the invention relates to a composition which may contain one or more agents comprising compounds having the structural formula ##STR3## wherein R is a lower alkyl group, or a group of the formula ##STR4## wherein R4 is hydrogen, and R5 is a lower alkyl group or a hydroxy(lower)alkyl group; or R4 and R5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
R1 is hydrogen or an amino group;
R2 is hydrogen or an amino group;
R3 is hydrogen or a lower alkyl group;
with the proviso that at least one of R1, R2, and R3 is other than hydrogen; and with the further proviso that R and R1 cannot both be amino groups; their pharmaceutically acceptable acid addition salts; and mixtures thereof, and a carrier therefor.
The lower alkyl groups referred to herein contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof.
The heterocyclic groups formed by the N-R4 R5 group are 4-7 membered rings having at 0-1 additional heteroatoms, e.g., oxygen, nitrogen, or sulfur, therein, and including various degrees of unsaturation. Representatives of such heterocyclic groups are those such as morpholino, piperidino, hexahydroazepino, piperazino, methylpiperazino, hexamethylenimino, pyridyl, methylpyridyl, imidazolyl, pyrrolidinyl, 2,6-dimethylmorpholino, 1,2,4-triazoylyl, thiazolyl, thiazolinyl, and the like.
Equivalent to the compounds of formula I for the purposes of this invention are the biocompatible and pharmaceutically acceptable salts thereof. Such salts can be derived from a variety of organic and inorganic acids, including, but not limited to, methanesulfonic, hydrochloric, hydrobromic, hydroiodic, toluenesulfonic, sulfuric, maleic, acetic and phosphoric acids.
When the compounds of formula I contain one or more asymmetric carbon atoms, mixtures of enantiomers, as well as the pure (R) or (S) enantiomeric form can be utilized in the practice of this invention.
Of the compounds encompassed by Formula I, certain combinations of substituents are preferred. For instance, compounds wherein R is a heterocylic group, and particularly a morpholino or a hexahydroazepino group, are highly preferred.
Representative compounds of the present invention include:
2-(2-hydroxy-2-methylpropyl)hydrazinecarboximidic hydrazide;
N-(4-morpholino)hydrazinecarboximidamide;
1-methyl-N-(4-morpholino)hydrazinecarboximidamide;
1-methyl-N-(4-piperidino)hydrazinecarboximidamide;
1-(N-hexahydroazepino)hydrazinecarboximidamide;
N,N-dimethylcarbonimidic dihydrazide;
1-methylcarbonimidic dihydrazide;
2-(2-hydroxy-2-methylpropyl)carbohydrazonic dihydrazide; and
N-ethylcarbonimidic dihydrazide.
The above compounds are capable of inhibiting the formation of advanced glycosylation endproducts on target proteins. The cross-linking of the protein to form the advanced glycosylation endproduct contributes to the entrapment of other proteins and results in the development in vivo of conditions such as reduced elasticity and wrinkling of the skin, certain kidney diseases, atherosclerosis, osteoarthritis and the like. Similarly, plant material that undergoes nonenzymatic browning deteriorates and, in the case of foodstuffs, become spoiled or toughened and, consequently, inedible. Thus, the compounds employed in accordance with this invention inhibit this late stage Maillard effect and intervene in the deleterious changes described above.
The rationale of the present invention is to use agents which block the post-glycosylation step, i.e., the formation of fluorescent chromophores, the presence of which chromophores is associated with, and leads to adverse sequelae of diabetes and aging. An ideal agent would prevent the formation of the chromophore and its associate cross-links of proteins to proteins and trapping of proteins on the other proteins, such as occurs in arteries and in the kidney.
The chemical nature of the early glycosylation products with which the compounds of the present invention are believed to react, may vary, and accordingly, the term "early glycosylation product(s)" as used herein is intended to include any and all such variations within its scope. For example, early glycosylation products with carbonyl moieties that are involved in the formation of advanced glycosylation endproducts, and that may be blocked by reaction with the compounds of the present invention, have been postulated. In one embodiment, it is envisioned that the early glycosylation product may comprise the reactive carbonyl moieties of Amadori products or their further condensation, dehydration and/or rearrangement products, which may condense to form advanced glycosylation endproducts. In another scenario, reactive carbonyl compounds, containing one or more carbonyl moieties (such as glycolaldehyde, glyceraldehyde or 3-deoxyglucosone) may form from the cleavage of Amadori or other early glycosylation endproducts, and by subsequent reactions with an amine or Amadori product, may form carbonyl containing advanced glycosylation products such as alkylformyl-glycosylpyrroles.
Several investigators have studied the mechanism of advanced glycosylation product formation. In vitro studies by Eble et al., (1983), "Nonenzymatic Glucosylation and Glucose-dependent Cross-linking of Protein", J. Biol. Chem., 258:9406-9412, concerned the cross-linking of glycosylated protein with nonglycosylated protein in the absence of glucose. Eble et al. sought to elucidate the mechanism of the Maillard reaction and accordingly conducted controlled initial glycosylation of RNAase as a model system, which was then examined under varying conditions. In one aspect, the glycosylated protein material was isolated and placed in a glucose-free environment and thereby observed to determine the extent of cross-linking.
Eble et al. thereby observed that cross-linking continued to occur not only with the glycosylated protein but with non-glycosylated proteins as well. One of the observations noted by Eble et al. was that the reaction between glycosylated protein and the protein material appeared to occur at the location on the protein chain of the amino acid lysine. Confirmatory experimentation conducted by Eble et al. in this connection demonstrated that free lysine would compete with the lysine on RNAase for the binding of glycosylated protein. Thus, it might be inferred from these data that lysine may serve as an inhibitor of advanced glycosylation; however, this conclusion and the underlying observations leading to it should be taken in the relatively limited context of the model system prepared and examined by Eble et al. Clearly, Eble et al. does not appreciate, nor is there a suggestion therein, of the discoveries that underlie the present invention, with respect to the inhibition of advanced glycosylation of proteins both in vitro and in vivo.
The experiments of Eble et al. do not suggest the reactive cleavage product mechanism or any other mechanism in the in vivo formation of advanced glycosylation endproducts in which glucose is always present. In fact, other investigators support this mechanism to explain the formation of advanced glycosylated endproducts in vivo (see, for example, Hayase et al., J. Biol. Chem., 263, pp. 3758-3764 (1989); Sell and Monnier, J. Biol. Chem., 264, pp. 21597-21602 (1989); Oimomi et al., Agric. Biol. Chem., 53(6):1727-1728 (1989); and Diabetes Research and Clinical Practice, 6:311-313 (1989). Accordingly, the use of lysine as an inhibitor in the Eble et al. model system has no bearing upon the utility of the compounds of the present invention in the inhibition of advanced glycosylated endproducts formation in the presence of glucose in vivo, and the amelioration of complications of diabetes and aging.
The compositions useful in the present invention comprise or contain agents capable of reacting with the active carbonyl intermediate of an early glycosylation product. Suitable agents are the compounds of Formula I of the present invention.
The present invention likewise relates to methods for inhibiting the formation of advanced glycosylation endproducts, which comprise contacting the target proteins with a composition of the present invention. In the instance where the target proteins are contained in foodstuffs, whether of plant or animal origin, these foodstuffs could have applied to them by various conventional means a composition containing the present agents.
In the food industry, sulfites were found years ago to inhibit the Maillard reaction and are commonly used in processed and stored foods. Recently, however, sulfites in food have been implicated in severe and even fatal reactions in asthmatics. As a consequence, the sulfite treatment of fresh fruits and vegetables has been banned. The mechanism for the allergic reaction is not known. Accordingly, the present compositions and agents offer a nontoxic alternative to sulfites in the treatment of foods in this manner.
As is apparent from a discussion of the environment of the present invention, the present methods and compositions hold the promise for arresting the aging of key proteins both in animals and plants, and concomitantly, conferring both economic and medical benefits as a result thereof. In the instance of foodstuffs, the administration of the present composition holds the promise for retarding food spoilage thereby making foodstuffs of increased shelf life and greater availability to consumers. Replacement of currently-used preservatives, such as sulfur dioxide known to cause allergies and asthma in humans, with non-toxic, biocompatible compounds is a further advantage of the present invention.
The therapeutic implications of the present invention relate to the arrest of the aging process which has, as indicated earlier, been identified in the aging of key proteins by advanced glycosylation and cross-linking. Thus, body proteins, and particularly structural body proteins, such as collagen, elastin, lens proteins, nerve proteins, kidney glomerular basement membranes and other extravascular matrix components would all benefit in their longevity and operation from the practice of the present invention. The present invention thus reduces the incidence of pathologies involving the entrapment of proteins by cross-linked target proteins, such as retinopathy, cataracts, diabetic kidney disease, glomerulosclerosis, peripheral vascular disease, arteriosclerosis obliterans, peripheral neuropathy, stroke, hypertension, atherosclerosis, osteoarthritis, periarticular rigidity, loss of elasticity and wrinkling of skin, stiffening of joints, glomerulonephritis, etc. Likewise, all of these conditions are in evidence in patients afflicted with diabetes mellitus. Thus, the present therapeutic method is relevant to treatment of the noted conditions in patients either of advanced age or those suffering from one of the mentioned pathologies.
Protein cross-linking through advanced glycosylation product formation can decrease solubility of structural proteins such as collagen in vessel walls (see Brownlee et al., Science, 232, pp. 1629-1632, (1986)), and can also trap serum proteins, such as lipoproteins to the collagen. Also, this may result in increased permeability of the endothelium and consequently covalent trapping of extravasated plasma proteins in subendothelial matrix, and reduction in susceptibility of both plasma and matrix proteins to physiologic degradation by enzymes. (See Brownlee et al., Diabetes, 35, Suppl. 1, p. 42A (1986)). For these reasons, the progressive occlusion of diabetic vessels induced by chronic hyperglycemia has been hypothesized to result from excessive formation of glucose-derived cross-links. Such diabetic macrovascular changes and microvascular occlusion can be effectively prevented by chemical inhibition of advanced glycosylation product formation utilizing a composition and the methods of the present invention.
Studies indicate that the development of chronic diabetic damage in target organs is primarily linked to hyperglycemia so that tight metabolic control would delay or even prevent end-organ damage. See Nicholls et al., Lab. Invest., 60, No. 4, p. 486 (1989), which discusses the effects of islet isografting and aminoguanidine in murine diabetic nephropathy. These studies further evidence that aminoguanidine diminishes aortic wall protein cross-linking in diabetic rats and confirm earlier studies by Brownlee et al., Science, 232, pp. 1629-1632 (1986) to this additional target organ of complication of diabetes. Also, an additional study showed the reduction of immunoglobulin trapping in the kidney by aminoguanidine (Brownlee et al., Diabetes, 35, Suppl. 1, p. 42A (1986)).
Further evidence in the streptozotocin-diabetic rat model that aminoguanidine administration intervenes in the development of diabetic nephropathy was presented by Brownlee et al., 1988, supra, with regard to morphologic changes in the kidney which are hallmarks of diabetic renal disease. These investigators reported that the increased glomerular basement membrane thickness, a major structural abnormality characteristic of diabetic renal disease, was prevented with aminoguanidine.
Taken together, these data strongly suggest that inhibition of the formation of advanced glycosylation endproducts (AGEs), by the teaching of the present invention, may prevent late, as well as early, structural lesions due to diabetes, as well as changes during aging caused by the formation of AGE's.
Diabetes-induced changes in the deformability of red blood cells, leading to more rigid cell membranes, is another manifestation of cross-linking and aminoguanidine has been shown to prevent it in vivo. In such studies, New Zealand White rabbits, with induced, long-term diabetes are used to study the effects of a test compound on red blood cell (RBC) deformability (df). The test compound is administered at a rate of 100 mg/kg by oral gavage to diabetic rabbits (Brown et al., Presentation of Abstract for Association for Academic Minority Physicians, Annual Scientific Meeting (1989)).
Increased cross-linking of collagen in diabetic rats has shown to be prevented by aminoguanidine. Oxlund and Andreassen, "The increase in biochemical and biomechanical stability of collagen in diabetic rats is prevented by aminoguanidine treatment", European Association for the Study of Diabetes, Twenty-fifth Annual Meeting, p. 525A, Abstract No. 371, 1989 showed the effect when thermal stability of tendon fibers was assessed by breaking time in a urea bath, as well as mechanical strength. Soulis et al., "Aminoguanidine reduces tissue fluorescence but not albuminuria in diabetic rats". NIH Conference on the Maillard Reaction in Aging, Diabetes, and Nutrition, Bethesda, Md., Sep. 22-23, 1988, page 30) showed the same effect on collagen in the aorta, measured by fluorescence and solubility.
Giambione and Brownlee, "Aminoguanidine Treatment Normalizes Increased Steady-state Levels of Laminin B1 MRNA in Kidneys of Long-term Streptozotocin-diabetic Rats" Diabetes, 38, Supplement 2:83A Forty-ninth Annual Meeting, American Diabetes Association (1989) showed that aminoguanidine treatment to diabetic rats prevents the diabetes-induced increase in laminin B1 MRNA in the kidney. This indicates that aminoguanidine may prevent overproduction of matrix, which leads to basement membrane thickening and morphologic and functional deterioration of vasculature in kidneys and other organs.
A further consequence of diabetes is the hyperglycemia-induced matrix bone differentiation resulting in decreased bone formation usually associated with chronic diabetes. In animal models, diabetes reduces matrix-induced bone differentiation by 70% (Am. J. Phys., 238 (1980)).
In the instance where the compositions of the present invention are utilized for in vivo or therapeutic purposes, it may be noted that the compounds or agents used therein are biocompatible. Pharmaceutical compositions may be prepared with a therapeutically effective quantity of the agents or compounds of the present invention and may include a pharmaceutically acceptable carrier, selected from known materials utilized for this purpose. Such compositions may be prepared in a variety of forms, depending on the method of administration. Also, various pharmaceutically acceptable addition salts of the compounds of Formula I may be utilized.
A liquid form would be utilized in the instance where administration is by intravenous, intramuscular or intraperitoneal injection. When appropriate, solid dosage forms such as tablets, capsules, or liquid dosage formulations such as solutions and suspensions, etc., may be prepared for oral administration. For topical or dermal application to the skin or eye, a solution, a lotion or ointment may be formulated with the agent in a suitable vehicle such as water, ethanol, propylene glycol, perhaps including a carrier to aid in penetration into the skin or eye. For example, a topical preparation could include up to about 10% of the compound of Formula I. Other suitable forms for administration to other body tissues are also contemplated.
In the instance where the present method has therapeutic application, the animal host intended for treatment may have administered to it a quantity of one or more of the agents, in a suitable pharmaceutical form. Administration may be accomplished by known techniques, such as oral, topical and parenteral techniques such as intradermal, subcutaneous, intravenous or intraperitoneal injection, as well as by other conventional means. Administration of the agents may take place over an extended period of time at a dosage level of, for example, up to about 25 mg/kg.
As noted earlier, the invention also extends to a method of inhibiting the discoloration of teeth resulting from nonenzymatic browning in the oral cavity which comprises administration to a subject in need of such therapy an amount effective to inhibit the formation of advanced glycosylation endproducts of a composition comprising an agent of structural Formula I.
The nonenzymatic browning reaction which occurs in the oral cavity results in the discoloration of teeth. Presently used anti-plaque agents accelerate this nonenzymatic browning reaction and further the staining of the teeth. Recently, a class of cationic anti-microbial agents with remarkable anti-plaque properties have been formulated in oral rinses for regular use to kill bacteria in the mouth. These agents, the cationic antiseptics, include such agents as alexidine, cetyl pyridinium chloride, chlorhexidine gluconate, hexetidine, and benzalkonium chloride.
Tooth staining by chlorhexidine and other anti-plaque agents apparently results from the enhancement of the Maillard reaction. Nordbo, J. Dent. Res., 58, p. 1429 (1979) reported that chlorhexidine and benzalkonium chloride catalyze browning reactions in vitro. Chlorhexidine added to mixtures containing a sugar derivative and a source of amino groups underwent increased color formation, attributed to the Maillard reaction. It is also known that use of chlorhexidine results in an increased dental pellicle. Nordbo proposed that chlorhexidine resulted in tooth staining in two ways: first, by increasing formation of pellicle which contains more amino groups, and secondly, by catalysis of the Maillard reaction leading to colored products.
In accordance with this method, the compounds of Formula I are formulated into compositions adapted for use in the oral cavity. Particularly suitable formulations are oral rinses and toothpastes incorporating the active agent.
In the practice of this invention, conventional formulating techniques are utilized with nontoxic, pharmaceutically acceptable carriers typically utilized in the amounts and combinations that are well-known for the formulation of such oral rinses and toothpastes.
The agent of Formula I is formulated in compositions in an amount effective to inhibit the formation of advanced glycosylation endproducts. This amount will, of course, vary with the particular agent being utilized and the particular dosage form, but typically is in the range of 0.01% to 1.0%, by weight, of the particular formulation.
Additionally, since the agents of the aforesaid method are concentrated in the salivary glands upon oral ingestion or parenteral administration, they can be so administered. This concentration in the salivary glands results in their secretion into saliva, the net result being that they are functionally placed in the oral cavity where they can effect their desired method. For such administration, the particular agent can be formulated in any conventional oral or parenteral dosage form. A particularly desirable dosage form is the incorporation of the agent into a vitamin tablet or fluoride tablet so as to maximize patient, and particularly juvenile patient, compliance.
The compounds encompassed by Formula I are conveniently prepared by methods of chemical syntheses described in the art. Certain of the compounds encompassed by Formula I are known compounds preparable by synthetic methods specifically published therefor. For instance, the following compound has been described in the chemical and/or patent literature: 1-methylcarboimidic dihydrazide hydrobromide (Liebigs Ann. Chem., 664:146 (1963));
Certain of the compounds encompassed by Formula I are novel compounds, and, as such, are a further embodiment of the instant invention.
The compounds of the formula I wherein R2 is hydrogen can be conveniently prepared by reaction of an appropriately substituted S-alkyl thiosemicarbazide salt of the formula ##STR5## wherein alkyl is a lower alkyl group of 1-3, and preferably 1-2, carbon atoms, with a substituted hydrazine of the formula ##STR6## wherein R is as hereinbefore defined.
Depending upon the hydrazine utilized, the hydrazine of formula (III) will couple with the compound of formula (II), replacing the S-alkyl group, at either or both of the two nitrogen atoms, thus affording compounds of formula I wherein R1 is amino when the coupling occurs at the central nitrogen atom, and the compounds of formula I wherein R1 is hydrogen when the coupling occurs at the terminal nitrogen atom. Generally, the use of a hydrazine of formula III containing a bulkier substituent will result in the formation of predominately compounds wherein R1 is hydrogen, while the use of a less hindered hydrazine will result in the formation of predominately the compounds wherein R1 is an amino group. Usually, the a minor amount of the other addition product will also be formed, and varying the type of solvent can result in its isolation as well. Typically, this reaction is conducted at the reflux temperature of the solvent, which is preferably a polar alcohol such as methyl or ethyl alcohol. Typical reaction times vary from about 4 to about 24 hours.
The compounds of formula I wherein R2 is an amino group are prepared by reaction of a salt, preferably a p-toluenesulfonate salt, of a compound of the formula ##STR7## wherein alkyl is a lower alkyl group of 1-3, and preferably 1-2 carbon atoms, with a substituted hydrazine of the formula ##STR8## wherein R is as hereinbefore defined.
Typically, this reaction is conducted at the reflux temperature of the solvent, which is preferably a polar alcohol such as methyl or ethyl alcohol. Typical reaction times vary from about 1 to about 4 hours. In a variation of this reaction, the substituted hydrazine is prepared in situ by the use of anhydrous hydrazine and the alcohol R--OH wherein R is as hereinbefore defined.
Certain of the compounds of formula I are novel compounds, and, as such, constitute a further embodiment of the present invention. The novel compounds are those of formula I wherein R is an --NR4 R5 group wherein R4 and R5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms; and the compounds of formula I wherein R is a hydroxylower alkyl group.
EXAMPLES Preparation of Starting Materials Example A
S-methylthiosemicarbazide p-toluenesulfonate
Thiosemicarbazide (43.2 g, 0.474 mole) and methyl p-toluenesulfonate (80.23 g, 0.474 mole) in methyl alcohol (37.5 Ml) were heated to reflux temperature for 16 hours. The mixture was cooled to room temperature and diluted with t-butylmethyl ether (500 Ml). After one hour, a crystalline product separated, and was filtered and washed with ispropanol and t-butyl methyl ether to give the title product in a yield of 85%, m.p. 153°-155° C.
Example B
S-methyl-(2-methyl)-thiosemicarbazide p-toluenesulfonate
2-Methyl-3-thiosemicarbazide (10.5 gram, 0.1 mole) and methyl p-toluenesulfonate (18.6 g, 0.1 mole) in methyl alcohol (60 Ml) were refluxed for 15 minutes and then stirred at room temperature overnight. The mixture was then diluted with t-butyl methyl ether (400 Ml). A solid separated, and was filtered and dried to give the give the title product in a yield of 94%, m.p. 156°-158° C.
Example C
S-Ethylthiosemicarbazide hydrobromide
Thiosemicarbazide (109.2 g, 1.2 mole) and ethyl bromide (105 Ml, 1.4 mole) were taken up in methyl alcohol (500 mL) and refluxed for 9 hours. The mixture was cooled to room temperature and stirred overnight. Addition of isopropanol (500 mL) and t-butyl methyl ether (1000 mL) resulted in the formation of a crystalline product. After one hour, filtration and washing of the solid with t-butyl methyl ether gave, in a yield of 93%, the title product, m.p. 123°-125° C.
Example D
S-Methylthiocarbohydrazide p-toluenesulfonate
Thiocarbohydrazide (5.3 g, 0.05 mole) and methyl p-toluenesulfonate (10.2 g, 0.05 mole) were taken up in ethyl alcohol (50 mL) and refluxed for 2 hours. The mixture was then cooled to room temperature and stirred overnight. It was diluted with t-butyl methyl ether (150 mL) and stored at -20° C. for 4 days. The crystals which separated during storage were filtered and dried to give the title product, m.p. 136°-137° C., in a yield of 69.7%.
Preparation of Compounds of Formula I Example 1
2-(2-Hydroxy-2-methylpropyl)hydrazine carboximidic hydrazide p-toluenesulfonate
The S-methylthiosemicarbazide p-toluenesulfonate prepared in Example A (0.01 mole) and 1-hydrazino-2-methyl-2-methylpropan-2-ol (0.01 mole, prepared as in Zhadanov, Zhurnal Organicheskoi Khimii, 9, 1180-1186 (1973)) were taken up in ethyl alcohol and refluxed overnight. The solvents were removed by evaporation and the residue was crystallized from isopropanol or a mixture of isopropanol and t-butyl methyl ether to give the title product, m.p. 126°-128° C., in a yield of 83%.
Example 2
Using the substituted S-methylthiosemicarbazide p-toluenesulfonate of either Example A or B and the appropriately substituted hydrazine compound, and repetition of the procedure detailed in Example 1 affords the following compounds:
(a) N-(4-morpholino)hydrazinecarboximidamide p-toluenesulfonate, m.p. 192°-193° C.;
(b) 1-methyl-N-(4-morpholino)hydrazinecarboximidamide p-toluenesulfonate, m.p. 192°-194° C.;
(c) 1-methyl-N-(4-piperidino)hydrazinecarboximidamide p-toluenesulfonate, m.p. 183°-185° C.;
(d) 1-(N-hexahydroazepino)hydrazinecarboximidamide p-toluenesulfonate, m.p. 178°-180° C.; and
(e) N,N-dimethylcarbonimidic dihydrazide p-toluenesulfonate, m.p. 100°-101° C.
Example 3
1-Methylcarbonimidic dihydrazide hydrobromide
A solution of S-Ethylthiosemicarbazide hydrobromide (prepared as in Example C, 4 g, 0.02 mole) in water (5 Ml) was treated with a solution of methyl hydrazine (1 g. 0.02 mole) in water (1 Ml) and stirred at room temperature for 24 hours. It was then heated on a stream bath for an additional seven hours. Removal of the solvent resulted in a solid which was crystallized from a mixture of ethyl alcohol and isopropanol to give the title product in a yield of 41%, m.p. 146°-148° C.
Example 4
2-(2-Hydroxy-2-methylpropyl)carbohydrazonic dihydrazide p-toluenesulfonate
S-Methylthiocarbohydrazide (prepared as in Example D, 2.92 g, 0.01 mole) and 1-hydrazino-2-methylpropan-2-ol (1.05 g, 0.01 mole) were dissolved in ethyl alcohol (20 ml) and refluxed overnight. Removal of the solvent afforded a solid which was crystallized from a mixture of isopropanol and t-butyl methyl ether to five the title product in 12% yield, m.p. 114°-116° C.
Example 5
N-Ethylcarbonimidic dihydrazide p-toluenesulfonate
4-Ethyl-3-thiosemicarbazide (1.58 g, 0.013 mole) and methyl p-toluenesulfonate (2.47 g, 0.013 mole) were refluxed in ethyl alcohol (10 Ml) for 2 hours. The mixture was then cooled to room temperature and anhydrous hydrazine (0.6 g, 0.018 mole) was added dropwise. The reaction mixture was stirred at room temperature overnight. The solid which separated was filtered, dried, and crystallized from a mixture of ethyl alcohol and t-butyl methyl ether to give the title product in a yield of 69%, m.p. 169°-171° C.
Evaluation of Utility Example 6
The following method was used to evaluate the ability of the compounds of the present invention to inhibit glucose-mediated development of fluorescence of bovine serum albumin (BSA), a measure of cross-linking. Compounds were incubated under aseptic conditions at a concentration of 1 mM with 400 mM glucose and 100 mg/mL BSA in a 1.5M sodium phosphate buffer, pH 7.4.
Samples of the incubation mixture were taken immediately and after 1 week incubation at 37° C. for measurement of fluorescence. For each test compound, control incubations in buffer were made of compound alone (C), compound plus glucose (G+C), and compound plus BSA (B+C). An additional set of incubations of glucose and BSA (B+G) were prepared as the baseline controls against which were measured the ability of the compounds to inhibit. Each incubation was made in triplicate.
Fluorescence (excitation, 370 nm; emission, 440 nm) was measured on each sample after a 100-fold dilution in distilled water.
The % inhibition of browning of each test compound was calculated as follows. Each ΔF represents the fluorescence measurement of that sample after 1 week incubation less its fluorescence before incubation. ##EQU1## where B=BSA, G=glucose, and C=test compound.
Percent inhibition of browning by various test compounds at 1 mM:
______________________________________                                    
  0%  no inhibitor;                                                       
49.0% 2-(2-hydroxy-2-methylpropyl)hydrazine carboximidic                  
      hydrazide p-toluenesulfonate                                        
37.0% 2-(2-hydroxy-2-methylpropyl)carbohydrazonic dihy-                   
      drazide p-toluenesulfonate                                          
______________________________________                                    
The above experiments suggest that this type of drug therapy may have benefit in reducing the pathology associated with the advanced glycosylation of proteins and the formation of cross-links between proteins and other macromolecules. Drug therapy may be used to prevent the increased trapping and cross-linking of proteins that occurs in diabetes and aging which leads to sequelae such as retinal damage, and extra-vascularly, damage to tendons, ligaments and other joints. This therapy might retard atherosclerosis and connective tissue changes that occur with diabetes and aging. Both topical, oral, and parenteral routes of administration to provide therapy locally and systemically are contemplated.
Example 7
The following method was used to evaluate the ability of the compounds of the present invention to inhibit the cross-linking of glycated bovine serum albumin (AGE-BSA) to the rat tail tendon collagen coated 96-well plate.
The AGE-BSA was prepared by incubating BSA at a concentration of 200 mg per ml with 200 mM glucose in 0.4M sodium phosphate buffer, pH 7.4 at 37° C. for 12 weeks. The glycated BSA was then extensively dialyzed against phosphate buffer solution (PAS) for 48 hours with additional 5 times buffer exchanges. The rat tail tendon collagen coated plate was blocked first with 300 μl of superbloc blocking buffer (Pierce #37515X) for one hour. The blocking solution was removed from the wells by washing the plate twice with PAS-Tween 20 solution (0.05% Tween 20) using a NUNC-multiprobe or Dynatech ELISA-plate washer. Cross-linking of AGE-BSA (1 to 10 μg per well depending on the batch of AGE-BSA) to rat tail tendon collagen coated plate was performed with and without the testing compound dissolved in PAS buffer at Ph 7.4 at the desired concentrations by the addition of 50 μl each of the AGE-BSA diluted in PAS or in the testing compound at 37° C. for 4 hours. The unbrowned BSA in PAS buffer with or without testing compound were added to the separate wells as the blanks. The un-cross-linked AGE-BSA was then removed by washing the wells three times with PAS-Tween buffer. The cross-linked AGE-BSA to the tail tendon coated plate was then quantitated by the polyclonal antibody raised against AGE-Rnase. After a one-hour incubation period, AGE antibody was removed by washing 4 times with PAS-Tween.
The bound AGE antibody was then detected with the addition of horseradish peroxidase-conjugated secondary antibody--goat anti-rabbit immunoglobulin and incubation for 30 minutes. The substrate of 2,2-azino-di(3-ethylbenzthiazoline sulfonic acid) (ABTS chromogen) (Zymed #00-2011) was added. The reaction was allowed for an additional 15 minutes and the absorbance was read at 410 nm in a Dynatech plate reader.
The % inhibition of each test compound was calculated as follows. ##EQU2##
The IC50 relative inhibition by various test compounds at 10 mM is as follows:
______________________________________                                    
                           Relative                                       
Test Compound              IC.sub.50 (mM)                                 
______________________________________                                    
N-(4-morpholino)hydrazinecarboximidamide p-                               
                           0.1                                            
toluenesulfonate                                                          
N-ethylcarbonimidic dihydrazide p-toluenesulfonate                        
                           7.10                                           
1-methyl-N-(4-morpholino)hydrazinecarboximidamide                         
                           10.3                                           
p-toluenesulfonate                                                        
1-methyl-N-(4-piperidino)hydrazinecarboximidamide                         
                           6.59                                           
p-toluenesulfonate                                                        
1-(N-hexahydroazepino)hydrazinecarboxamide p-                             
                           5.5                                            
toluenesulfonate                                                          
______________________________________                                    
The above experiments suggest that this type of drug therapy may have benefit in reducing the pathology associated with the advanced glycosylation of proteins and the formation of cross-links between proteins and other macromolecules. Drug therapy may be used to prevent the increased trapping and cross-linking of proteins that occurs in diabetes and aging which leads to sequelae such as retinal damage, and extra-vascularly, damage to tendons, ligaments and other joints. This therapy might retard atherosclerosis and connective tissue changes that occur with diabetes and aging. Both topical, oral, and parenteral routes of administration to provide therapy locally and systemically are contemplated.
Example 8
To further study the ability of inhibitors of nonenzymatic browning to prevent the discoloration of protein on a surface, such as that which occurs on the tooth surface, the following surface browning experiment is performed. As a substitute for a pellicle-covered tooth surface, unexposed and developed photographic paper is used to provide a fixed protein (gelatin, i.e., collagen) surface on a paper backing. Five millimeter circles are punched and immersed for one week at 50° C. in a solution of 100 Mm glucose-6-phosphate in a 0.5M phosphate buffer, pH 7.4, containing 3 mM sodium azide. Glucose-6-phosphate is a sugar capable of participating in nonenzymatic browning at a more rapid rate than glucose. In addition to the glucose-6-phosphate, chlorhexidine and/or a compound of Formula I are included. After incubation, the gelatin/paper disks are rinsed with water, observed for brown color, and photographed.
Incubation of the disks in glucose-6-phosphate alone shows slight brown color versus disks soaked in buffer alone. Inclusion of chlorhexidine (in the form of Peridex® at a final concentration of 0.04% chlorhexidine) shows significant browning. Addition of a compound of Formula I to the chlorhexidine completely inhibits browning of the gelatin, as does inclusion of a compound of Formula I in the absence of chlorhexidine.
The slight brown color formed by the action of glucose-6-phosphate on the gelatin surface alone and its prevention by a compound of Formula I demonstrates the utility of the present invention in preventing nonenzymatic browning of tooth surfaces. The enhanced browning in the presence of chlorhexidine and its prevention with a compound of Formula I demonstrates the utility of the present invention in preventing the anti-plaque agent-enhanced nonenzymatic browning which occurs with chlorhexidine.
Formulations of Compounds of Formula I Example 9
______________________________________                                    
Tablet            mg/tablet                                               
______________________________________                                    
Compound of Formula I                                                     
                  50                                                      
Starch            50                                                      
Mannitol          75                                                      
Magnesium stearate                                                        
                   2                                                      
Stearic acid       5                                                      
______________________________________                                    
The compound, a portion of the starch and the lactose are combined and wet granulated with starch paste. The wet granulation is placed on trays and allowed to dry overnight at a temperature of 45° C. The dried granulation is comminuted in a comminutor to a particle size of approximately 20 mesh. Magnesium stearate, stearic acid and the balance of the starch are added and the entire mix blended prior to compression on a suitable tablet press. The tablets are compressed at a weight of 232 mg. using a 11/32" punch with a hardness of 4 kg. These tablets will disintegrate within a half hour according to the method described in USP XVI.
Example 10
______________________________________                                    
Lotion            mg/g                                                    
______________________________________                                    
Compound of Formula I                                                     
                   1.0                                                    
Ethyl alcohol     400.0                                                   
Polyethylene glycol 400                                                   
                  300.0                                                   
Hydroxypropyl cellulose                                                   
                   5.0                                                    
Propylene glycol  to make 1.0 g                                           
______________________________________                                    
Example 11
______________________________________                                    
Oral Rinse                                                                
______________________________________                                    
Compound of Formula I:                                                    
                    1.4%                                                  
Chlorhexidine gluconate                                                   
                   0.12%                                                  
Ethanol            11.6%                                                  
Sodium saccharin   0.15%                                                  
FD&C Blue No. 1    0.001%                                                 
Peppermint Oil      0.5%                                                  
Glycerine          10.0%                                                  
Tween 60            0.3%                                                  
Water to            100%                                                  
______________________________________                                    
Example 12
______________________________________                                    
Toothpaste                                                                
______________________________________                                    
Compound of Formula I:  5.5%                                              
Sorbitol, 70% in water   25%                                              
Sodium saccharin       0.15%                                              
Sodium lauryl sulfate  1.75%                                              
Carbopol 934, 6% dispersion in water                                      
                         15%                                              
Oil of Spearmint        1.0%                                              
Sodium hydroxide, 50% in water                                            
                       0.76%                                              
Dibasic calcium phosphate dihydrate                                       
                         45%                                              
Water to                100%                                              
______________________________________                                    
This invention may be embodied in other forms or carried out in other ways without departing from the spirit or essential characteristics thereof. The present disclosure is therefore to be considered as in all respects illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes which come within the meaning and range of equivalency are intended to be embraced therein.

Claims (23)

What is claimed is:
1. A method for inhibiting the advanced glycosylation of a target protein comprising contacting the target protein with an effective amount of composition comprising a compound selected from the group consisting of compounds of the formula ##STR9## wherein R is a lower alkyl group, or a group of the formula ##STR10## wherein R4 is hydrogen, and R5 is a lower alkyl group or a hydroxylower alkyl group; or R4 and R5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
R1 is hydrogen or an amino group;
R2 is hydrogen or an amino group;
R3 is hydrogen or a lower alkyl group;
with the proviso that at least one of R1, R2, and R3 is other than hydrogen; and with the further proviso that R and R1 cannot both be amino groups; their pharmaceutically acceptable acid addition salts; and mixtures thereof, and
a carrier therefor.
2. The method of claim 1 wherein said compound has the formula wherein R2 is an amino group.
3. The method of claim 2 wherein said compound is N-ethylcarbonimidic dihydrazide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
4. The method of claim 1 wherein said compound has the formula wherein R2 is hydrogen.
5. The method of claim 1 wherein said compound is N-(4-morpholino)hydrazinecarboximidamide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
6. A method for treating an animal to inhibit the formation of advanced glycosylation endproducts of a target protein within said animal, said method comprising administering to an animal in need of said treatment an effective amount of a pharmaceutical composition, said pharmaceutical composition comprising a compound selected from the group consisting of compounds of the formula ##STR11## wherein R is a lower alkyl group, or a group of the formula ##STR12## wherein R4 is hydrogen, and R5 is a lower alkyl group or a hydroxy(lower)alkyl group; or R4 and R5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
R1 is hydrogen or an amino group;
R2 is hydrogen or an amino group;
R3 is hydrogen or a lower alkyl group;
with the proviso that at least one of R1, R2, and R3 is other than hydrogen; and with the further proviso that R and R1 cannot both be amino groups; their pharmaceutically acceptable acid addition salts; and mixtures thereof, and
a carrier therefor.
7. The method of claim 6 wherein said compound has the formula wherein R2 is an amino group.
8. The method of claim 7 wherein said compound is N-ethylcarbonimidic dihydrazide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
9. The method of claim 6 wherein said compound has the formula wherein R2 is hydrogen.
10. The method of claim 9 wherein said compound is N-(4-morpholino)hydrazinecarboximidamide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
11. A pharmaceutical composition for administration to an animal to inhibit the advanced glycosylation of a target protein within said animal, comprising a pharmaceutically effective amount of a compound selected from the group consisting of compounds of the formula ##STR13## wherein R is a lower alkyl group, or a group of the formula ##STR14## wherein R4 is hydrogen and R5 is a lower alkyl group or a hydroxy(lower)alkyl group; or R4 and R5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
R1 is hydrogen or an amino group;
R2 is hydrogen or an amino group;
R3 is hydrogen or a lower alkyl group;
with the proviso that at least one of R1, R2, and R3 is other than hydrogen; and with the further proviso that R and R1 cannot both be amino groups; their pharmaceutically acceptable acid addition salts; and mixtures thereof, and
a carrier therefor.
12. The composition of claim 11 wherein said compound has the formula wherein R2 is an amino group.
13. The composition of claim 12 wherein said compound is N-ethylcarbonimidic dihydrazide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
14. The composition of claim 11 wherein said compound has the formula wherein R2 is hydrogen.
15. The composition of claim 11 wherein said compound is N-(4-morpholino)hydrazinecarboximidamide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
16. A method of inhibiting the discoloration of teeth resulting from non-enzymatic browning in the oral cavity which comprises administration of an amount effective to inhibit the formation of advanced glycosylation endproducts of a composition comprising a compound selected from the group consisting of compounds of the formula ##STR15## wherein R is a lower alkyl group, or a group of the formula ##STR16## wherein R4 is hydrogen, and R5 is a lower alkyl group or a hydroxy(lower)alkyl group; or R4 and R5 together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
R1 is hydrogen or an amino group;
R2 is hydrogen or an amino group;
R3 is hydrogen or a lower alkyl group;
with the proviso that at least one of R1, R2, and R3 is other than hydrogen; and with the further proviso that R and R1 cannot both be amino groups; their pharmaceutically acceptable acid addition salts; and mixtures thereof, and
a carrier therefor.
17. A compound of the formula ##STR17## wherein R' is a group of the formula ##STR18## wherein R4 ' is hydrogen and R5 ' is a hydroxy(lower)alkyl group, or R4 ' and R5 ' together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms;
R1 is hydrogen or an amino group;
R2 is hydrogen or an amino group;
R3 is hydrogen or a lower alkyl group;
with the proviso that at least one of R1, R2, and R3 is other than hydrogen; and with the further proviso that R and R1 cannot both be amino groups; or their pharmaceutically acceptable acid addition salts.
18. The compound according to claim 17 which is N-(4-morpholino)hydrazinecarboximidamide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
19. The compound according to claim 17 which is 1-methyl-N-(4-morpholino)hydrazinecarboximidamide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
20. The compound according to claim 17 which is 1-methyl-N-(4-piperidino)hydrazinecarboximidamide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
21. The compound according to claim 17 which is N-(N-hexahydroazepino)hydrazinecarboximidamide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof; and their pharmaceutically acceptable acid addition salts.
22. The compound according to claim 17 which is 2-(2-hydroxy-2-methylpropyl)hydrazinecarboximidic hydrazide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
23. The compound according to claim 17 which is 2-(2-hydroxy-2-methylpropyl)carbohydrazonic dihydrazide p-toluenesulfonate, or another pharmaceutically acceptable acid addition salt thereof.
US08/487,059 1984-03-19 1995-06-07 Di- and triaminoguanidines, and methods of use Expired - Fee Related US5612332A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US08/487,059 US5612332A (en) 1984-03-19 1995-06-07 Di- and triaminoguanidines, and methods of use
AU61586/96A AU6158696A (en) 1995-06-07 1996-06-07 Di- and tri-aminoguanidines and their use to inhibit the advanced glycosylation of proteins
PCT/US1996/009376 WO1996040663A1 (en) 1995-06-07 1996-06-07 Di- and tri-aminoguanidines and their use to inhibit the advanced glycosylation of proteins
US08/784,861 US5852009A (en) 1984-03-19 1997-01-16 Compositions, including pharmaceutical compositions, for inhibiting the advanced glycosylation of proteins, and therapeutic methods based thereon
US09/215,612 US6114323A (en) 1984-03-19 1998-12-17 Methods for inhibiting the advanced glycosylation of proteins
US09/954,514 US20020115724A1 (en) 1985-11-14 2001-09-17 Methods and agents for inhibiting protein aging

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US06/590,820 US4665192A (en) 1984-03-19 1984-03-19 2-(2-furoyl)-4(5)-2(furanyl)-1H-imidazole
US06/798,032 US4758583A (en) 1984-03-19 1985-11-14 Method and agents for inhibiting protein aging
US07/119,958 US4908446A (en) 1985-11-14 1987-11-13 Inhibitors of nonenzymatic cross-linking
US07/264,930 US4983604A (en) 1987-11-13 1988-11-02 Inhibitors of nonenzymatic cross-linking
US07/605,654 US5140048A (en) 1984-03-19 1990-10-30 Inhibitors of nonenzymatic cross-linking
US07/889,141 US5356895A (en) 1984-03-19 1992-05-27 1,4 piperizino inhibitors of non-enzymatic cross-linking of proteins
US27424394A 1994-07-13 1994-07-13
US08/487,059 US5612332A (en) 1984-03-19 1995-06-07 Di- and triaminoguanidines, and methods of use

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US27424394A Division 1984-03-19 1994-07-13
US27424394A Continuation-In-Part 1984-03-19 1994-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/784,861 Continuation-In-Part US5852009A (en) 1984-03-19 1997-01-16 Compositions, including pharmaceutical compositions, for inhibiting the advanced glycosylation of proteins, and therapeutic methods based thereon

Publications (1)

Publication Number Publication Date
US5612332A true US5612332A (en) 1997-03-18

Family

ID=23934236

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/487,059 Expired - Fee Related US5612332A (en) 1984-03-19 1995-06-07 Di- and triaminoguanidines, and methods of use

Country Status (3)

Country Link
US (1) US5612332A (en)
AU (1) AU6158696A (en)
WO (1) WO1996040663A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852009A (en) * 1984-03-19 1998-12-22 The Rockefeller University Compositions, including pharmaceutical compositions, for inhibiting the advanced glycosylation of proteins, and therapeutic methods based thereon
WO2000062626A1 (en) * 1999-04-15 2000-10-26 Fox Chase Cancer Center Method for reducing a susceptibility to tumor formation induced by 3-deoxyglucosone and precursors thereof
US20060089316A1 (en) * 2004-10-25 2006-04-27 Brown Truman R Method for reducing a susceptibility to tumor formation induced by 3-deoxyglucosone and precursors thereof
US20150368193A1 (en) * 2013-01-25 2015-12-24 Sealife Pharma Gmbh Bioactive polymers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9815880D0 (en) * 1998-07-21 1998-09-16 Pfizer Ltd Heterocycles

Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258321A (en) * 1939-08-12 1941-10-07 American Cyanamid Co Condensation products of amines and monoalkylol cyanamides
US2289541A (en) * 1941-01-18 1942-07-14 American Cyanamid Co Insecticide
US2300570A (en) * 1940-07-19 1942-11-03 American Cyanamid Co Method of preparing alkylol cyanamide condensation products
US2375659A (en) * 1942-04-24 1945-05-08 American Cyanamid Co Alkoxypropylamine condensation products
US2721217A (en) * 1953-09-11 1955-10-18 American Cyanamid Co Method of preparing diaminoguanidine hydrochloride
GB809165A (en) * 1956-06-15 1959-02-18 Ici Ltd New pharmaceutical compositions
US2928829A (en) * 1959-08-31 1960-03-15 Ciba Pharm Prod Inc Alkyleneimino-lower alkyl-guanidines
US2951843A (en) * 1958-08-06 1960-09-06 Boehringer & Soehne Gmbh Tetrahydrosoquinoline biguanides
US3006913A (en) * 1959-06-10 1961-10-31 Ciba Pharm Prod Inc Process for preparing (n,n-alkylene-imino)-lower alkyl-guanidines
US3053732A (en) * 1957-01-30 1962-09-11 Ici Ltd Lungworm control composition and method of using same
US3055883A (en) * 1960-03-10 1962-09-25 Ciba Geigy Corp Benzo-alkylenimino-lower guanidines
US3081222A (en) * 1960-03-11 1963-03-12 Us Rubber Co Fungicides
US3098066A (en) * 1960-03-04 1963-07-16 Ciba Geigy Corp Diaza-heterocyclic guanidine compounds
US3101336A (en) * 1958-02-03 1963-08-20 Aspro Nicholas Ltd Heterocyclic substituted biguanides and cyanoguanidines
GB952194A (en) * 1960-12-23 1964-03-11 Smith Kline French Lab New guanidine derivatives and processes for preparing the same
US3178433A (en) * 1963-05-07 1965-04-13 Ciba Geigy Corp 3-amino-1-diazacycloalkyl-alkyl-guanidines
US3183241A (en) * 1963-02-11 1965-05-11 Dow Chemical Co Preparation of certain triazoles
US3200111A (en) * 1963-08-27 1965-08-10 Upjohn Co Certain 1-(2-tertiary aminoethoxy) guanidines and their preparation
US3201459A (en) * 1961-11-23 1965-08-17 Farmaceutici Italia Guanidine
US3202710A (en) * 1962-12-06 1965-08-24 Rexall Drug Chemical 1-(2-cycloalkyl-2-dilower alkylamino-ethyl) guanidines
GB1036987A (en) * 1964-04-30 1966-07-20 Bayer Ag New guanyl hydrazones
US3291829A (en) * 1961-03-02 1966-12-13 Ciba Geigy Corp Alkyl guanidines
US3317545A (en) * 1963-08-21 1967-05-02 Hoffmann La Roche [2-(2, 6-dimethylpiperidino)ethyl]guanidines and intermediates
US3320195A (en) * 1966-09-15 1967-05-16 Du Pont Coating compositions containing a tetrasubstituted guanidine
US3364220A (en) * 1963-11-13 1968-01-16 Colgate Palmolive Co Heterocyclicaminoalkylguanidines
US3506680A (en) * 1968-01-18 1970-04-14 Baxter Laboratories Inc Method of treating hypertension in animals with aminoguanidines
DE2029707A1 (en) * 1969-06-17 1970-12-23 Imperial Chemical Industries Ltd., London Anti-virus preparations and their uses
FR2059975A1 (en) * 1969-08-13 1971-06-11 Synthelabo 1-substd cyclohexane carboxylic acid hydrazides
GB1274668A (en) * 1968-06-10 1972-05-17 Ici Ltd Pesticidal compositions comprising aminoguanidines
US3681504A (en) * 1968-12-26 1972-08-01 Dow Chemical Co Ruminant deglutition alteration
US3803324A (en) * 1968-07-09 1974-04-09 Boehringer Mannheim Gmbh Amino-guanidine derivatives useful for regulating blood pressure
US3978060A (en) * 1973-10-15 1976-08-31 Ici Australia Limited Method of eradicating internal parasites
US3980774A (en) * 1969-03-20 1976-09-14 American Home Products Corporation Method of viral chemoprophylaxis and compounds therefor
US3991209A (en) * 1973-11-13 1976-11-09 Ici Australia Limited Halomethanesulfonamides for eradicating internal parasites
US4161541A (en) * 1977-08-29 1979-07-17 Mcneil Laboratories, Inc. Benzhydryl guanidines
US4271190A (en) * 1978-03-02 1981-06-02 Th. Goldschmidt Ag Guanidinium salts, processes for their manufacture as well as microbicidal preparations containing these compounds
DE3040993A1 (en) * 1980-10-31 1982-06-16 Henkel KGaA, 4000 Düsseldorf Antimicrobially active guanidine salt derivs. - prepd. by reacting amino-alkanol salt of non-toxic acid with equimolar cyanamide proportion
US4471137A (en) * 1981-07-15 1984-09-11 Centre National De La Recherche Scientifique (Cnrs) Highly sterically hindered guanidines and process for the production thereof
US4544759A (en) * 1983-07-29 1985-10-01 American Cyanamid Company Platinum complexes of antitumor agents
EP0158020A1 (en) * 1984-03-08 1985-10-16 American Cyanamid Company Process for preparing 2-hydrazino-1,3-diazacycoalk-2-ene hydrohalides
US4665192A (en) * 1984-03-19 1987-05-12 The Rockefeller University 2-(2-furoyl)-4(5)-2(furanyl)-1H-imidazole
EP0222313A2 (en) * 1985-11-14 1987-05-20 The Rockefeller University Method and agents for inhibiting protein aging
US4680300A (en) * 1985-01-10 1987-07-14 Syntex (U.S.A.) Inc. Anti-inflammatory guanidines
US4731383A (en) * 1983-12-12 1988-03-15 Biogal Gyogyszergyar Aminoguanidine compounds, their compositions and pharmaceutical uses
JPS63287492A (en) * 1987-05-20 1988-11-24 Kao Corp Method for transesterification of oils and fats
EP0325936A2 (en) * 1988-01-16 1989-08-02 Ono Pharmaceutical Co., Ltd. Aminoguanidine derivatives and inhibitory agents on maillard reaction containing them as active ingredients
US4908446A (en) * 1985-11-14 1990-03-13 The Rockefeller University Inhibitors of nonenzymatic cross-linking
US5006523A (en) * 1989-10-26 1991-04-09 E. R. Squibb & Sons, Inc. Antiarrhythmic agents: aryl cyanoguanidine potassium channel blockers
US5140048A (en) * 1984-03-19 1992-08-18 The Rockefeller University Inhibitors of nonenzymatic cross-linking
US5189046A (en) * 1990-08-14 1993-02-23 Nova Pharmaceutical Corporation Protein kinase C modulators
US5196450A (en) * 1985-12-19 1993-03-23 Merrell Dow Pharmaceuticals Inc. Method of inhibiting protozoal growth
US5296498A (en) * 1990-11-29 1994-03-22 Adir Et Compagnie Guanidine compounds
US5336689A (en) * 1990-03-02 1994-08-09 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100919A (en) * 1984-03-19 1992-03-31 The Rockefeller University Biguanides and derivatives thereof as inhibitors of advanced glycosylation of a target protein
US4983604A (en) * 1987-11-13 1991-01-08 The Rockefeller University Inhibitors of nonenzymatic cross-linking
CA1332572C (en) * 1988-01-29 1994-10-18 Anthony Cerami Method and agents for preventing staining of teeth

Patent Citations (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2258321A (en) * 1939-08-12 1941-10-07 American Cyanamid Co Condensation products of amines and monoalkylol cyanamides
US2300570A (en) * 1940-07-19 1942-11-03 American Cyanamid Co Method of preparing alkylol cyanamide condensation products
US2289541A (en) * 1941-01-18 1942-07-14 American Cyanamid Co Insecticide
US2375659A (en) * 1942-04-24 1945-05-08 American Cyanamid Co Alkoxypropylamine condensation products
US2721217A (en) * 1953-09-11 1955-10-18 American Cyanamid Co Method of preparing diaminoguanidine hydrochloride
GB809165A (en) * 1956-06-15 1959-02-18 Ici Ltd New pharmaceutical compositions
US3053732A (en) * 1957-01-30 1962-09-11 Ici Ltd Lungworm control composition and method of using same
US3101336A (en) * 1958-02-03 1963-08-20 Aspro Nicholas Ltd Heterocyclic substituted biguanides and cyanoguanidines
US2951843A (en) * 1958-08-06 1960-09-06 Boehringer & Soehne Gmbh Tetrahydrosoquinoline biguanides
US3055882A (en) * 1959-06-10 1962-09-25 Ciba Geigy Corp Reduction process for preparation of cyclic nitrogen compounds
US3006913A (en) * 1959-06-10 1961-10-31 Ciba Pharm Prod Inc Process for preparing (n,n-alkylene-imino)-lower alkyl-guanidines
US2928829A (en) * 1959-08-31 1960-03-15 Ciba Pharm Prod Inc Alkyleneimino-lower alkyl-guanidines
US3098066A (en) * 1960-03-04 1963-07-16 Ciba Geigy Corp Diaza-heterocyclic guanidine compounds
US3055883A (en) * 1960-03-10 1962-09-25 Ciba Geigy Corp Benzo-alkylenimino-lower guanidines
US3081222A (en) * 1960-03-11 1963-03-12 Us Rubber Co Fungicides
US3283003A (en) * 1960-12-23 1966-11-01 Smith Kline French Lab 2-(n-lower alkyl-n-cycloheptyl- and cyclooctylamino) ethyl guanidines
GB952194A (en) * 1960-12-23 1964-03-11 Smith Kline French Lab New guanidine derivatives and processes for preparing the same
US3291829A (en) * 1961-03-02 1966-12-13 Ciba Geigy Corp Alkyl guanidines
US3201459A (en) * 1961-11-23 1965-08-17 Farmaceutici Italia Guanidine
US3202710A (en) * 1962-12-06 1965-08-24 Rexall Drug Chemical 1-(2-cycloalkyl-2-dilower alkylamino-ethyl) guanidines
US3183241A (en) * 1963-02-11 1965-05-11 Dow Chemical Co Preparation of certain triazoles
US3178433A (en) * 1963-05-07 1965-04-13 Ciba Geigy Corp 3-amino-1-diazacycloalkyl-alkyl-guanidines
US3317545A (en) * 1963-08-21 1967-05-02 Hoffmann La Roche [2-(2, 6-dimethylpiperidino)ethyl]guanidines and intermediates
US3200111A (en) * 1963-08-27 1965-08-10 Upjohn Co Certain 1-(2-tertiary aminoethoxy) guanidines and their preparation
US3364220A (en) * 1963-11-13 1968-01-16 Colgate Palmolive Co Heterocyclicaminoalkylguanidines
GB1036987A (en) * 1964-04-30 1966-07-20 Bayer Ag New guanyl hydrazones
US3320195A (en) * 1966-09-15 1967-05-16 Du Pont Coating compositions containing a tetrasubstituted guanidine
US3506680A (en) * 1968-01-18 1970-04-14 Baxter Laboratories Inc Method of treating hypertension in animals with aminoguanidines
GB1274668A (en) * 1968-06-10 1972-05-17 Ici Ltd Pesticidal compositions comprising aminoguanidines
US3803324A (en) * 1968-07-09 1974-04-09 Boehringer Mannheim Gmbh Amino-guanidine derivatives useful for regulating blood pressure
US3681504A (en) * 1968-12-26 1972-08-01 Dow Chemical Co Ruminant deglutition alteration
US3980774A (en) * 1969-03-20 1976-09-14 American Home Products Corporation Method of viral chemoprophylaxis and compounds therefor
DE2029707A1 (en) * 1969-06-17 1970-12-23 Imperial Chemical Industries Ltd., London Anti-virus preparations and their uses
FR2059975A1 (en) * 1969-08-13 1971-06-11 Synthelabo 1-substd cyclohexane carboxylic acid hydrazides
US3978060A (en) * 1973-10-15 1976-08-31 Ici Australia Limited Method of eradicating internal parasites
GB1458636A (en) * 1973-10-15 1976-12-15 Ici Australia Ltd Methods and compositions for killing parasites of warm blooded animals
US3991209A (en) * 1973-11-13 1976-11-09 Ici Australia Limited Halomethanesulfonamides for eradicating internal parasites
US4161541A (en) * 1977-08-29 1979-07-17 Mcneil Laboratories, Inc. Benzhydryl guanidines
US4271190A (en) * 1978-03-02 1981-06-02 Th. Goldschmidt Ag Guanidinium salts, processes for their manufacture as well as microbicidal preparations containing these compounds
DE3040993A1 (en) * 1980-10-31 1982-06-16 Henkel KGaA, 4000 Düsseldorf Antimicrobially active guanidine salt derivs. - prepd. by reacting amino-alkanol salt of non-toxic acid with equimolar cyanamide proportion
US4471137A (en) * 1981-07-15 1984-09-11 Centre National De La Recherche Scientifique (Cnrs) Highly sterically hindered guanidines and process for the production thereof
US4544759A (en) * 1983-07-29 1985-10-01 American Cyanamid Company Platinum complexes of antitumor agents
US4731383A (en) * 1983-12-12 1988-03-15 Biogal Gyogyszergyar Aminoguanidine compounds, their compositions and pharmaceutical uses
EP0158020A1 (en) * 1984-03-08 1985-10-16 American Cyanamid Company Process for preparing 2-hydrazino-1,3-diazacycoalk-2-ene hydrohalides
US4665192A (en) * 1984-03-19 1987-05-12 The Rockefeller University 2-(2-furoyl)-4(5)-2(furanyl)-1H-imidazole
US5140048A (en) * 1984-03-19 1992-08-18 The Rockefeller University Inhibitors of nonenzymatic cross-linking
US4758583A (en) * 1984-03-19 1988-07-19 The Rockefeller University Method and agents for inhibiting protein aging
US4680300A (en) * 1985-01-10 1987-07-14 Syntex (U.S.A.) Inc. Anti-inflammatory guanidines
US4908446A (en) * 1985-11-14 1990-03-13 The Rockefeller University Inhibitors of nonenzymatic cross-linking
EP0222313A2 (en) * 1985-11-14 1987-05-20 The Rockefeller University Method and agents for inhibiting protein aging
US5196450A (en) * 1985-12-19 1993-03-23 Merrell Dow Pharmaceuticals Inc. Method of inhibiting protozoal growth
JPS63287492A (en) * 1987-05-20 1988-11-24 Kao Corp Method for transesterification of oils and fats
EP0325936A2 (en) * 1988-01-16 1989-08-02 Ono Pharmaceutical Co., Ltd. Aminoguanidine derivatives and inhibitory agents on maillard reaction containing them as active ingredients
US5006523A (en) * 1989-10-26 1991-04-09 E. R. Squibb & Sons, Inc. Antiarrhythmic agents: aryl cyanoguanidine potassium channel blockers
US5336689A (en) * 1990-03-02 1994-08-09 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists
US5189046A (en) * 1990-08-14 1993-02-23 Nova Pharmaceutical Corporation Protein kinase C modulators
US5296498A (en) * 1990-11-29 1994-03-22 Adir Et Compagnie Guanidine compounds

Non-Patent Citations (51)

* Cited by examiner, † Cited by third party
Title
Acharya et al. 1988. "Cross-linking of protein by aldotriose: reaction of the carbonyl function of the keto amines generated in situ with amino groups." Biochemistry 27(12): 4522-9.
Acharya et al. 1988. Cross linking of protein by aldotriose: reaction of the carbonyl function of the keto amines generated in situ with amino groups. Biochemistry 27(12): 4522 9. *
Brownlee et al. 1983. "Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen." J. Exp. Med. 158:1739-44.
Brownlee et al. 1983. Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen. J. Exp. Med. 158:1739 44. *
Brownlee et al. 1984. "Nonenzymatic glycosylation and the pathogenesis of diabetic complications." Ann. Int. Med. 101: 527-37.
Brownlee et al. 1984. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Int. Med. 101: 527 37. *
Brownlee et al. 1986. "Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking." Science 232: 1629-32.
Brownlee et al. 1986. Aminoguanidine prevents diabetes induced arterial wall protein cross linking. Science 232: 1629 32. *
Bunn et al. 1975. "Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c." Biochem. Biophys. Res. Comm. 67: 103-9.
Bunn et al. 1975. Further identification of the nature and linkage of the carbohydrate in hemoglobin A 1c . Biochem. Biophys. Res. Comm. 67: 103 9. *
Ebetino et al. 1962. "Chemotherapeutic nitrofurans. VII. The formation of 5-nitrofurfurylidene derivitives of some aminoguanidines, aminotriazoles, and related compounds." J. Org. Chem. 27: 188-91.
Ebetino et al. 1962. Chemotherapeutic nitrofurans. VII. The formation of 5 nitrofurfurylidene derivitives of some aminoguanidines, aminotriazoles, and related compounds. J. Org. Chem. 27: 188 91. *
Ebetino et al. 1964. "The transformation of 3-amino-2-iminooxazolidines to semicarbazone derivitives." J. Org. Chem. 29: 2582-5.
Ebetino et al. 1964. The transformation of 3 amino 2 iminooxazolidines to semicarbazone derivitives. J. Org. Chem. 29: 2582 5. *
Eble et al. 1983. "Nonenzymatic glucosylation and glucose-dependent cross-linking of protein." J. Biol. Chem. 258: 9406-12.
Eble et al. 1983. Nonenzymatic glucosylation and glucose dependent cross linking of protein. J. Biol. Chem. 258: 9406 12. *
Finot. 1982. "Nutritional and metabolic aspects of protein modification during food processing." in Food and Nutritional Aspects. Feeney and Whitaker, eds. American Chemical Society 198: 91-124.
Finot. 1982. Nutritional and metabolic aspects of protein modification during food processing. in Food and Nutritional Aspects. Feeney and Whitaker, eds. American Chemical Society 198: 91 124. *
Godfrey. 1962. The synthesis of heterocyclic compounds from urea derivatives. Doctoral Dissertation. U. of London. *
Hollis et al. 1985. "Inhibition of aortic histamine by alpha-hydrazinohistidine inhibits increased aortic albumin accumulation in experimental diabetes in the rat." Diabetologia 28: 282-85.
Hollis et al. 1985. Inhibition of aortic histamine by alpha hydrazinohistidine inhibits increased aortic albumin accumulation in experimental diabetes in the rat. Diabetologia 28: 282 85. *
Koenig et al. 1977. "Structure of carbohydrate of hemoglobin A1c " J. Biol. Chem. 252: 2992-7.
Koenig et al. 1977. Structure of carbohydrate of hemoglobin A 1c J. Biol. Chem. 252: 2992 7. *
Kohn et al. 1984. "Collagen aging in vitro by nonenzymatic glycosylation and browning." Diabetes 33(1): 57-9.
Kohn et al. 1984. Collagen aging in vitro by nonenzymatic glycosylation and browning. Diabetes 33(1): 57 9. *
Lindberg and Tornqvist. 1966. "The inhibitory effect of aminoguanidine on histamine catabolism in human pregnancy." Acta. Obst. Gynec. Scand. 45: 131-9.
Lindberg and Tornqvist. 1966. The inhibitory effect of aminoguanidine on histamine catabolism in human pregnancy. Acta. Obst. Gynec. Scand. 45: 131 9. *
Maillard. C.R. Acad. Sci. 154: 66 8. *
Maillard. C.R. Acad. Sci. 154: 66-8.
Monnier and Cerami. 1981. "Nonenzymatic browning in vivo: possible process for aging of long-lived proteins." Science 211: 491-3.
Monnier and Cerami. 1981. Nonenzymatic browning in vivo: possible process for aging of long lived proteins. Science 211: 491 3. *
Monnier and Cerami. 1982. "Non-enzymatic glycosylation browning of proteins in diabetes." Clin. Endocrinol. Metab. 11: 431-52.
Monnier and Cerami. 1982. Non enzymatic glycosylation browning of proteins in diabetes. Clin. Endocrinol. Metab. 11: 431 52. *
Monnier and Cerami. 1983. "Detection of nenzymatic browning products in the human lens." Biochem. Biophys. Acta. 760: 97-103.
Monnier and Cerami. 1983. "Nonenzymatic glycosylation and browning of proteins in vivo." in Maillard Reaction in Food and Nutrition. Waller, ed. American Chemical Society 215: 431-49.
Monnier and Cerami. 1983. Detection of nenzymatic browning products in the human lens. Biochem. Biophys. Acta. 760: 97 103. *
Monnier and Cerami. 1983. Nonenzymatic glycosylation and browning of proteins in vivo. in Maillard Reaction in Food and Nutrition. Waller, ed. American Chemical Society 215: 431 49. *
Monnier et al. 1984. "Accelerated Age-related browing of human collagen in diabetes mellitus." Proc. Natl. Acad. Sci., 81:583-7.
Monnier et al. 1984. Accelerated Age related browing of human collagen in diabetes mellitus. Proc. Natl. Acad. Sci., 81:583 7. *
Murdock et al. 1982. "Antitumor agents: bisguanylhydrazones of anthrocene-9,10-dicarboxaldehydes." J. Med. Chem. 25: 505-18.
Murdock et al. 1982. Antitumor agents: bisguanylhydrazones of anthrocene 9,10 dicarboxaldehydes. J. Med. Chem. 25: 505 18. *
Ponger et al., 1984. "Aging of proteins: isolation and identification of fluorescent chromophore from the reaction of polypeptides with glucose." Proc. Natl. Acad. Sci. USA 81: 2684-8.
Ponger et al., 1984. Aging of proteins: isolation and identification of fluorescent chromophore from the reaction of polypeptides with glucose. Proc. Natl. Acad. Sci. USA 81: 2684 8. *
Potekhin et al. 1973. Ring chain tautomerism of substituted hydrazones VI. derivatives of 1 hydrazino and 1(methylhydrazino) 2 methylpropan 2 ol. *
Potekhin et al. 1973. Ring-chain tautomerism of substituted hydrazones VI. derivatives of 1-hydrazino-and-1(methylhydrazino)-2-methylpropan-2-ol.
Stoner et al. 1985. "An improved spectrophtometric assay for histamine and diamine oxide (DAO) activity." Agents and Actions 17: 5-9.
Stoner et al. 1985. An improved spectrophtometric assay for histamine and diamine oxide (DAO) activity. Agents and Actions 17: 5 9. *
Sundberg et al. 1990. "Cationic antiprotozoal drugs. Trypanocidal activity of 2-(4'formylphenyl)imidazol [1,2-a]pyridinium guanylhydrazones and related derivitives of quaternary heteroaromatic compounds." J. Med. Chem. 33: 298-307.
Sundberg et al. 1990. Cationic antiprotozoal drugs. Trypanocidal activity of 2 (4 formylphenyl)imidazol 1,2 a pyridinium guanylhydrazones and related derivitives of quaternary heteroaromatic compounds. J. Med. Chem. 33: 298 307. *
Tai et al. 1984. "Novel N-hydroxyguanidine derivatives as anticancer and antiviral agents." J. Med. Chem. 27: 236-8.
Tai et al. 1984. Novel N hydroxyguanidine derivatives as anticancer and antiviral agents. J. Med. Chem. 27: 236 8. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852009A (en) * 1984-03-19 1998-12-22 The Rockefeller University Compositions, including pharmaceutical compositions, for inhibiting the advanced glycosylation of proteins, and therapeutic methods based thereon
US6114323A (en) * 1984-03-19 2000-09-05 The Rockefeller University Methods for inhibiting the advanced glycosylation of proteins
WO2000062626A1 (en) * 1999-04-15 2000-10-26 Fox Chase Cancer Center Method for reducing a susceptibility to tumor formation induced by 3-deoxyglucosone and precursors thereof
US20060089316A1 (en) * 2004-10-25 2006-04-27 Brown Truman R Method for reducing a susceptibility to tumor formation induced by 3-deoxyglucosone and precursors thereof
US20150368193A1 (en) * 2013-01-25 2015-12-24 Sealife Pharma Gmbh Bioactive polymers
US9567294B2 (en) * 2013-01-25 2017-02-14 Sealife Pharma Gmbh Bioactive polymers

Also Published As

Publication number Publication date
WO1996040663A1 (en) 1996-12-19
AU6158696A (en) 1996-12-30

Similar Documents

Publication Publication Date Title
US5130324A (en) 2-alkylidene-aminoguanidines and methods of use therefor
US5272165A (en) 2-alkylidene-aminoguanidines and methods of use therefor
US5100919A (en) Biguanides and derivatives thereof as inhibitors of advanced glycosylation of a target protein
US5130337A (en) Amidrazones and derivatives thereof
US5656261A (en) Preventing and reversing advanced glycosylation endproducts
AU720796B2 (en) N-acylaminoalkylhydrazinecarboximidamides
US5358960A (en) Method for inhibiting advanced glycosylation of proteins using aminosubstituted imidazoles
US5106877A (en) Aminoalcohol compounds in methods of use as inhibitors of the advanced glycosylation of proteins and methods of use therefor
US5272176A (en) Advanced glycation inhibitors containing amino-benzoic acids and derivatives, and methods of use
US5218001A (en) Inhibitors of the advanced glycosylation of proteins and methods of use therefor
US5258381A (en) 2-substituted-2-imidazolines
US5221683A (en) Diaminopyridine compounds and methods of use
US5137916A (en) Advanced glycation inhibitors containing amino-benzoic acids and derivatives, and methods of use
US5262152A (en) Amidrazones and derivatives thereof
US5114943A (en) Amino-substituted pyrimidines, derivatives and methods of use therefor
WO1992002216A1 (en) Advanced glycation inhibitors containing amino-benzoic acids and derivatives, and methods of use
WO1992002216A2 (en) Advanced glycation inhibitors containing amino-benzoic acids and derivatives, and methods of use
US5318982A (en) Inhibition of the advanced glycosylation of proteins using substituted-1,2,4-triazoles
US5698563A (en) Bis- hydrazones!
US5661139A (en) Bis-(2-aryl) hydrazones
US5500439A (en) Aminopyrazoles
US5612332A (en) Di- and triaminoguanidines, and methods of use
US5243071A (en) 2-alkylidene-aminoguanidines and methods of use therefor
US5326779A (en) Method of inhibiting the advanced glycosylation of proteins using 1,2-disubstituted-benzimidazoles
US5254593A (en) Compositions containing biguanides and derivatives thereof as inhibitors of nonenzymatic cross-linking

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCKEFELLER UNIVERSITY, THE, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CERAMI, ANTHONY;REEL/FRAME:007627/0262

Effective date: 19950825

Owner name: ALTEON INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WAGLE, DILIP R.;ULRICH, PETER C.;REEL/FRAME:007615/0834;SIGNING DATES FROM 19950828 TO 19950829

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20010318

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362