US5514833A - Shielded chamber having a non-disruptive cathode ray display arrangement - Google Patents

Shielded chamber having a non-disruptive cathode ray display arrangement Download PDF

Info

Publication number
US5514833A
US5514833A US08/239,118 US23911894A US5514833A US 5514833 A US5514833 A US 5514833A US 23911894 A US23911894 A US 23911894A US 5514833 A US5514833 A US 5514833A
Authority
US
United States
Prior art keywords
shielded chamber
beam path
picture tube
display arrangement
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/239,118
Inventor
Rainer Kuth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUTH, RAINER
Application granted granted Critical
Publication of US5514833A publication Critical patent/US5514833A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/283Intercom or optical viewing arrangements, structurally associated with NMR apparatus

Definitions

  • the present invention is directed to a shielded chamber which includes a display arrangement, including a monitor for displaying information generated by a computer.
  • cathode ray monitors within the actual measurement environment of magnetic resonance systems or biomagnetic measurement systems. Particularly, in magnetic resonance system, which generate strong static and dynamic magnetic fields, a pronounced noise effect on such monitors occurs. If such systems are controlled using cathode ray monitors which display graphic user interface images, the operation of the system must ensue from a console disposed outside of the shielded room or chamber in which the measurement takes place.
  • Plasma displays are not capable of providing the user with the same amount of information as a cathode ray display. Plasma displays are driven by a separate processor, and require specific software. The resolution and the color reproduction of plasma displays also fall far short of the resolution which can be achieved in a cathode ray monitor. Liquid crystal displays have a limited resolution and bandwidth and a limited viewing angle.
  • a display arrangement including a projection picture tube disposed outside of the shielded chamber, a projection screen disposed inside of the shielded chamber, an imaging arrangement disposed in a beam path between the projection picture tube and the projection screen for directing optical information generated by the projection picture tube onto the projection screen for display thereof to a viewer inside of the shielded chamber, and a light-transmissive port for the beam path arranged in a wall of the shielded chamber.
  • Information can thus be displayed with high resolution and high reproduction quality inside a shielded chamber during an examination.
  • diagnostic magnetic resonance systems this permits the measurements to be undertaken simultaneously with the display of the image, and thus enables modern methods known as interventional magnetic resonance to be practiced, whereby magnetic resonance diagnostics are made during an operation.
  • Standardized user interfaces such as, for example, Open Windows, OSF, MS-Windows, etc. can also be displayed inside the shielded chamber, which is not possible if a plasma display is employed.
  • the projection screen can be a transparent projection screen, with the imaging arrangement being disposed at a rear side of the screen, i.e., the side thereof opposite to the viewing side of the projection screen. The viewer and/or user of the system thus not disturb the optical beam path.
  • the light-transmissive port is formed by a tubular part which surrounds the beam path in the region of the wall, and is composed of shielding material.
  • the projection picture tube is disposed in a magnetically shielded housing, the magnetically shielded housing having a light-transmissive port for the beam path.
  • the projection picture tube can be arranged in the proximity of the strong magnetic fields which are present in the operation of a magnetic resonance system.
  • the magnetically shielded housing laterally surrounds a portion of the beam path, beginning at the projection picture tube. A good magnetic shielding effect by the housing is thus achieved, despite the opening for the beam path.
  • the single FIGURE is a plan view of a display arrangement constructed in accordance with the principles of the present invention in combination with a shielded chamber.
  • a shielded chamber 2 is shown in FIGURE fashioned as a high-frequency cubical in which magnetic resonance examinations can be undertaken.
  • the shielded chamber 2 is shielded on all sides, and is accessible via a door (not shown).
  • a magnetic resonance examination apparatus 4 is located inside the shielded chamber 2. During operation, strong static and dynamic magnetic fields are generated by the magnetic resonance examination apparatus 4, as are strong electromagnetic high-frequency fields for producing resonating nuclear spins in an examination region. Sensitive antennae for the reception of the small echo signals are also a part of the magnetic resonance examination apparatus 4.
  • the shielded chamber 2 is equipped with a display arrangement 6, by means of which image information can be displayed inside the shielded chamber 2 with good image quality.
  • the display arrangement 6 is constructed so that the operation thereof is not disrupted either the magnetic and electromagnetic fields generated by the magnetic resonance examination apparatus 4, and so that the display arrangement 6 does not disrupt the sensitive reception channels in the magnetic resonance examination apparatus 4.
  • the display arrangement 6 includes a projection picture tube 8 (or, alternatively, a flying spot tube) which can display information with high light intensity and sharpness with only a small deflection angle of the electron beam.
  • the displayed information generated by the projection picture tube 8 is representative of informational signals supplied, for example, by an imaging computer 10 in communication with the magnetic resonance examination apparatus 4, and disposed outside of the shielded chamber 2.
  • a further characteristic of the projection picture tube 8 is that it can process signals having a large bandwidth, for example, 60 frames per second with a resolution of 1024 lines and 1280 dots per line.
  • a suitable projection picture tube 8 can be commercially obtained, for example, from Pritzel Elektronik, Prutting bei Rosenheim, of the type designated High-Resolution-Video-Projector.
  • a projection screen 12 is arranged inside of the shielded chamber 2, as part of the display arrangement 6.
  • An imaging system 16, which images the optical information generated by the projection picture tube 8 onto the projection screen 12, is disposed in the beam path 14 for the display arrangement 6.
  • the beam path 14 emanates from the projection picture tube 8 and extends to the projection screen 12.
  • the imaging system 16 may be disposed, for example, in front of the projection picture tube 8.
  • the shielded chamber 2 has a wall with a light-transmissive port 17 therein for the beam path 14.
  • the projection screen 12 can be transparent.
  • the image information generated by the projection picture tube 8 is projected via the imaging system 16 onto a rear side 20 of the projection screen 12, i.e., the side of the projection screen 12 lying opposite the viewing side 22.
  • deflection mirrors 24 can be disposed in the beam path 14 in order to be able to match the display arrangement 6 to given conditions, for example, to be able to arrange the projection picture tube 8 in a region which is particularly insusceptible to disturbances.
  • the light-transmissive port 17 for the beam path 14 which is required in a wall of the shielded chamber 2 can be formed by a tubular part 26 which laterally surrounds the beam path 14 in the region of the wall, and which is composed of shielding material, for example a suitable metal.
  • the tubular part 26 prevents the shielding effect of the shielded chamber 2 from being substantially diminished in the region of the opening 17.
  • the projection picture tube 8 can be enclosed by a magnetically shielding housing 28, having a light-transmissive port 30 for the beam path 14.
  • the housing 28 surrounds a portion of the beam path 14 which emanates from the projection picture tube 8.
  • the display arrangement 6 disclosed herein can be utilized in shielded chambers 2 which are designed for shielding quantities other than the high-frequency electromagnetic fields and high magnetic fields described in the exemplary embodiment.
  • the display arrangement 6 can be used in the same form disclosed herein, for example, in a biomagnetic measurement systems, wherein the chamber 2 will be a magnetically shielded chamber.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Normally a cathode ray monitor cannot be employed in a chamber which is shielded against high-frequency interference because of the disturbances in the otherwise shielded chamber produced by the operation of the cathode ray monitor. A display arrangement employing a cathode ray monitor is disclosed, which can be used in a shielded chamber, including a projection picture tube disposed outside of the shielded chamber, a projection disposed inside of the shielded chamber, and an optical imaging arrangement disposed in the beam path between the projection picture tube and the projection screen, the beam path extending through a light-transmissive port in a wall of the shielded chamber.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is directed to a shielded chamber which includes a display arrangement, including a monitor for displaying information generated by a computer.
2. Description of the Prior Art
If conventional cathode ray monitors are operated inside a shielded chamber, which is equipped for high-frequency shielding for conducting, for example, high-frequency measurements, such conventional monitors significantly interfere with the measurements being undertaken due to noise produced by the operation of the monitors. Conversely, the operation of such conventional monitors can be affected by the magnetic or electromagnetic fields which may be present in the shielded chamber, unless specific shielding measures are undertaken with regard to the monitor.
Such mutually disruptive influences have heretofore prevented the use of cathode ray monitors within the actual measurement environment of magnetic resonance systems or biomagnetic measurement systems. Particularly, in magnetic resonance system, which generate strong static and dynamic magnetic fields, a pronounced noise effect on such monitors occurs. If such systems are controlled using cathode ray monitors which display graphic user interface images, the operation of the system must ensue from a console disposed outside of the shielded room or chamber in which the measurement takes place.
For theses reasons, if a display has been included within the region in which a measurement takes place in diagnostic magnetic resonance systems, such displays have been plasma or liquid crystal displays. Plasma displays are not capable of providing the user with the same amount of information as a cathode ray display. Plasma displays are driven by a separate processor, and require specific software. The resolution and the color reproduction of plasma displays also fall far short of the resolution which can be achieved in a cathode ray monitor. Liquid crystal displays have a limited resolution and bandwidth and a limited viewing angle.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a display arrangement which can produce an image inside a shielded chamber having resolution and reproduction quality corresponding to that of a conventional cathode ray display image, without disrupting the measurements being undertaken in the shielded chamber and without those measurements influencing the operation of the display arrangement.
The above object is achieved in accordance with the principles of the present invention in a display arrangement including a projection picture tube disposed outside of the shielded chamber, a projection screen disposed inside of the shielded chamber, an imaging arrangement disposed in a beam path between the projection picture tube and the projection screen for directing optical information generated by the projection picture tube onto the projection screen for display thereof to a viewer inside of the shielded chamber, and a light-transmissive port for the beam path arranged in a wall of the shielded chamber.
Information can thus be displayed with high resolution and high reproduction quality inside a shielded chamber during an examination. In diagnostic magnetic resonance systems, this permits the measurements to be undertaken simultaneously with the display of the image, and thus enables modern methods known as interventional magnetic resonance to be practiced, whereby magnetic resonance diagnostics are made during an operation. Standardized user interfaces such as, for example, Open Windows, OSF, MS-Windows, etc. can also be displayed inside the shielded chamber, which is not possible if a plasma display is employed.
In a further embodiment of the invention the projection screen can be a transparent projection screen, with the imaging arrangement being disposed at a rear side of the screen, i.e., the side thereof opposite to the viewing side of the projection screen. The viewer and/or user of the system thus not disturb the optical beam path.
In a further embodiment of the invention, the light-transmissive port is formed by a tubular part which surrounds the beam path in the region of the wall, and is composed of shielding material. Despite this relatively simple structural solution for the opening, the shielding effect of the shielding chamber is substantially preserved.
In a further embodiment, the projection picture tube is disposed in a magnetically shielded housing, the magnetically shielded housing having a light-transmissive port for the beam path. The projection picture tube can be arranged in the proximity of the strong magnetic fields which are present in the operation of a magnetic resonance system.
In a further version of the above embodiment, the magnetically shielded housing laterally surrounds a portion of the beam path, beginning at the projection picture tube. A good magnetic shielding effect by the housing is thus achieved, despite the opening for the beam path.
DESCRIPTION OF THE DRAWINGS
The single FIGURE is a plan view of a display arrangement constructed in accordance with the principles of the present invention in combination with a shielded chamber.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
A shielded chamber 2 is shown in FIGURE fashioned as a high-frequency cubical in which magnetic resonance examinations can be undertaken. The shielded chamber 2 is shielded on all sides, and is accessible via a door (not shown). A magnetic resonance examination apparatus 4 is located inside the shielded chamber 2. During operation, strong static and dynamic magnetic fields are generated by the magnetic resonance examination apparatus 4, as are strong electromagnetic high-frequency fields for producing resonating nuclear spins in an examination region. Sensitive antennae for the reception of the small echo signals are also a part of the magnetic resonance examination apparatus 4.
The shielded chamber 2 is equipped with a display arrangement 6, by means of which image information can be displayed inside the shielded chamber 2 with good image quality. The display arrangement 6 is constructed so that the operation thereof is not disrupted either the magnetic and electromagnetic fields generated by the magnetic resonance examination apparatus 4, and so that the display arrangement 6 does not disrupt the sensitive reception channels in the magnetic resonance examination apparatus 4. Accordingly, the display arrangement 6 includes a projection picture tube 8 (or, alternatively, a flying spot tube) which can display information with high light intensity and sharpness with only a small deflection angle of the electron beam. The displayed information generated by the projection picture tube 8 is representative of informational signals supplied, for example, by an imaging computer 10 in communication with the magnetic resonance examination apparatus 4, and disposed outside of the shielded chamber 2. A further characteristic of the projection picture tube 8 is that it can process signals having a large bandwidth, for example, 60 frames per second with a resolution of 1024 lines and 1280 dots per line. A suitable projection picture tube 8 can be commercially obtained, for example, from Pritzel Elektronik, Prutting bei Rosenheim, of the type designated High-Resolution-Video-Projector.
A projection screen 12 is arranged inside of the shielded chamber 2, as part of the display arrangement 6. An imaging system 16, which images the optical information generated by the projection picture tube 8 onto the projection screen 12, is disposed in the beam path 14 for the display arrangement 6. The beam path 14 emanates from the projection picture tube 8 and extends to the projection screen 12. The imaging system 16 may be disposed, for example, in front of the projection picture tube 8.
The shielded chamber 2 has a wall with a light-transmissive port 17 therein for the beam path 14. In order to avoid an operator or viewer 18 from disturbing the beam path 14, the projection screen 12 can be transparent. The image information generated by the projection picture tube 8 is projected via the imaging system 16 onto a rear side 20 of the projection screen 12, i.e., the side of the projection screen 12 lying opposite the viewing side 22. Moreover, deflection mirrors 24 can be disposed in the beam path 14 in order to be able to match the display arrangement 6 to given conditions, for example, to be able to arrange the projection picture tube 8 in a region which is particularly insusceptible to disturbances.
The light-transmissive port 17 for the beam path 14 which is required in a wall of the shielded chamber 2 can be formed by a tubular part 26 which laterally surrounds the beam path 14 in the region of the wall, and which is composed of shielding material, for example a suitable metal. The tubular part 26 prevents the shielding effect of the shielded chamber 2 from being substantially diminished in the region of the opening 17.
For shielding against the strong static and dynamic magnetic fields emanating from the magnetic resonance examination apparatus 4, the projection picture tube 8 can be enclosed by a magnetically shielding housing 28, having a light-transmissive port 30 for the beam path 14. In order to improve the shielding effect of the housing 28 in the region of the opening 30, the housing 28 surrounds a portion of the beam path 14 which emanates from the projection picture tube 8.
The display arrangement 6 disclosed herein can be utilized in shielded chambers 2 which are designed for shielding quantities other than the high-frequency electromagnetic fields and high magnetic fields described in the exemplary embodiment. The display arrangement 6 can be used in the same form disclosed herein, for example, in a biomagnetic measurement systems, wherein the chamber 2 will be a magnetically shielded chamber.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventor to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of his contribution to the art.

Claims (5)

I claim as my invention:
1. A display arrangement for use with a shielded chamber containing interference-producing and interference-susceptible components for conducting an examination of a subject, said display arrangement comprising:
computer means disposed outside of said shielded chamber for generating user interface information useable in conducting said examination;
a projection picture tube disposed outside of said shielded chamber, said projection picture tube being connected to said computer means and generating user interface images corresponding to said user interface information generated by said computer means;
a projection screen disposed inside of said shielded chamber, said projection picture tube and said projection screen defining a beam path therebetween;
imaging means disposed in said beam path for imaging said user interface images generated by said projection picture tube onto said projection screen; and
a light-transmissive port disposed in a wall of said shielded chamber through which said beam path passes.
2. A display arrangement as claimed in claim 1 wherein said projection screen comprises a transparent projection screen having a viewing side and a rear side opposite said viewing side, and wherein said imaging means comprises means for imaging said user interface images onto said rear side of said transparent projection screen.
3. A display arrangement as claimed in claim 2 wherein said light-transmissive port comprises a tubular part laterally surrounding said beam path in a region of the wall of said shielded chamber, said tubular part consisting of shielding material.
4. A display arrangement as claimed in claim 1 further comprising a magnetically shielding housing enclosing said projection picture tube, said housing having said light-transmissive port therein through which said beam path passes.
5. A display arrangement as claimed in claim 4 wherein said housing has a portion laterally surrounding a part of said beam path beginning at said projection picture tube.
US08/239,118 1993-05-18 1994-05-06 Shielded chamber having a non-disruptive cathode ray display arrangement Expired - Fee Related US5514833A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4316642.3 1993-05-18
DE4316642A DE4316642A1 (en) 1993-05-18 1993-05-18 Shielding (screening) chamber having a non-interfering and interference-proof monitor display device

Publications (1)

Publication Number Publication Date
US5514833A true US5514833A (en) 1996-05-07

Family

ID=6488397

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/239,118 Expired - Fee Related US5514833A (en) 1993-05-18 1994-05-06 Shielded chamber having a non-disruptive cathode ray display arrangement

Country Status (2)

Country Link
US (1) US5514833A (en)
DE (1) DE4316642A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861865A (en) * 1995-08-14 1999-01-19 General Electric Company Audio/visual entertainment system for use with a magnetic resonance imaging device with adjustable video signal
US6198285B1 (en) 1997-11-28 2001-03-06 Hitachi Medical Corporation In-room MRI display terminal and remote control system
US20030114745A1 (en) * 2001-12-19 2003-06-19 Yoshiaki Amano Biomagnetic field measuring system
US20050200360A1 (en) * 2004-02-20 2005-09-15 Bruker Biospin Mri Gmbh Installation for investigating objects using magnetic resonance
US20060208746A1 (en) * 2003-08-18 2006-09-21 Philippe Garreau Anechoic chamber with direct observation of the electromagnetic behaviour of a tool to be studied
JP2021146152A (en) * 2020-03-13 2021-09-27 株式会社総合企画 Inspection room environment improving device in magnetic resonance imaging device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845028A1 (en) * 1998-09-30 2000-06-08 Siemens Ag Magnetic resonance system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042369A1 (en) * 1980-06-13 1981-12-23 Siemens Aktiengesellschaft Österreich Electromagnetic shield for passage openings
DE3434676C2 (en) * 1984-09-21 1988-07-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt, De
US4901141A (en) * 1988-12-05 1990-02-13 Olympus Corporation Fiberoptic display for a video image
US4970457A (en) * 1989-04-05 1990-11-13 The Regents Of The University Of California MRI compensated for spurious rapid variations in static magnetic field during a single MRI sequence
US4972836A (en) * 1989-12-18 1990-11-27 General Electric Company Motion detector for high-resolution magnetic resonance imaging
DE9017344U1 (en) * 1990-12-22 1991-03-07 Kabinenbaugesellschaft für MR-Tomographie als Störschutz in der medizinischen Technik mbH, 6110 Dieburg Shielding cabin
US5134373A (en) * 1988-03-31 1992-07-28 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus employing optical viewing screen
US5184074A (en) * 1991-02-04 1993-02-02 The Regents Of The University Of California Real-time mr imaging inside gantry room
DE4205510C1 (en) * 1992-02-24 1993-04-08 Tixit Bernd Lauffer, 7730 Villingen-Schwenningen, De Screening cabinet for high precision measurement of electrical values protected against electrostatic and EM fields - has roller door in insertion opening slidable on rails preventing tilting
US5239265A (en) * 1991-10-03 1993-08-24 Sugan Company Limited Display device of bio-electrical, bio-physical phenomena
US5365927A (en) * 1993-11-02 1994-11-22 General Electric Company Magnetic resonance imaging system with pointing device
US5394873A (en) * 1990-11-23 1995-03-07 Odam, S.A. Monitor for surveying the vital physiological parameters of a patient undergoing NMR imaging
US5412419A (en) * 1991-02-11 1995-05-02 Susana Ziarati Magnetic resonance imaging compatible audio and video system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992001362A1 (en) * 1990-07-12 1992-01-23 Biomagnetic Technologies, Inc. Construction of shielded room for biomagnetic measurements

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0042369A1 (en) * 1980-06-13 1981-12-23 Siemens Aktiengesellschaft Österreich Electromagnetic shield for passage openings
DE3434676C2 (en) * 1984-09-21 1988-07-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt, De
US5134373A (en) * 1988-03-31 1992-07-28 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus employing optical viewing screen
US4901141A (en) * 1988-12-05 1990-02-13 Olympus Corporation Fiberoptic display for a video image
US4970457A (en) * 1989-04-05 1990-11-13 The Regents Of The University Of California MRI compensated for spurious rapid variations in static magnetic field during a single MRI sequence
US4972836A (en) * 1989-12-18 1990-11-27 General Electric Company Motion detector for high-resolution magnetic resonance imaging
US5394873A (en) * 1990-11-23 1995-03-07 Odam, S.A. Monitor for surveying the vital physiological parameters of a patient undergoing NMR imaging
DE9017344U1 (en) * 1990-12-22 1991-03-07 Kabinenbaugesellschaft für MR-Tomographie als Störschutz in der medizinischen Technik mbH, 6110 Dieburg Shielding cabin
US5184074A (en) * 1991-02-04 1993-02-02 The Regents Of The University Of California Real-time mr imaging inside gantry room
US5412419A (en) * 1991-02-11 1995-05-02 Susana Ziarati Magnetic resonance imaging compatible audio and video system
US5239265A (en) * 1991-10-03 1993-08-24 Sugan Company Limited Display device of bio-electrical, bio-physical phenomena
DE4205510C1 (en) * 1992-02-24 1993-04-08 Tixit Bernd Lauffer, 7730 Villingen-Schwenningen, De Screening cabinet for high precision measurement of electrical values protected against electrostatic and EM fields - has roller door in insertion opening slidable on rails preventing tilting
US5365927A (en) * 1993-11-02 1994-11-22 General Electric Company Magnetic resonance imaging system with pointing device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Abschirmkabinen in medizinischer Diagnose und Halbleiter-Technologie," Best, et al., etz Bd. vol. 110, No. 16 (1989) pp. 814-819.
"Kernspintomographen brauchen Abschirmung," Schaller, et al., Siemens Components vol. 22, No. 4 (1984) pp. 160-164.
Abschirmkabinen in medizinischer Diagnose und Halbleiter Technologie, Best, et al., etz Bd. vol. 110, No. 16 (1989) pp. 814 819. *
Kernspintomographen brauchen Abschirmung, Schaller, et al., Siemens Components vol. 22, No. 4 (1984) pp. 160 164. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5861865A (en) * 1995-08-14 1999-01-19 General Electric Company Audio/visual entertainment system for use with a magnetic resonance imaging device with adjustable video signal
US5864331A (en) * 1995-08-14 1999-01-26 General Electric Company Shielding system and method for an entertainment system for use with a magnetic resonance imaging device
US6198285B1 (en) 1997-11-28 2001-03-06 Hitachi Medical Corporation In-room MRI display terminal and remote control system
US6400155B2 (en) 1997-11-28 2002-06-04 Hitachi Medical Corporation In-room MRI display terminal remote control system
US20030114745A1 (en) * 2001-12-19 2003-06-19 Yoshiaki Amano Biomagnetic field measuring system
US20060208746A1 (en) * 2003-08-18 2006-09-21 Philippe Garreau Anechoic chamber with direct observation of the electromagnetic behaviour of a tool to be studied
US7466142B2 (en) * 2003-08-18 2008-12-16 Ste D'applications Technologiques De L'imagerie Micro Ondes Anechoic chamber for direct observation of the electromagnetic behavior of a tool
US20050200360A1 (en) * 2004-02-20 2005-09-15 Bruker Biospin Mri Gmbh Installation for investigating objects using magnetic resonance
JP2021146152A (en) * 2020-03-13 2021-09-27 株式会社総合企画 Inspection room environment improving device in magnetic resonance imaging device

Also Published As

Publication number Publication date
DE4316642A1 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
US4901141A (en) Fiberoptic display for a video image
US8554304B2 (en) MRI compatible visual system that provides high resolution images in an MRI device
EP0498528B1 (en) Real-time mr imaging inside gantry room
US5514833A (en) Shielded chamber having a non-disruptive cathode ray display arrangement
US5807254A (en) Magnetic resonance device
JP2003190112A (en) Display device and magnetic resonance imaging device
US5638001A (en) Magnetic resonance apparatus including a monitor
US6115009A (en) Video signal counter system for automatic positioning and centering circuit
US5604403A (en) Color monitor magnetic shield
EP0466064A1 (en) Measurement of visually induced biomagnetic responses
US5029287A (en) Installation for nuclear magnetic resonance imaging
CA1302598C (en) Apparatus for compensation for image rotation in a crt display
US5488270A (en) Color CRT display apparatus
US5017781A (en) Read-out system for a luminescent storage screen in an X-ray diagnostics installation
US6538439B1 (en) MRI apparatus including a vacuum isolated gradient coil
JPH0856927A (en) Display device of image information
US20170212191A1 (en) Apparatus for visually monitoring a magnetic resonance scanner
US5815361A (en) Magnetic field shielding device in display
GB2217959A (en) Reducing stray magnetic fields from display devices
JP2694954B2 (en) Magnetic resonance imaging equipment
JPH11197133A (en) Visual presentation reaction method and device by nuclear magnetic resonance imaging method
JPH06275205A (en) Cathode-ray tube
JPS57199164A (en) Sample image observation unit
JPS58131648A (en) Image display device of scanning electron microscope
JPH0756525A (en) Magnetic field resistent crt display system

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUTH, RAINER;REEL/FRAME:006995/0202

Effective date: 19940420

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 20000507

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362