US5484783A - Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide and benzazapine derivatives - Google Patents

Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide and benzazapine derivatives Download PDF

Info

Publication number
US5484783A
US5484783A US08/217,781 US21778194A US5484783A US 5484783 A US5484783 A US 5484783A US 21778194 A US21778194 A US 21778194A US 5484783 A US5484783 A US 5484783A
Authority
US
United States
Prior art keywords
hydrogen
alkyl
group
patient
och
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/217,781
Inventor
Gary A. Flynn
John F. French
Richard C. Dage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Pharmaceuticals Inc
Original Assignee
Merrell Dow Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merrell Dow Pharmaceuticals Inc filed Critical Merrell Dow Pharmaceuticals Inc
Priority to US08/217,781 priority Critical patent/US5484783A/en
Assigned to MERRELL DOW PHARMACEUTICALS INC. reassignment MERRELL DOW PHARMACEUTICALS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRENCH, JOHN F., DAGE, RICHARD C., FLYNN, GARY A.
Priority to CA002184693A priority patent/CA2184693C/en
Priority to ES95913501T priority patent/ES2173180T3/en
Priority to CN95192242A priority patent/CN1144483A/en
Priority to AU20914/95A priority patent/AU705029B2/en
Priority to KR1019960705294A priority patent/KR970701550A/en
Priority to HU9602603A priority patent/HU226643B1/en
Priority to EP95913501A priority patent/EP0751775B1/en
Priority to NZ282949A priority patent/NZ282949A/en
Priority to DE69526731T priority patent/DE69526731T2/en
Priority to DK95913501T priority patent/DK0751775T3/en
Priority to PT95913501T priority patent/PT751775E/en
Priority to PCT/US1995/002476 priority patent/WO1995025548A2/en
Priority to JP7523719A priority patent/JPH09510220A/en
Priority to AT95913501T priority patent/ATE217527T1/en
Priority to KR1019960705056A priority patent/KR100289141B1/en
Priority to ZA952285A priority patent/ZA952285B/en
Priority to TW084102716A priority patent/TW323954B/en
Priority to IL11307495A priority patent/IL113074A/en
Publication of US5484783A publication Critical patent/US5484783A/en
Application granted granted Critical
Priority to NO19963989A priority patent/NO313176B1/en
Priority to FI963785A priority patent/FI118414B/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • Coronary heart disease remains the leading cause of death in the industrialized countries. Despite recent declines in CHD mortality, CHD is still responsible for more than 500,000 deaths in the U.S. annually. It is estimated that CHD, directly and indirectly, costs the U.S. more than $100 billion a year.
  • the primary cause of CHD is atherosclerosis, a disease characterized by the deposition of lipid (cholesterol and triglycerides) in the arterial vessel wall, resulting in a narrowing of the arterial lumen and ultimately hardening of the arteries.
  • Atherosclerotic plaque develops it progressively occludes more and more of the affected blood vessel and can eventually lead to ischaemia, thrombosis or infarction. Therefore, it is desirable to provide methods of inhibiting the progression of atherosclerosis in patients in need thereof.
  • Serum lipoproteins are the carriers for lipids in the circulation. They are classified according to their density; i.e., chylomicrons, very low-density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density lipoproteins (LDL) and high-density lipoproteins (HDL). About 50% to 70% of the cholesterol circulating in the blood is carried as LDL. In contrast, about 25% of total cholesterol is found in HDL, while VLDL carries most of the plasma triglycerides and only about 10% to 15% of the total cholesterol.
  • VLDL very low-density lipoproteins
  • IDL intermediate density lipoproteins
  • LDL low density lipoproteins
  • HDL high-density lipoproteins
  • Chylomicrons are assembled in the intestinal wall from products of lipid digestion and are then transported into the peripheral circulation via the thoracicolymphatic system. In the circulation, they are broken down by lipoprotein lipase (LPL) into free fatty acids and triglycerides which are primarily used by muscles for energy or stored in adipose tissue.
  • LPL lipoprotein lipase
  • the other serum lipoproteins are involved in the transport of endogenously synthesized lipid. Endogenous lipid transport begins when the liver secretes triglycerides and cholesterol into the plasma as VLDL.
  • the triglycerides of VLDL are cleaved in the capillaries by LPL to IDL and finally LDL. Some of these particles are cleared rapidly by the liver by receptor-mediated endocytosis. The remainder circulate mainly as LDL.
  • HDL As cells die and cell membranes turn over, cholesterol is continously released into the plasma and becomes HDL. HDL promotes the removal of cholesterol from peripheral cells and facilitates its transport back to the liver.
  • Elevated cholesterol levels are also associated with a number of disease states, including coronary artery disease, angina pectoris, carotid artery disease, strokes, cerebral arteriosclerosis, and xanthoma. It is desirable to provide a method for reducing plasma cholesterol in patients with, or at risk of developing disease states associated with elevated cholesterol levels.
  • Hypertriglyceridemia is a condition in which there is an excessive amount of triglyceride (>500mg/dl) in the plasma. It may play a role in atherogenesis and the development of coronary heart disease [Vega and Grundy, Adv. Exp. Med. 243, 311 (1989)].
  • severe hypertriglyceridemia >1000mg/dl is associated with chylomicronemia and causes acute pancreatitis [See K. Soergel, ACUTE PANCREATITIS, in Gastrointestinal Disease 91, 3rd ed. (Sleisenger, M. H., and Fordtran, J. S., eds.), W. B.
  • the present invention relates to the use of certain mercaptoacetylamide derivatives known to be useful for the inhibition of Enkephalinase (EC 3.4.24.1) and ACE (EC 3.4.15.1) [Flynn, Warshawsky, Mehdi, Bey, Beight, Giroux and Burkholder, European Patent Application, Publication Number 0 481 522 A1, published Apr. 22, 1992] in treating patients suffering from hypercholesterolemia and atherosclerosis or hypertriglyceridemia.
  • Enkephalinase EC 3.4.24.1
  • ACE EC 3.4.15.1
  • the present invention provides a method of treating hypercholesterolemia, atheroscherosis and hypertriglyceridemia in a patient in need thereof comprising administering to said patient an effective hypocholesterolemic, antiatherosclerotic or hypotriglyceridemic amount of a compound of the Formula (I) ##STR1## wherein A 1 and A 2 are each independently hydrogen or --COOR 4 wherein R 4 is hydrogen; --CH 2 O--C(O)C(CH 3 ) 3 ; a C 1 -C 4 alkyl; an Ar--Y-- group wherein Ar is aryl and Y is a C 0 -C 4 alkyl; or diphenylmethyl; with the proviso that where A 1 is hydrogen, A 2 is --COOR 4 , and where A 1 is --COOR 4 , A 2 is hydrogen;
  • B 1 and B 2 are each independently hydrogen; hydroxy; --OR 5 wherein R 5 is a C 1 -C 4 alkyl or an Ar--Y-- group; or, where B 1 and B 2 are attached to adjacent carbon atoms, B 1 and B 2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
  • R 2 is hydrogen, C 1 -C 8 alkyl, --CH 2 OCH 2 CH 2 OCH 3 or an Ar--Y-- group;
  • R 3 is hydrogen, acetyl, --CH 2 O--C(O)C(CH 3 ) 3 or benzoyl;
  • n is an integer 0 or 1.
  • the present invention further provides a method of treating hypercholesterolemia, atheroscherosis and hypertriglyceridemia in a patient in need thereof comprising administering to said patient an effective hypocholesterolemic, antiatherosclerotic or hypotriglyceridemic amount of a compound of the Formula (II) wherein ##STR2##
  • B 1 and B 2 are each independently hydrogen; hydroxy; --OR 5 wherein R 5 is a C 1 -C 4 alkyl or an Ar--Y-- group wherein Ar is aryl and Y is a C 0 -C 4 alkyl; or, where B 1 and B 2 are attached to adjacent carbon atoms, B 1 and B 2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
  • R 2 is hydrogen, C 1 -C 8 alkyl, --CH 2 OCH 2 CH 2 OCH 3 or an Ar--Y-- group;
  • R 3 is hydrogen, acetyl, --CH 2 O--C(O)C(CH 3 ) 3 or benzoyl;
  • R 4 is hydrogen, a C 1 -C 4 alkyl or an Ar--Y-- group, --CH 2 O--C(O)C(CH 3 ) 3 or diphenylmethyl; and ##STR3## wherein R 6 is hydrogen, a C 1 -C 4 alkyl or an Ar--Y-- group and R 7 is --CF 3 , C 1 -C 10 alkyl or an Ar--Y-- group.
  • C 1 -C 4 alkyl refers to a saturated straight or branched chain hydrocarbyl radical of one to four carbon atoms and includes methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl and the like.
  • C 1 -C 8 alkyl and “C 1 -C 10 alkyl” refer to saturated straight or branched chain hydrocarbyl radicals of one to eight and one to ten carbon atoms, respectively, including methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl, pentyl, isopentyl, hexyl, 2,3-dimethyl-2-butyl, heptyl, 2,2-dimethyl-3-pentyl, 2-methyl-2-hexyl, octyl, 4-methyl-3-heptyl and the like.
  • Ar--Y-- refers to a radical wherein Ar is an aryl group and Y is a C 0 -C 4 alkyl.
  • Ar refers to a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C 1 -C 4 alkoxy, fluoro and chloro.
  • C 0 -C 4 alkyl refers to a saturated straight or branched chain hydrocarbyl radical of zero to four carbon atoms and includes a bond, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl and the like.
  • Ar--Y-- phenyl, naphthyl, phenylmethyl or benzyl, phenylethyl, p-methoxybenzyl, 3,4-methylenedioxy, p-fluorobenzyl and p-chlorobenzyl.
  • the designation " " refers to a bond to a chiral atom for which the stereochemistry is not designated.
  • the term "patient” refers to warm-blooded animals or mammals, including rabbits, rodents, monkeys and humans, who are in need of treatment for hypertriglyceridemia atherosclerosis or hypercholesterolemia, such as, for example, in the case of a patient suffering from familial hyperlipidemia. Patients are in need of treatment for hypertriglyceridemia, for example, in the case of a patient suffering from Type IV Hyperlipoproteinemia (indicating elevated VLDL) according to the Fredrickson classification [Fredrickson and Levy, FAMILIAL HYPERLIPOPROTEINEMIA, in The Metabolic Basis of Inherited Disease, 3rd ed. (Stanbury, J. B.; Wyngaarden, J. B.; and Fredrickson, D. S.; eds.) McGraw-Hill Book Co., New York, 1972, pp. 545-614].
  • Hypercholesterolemia is a disease state characterized by levels of serum cholesterol or of LDL cholesterol which are elevated by a clinically significant amount over that considered normal by those of ordinary skill in the art.
  • the identification of those patients who are in need of treatment for hypercholesterolemia is well within the ability and knowledge of one skilled in the art.
  • individuals who have serum cholesterol levels or LDL cholesterol levels, as determined by clinical laboratory tests, which are substantially and chronically elevated over that considered normal by those of ordinary skill in the art are patients in need of treatment for hypercholesterolemia.
  • individuals who are at risk of developing hypercholesterolemia can also be patients in need of treatment for hypercholesterolemia.
  • a clinician skilled in the art can readily identify, by the use of clinical tests, physical examination and medical/family history, those patients who are suffering from hypercholesterolemia and those who are at risk of developing hypercholesterolemia and thus readily determine if an individual is a patient in need of treatment for hypercholesterolemia.
  • An effective hypocholesterolemic amount of a compound of Formula (I) or (II) is an amount which is effective in reducing serum cholesterol levels or LDL cholesterol levels in a patient in need thereof.
  • successful treatment of a patient for hypercholesterolemia is understood to include reducing a patient's serum cholesterol or LDL cholesterol levels.
  • Successful treatment for hypercholesterolemia is also understood to include prophylaxis in preventing clinically significant elevations in serum cholesterol or in LDL cholesterol levels in a patient who is at risk of the development of hypercholesterolemia.
  • Atherosclerosis is a disease state characterized by the development and growth of atherosclerotic lesions or plaque.
  • the identification of those patients who are in need of treatment for atherosclerosis is well within the ability and knowledge of one skilled in the art. For example, individuals who are either suffering from clinically significant atherosclerosis or who are at risk of developing clinically significant atherosclerosis are patients in need of treatment for atherosclerosis.
  • a clinician skilled in the art can readily determine, by the use of clinical tests, physical examination and medical/family history, if an individual is a patient in need of treatment for atherosclerosis.
  • An effective antiatherosclerotic amount of a compound of Formula (I) or (II) is an amount which is effective in inhibiting development or growth of atherosclerosis in a patient in need thereof.
  • successful treatment of a patient for atherosclerosis is understood to include effectively slowing, interrupting, arresting, or stopping atherosclerotic lesion or plaque development or growth and does not necessarily indicate a total elimination of the atherosclerosis. It is further understood and appreciated by those skilled in the art that successful treatment for atherosclerosis can include prophylaxis in preventing atherosclerotic lesion or plaque formation.
  • An effective antiatherosclerotic or hypocholesterolemic dose can be readily determined by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of or involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication.
  • An effective antiatherosclerotic or hypocholesterolemic amount of a compound of Formula (I) or (II) will generally vary from about 1 milligram per kilogram of body weight per day (mg/kg/day) to about 1000 milligrams per kilogram of body weight per day (1 gm/kg/day). A daily dose of from about 2 mg/kg to about 200 mg/kg is preferred.
  • a compound of Formula (I) or (II) can be administered in any form or mode which makes the compound bioavailable in effective amounts, including oral and parenteral routes.
  • the compound can be administered orally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, and the like.
  • Oral administration is generally preferred.
  • One skilled in the art of preparing formulations can readily select the proper form and mode of administration depending upon the disease state to be treated, the stage of the disease, and other relevant circumstances.
  • Compounds of Formula (I) or (II) can be administered in the form of pharmaceutical compositions or medicaments which are made by combining the compound of Formula (I) or (II) with pharmaceutically acceptable carriers or excipients, the proportion and nature of which are determined by the chosen route of administration, and standard pharmaceutical practice.
  • Hypertriglyceridemia is a disease state characterized by levels of plasma triglycerides which are elevated by a clinically significant amount over that considered normal by those of ordinary skill in the art.
  • the identification of those patients who are in need of treatment for hypertriglyceridemia is well within the ability and knowledge of one skilled in the art.
  • individuals who have plasma triglyceride levels, as determined by clinical laboratory tests, which are substantially and chronically elevated over that considered normal by those of ordinary skill in the art are patients in need of treatment for hypertriglyceridemia.
  • individuals who are at risk of developing hypertriglyceridemia can also represent patients in need of treatment for hypertriglyceridemia.
  • a clinician skilled in the art can readily identify, by the use of clinical tests, physical examination and medical/family history, those patients who are suffering from hypertriglyceridemia and those who are at risk of developing hypertriglyceridemia and thus readily determine if an individual is a patient in need of treatment for hypertriglyceridemia.
  • An effective hypotriglyceridemic amount of a compound of Formula (1) or (II) is an amount which is effective in reducing plasma triglyceride levels in a patient in need thereof.
  • successful treatment of a patient for hypertriglyceridemia is understood to include reducing a patient's plasma triglyceride levels.
  • Successful treatment for hypertriglyceridemia is also understood to include prophylaxis in preventing clinically significant elevations in plasma triglyceride levels in a patient who is at risk of the development of hypertriglyceridemia.
  • An effective hypotriglyceridemic dose can be readily determined by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of or involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication.
  • An effective hypotriglyceridemic amount of a compound of Formula (1) or (II) will generally vary from about 1 milligram per kilogram of body weight per day (mg/kg/day) to about 1000 milligrams per kilogram of body weight per day (1.0 gm/kg/day). A daily dose of from about 1 mg/kg to about 200 mg/kg is preferred.
  • a compound of Formula (1) or (II) can be administered in any form or mode which makes the compound bioavailable in effective amounts, including oral and parenteral routes.
  • the compound can be administered orally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, and the like.
  • Oral administration is generally preferred.
  • One skilled in the art of preparing formulations can readily select the proper form and mode of administration depending upon the disease state to be treated, the stage of the disease, and other relevant circumstances.
  • a compound of Formula (1) or (II) can be administered in the form of pharmaceutical compositions or medicaments which are made by combining a compound of Formula (1) or (II) with pharmaceutically acceptable carriers or excipients, the proportion and nature of which are determined by the chosen route of administration, and standard pharmaceutical practice.
  • the pharmaceutical compositions or medicaments are prepared in a manner well known in the pharmaceutical art.
  • the carrier or excipient may be a solid, semi-solid, or liquid material which can serve as a vehicle or medium for the active ingredient. Suitable carriers or excipients are well known in the art.
  • the pharmaceutical composition may be adapted for oral or parenteral use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like.
  • compositions may be administered orally, for example, with an inert diluent or with an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets.
  • a compound Formula (1) or (II) may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, chewing gums and the like.
  • These preparations should contain at least 4% of the compound of formula (I) or (II), the active ingredient, but may be varied depending upon the particular form and may conveniently be between 4% to about 70% of the weight of the unit.
  • the amount of the active ingredient present in compositions is such that a unit dosage form suitable for administration will be obtained.
  • the tablets, pills, capsules, troches and the like may also contain one or more of the following adjuvants: binders, such as microcrystalline cellulose, gum tragacanth or gelatin; excipients, such as starch or lactose, disintegrating agents such as alginic acid, Primogel, corn starch and the like; lubricants, such as magnesium stearate or Sterotex; glidants, such as colloidal silicon dioxide; and sweetening agents, such as sucrose or saccharin may be added or flavoring agents, such as peppermint, methyl salicylate or orange flavoring.
  • a liquid carrier such as polyethylene glycol or a fatty oil.
  • dosage unit forms may contain other various materials which modify the physical form of the dosage unit, for example, as coatings.
  • tablets or pills may be coated with sugar, shellac, or other enteric coating agents.
  • a syrup may contain, in addition to the active ingredient, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used.
  • a compound of Formula (1) or (II) may be incorporated into a solution or suspension.
  • These preparations should contain at least 0.1% of a compound of the invention, but may be varied to be between 0.1 and about 50% of the weight thereof.
  • the amount of the active ingredient present in such compositions is such that a suitable dosage will be obtained.
  • the solutions or suspensions may also include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene diaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of toxicity such as sodium chloride or dextrose.
  • the parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.
  • the following example illustrates the utility of the mercaptoacetylamide derivatives of the present invention as hypocholesterolemic, antiatherosclerotic and hypocholesterolemic agents. This example is understood to be illustrative only and is not intended to limit the scope of the present invention in any way.

Abstract

The present invention relates to the use of certain mercaptoacetylamide and benzazapine derivatives in treating patients suffering from hypertriglyceridemia, atherosclerosis and hypercholesterolemia.

Description

BACKGROUND OF THE INVENTION
Coronary heart disease (CHD) remains the leading cause of death in the industrialized countries. Despite recent declines in CHD mortality, CHD is still responsible for more than 500,000 deaths in the U.S. annually. It is estimated that CHD, directly and indirectly, costs the U.S. more than $100 billion a year. The primary cause of CHD is atherosclerosis, a disease characterized by the deposition of lipid (cholesterol and triglycerides) in the arterial vessel wall, resulting in a narrowing of the arterial lumen and ultimately hardening of the arteries.
Atherosclerosis as manifested in its major clinical complication, coronary heart disease (CHD) or ischaemic heart disease, continues to be a major cause of death in industrialized countries. It is now well accepted that atherosclerosis can begin with local injury to the arterial endothelium followed by the penetration of circulatory monocytes into the intima of the arterial wall where they become loaded with lipoprotein derived lipids. At about the same time there seems to be a migration of arterial smooth muscle cells from the medial layer to the intimal layer and their proliferation there along with the deposition of lipid and accumulation of foam cells in the lesion. As the atherosclerotic plaque develops it progressively occludes more and more of the affected blood vessel and can eventually lead to ischaemia, thrombosis or infarction. Therefore, it is desirable to provide methods of inhibiting the progression of atherosclerosis in patients in need thereof.
National Institutes of Health Consensus Development Conference Panel concluded that lowering plasma cholesterol levels (specifically blood levels of low-density lipoprotein cholesterol) will definitely reduce the risk of heart attacks due to CHD. Serum lipoproteins are the carriers for lipids in the circulation. They are classified according to their density; i.e., chylomicrons, very low-density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low density lipoproteins (LDL) and high-density lipoproteins (HDL). About 50% to 70% of the cholesterol circulating in the blood is carried as LDL. In contrast, about 25% of total cholesterol is found in HDL, while VLDL carries most of the plasma triglycerides and only about 10% to 15% of the total cholesterol.
Chylomicrons are assembled in the intestinal wall from products of lipid digestion and are then transported into the peripheral circulation via the thoracicolymphatic system. In the circulation, they are broken down by lipoprotein lipase (LPL) into free fatty acids and triglycerides which are primarily used by muscles for energy or stored in adipose tissue. The other serum lipoproteins are involved in the transport of endogenously synthesized lipid. Endogenous lipid transport begins when the liver secretes triglycerides and cholesterol into the plasma as VLDL. The triglycerides of VLDL are cleaved in the capillaries by LPL to IDL and finally LDL. Some of these particles are cleared rapidly by the liver by receptor-mediated endocytosis. The remainder circulate mainly as LDL.
As cells die and cell membranes turn over, cholesterol is continously released into the plasma and becomes HDL. HDL promotes the removal of cholesterol from peripheral cells and facilitates its transport back to the liver.
Arterial wall cholesterol is derived almost exclusively from LDL [Brown and Goldstein, Ann. Rev. Biochem. 52, 223 (1983); Miller, Ann. Rev. Med. 31, 97 (1980)]. Framingham investigators found the higher the levels of LDL, the higher the risk of devloping CHD [Am. J. Med. 80 (Suppl. 2A) 23-32, 1986]. In patients with low levels of LDL, the development of atheroschlerosis is rare [Patton et. al, Clin. Chem. 29, 1890 (1983)]. Accordingly, it is desirable to provide a method for reducing plasma cholesterol in patients with hypercholesterolemia or at risk of developing hypercholesterolemia.
Elevated cholesterol levels are also associated with a number of disease states, including coronary artery disease, angina pectoris, carotid artery disease, strokes, cerebral arteriosclerosis, and xanthoma. It is desirable to provide a method for reducing plasma cholesterol in patients with, or at risk of developing disease states associated with elevated cholesterol levels.
Hypertriglyceridemia is a condition in which there is an excessive amount of triglyceride (>500mg/dl) in the plasma. It may play a role in atherogenesis and the development of coronary heart disease [Vega and Grundy, Adv. Exp. Med. 243, 311 (1989)]. In addition, severe hypertriglyceridemia (>1000mg/dl) is associated with chylomicronemia and causes acute pancreatitis [See K. Soergel, ACUTE PANCREATITIS, in Gastrointestinal Disease 91, 3rd ed. (Sleisenger, M. H., and Fordtran, J. S., eds.), W. B. Saunders Company, Philadelphia, Pa., 1983, pp. 1462-1485; and See Brown, M. S., and Goldstein, J. L., DRUGS USED IN THE TREATMENT OF HYPERLIPOPROTEINEMIAS, in Goodman and Gillman's, The Pharmacological Basis of Therapeutics 34, 7th edition, (Macmillan Publishing Co., New York, 1985, pp. 827-845]. Severe elevations in chylomicrons directly induce pancreatitis, and it can be prevented by triglyceride reduction [U.S. Department of Health and Human Services, NIH Publication No. 89-2925, pp. 74-77, January 1989, "Report of the Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults"] It is therefore desirable to provide a method for reducing plasma triglycerides in patients with hypertriglyceridemia.
The present invention relates to the use of certain mercaptoacetylamide derivatives known to be useful for the inhibition of Enkephalinase (EC 3.4.24.1) and ACE (EC 3.4.15.1) [Flynn, Warshawsky, Mehdi, Bey, Beight, Giroux and Burkholder, European Patent Application, Publication Number 0 481 522 A1, published Apr. 22, 1992] in treating patients suffering from hypercholesterolemia and atherosclerosis or hypertriglyceridemia.
SUMMARY OF THE INVENTION
The present invention provides a method of treating hypercholesterolemia, atheroscherosis and hypertriglyceridemia in a patient in need thereof comprising administering to said patient an effective hypocholesterolemic, antiatherosclerotic or hypotriglyceridemic amount of a compound of the Formula (I) ##STR1## wherein A1 and A2 are each independently hydrogen or --COOR4 wherein R4 is hydrogen; --CH2 O--C(O)C(CH3)3 ; a C1 -C4 alkyl; an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or diphenylmethyl; with the proviso that where A1 is hydrogen, A2 is --COOR4, and where A1 is --COOR4, A2 is hydrogen;
B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl; and
n is an integer 0 or 1.
The present invention further provides a method of treating hypercholesterolemia, atheroscherosis and hypertriglyceridemia in a patient in need thereof comprising administering to said patient an effective hypocholesterolemic, antiatherosclerotic or hypotriglyceridemic amount of a compound of the Formula (II) wherein ##STR2## B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl;
R4 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group, --CH2 O--C(O)C(CH3)3 or diphenylmethyl; and ##STR3## wherein R6 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group and R7 is --CF3, C1 -C10 alkyl or an Ar--Y-- group.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, the term "C1 -C4 alkyl" refers to a saturated straight or branched chain hydrocarbyl radical of one to four carbon atoms and includes methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl and the like. The terms "C1 -C8 alkyl" and "C1 -C10 alkyl" refer to saturated straight or branched chain hydrocarbyl radicals of one to eight and one to ten carbon atoms, respectively, including methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl, pentyl, isopentyl, hexyl, 2,3-dimethyl-2-butyl, heptyl, 2,2-dimethyl-3-pentyl, 2-methyl-2-hexyl, octyl, 4-methyl-3-heptyl and the like.
As used herein, the term "Ar--Y--" refers to a radical wherein Ar is an aryl group and Y is a C0 -C4 alkyl. The term "Ar" refers to a phenyl or naphthyl group unsubstituted or substituted with from one to three substituents selected from the group consisting of methylenedioxy, hydroxy, C1 -C4 alkoxy, fluoro and chloro. The term "C0 -C4 alkyl" refers to a saturated straight or branched chain hydrocarbyl radical of zero to four carbon atoms and includes a bond, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tertiary butyl and the like. Specifically included within the scope of the term "Ar--Y--" are phenyl, naphthyl, phenylmethyl or benzyl, phenylethyl, p-methoxybenzyl, 3,4-methylenedioxy, p-fluorobenzyl and p-chlorobenzyl.
As used herein, the designation " " refers to a bond to a chiral atom for which the stereochemistry is not designated.
As used herein, the term "patient" refers to warm-blooded animals or mammals, including rabbits, rodents, monkeys and humans, who are in need of treatment for hypertriglyceridemia atherosclerosis or hypercholesterolemia, such as, for example, in the case of a patient suffering from familial hyperlipidemia. Patients are in need of treatment for hypertriglyceridemia, for example, in the case of a patient suffering from Type IV Hyperlipoproteinemia (indicating elevated VLDL) according to the Fredrickson classification [Fredrickson and Levy, FAMILIAL HYPERLIPOPROTEINEMIA, in The Metabolic Basis of Inherited Disease, 3rd ed. (Stanbury, J. B.; Wyngaarden, J. B.; and Fredrickson, D. S.; eds.) McGraw-Hill Book Co., New York, 1972, pp. 545-614].
Hypercholesterolemia is a disease state characterized by levels of serum cholesterol or of LDL cholesterol which are elevated by a clinically significant amount over that considered normal by those of ordinary skill in the art. The identification of those patients who are in need of treatment for hypercholesterolemia is well within the ability and knowledge of one skilled in the art. For example, individuals who have serum cholesterol levels or LDL cholesterol levels, as determined by clinical laboratory tests, which are substantially and chronically elevated over that considered normal by those of ordinary skill in the art, are patients in need of treatment for hypercholesterolemia. By way of further example, individuals who are at risk of developing hypercholesterolemia can also be patients in need of treatment for hypercholesterolemia. A clinician skilled in the art can readily identify, by the use of clinical tests, physical examination and medical/family history, those patients who are suffering from hypercholesterolemia and those who are at risk of developing hypercholesterolemia and thus readily determine if an individual is a patient in need of treatment for hypercholesterolemia.
An effective hypocholesterolemic amount of a compound of Formula (I) or (II) is an amount which is effective in reducing serum cholesterol levels or LDL cholesterol levels in a patient in need thereof. As such, successful treatment of a patient for hypercholesterolemia is understood to include reducing a patient's serum cholesterol or LDL cholesterol levels. Successful treatment for hypercholesterolemia is also understood to include prophylaxis in preventing clinically significant elevations in serum cholesterol or in LDL cholesterol levels in a patient who is at risk of the development of hypercholesterolemia.
Atherosclerosis is a disease state characterized by the development and growth of atherosclerotic lesions or plaque. The identification of those patients who are in need of treatment for atherosclerosis is well within the ability and knowledge of one skilled in the art. For example, individuals who are either suffering from clinically significant atherosclerosis or who are at risk of developing clinically significant atherosclerosis are patients in need of treatment for atherosclerosis. A clinician skilled in the art can readily determine, by the use of clinical tests, physical examination and medical/family history, if an individual is a patient in need of treatment for atherosclerosis.
An effective antiatherosclerotic amount of a compound of Formula (I) or (II) is an amount which is effective in inhibiting development or growth of atherosclerosis in a patient in need thereof. As such, successful treatment of a patient for atherosclerosis is understood to include effectively slowing, interrupting, arresting, or stopping atherosclerotic lesion or plaque development or growth and does not necessarily indicate a total elimination of the atherosclerosis. It is further understood and appreciated by those skilled in the art that successful treatment for atherosclerosis can include prophylaxis in preventing atherosclerotic lesion or plaque formation.
An effective antiatherosclerotic or hypocholesterolemic dose can be readily determined by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of or involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication.
An effective antiatherosclerotic or hypocholesterolemic amount of a compound of Formula (I) or (II) will generally vary from about 1 milligram per kilogram of body weight per day (mg/kg/day) to about 1000 milligrams per kilogram of body weight per day (1 gm/kg/day). A daily dose of from about 2 mg/kg to about 200 mg/kg is preferred.
In effecting treatment of a patient, a compound of Formula (I) or (II) can be administered in any form or mode which makes the compound bioavailable in effective amounts, including oral and parenteral routes. For example, the compound can be administered orally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, and the like. Oral administration is generally preferred. One skilled in the art of preparing formulations can readily select the proper form and mode of administration depending upon the disease state to be treated, the stage of the disease, and other relevant circumstances.
Compounds of Formula (I) or (II) can be administered in the form of pharmaceutical compositions or medicaments which are made by combining the compound of Formula (I) or (II) with pharmaceutically acceptable carriers or excipients, the proportion and nature of which are determined by the chosen route of administration, and standard pharmaceutical practice.
Hypertriglyceridemia is a disease state characterized by levels of plasma triglycerides which are elevated by a clinically significant amount over that considered normal by those of ordinary skill in the art. The identification of those patients who are in need of treatment for hypertriglyceridemia is well within the ability and knowledge of one skilled in the art. For example, individuals who have plasma triglyceride levels, as determined by clinical laboratory tests, which are substantially and chronically elevated over that considered normal by those of ordinary skill in the art, are patients in need of treatment for hypertriglyceridemia. By way of further example, individuals who are at risk of developing hypertriglyceridemia can also represent patients in need of treatment for hypertriglyceridemia. A clinician skilled in the art can readily identify, by the use of clinical tests, physical examination and medical/family history, those patients who are suffering from hypertriglyceridemia and those who are at risk of developing hypertriglyceridemia and thus readily determine if an individual is a patient in need of treatment for hypertriglyceridemia.
An effective hypotriglyceridemic amount of a compound of Formula (1) or (II) is an amount which is effective in reducing plasma triglyceride levels in a patient in need thereof. As such, successful treatment of a patient for hypertriglyceridemia is understood to include reducing a patient's plasma triglyceride levels. Successful treatment for hypertriglyceridemia is also understood to include prophylaxis in preventing clinically significant elevations in plasma triglyceride levels in a patient who is at risk of the development of hypertriglyceridemia.
An effective hypotriglyceridemic dose can be readily determined by the use of conventional techniques and by observing results obtained under analogous circumstances. In determining the effective dose, a number of factors are considered including, but not limited to: the species of patient; its size, age, and general health; the specific disease involved; the degree of or involvement or the severity of the disease; the response of the individual patient; the particular compound administered; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; and the use of concomitant medication.
An effective hypotriglyceridemic amount of a compound of Formula (1) or (II) will generally vary from about 1 milligram per kilogram of body weight per day (mg/kg/day) to about 1000 milligrams per kilogram of body weight per day (1.0 gm/kg/day). A daily dose of from about 1 mg/kg to about 200 mg/kg is preferred.
In effecting treatment of a patient, a compound of Formula (1) or (II) can be administered in any form or mode which makes the compound bioavailable in effective amounts, including oral and parenteral routes. For example, the compound can be administered orally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, and the like. Oral administration is generally preferred. One skilled in the art of preparing formulations can readily select the proper form and mode of administration depending upon the disease state to be treated, the stage of the disease, and other relevant circumstances.
A compound of Formula (1) or (II) can be administered in the form of pharmaceutical compositions or medicaments which are made by combining a compound of Formula (1) or (II) with pharmaceutically acceptable carriers or excipients, the proportion and nature of which are determined by the chosen route of administration, and standard pharmaceutical practice.
The pharmaceutical compositions or medicaments are prepared in a manner well known in the pharmaceutical art. The carrier or excipient may be a solid, semi-solid, or liquid material which can serve as a vehicle or medium for the active ingredient. Suitable carriers or excipients are well known in the art. The pharmaceutical composition may be adapted for oral or parenteral use and may be administered to the patient in the form of tablets, capsules, suppositories, solution, suspensions, or the like.
The pharmaceutical compositions may be administered orally, for example, with an inert diluent or with an edible carrier. They may be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, a compound Formula (1) or (II) may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, chewing gums and the like. These preparations should contain at least 4% of the compound of formula (I) or (II), the active ingredient, but may be varied depending upon the particular form and may conveniently be between 4% to about 70% of the weight of the unit. The amount of the active ingredient present in compositions is such that a unit dosage form suitable for administration will be obtained.
The tablets, pills, capsules, troches and the like may also contain one or more of the following adjuvants: binders, such as microcrystalline cellulose, gum tragacanth or gelatin; excipients, such as starch or lactose, disintegrating agents such as alginic acid, Primogel, corn starch and the like; lubricants, such as magnesium stearate or Sterotex; glidants, such as colloidal silicon dioxide; and sweetening agents, such as sucrose or saccharin may be added or flavoring agents, such as peppermint, methyl salicylate or orange flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil. Other dosage unit forms may contain other various materials which modify the physical form of the dosage unit, for example, as coatings. Thus, tablets or pills may be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the active ingredient, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used.
For the purpose of parenteral administration, a compound of Formula (1) or (II) may be incorporated into a solution or suspension. These preparations should contain at least 0.1% of a compound of the invention, but may be varied to be between 0.1 and about 50% of the weight thereof. The amount of the active ingredient present in such compositions is such that a suitable dosage will be obtained.
The solutions or suspensions may also include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene diaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of toxicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.
The compounds of Formula (I) and (II) can be prepared as described in European Patent Application, Publication Number 0 481 522 A1, published Apr. 22, 1992, hereby incorporated by reference.
The following example illustrates the utility of the mercaptoacetylamide derivatives of the present invention as hypocholesterolemic, antiatherosclerotic and hypocholesterolemic agents. This example is understood to be illustrative only and is not intended to limit the scope of the present invention in any way.
EXAMPLE 1
Rabbit Test for Hypocholesterolemic, Antiatherosclerotic and Hypotriglyceridemic Activities
Feed rabbits a high cholesterol (1%) diet for eight weeks, supplementing the diets of certain rabbits with the agent of interest. At the end of eight weeks, sacrifice the rabbits, collect the serum and determine cholesterol and triglyceride levels by standard methods [Hypertension 15:327-331, 1990].
Dissect the aorta of each rabbit from the ascending arch to the iliac bifurcation, clean and prepare for staining with Sudan IV to determine areas of atherosclerotic lesion with the use of image analysis.
Make statistical comparisons between the control and drug-treated groups to determine the activity of the agent of interest.

Claims (10)

What is claimed is:
1. A method of lowering total serum cholesterol in a patient in need thereof comprising administering to said patient a therapeutically effective hypocholesterolemic amount of a compound of the Formula ##STR4## wherein A1 and A2 are each independently hydrogen or --COOR4 wherein R4 is hydrogen; --CH2 O--C(O)C(CH3)3 ; a C1 -C4 alkyl; an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or diphenylmethyl; with the proviso that where A1 is hydrogen, A2 is --COOR4, and where A1 is --COOR4, A2 is hydrogen;
B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl; and
n is an integer 0 or 1.
2. A method of treating a patient for hypercholesterolemia comprising administering to said patient a therapeutically effective hypocholesterolemic amount of a compound of the Formula ##STR5## wherein A1 and A2 are each independently hydrogen or --COOR4 wherein R4 is hydrogen; --CH2 O--C(O)C(CH3)3 ; a C1 -C4 alkyl; an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or diphenylmethyl; with the proviso that where A1 is hydrogen, A2 is --COOR4, and where A1 is --COOR4, A2 is hydrogen;
B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl; and
n is an integer 0 or 1.
3. A method of lowering plasma triglycerides in a patient in need thereof comprising administering to said patient a therapeutically effective hypotriglyceridemic amount of a compound of the Formula ##STR6## wherein A1 and A2 are each independently hydrogen or --COOR4 wherein R4 is hydrogen; --CH2 O--C(O)C(CH3)3 ; a C1 -C4 alkyl; an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or diphenylmethyl; with the proviso that where A1 is hydrogen, A2 is --COOR4, and where A1 is --COOR4, A2 is hydrogen;
B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl; and
n is an integer 0 or 1.
4. A method of treating a patient suffering from hypertriglyceridemia comprising administering to said patient a therapeutically effective hypotriglyceridemic amount of a compound of the Formula ##STR7## wherein A1 and A2 are each independently hydrogen or --COOR4 wherein R4 is hydrogen; --CH2 O--C(O)C(CH3)3 ; a C1 -C4 alkyl; an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or diphenylmethyl; with the proviso that where A1 is hydrogen, A2 is --COOR4, and where A1 is --COOR4, A2 is hydrogen;
B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl; and
n is an integer 0 or 1.
5. A method of lowering total serum cholesterol in a patient in need thereof comprising administering to said patient a therapeutically effective hypocholesterolemic amount of a compound of the Formula ##STR8## wherein B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl;
R4 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group, --CH2 O--C(O)C(CH3)3 or diphenylmethyl; and ##STR9## wherein R6 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group and R7 is --CF3, a C1 -C10 alkyl or an Ar--Y-- group.
6. A method of treating a patient for hypercholesterolemia comprising administering to said patient a therapeutically effective hypocholesterolemic amount of a compound of the Formula ##STR10## wherein B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl;
R4 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group, --CH2 O--C(O)C(CH3)3 or diphenylmethyl; and ##STR11## wherein R6 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group and R7 is --CF3, a C1 -C10 alkyl or an Ar--Y-- group.
7. A method of lowering plasma triglycerides in a patient in need thereof comprising administering to said patient a therapeutically effective hypotriglyceridemic amount of a compound of the Formula ##STR12## wherein B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl;
R4 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group, --CH2 O--C(O)C(CH3)3 or diphenylmethyl; and ##STR13## wherein R6 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group and R7 is --CF3, a C1 -C10 alkyl or an Ar--Y-- group.
8. A method of treating a patient suffering from hypertriglyceridemia comprising administering to said patient a therapeutically effective hypotriglyceridemic amount of a compound of the Formula ##STR14## wherein B1 and B2 are each independently hydrogen; hydroxy; --OR5 wherein R5 is a C1 -C4 alkyl or an Ar--Y-- group wherein Ar is aryl and Y is a C0 -C4 alkyl; or, where B1 and B2 are attached to adjacent carbon atoms, B1 and B2 can be taken together with said adjacent carbons to form a benzene ring or methylenedioxy;
R2 is hydrogen, C1 -C8 alkyl, --CH2 OCH2 CH2 OCH3 or an Ar--Y-- group;
R3 is hydrogen, acetyl, --CH2 O--C(O)C(CH3)3 or benzoyl;
R4 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group, --CH2 O--C(O)C(CH3)3 or diphenylmethyl; and ##STR15## wherein R6 is hydrogen, a C1 -C4 alkyl or an Ar--Y-- group and R7 is --CF3, a C1 -C10 alkyl or an Ar--Y-- group.
9. A method according to any of claims 1-8 wherein the compound is [4S-[4α, 7α(R*), 12bβ]]-7-[(1-oxo-2(S)-acetylthio-3-phenylpropyl)amino]-1,2,3,4,6,7,8,12b-octahydro-6-oxo-pyrido[2,1-a][2]benzazepine-4-carboxylic acid.
10. A method according to any of claims 1-8 wherein the compound is [4S-[4α, 7α(R*), 12bβ]]-7-[(1-oxo-2(S)-thio-3-phenylpropyl)amino]-1,2,3,4,6,7,8,12b-octahydro-6-oxopyrido[2,1-a][2]benzazepine-4-carboxylic acid.
US08/217,781 1994-03-18 1994-03-24 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide and benzazapine derivatives Expired - Lifetime US5484783A (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
US08/217,781 US5484783A (en) 1994-03-24 1994-03-24 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide and benzazapine derivatives
DK95913501T DK0751775T3 (en) 1994-03-24 1995-02-28 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
PCT/US1995/002476 WO1995025548A2 (en) 1994-03-24 1995-02-28 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
CN95192242A CN1144483A (en) 1994-03-24 1995-02-28 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
AU20914/95A AU705029B2 (en) 1994-03-24 1995-02-28 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
KR1019960705294A KR970701550A (en) 1994-03-24 1995-02-28 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoac etylamide derivatives for the treatment of hypercholesterolemia, atherosclerosis and triglyceridemia
HU9602603A HU226643B1 (en) 1994-03-24 1995-02-28 Use of hypocholesterolemic, and hypotriglyceridemic pyrido-benzozepine derivatives for the preparation of pharmaceutical compositions
EP95913501A EP0751775B1 (en) 1994-03-24 1995-02-28 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
NZ282949A NZ282949A (en) 1994-03-24 1995-02-28 Use of condensed mercaptoacetylamidebenzazepines in treating elevated cholesterol levels, hypertriglyceridemia, and atheroschlerosis
DE69526731T DE69526731T2 (en) 1994-03-24 1995-02-28 HYPOCHOLESTEROLEMIC, ANTIATHEROSCLEROTIC AND HYPOTRIGLYCERIDEMIC MERCAPTOACETYLAMIDE DERIVATIVES
CA002184693A CA2184693C (en) 1994-03-24 1995-02-28 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
PT95913501T PT751775E (en) 1994-03-24 1995-02-28 MERCAPTOACETILAMIDE DERIVATIVES HYPOCOLSTEROLEMICS, ANTI-ACETYCLOSTIC AND HYPOTRIGLYCERIDEMICS
ES95913501T ES2173180T3 (en) 1994-03-24 1995-02-28 HYPOCOLESTEROLEMIC, ANTIATEROESCLEROTIC AND HYPOTRIGLICERIDEMIC MERCAPTOACETILAMIDE DERIVATIVES.
JP7523719A JPH09510220A (en) 1994-03-24 1995-02-28 Hypocholesterolemic, anti-atherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
AT95913501T ATE217527T1 (en) 1994-03-24 1995-02-28 HYPOCHOLESTEROLEMIC, ANTIATHEROSCLEROTIC AND HYPOTRIGLYCERIDEMIC MERCAPTOACETYLAMIDE DERIVATIVES
KR1019960705056A KR100289141B1 (en) 1994-03-18 1995-03-09 Stabilized Compositions for Oral Administration of Peptides
ZA952285A ZA952285B (en) 1994-03-24 1995-03-20 Hypocholesterolemic antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives
TW084102716A TW323954B (en) 1994-03-24 1995-03-21 Pharmaceutical composition used in the treatment of hypertriglyceridemia, atheroscleorsis and hypercholecterolemia
IL11307495A IL113074A (en) 1994-03-24 1995-03-22 Hypocholesterolemic antiatherosclerotic and hypotriglyceridemic pharmaceutical compositions comprising derivatives of mercaptoacetamido-oxopyrrolo (and pyrido) benzazepinecarboxylic acids
NO19963989A NO313176B1 (en) 1994-03-24 1996-09-23 Use of mercaptoacetylamide derivatives for the preparation of a pharmaceutical composition for the treatment of hypercholesterolemia
FI963785A FI118414B (en) 1994-03-24 1996-09-23 Hypocholesterolemic, anti-atherosclerotic and hypotriglyceridemic mercaptoacetylamide derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/217,781 US5484783A (en) 1994-03-24 1994-03-24 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide and benzazapine derivatives

Publications (1)

Publication Number Publication Date
US5484783A true US5484783A (en) 1996-01-16

Family

ID=22812484

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/217,781 Expired - Lifetime US5484783A (en) 1994-03-18 1994-03-24 Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide and benzazapine derivatives

Country Status (20)

Country Link
US (1) US5484783A (en)
EP (1) EP0751775B1 (en)
JP (1) JPH09510220A (en)
KR (1) KR970701550A (en)
CN (1) CN1144483A (en)
AT (1) ATE217527T1 (en)
AU (1) AU705029B2 (en)
CA (1) CA2184693C (en)
DE (1) DE69526731T2 (en)
DK (1) DK0751775T3 (en)
ES (1) ES2173180T3 (en)
FI (1) FI118414B (en)
HU (1) HU226643B1 (en)
IL (1) IL113074A (en)
NO (1) NO313176B1 (en)
NZ (1) NZ282949A (en)
PT (1) PT751775E (en)
TW (1) TW323954B (en)
WO (1) WO1995025548A2 (en)
ZA (1) ZA952285B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880508A (en) * 1997-10-20 1999-03-09 Texas Instruments--Acer Incorporated MOSFET with a high permitivity gate dielectric
US6378430B1 (en) 1999-10-15 2002-04-30 King Press Corporation Cylinder with plate gripping device
DE10229180A1 (en) * 2002-06-28 2004-01-29 Aventis Pharma Deutschland Gmbh Use of vasopeptidase inhibitors in the treatment of metabolic disorders, nephropathy and AGE-associated disorders
US6951854B1 (en) 1996-12-23 2005-10-04 Athena Neurosciences, Inc. Cycloalkyl, lactam, lactone and related compounds, pharmaceutical compositions comprising same, and methods for inhibiting β-amyloid peptide release and/or its synthesis by use of such compounds
US20070254869A1 (en) * 2003-10-08 2007-11-01 Eli Lilly And Company Compounds And Methods For Treating Dislipidemia

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334095A (en) * 1965-02-16 1967-08-01 Sandoz Ag Novel pyrrolo-oxazines and pyrrolo-oxazoles
US3334091A (en) * 1965-03-25 1967-08-01 Sandoz Ag Sedatives
US4080449A (en) * 1976-07-30 1978-03-21 U C B, Societe Anonyme 1,2,4,5-Tetrahydro-3H-2-benzazepin-3-ones
US4320057A (en) * 1980-06-23 1982-03-16 American Home Products Corporation Aryl--pyrrolo--thiazepin--diones and aryl--piperidino--thiazepin--diones
US4391752A (en) * 1980-02-26 1983-07-05 John Wyeth And Brother Limited Process for preparing 5H-pyrrolo[2,1-c]-[1,4]thiazepine-1,5-diones
US4399136A (en) * 1980-06-13 1983-08-16 Hoffmann-La Roche Inc. Pyrazolopyridazine antihypertensives
US4415496A (en) * 1981-03-23 1983-11-15 Merck & Co., Inc. Bicyclic lactams
EP0128728A1 (en) * 1983-06-09 1984-12-19 Eli Lilly And Company Angiotensinase inhibitors
US4512924A (en) * 1982-05-12 1985-04-23 Hoffmann-La Roche Inc. Pyridazo[1,2-a][1,2]diazepines
US4584294A (en) * 1984-11-07 1986-04-22 Merck & Co., Inc. Fused tricyclic lactams as angiotensin converting enzyme inhibitors and as antihypertensive agents
US4692438A (en) * 1984-08-24 1987-09-08 Hoffmann-La Roche Inc. Pyridazo-diazepines, diazocines, and -triazepines having anti-hypertensive activity
EP0249223A2 (en) * 1986-06-13 1987-12-16 Merrell Dow Pharmaceuticals Inc. Novel antihypertensive agent
EP0249224A2 (en) * 1986-06-13 1987-12-16 Merrell Dow Pharmaceuticals Inc. Novel antihypertensive agent
US4716232A (en) * 1985-04-30 1987-12-29 Eli Lilly And Company 1-(vinyl phosphonate adduct) pyrazolidinones
US4782149A (en) * 1986-12-15 1988-11-01 Hoffman-La Roche Inc. Pyridazodiazepine derivatives
US4808713A (en) * 1982-05-12 1989-02-28 Hoffman-La Roche Inc. Anthypertensive pyridazo [1,2-a][1,2]diazepines
US4824832A (en) * 1987-12-30 1989-04-25 Merrell Dow Pharmaceuticals Inc. Sulfhydryl containing tricyclic lactams and their pharmacological methods of use
US4973585A (en) * 1986-06-13 1990-11-27 Merrell Dow Pharmaceuticals Tricyclic lactams active as antihypertensive agents
WO1991008195A1 (en) * 1989-11-23 1991-06-13 Pfizer Limited N-(1-(2-carboxyethyl)cycloalkyl carbonyl)-beta-alanine derivatives for pharmaceutical use
WO1991009840A1 (en) * 1989-12-22 1991-07-11 Schering Corporation Mercaptocycloacyl aminoacid endopeptidase inhibitors
EP0481522A1 (en) * 1990-10-18 1992-04-22 Merrell Pharmaceuticals Inc. Novel mercaptoacetylamide derivatives useful as inhibitors of enkephalinase and ace
EP0492369A1 (en) * 1990-12-21 1992-07-01 Merrell Pharmaceuticals Inc. Novel amino and nitro containing tricyclic compounds useful as inhibitors of ace
WO1993002099A1 (en) * 1991-07-23 1993-02-04 Institut National De La Sante Et De La Recherche Medicale (Inserm) Acylmercaptoalkanoyldipeptides, methods of preparation and their therapeutic use
EP0533084A1 (en) * 1991-09-16 1993-03-24 Schering Corporation Pharmaceutical compositions comprising natriuretic peptides or neutral endopeptidase inhibitors for treating and preventing myointimal proliferation
US5208230A (en) * 1990-12-21 1993-05-04 Merrell Dow Pharmaceuticals Amino and nitro containing tricyclic compounds useful as inhibitors of ACE
US5238932A (en) * 1992-05-20 1993-08-24 Merrell Dow Pharmaceuticals Inc. Mercaptoacetylamide tricyclic derivatives useful as inhibitors of enkephalinase
EP0599444A1 (en) * 1992-05-18 1994-06-01 E.R. SQUIBB & SONS, INC. Dual action inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061694A (en) * 1989-10-23 1991-10-29 E. R. Squibb & Sons, Inc. Method for stabilizing or causing regression of atherosclerosis in coronary arteries employing an ace inhibitor

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334095A (en) * 1965-02-16 1967-08-01 Sandoz Ag Novel pyrrolo-oxazines and pyrrolo-oxazoles
US3334091A (en) * 1965-03-25 1967-08-01 Sandoz Ag Sedatives
US4080449A (en) * 1976-07-30 1978-03-21 U C B, Societe Anonyme 1,2,4,5-Tetrahydro-3H-2-benzazepin-3-ones
US4391752A (en) * 1980-02-26 1983-07-05 John Wyeth And Brother Limited Process for preparing 5H-pyrrolo[2,1-c]-[1,4]thiazepine-1,5-diones
US4487929A (en) * 1980-06-13 1984-12-11 Hoffmann-La Roche, Inc. Intermediates for pyrazolopyridazine derivatives
US4399136A (en) * 1980-06-13 1983-08-16 Hoffmann-La Roche Inc. Pyrazolopyridazine antihypertensives
US4320057A (en) * 1980-06-23 1982-03-16 American Home Products Corporation Aryl--pyrrolo--thiazepin--diones and aryl--piperidino--thiazepin--diones
US4415496A (en) * 1981-03-23 1983-11-15 Merck & Co., Inc. Bicyclic lactams
US4512924A (en) * 1982-05-12 1985-04-23 Hoffmann-La Roche Inc. Pyridazo[1,2-a][1,2]diazepines
US4808713A (en) * 1982-05-12 1989-02-28 Hoffman-La Roche Inc. Anthypertensive pyridazo [1,2-a][1,2]diazepines
US4658024A (en) * 1982-05-12 1987-04-14 Hoffmann-La Roche Inc. Pyrazolo [1,2-a][1,2]-diazepines useful as antihypertensives
US4772701A (en) * 1982-05-12 1988-09-20 Hoffmann-La Roche Inc. Pyridazo[1,2]pyridazines and pyrazolo[1,2]pyridazines as antihypertensives
EP0128728A1 (en) * 1983-06-09 1984-12-19 Eli Lilly And Company Angiotensinase inhibitors
US4762924A (en) * 1984-08-24 1988-08-09 Hoffmann-La Roche Inc. Bicyclic compounds
US4826980A (en) * 1984-08-24 1989-05-02 Hoffmann-La Roche Inc. Pyridazine intermediates
US4785093A (en) * 1984-08-24 1988-11-15 Hoffmann-La Roche Inc. Bicyclic compounds
US4692438A (en) * 1984-08-24 1987-09-08 Hoffmann-La Roche Inc. Pyridazo-diazepines, diazocines, and -triazepines having anti-hypertensive activity
US4584294A (en) * 1984-11-07 1986-04-22 Merck & Co., Inc. Fused tricyclic lactams as angiotensin converting enzyme inhibitors and as antihypertensive agents
US4734505A (en) * 1985-04-30 1988-03-29 Eli Lilly And Company 1-(alkylated)-2-(acylated)diazolidinones
US4734504A (en) * 1985-04-30 1988-03-29 Eli Lilly And Company 1-alkylated diazolidinones
US4716232A (en) * 1985-04-30 1987-12-29 Eli Lilly And Company 1-(vinyl phosphonate adduct) pyrazolidinones
EP0249223A2 (en) * 1986-06-13 1987-12-16 Merrell Dow Pharmaceuticals Inc. Novel antihypertensive agent
US4973585A (en) * 1986-06-13 1990-11-27 Merrell Dow Pharmaceuticals Tricyclic lactams active as antihypertensive agents
EP0249224A2 (en) * 1986-06-13 1987-12-16 Merrell Dow Pharmaceuticals Inc. Novel antihypertensive agent
US4782149A (en) * 1986-12-15 1988-11-01 Hoffman-La Roche Inc. Pyridazodiazepine derivatives
EP0322914A2 (en) * 1987-12-30 1989-07-05 Merrell Dow Pharmaceuticals Inc. Novel sulfhydryl containing tricyclic lactams and their pharmacological methods of use
US4824832A (en) * 1987-12-30 1989-04-25 Merrell Dow Pharmaceuticals Inc. Sulfhydryl containing tricyclic lactams and their pharmacological methods of use
WO1991008195A1 (en) * 1989-11-23 1991-06-13 Pfizer Limited N-(1-(2-carboxyethyl)cycloalkyl carbonyl)-beta-alanine derivatives for pharmaceutical use
WO1991009840A1 (en) * 1989-12-22 1991-07-11 Schering Corporation Mercaptocycloacyl aminoacid endopeptidase inhibitors
EP0481522A1 (en) * 1990-10-18 1992-04-22 Merrell Pharmaceuticals Inc. Novel mercaptoacetylamide derivatives useful as inhibitors of enkephalinase and ace
EP0492369A1 (en) * 1990-12-21 1992-07-01 Merrell Pharmaceuticals Inc. Novel amino and nitro containing tricyclic compounds useful as inhibitors of ace
US5208230A (en) * 1990-12-21 1993-05-04 Merrell Dow Pharmaceuticals Amino and nitro containing tricyclic compounds useful as inhibitors of ACE
WO1993002099A1 (en) * 1991-07-23 1993-02-04 Institut National De La Sante Et De La Recherche Medicale (Inserm) Acylmercaptoalkanoyldipeptides, methods of preparation and their therapeutic use
EP0533084A1 (en) * 1991-09-16 1993-03-24 Schering Corporation Pharmaceutical compositions comprising natriuretic peptides or neutral endopeptidase inhibitors for treating and preventing myointimal proliferation
EP0599444A1 (en) * 1992-05-18 1994-06-01 E.R. SQUIBB & SONS, INC. Dual action inhibitors
US5238932A (en) * 1992-05-20 1993-08-24 Merrell Dow Pharmaceuticals Inc. Mercaptoacetylamide tricyclic derivatives useful as inhibitors of enkephalinase

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
Attwood, et al., J. Chem. Soc. Perkin Trans. I, pp. 1011 1019 (1986). *
Attwood, et al., J. Chem. Soc. Perkin Trans. I, pp. 1011-1019 (1986).
Bioorganic and Medical Chem. Letters vo. 1, 309, 1991. *
Burkholder, et al. Bioorganic and Medical Chem. Letters, vol. 3, No. 2, pp. 231 234, 1993. *
Burkholder, et al. Bioorganic and Medical Chem. Letters, vol. 3, No. 2, pp. 231-234, 1993.
Davis, Harry R. et al., Supplement I Circulation, vol. 86, No. 4 p. I 220 (0873), (Oct. 1992). *
Davis, Harry R. et al., Supplement I Circulation, vol. 86, No. 4 p. I-220 (0873), (Oct. 1992).
Flynn et al., J. Med. Chem. 1993, 36 2420 2423. *
Flynn et al., J. Med. Chem. 1993, 36 2420-2423.
Flynn, et al., J. Am. Chem. Soc. 109, 7914 (1987). *
Flynn, et al., Peptide Chemistry (1987); T. Shiba & Sakakibara (ed.), Protein Research Foundation, Osaka (1988). *
Flynn, et al., Tetrahedron Letters, vol. 31 (6), 815 88 (1990). *
Flynn, et al., Tetrahedron Letters, vol. 31 (6), 815-88 (1990).
Fournie Zaluski, Marie Claude et al., J. Med. Chem., 1992 vol. 35, pp. 1259 1266. *
Fournie Zaluski, Marie Claude et al., J. Med. Chem., 1992 vol. 35, pp. 2473 2481. *
Fournie-Zaluski, Marie-Claude et al., J. Med. Chem., 1992 vol. 35, pp. 1259-1266.
Fournie-Zaluski, Marie-Claude et al., J. Med. Chem., 1992 vol. 35, pp. 2473-2481.
French, John F., Jour. of Pharm and Exper. Therapeutics, vol. 268, No. 1, pp. 180 186 1993. *
French, John F., Jour. of Pharm and Exper. Therapeutics, vol. 268, No. 1, pp. 180-186 1993.
J. Med. Chem. 1992, 35, 823 832, Timothy D. Ocain et al. *
J. Med. Chem. 1992, 35, 823-832, Timothy D. Ocain et al.
Kuglyama et al., Circulation "Abstract from the 66th Scientific Sessions" 88(4), 1993, p. I-521.
Kuglyama et al., Circulation Abstract from the 66th Scientific Sessions 88(4), 1993, p. I 521. *
Natoff, et al., Drugs of the Future, vol. 12 (5): 475 483 (1987). *
Natoff, et al., Drugs of the Future, vol. 12 (5): 475-483 (1987).
Powell Jerry S. et al., Journal of American College of Cardiology, vol. 17, No. 6, pp. 137B 142B (May 1991). *
Powell Jerry S. et al., Journal of American College of Cardiology, vol. 17, No. 6, pp. 137B-142B (May 1991).
Remington s Pharmaceutical Services (1980), 16th Edition, Mack Publishing Co. pp. 420 427. *
Remington's Pharmaceutical Services (1980), 16th Edition, Mack Publishing Co. pp. 420-427.
W. H. Parsons et al. Biochemical and Biophysical Research Communications vol. 117, No. 1, 1993 (Nov. 30, 1983). *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951854B1 (en) 1996-12-23 2005-10-04 Athena Neurosciences, Inc. Cycloalkyl, lactam, lactone and related compounds, pharmaceutical compositions comprising same, and methods for inhibiting β-amyloid peptide release and/or its synthesis by use of such compounds
US5880508A (en) * 1997-10-20 1999-03-09 Texas Instruments--Acer Incorporated MOSFET with a high permitivity gate dielectric
US6378430B1 (en) 1999-10-15 2002-04-30 King Press Corporation Cylinder with plate gripping device
DE10229180A1 (en) * 2002-06-28 2004-01-29 Aventis Pharma Deutschland Gmbh Use of vasopeptidase inhibitors in the treatment of metabolic disorders, nephropathy and AGE-associated disorders
US20040058911A1 (en) * 2002-06-28 2004-03-25 Aventis Pharma Deutschland Gmbh Use of vasopeptidase inhibitors in the treatment of metabolic diseases, nephropathy and advanced glycation end-product associated diseases
US20050171090A1 (en) * 2002-06-28 2005-08-04 Aventis Pharma Deutschland Gmbh Use of vasopeptidase inhibitors in the treatment of metabolic diseases, nephropathy and advanced glycation end-product associated diseases
US6930103B2 (en) 2002-06-28 2005-08-16 Aventis Pharma Deutschland Gmbh Use of vasopeptidase inhibitors in the treatment of metabolic diseases, nephropathy and advanced glycation end-product associated diseases
US7514423B2 (en) 2002-06-28 2009-04-07 Sanofi-Aventis Deutschland Gmbh Use of vasopeptidase inhibitors in the treatment of metabolic diseases, nephropathy and advanced glycation end-product associated diseases
US20070254869A1 (en) * 2003-10-08 2007-11-01 Eli Lilly And Company Compounds And Methods For Treating Dislipidemia
US7749992B2 (en) 2003-10-08 2010-07-06 Eli Lilly And Company Compounds and methods for treating dislipidemia

Also Published As

Publication number Publication date
AU2091495A (en) 1995-10-09
FI963785A0 (en) 1996-09-23
IL113074A (en) 2000-07-26
KR970701550A (en) 1997-04-12
HU226643B1 (en) 2009-05-28
AU705029B2 (en) 1999-05-13
WO1995025548A3 (en) 1995-11-09
CA2184693C (en) 2001-01-02
DE69526731D1 (en) 2002-06-20
NO963989L (en) 1996-11-22
PT751775E (en) 2002-10-31
HUT74886A (en) 1997-02-28
JPH09510220A (en) 1997-10-14
CA2184693A1 (en) 1995-09-28
FI118414B (en) 2007-11-15
DK0751775T3 (en) 2002-08-26
ATE217527T1 (en) 2002-06-15
EP0751775B1 (en) 2002-05-15
FI963785A (en) 1996-09-23
EP0751775A1 (en) 1997-01-08
NZ282949A (en) 1997-07-27
CN1144483A (en) 1997-03-05
HU9602603D0 (en) 1996-11-28
IL113074A0 (en) 1995-06-29
NO963989D0 (en) 1996-09-23
TW323954B (en) 1998-01-01
ZA952285B (en) 1996-01-09
WO1995025548A2 (en) 1995-09-28
ES2173180T3 (en) 2002-10-16
NO313176B1 (en) 2002-08-26
DE69526731T2 (en) 2003-02-06

Similar Documents

Publication Publication Date Title
KR0150631B1 (en) Hypocholesterolemic and antiatherosclerotic uses of bis(3.5-di-tertiary-butyl-4-hydroxyphenylthio)methane
HU215922B (en) Use of 1-[(4-carbazolyl)-oxy]-3-amino-propanol derivatives for inhibition of smooth muscle cell proliferation and process for producing pharmaceutical compositions containing them
UA80121C2 (en) Compositions and methods for dosing liposomes of certain sizes to treat or prevent disease
CA1323572C (en) Doxazosin as an anti-atherosclerosis agent
US5484783A (en) Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide and benzazapine derivatives
JPH03151328A (en) Pharmaceutical agent for degenerating or stabilizing atherosclerosis of coronary arteries
KR940011245B1 (en) Pharmaceutical composition containing tenidap to reduce total serum cholesterol, ldl cholesterol and triglycerides
JPS61152632A (en) Antiarteriosclerotic agent
US6013645A (en) Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic mercaptoacetylamide disulfide derivatives
US5122542A (en) Hypotriglyceridemic use of certain bis (3,5-di-alkyl-4-hydroxyphenylthio)methanes
MXPA06006831A (en) Use of stating for the treatment of metabolic syndrome.
Simmons et al. The natural history of a “benign” rib lesion in a patient with a demyelinating polyneuropathy and an unusual variant of POEMS syndrome
US4454115A (en) Method of reducing the level of low density lipoproteins in the serum of a patient
CA2184696C (en) Hypocholesterolemic, antiatherosclerotic and hypotriglyceridemic aminoacetylmercapto derivatives
Aviram et al. Differential effect of platelet inhibitors in normal and in hypercholesterolaemic subjects.
JPH0573728B2 (en)
Dresel et al. Binding Sites for Modified Low-Density Lipoprotein on Macrophagocytic Cells: Implications for Atherogenesis?
AU2004280108A1 (en) Methods and means for modulating lipid metabolism

Legal Events

Date Code Title Description
AS Assignment

Owner name: MERRELL DOW PHARMACEUTICALS INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FLYNN, GARY A.;FRENCH, JOHN F.;DAGE, RICHARD C.;REEL/FRAME:007027/0445;SIGNING DATES FROM 19940411 TO 19940412

STCF Information on status: patent grant

Free format text: PATENTED CASE

RR Request for reexamination filed

Effective date: 19960904

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12