US5476783A - Bioreactor method of culturing and propagating cells with a woven motionless mixing element - Google Patents

Bioreactor method of culturing and propagating cells with a woven motionless mixing element Download PDF

Info

Publication number
US5476783A
US5476783A US08/114,462 US11446293A US5476783A US 5476783 A US5476783 A US 5476783A US 11446293 A US11446293 A US 11446293A US 5476783 A US5476783 A US 5476783A
Authority
US
United States
Prior art keywords
cells
surface area
woven
sheet material
mixing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/114,462
Inventor
Michael Mutsakis
Joseph P. Porcelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer Chemtech AG
KGI Inc
Original Assignee
Koch Engineering Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koch Engineering Co Inc filed Critical Koch Engineering Co Inc
Priority to US08/114,462 priority Critical patent/US5476783A/en
Priority to US08/455,843 priority patent/US5565361A/en
Application granted granted Critical
Publication of US5476783A publication Critical patent/US5476783A/en
Assigned to KOCH-GLITSCH, INC. reassignment KOCH-GLITSCH, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KOCH ENGINEERING, INC.
Assigned to KGI, INC. reassignment KGI, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KOCH-GLITSCH, INC.
Assigned to KOCH-GLITSCH, LP reassignment KOCH-GLITSCH, LP NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: KOCH-GLITSCH, INC.
Assigned to SULZER CHEMTECH reassignment SULZER CHEMTECH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOCH-GLITSCH, LP
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters

Abstract

A bioreactor, motionless mixing element with attached cells, and method for the enhanced cultivation and propagation of cells in a bioreactor method, and which bioreactor comprises a housing and contains within the housing a motionless mixing element, the attachment of cells to the mixing element and a nutrient composition permitting the cell growth and division of the attached cells, and which motionless mixing element and the method and bioreactor comprise a porous, fibrous sheet material; for example, of a corrugated or knitted, woven wire material, such as stainless steel or titanium, and of selected dimensions as to the fiber diameter and height, to provide a maximum surface area for the attachment of the cells to be cultivated, with the ratio of the fibrous, geometric surface area of the porous, fibrous sheet material to that of a sheet material of the same shape being greater than about 1.0; for example, 1.5, and typically, for example, having a surface area for cell growth of about 2000 to 3000 M2 /M3.

Description

This is a continuation of application Ser. No. 07/855,532 filed on Mar. 23, 1992, now abandoned.
BACKGROUND OF THE INVENTION
Bioreactors commonly have been employed for the cultivation and propagation of cells, such as mammalian cells, as well as the replication of virus-infected cells, in which the bioreactor comprises a housing in which nutrients are fed into the housing and the cells maintained under process conditions which permit cell growth and division within the housing, and, thereafter, the harvesting of the cells from the bioreactor.
It has been found that the use of a motionless mixing element, also known as a static mixing element, as a cell-culture propagator, is desirable, to enhance tissue-culture propagation within the bioreactor. For example, U.S. Pat. No. 4,296,204, issued Oct. 20, 1981, hereby incorporated by reference in its entirety, describes the advantages of employing certain motionless mixing elements in a housing, so that the surfaces of the motionless mixing element may be employed as a cell-growth surface by attachment of the cells, such as mammalian cells, to the surfaces of the motionless mixing element, typically by slow rotation of the elements within the housing. It is reported that the motionless mixing elements, such as a simple stationary baffle that utilizes the energy of the flowing fluids to produce mixing, result in consistent performance, regardless of flow rate and equipment dimensions. The employment of motionless mixing elements in bioreactors may be used to produce viral vaccines and to promote the growth and culture of mammalian cells. This U.S. patent describes particular motionless mixing elements comprised of an assembly of parallel sheets shaped to provide a plurality of channels, typically of corrugated form, which converge and diverge to form mixing cells.
The employment of motionless mixing elements in the design and scaleup of an anchorage-dependent, mammalian-cell bioreactor and in a method of cultivating also has been described recently in a publication Annals New York Academy of Sciences, "Design and Scaleup of an Anchorage-dependent Mammalian Cell Bioreactor", by Edward L. Paul, 589 (Biochem. Eng. 6), 642-9, 1990, hereby incorporated by reference in its entirety. This publication refers to the earlier cited U.S. Pat. No. 4,296,204 and sets forth test results achieved by employing Koch-Sulzer static mixing elements which are composed of titanium sheet material (Koch-Sulzer CY mixing elements), the sheets at a 45-degree angle and having a height of about 1/8th of an inch. It is stated that the test scaleup, employing the Koch-Sulzer motionless mixing sheet material, achieves uniform flow and distribution patterns over the cell surfaces, while operating at low fluid shear, and the Koch-Sulzer static mixing elements provide cell-attachment and growth surfaces for viral infection and replication in the cells.
The Koch-Sulzer static mixing elements, described in the 1990 publication, are described and claimed in U.S. patents in which motionless mixing packing elements are composed of sheets of corrugated lamellas, with the corrugations of adjacent lamellas oriented in different directions, while adjacent packing elements are angularly offset from each other. Typically the commercial embodiments, as tested and described in the publication, comprise sheet-metal materials (perforated or solid sheet metal) in a spaced-apart position, and which include a plurality of lamellas in contact with each other, and having corrugations therein, the corrugations sequentially arranged and oriented in different directions, the corrugations being disposed at an angle on a longitudinal axis, with the packing elements being angularly offset to an adjacent packing element, typically at about up to 90 degrees.
It is desirable to provide for a new and improved bioreactor containing motionless mixing elements, and to provide a method for the enhanced attachment and propagation of cells, in order to provide for enhanced production of the cultivated and propagated cells in the bioreactor.
SUMMARY OF THE INVENTION
The invention concerns a bioreactor containing a fibrous, motionless mixing element, to enhance the attachment of cells and cell growth within the bioreactor, and to a method of propagating cells and cell growth employing a bioreactor containing a fibrous, motionless mixing element.
It has been discovered that the employment of a motionless mixing element, composed of a porous, fibrous sheet material, rather than a solid or perforated sheet material as employed in the prior art, provides for significantly higher surface area per unit volume, so that significantly more cells can be attached to the surface of the motionless mixing element and be cultivated and propagated in the bioreactor.
The invention comprises a bioreactor consisting of a housing containing a motionless mixing element composed of a porous, open, fibrous sheet material, such as a corrugated or crimped sheet material with a plurality of sheets, with a motionless mixing element disposed within the bioreactor, and with the fibrous material of selected dimensions, to provide a maximum surface area for attachment of the cells in the bioreactor, the ratio of the fibrous, geometric surface area to that of a prior-art sheet or material of the same shape being greater than 1.0 for example, greater than about 1.5, thereby providing for enhanced cell propagation and enhanced cell attachment per unit volume.
Thus, in a method of the invention for the cultivation and propagation of cells, such as mammalian cells or virus-infected cells, the method comprises attaching the cells to the surface of a motionless mixing element disposed within a housing of a bioreactor, and maintaining the cells within the bioreactor in a condition of growth and propagation, and subsequently harvesting the cells, the improvement which comprises employing, as the motionless mixing elements within the bioreactor, a porous, fibrous sheet material of selected dimensions, to provide maximum surface area for the attachment of the cells. The geometric surface area of a motionless mixing element made of wire, such as a gauze; that is, the wire surface area, can be selected to be larger significantly than that of solid sheet metals previously employed in the prior art as the motionless mixing element. The higher the surface area per unit volume the more cells in the bioreactor that can attach and grow.
It is desirable to employ particular and selected fibrous; for example, wire, motionless mixing elements within a bioreactor for enhanced cell growth, to enhance surface area for cell attachment, typically, for cells of less than 10 microns in size; for example, mammalian cells. For example, wire gauze has been used to manufacture-commercial distillation packing, such as the Koch-Sulzer EX and BX structured packing. The surface area for such wire gauze-type distillation packing is based upon the surface area of a sheet. The sheet surface area is used in the Koch-Sulzer gauze packing publications and design calculations. The sheet surface area is used, because the small amount of liquid introduced into the gauze-type packing in distillation operations, which is the typical use, creates a liquid film, due to capillary action on the closely woven, wire gauze surface, and the exposed liquid surface area for mass transfer is, therefore, that of a sheet of liquid.
However, the geometric surface area of such wire gauze packing is much higher than the published sheet surface area. For example, the calculated ratios of the wire surface area to the geometric surface area, as of a sheet, for the various metal gauzes employed as the Koch-Sulzer motionless mixing elements, are as follows: For standard BX and CY metal gauze elements--1.68; for BX gauze type 83--1.53; and for EX gauze type--1.59. The term B designates about a 1/4th-inch (6-millimeter) corrugation crimp height, C designates about a 1/8th-inch (3-millimeter) crimp height, Y designates a corrugation angle of 45 degrees, and X designates a corrugation angle of 30 degrees. It should be noted that the relative surface-area ratio is specific for the type of fiber or gauze employed and is independent of the geometry of the motionless mixing elements. In the attachment of cells to a motionless mixing element surface, to enhance cultivation and propagation of the cells, it is desirable, in the bioreactor and cell-propagation method, to achieve the higher surface area per unit volume. The higher the surface area per unit volume, the greater the number of cells that can be attached to the motionless mixing element surface.
As illustrated, based on the foregoing calculations, it is apparent that the maximum geometric surface area depends on gauze mesh size, as well as wire size, and those titanium gauze samples, having 1.225 and 2.141, as well as marginally 1.036, would be the selected gauze samples for use as a motionless mixing element in a bioreactor.
U.S. Pat. No. 3,785,620, describing metal-weave SMV packing for cocurrent (mixing) and countercurrent (distillation) applications, is referred to in the above-noted U.S. Pat. No. 4,296,204; however, there is no suggestion of use or selection of particular geometric surface areas in a bioreactor. U.S. Pat. No. 3,785,620 describes commercial motionless mixing elements, where a small quantity of liquid is introduced on top of the packing, and the small spaces between the wire gauze cause capillary action of the liquid. This allows the small quantity of liquid to wet the gauze packing in countercurrent distillation operations, which maximizes liquid surface area for mass transfer. The spaces between the wire gauze and the wire, itself, become coated with a continuous sheet of liquid. To contrast the operation of the gauze packing, if the same quantity of liquid was poured on top of an identical design made of sheet metal, the liquid would flow straight down the sheet and not spread out, because capillary action is not present in a prior used sheet-metal design.
The porous, fibrous sheet material, suitable for use in the motionless mixing elements of the invention, are those fibrous sheet materials which are porous, such as metal wire in tightly or closely woven gauze or knitted in corrugated form, which are sufficient to retain or approach plug flow required for motionless mixing, and to be characterized by good radial mixing properties. The fibers, such as the wire of a woven gauze sheet material, should be selected of sufficient dimensions and weave, to provide for a maximum, exposed, geometric surface area, to provide a maximum surface for the attachment of the cells. Generally, in the selection of a fiber size, the minimum fiber or wire size should be approximately 3,000ths of an inch, so as to provide a relatively flat surface area on the fiber surface for the attachment of the cells, which cells are typically less than 10 microns; for example, about 1 micron.
The porous fibrous sheet material typically has a geometric surface area for the cell propagation attachment of about 425M2 /M3 or more.
The porous, fibrous sheet material employed as the motionless mixing element may comprise a woven or nonwoven material, and may be placed in a woven-weave form or a knitted form, and typically composed of corrugated sheets, and with a plurality of sheets disposed at an angle to each other, and generally of a corrugation height not greater than 1/2 inch (12.7 mm), typically 1/16th to 1/4th of an inch (1.6 to 6.4 mm), to provide maximum surface area per unit volume. The fibers may be composed of any type of material which permits the attachment and acceptance of the cells to be cultivated and propagated, and may, for example, be composed of plastic fibers, such as nylon or other inert-type polymeric materials, such as porous, nonwoven fibrous sheets, or metal fibers, such as titanium, stainless steel, hastalloy, or coated metal fibers, such as stainless-steel titanium-coated metal fibers, or other metal fibers or wires coated with an inert metal, such as titanium, or glass fibers, such as borosilicate glass fibers, which may be in woven or nonwoven form. In one preferred embodiment, the porous, fibrous sheet material would comprise a woven or knitted, metal-wire, porous-type, corrugated sheet material composed of titanium or titanium-coated wires.
The method and the bioreactor of the invention may be employed in a variety of cell-propagation methods and techniques, such as those described and illustrated, for example, in the 1990 publication, by substituting the sheet-metal-type motionless mixing element for a porous, fibrous sheet material of selected dimensions, so that the geometric surface area would exceed that of the sheet material. It is recognized that not all wire-gauze-type sheet materials may be suitably employed, but only those selected to have a greater geometric surface area; otherwise, there would be no significant advantage over employing the porous, fibrous sheet material in a motionless mixing element over the typical sheet materials, such as the SMV motionless mixing elements described in U.S. Pat. Nos. 3,871,624 and 3,918,688, as suitable for use in cell propagation, and which patents describe motionless mixing elements made of offset, stacked, corrugated sheet metal.
The invention will be described for the purposes of illustration only, in connection with the illustrated embodiments; however, it is recognized that those persons skilled in the art may make various modifications, changes, additions and improvements to the illustrated embodiments, without departing from the spirit and scope of the invention.
DESCRIPTION OF THE EMBODIMENTS
It has been found surprisingly that, if the SMV mixing element, as used in the publication, supra, is manufactured from wire gauze, instead of sheet metal, the metal surface area for attachment and growth of small mammalian cells (less than 10 microns in size) is much larger than an SMV mixing element made of sheet metal in many instances. For example, the below-noted table, with examples of different, commercial, wire-gauze sizes, shows the calculated geometric surface area of a gauze made of thin wire, as compared to that of sheet metal of the same dimensions:
______________________________________                                    
           Wire              Calculated Wire Gauze                        
Gauze Mesh Size                                                           
           Size              Geometric Surface Area                       
(Wires per inch)                                                          
           (inches) Material to that of Sheet Metal                       
______________________________________                                    
 40 × 200                                                           
            0.0055  Titanium 2.072                                        
150 × 150                                                           
            0.0026  Stainless                                             
                             1.225                                        
100 × 100                                                           
           0.002    Titanium 0.628                                        
50 × 50                                                             
           0.004    Titanium 0.628                                        
 14 × 110                                                           
           0.011    Titanium 2.141                                        
30 × 30                                                             
           0.011    Titanium 1.036                                        
18 × 18                                                             
           0.011    Titanium 0.621                                        
______________________________________                                    
As can be seen in the column to the right, for the above-noted, commercially available wire gauzes, the geometric surface area of a few of the wire gauzes is larger than that of a piece of sheet metal of the same size; that is, having a surface-area multiplier greater than 1. Thus, a titanium, metal-wire, gauze motionless mixing element, having a ratio greater than 1.0; for example, 2.0 or more, should be employed, to prepare the SMV motionless mixing element, and used in a bioreactor and in those cell-growth examples of the publication.
For example, the geometric surface area of a 1-inch-long by 1-inch-wide sheet of the above noted 40×200 wire gauze can be calculated as follows:
______________________________________                                    
[(0.0055) × (3.14) × (1") × (40)]                       
Surface area of 0.0055"-diameter                                          
wire × 3.14 (circle surface area) ×                           
1"-long strip of wire × 40 wires                                    
[(0.0055) × (3.14) × (1") × (200)]                      
Surface area of 0.0055"-diameter                                          
wire × 3.14 (circle surface area) ×                           
1"-long strip of wire × 200 wires                                   
=                                                                         
0.69 square inches + 3.454 square inches = 4.144 square                   
inches.                                                                   
______________________________________                                    
For a piece of sheet metal which is 1-inch long by 1-inch wide, the surface area is calculated as follows:
[(1")×(1")]×2=2 square inches
Surface area of sheet is 1 inch multiplied by 1 inch multiplied by 2, because there are two sides to a sheet capable of cells to grow on.
The 40×200 wire-gauze surface area to sheet-metal surface-area multiple is therefore:
______________________________________                                    
4.144 gauze surface area (above) =                                        
2.000 sheet surface area (above) =                                        
2.072 gauze surface-area multiplier compared to sheet                     
metal.                                                                    
______________________________________                                    
This means that, if a Koch-Sulzer DY motionless mixing element (1/16" crimp height, 45-degree angle) made of sheet metal that typically contains 1,700M2 /M3 of surface area is manufactured instead, using the 40×200 wire gauze mentioned above, with a 2.072 surface-area multiplier, the bioreactor user will realize a surface area for cell growth of greater than 3000; for example, 3,440M2 /M3.

Claims (16)

What is claimed is:
1. In a method for culturing and growing of cells, which method comprises:
a) providing a bioreactor containing therein at least one motionless mixing element, the element composed of adjacent sheets of solid or perforated corrugated lamellas, with corrugations of adjacent sheets oriented in different directions and angularly offset from each other to form a plurality of passageways to provide plug flow and radial mixing of components within the motionless mixing element and to provide a geometric solid surface area for the attachment of cells;
b) attaching cells to be cultivated and propagated to the surface area of the motionless mixing element disposed within the bioreactor, and
c) applying nutrients to the bioreactor and maintaining the attached cells under conditions which permit cell growth and division, to provide for the propagation of the attached cells, and harvesting the cells, the improvement which comprises:
employing as said sheets of said motionless mixing element a woven, porous, fibrous sheet material providing a woven geometric surface area, the woven, porous, fibrous sheet material of selected dimensions, including fiber diameter height and gauze/weave thickness, to provide for the attachment of the cells to the woven geometric surface area of the said motionless mixing element including said woven, porous, fibrous sheet material, with the ratio of the woven geometric surface area to that of said geometric solid surface area of the same motionless mixing element composed of said sheets of solid or perforated corrugated lamellas being greater than 1.0, thereby providing for a greater surface area per unit volume of cells, and permitting enhancement in the amount of cells that are attached to the said motionless mixing element geometric surface area.
2. The method of claim 1 wherein the woven, porous, fibrous sheet material has a fiber diameter of greater than about 1/3000th of an inch in diameter.
3. The method of claim 1 wherein the woven, porous, fibrous sheet material comprises a crimped or knitted sheet material.
4. The method of claim 1 wherein the woven, porous, fibrous sheet material comprises a metal-wire sheet material.
5. The method of claim 1 wherein the woven, porous, fibrous sheet material is composed of fibers selected from the group consisting of: glass, polymer and metal.
6. The method of claim 1 wherein the cells to be propagated in the bioreactor are less than about 10 microns in size.
7. The method of claim 1 wherein the woven, porous, fibrous sheet material comprises a corrugated sheet material having corrugations with a height of about 1/16th to 1/2inch.
8. The method of claim 1 wherein the woven, porous, fibrous sheet material has a geometric surface area per unit volume of cells of about 425M2 /M3 or more.
9. The method of claim 1 wherein the said ratio is greater than about 1.5.
10. The method of claim 1 wherein the cells are cells for the production of viral vaccines.
11. The method of claim 12 wherein the cells are anchorage-dependent mammalian cells.
12. The method of claim 1 wherein the motionless mixing element has the lamellas angularly offset to adjacent lamellas up to an angle of 90 degrees.
13. The method of claim 1 wherein the woven, porous, fibrous sheet material comprises metal wire of stainless steel or titanium.
14. The method of claim 1 wherein the woven, porous, fibrous sheet material has a geometric surface area with a per unit volume of cells of more than 3,000M2 /M3.
15. In a method for the culturing and growing of cells, which method comprises:
a) providing a bioreactor containing therein at least one motionless mixing element, the element composed of adjacent sheets of solid or perforated corrugated lamellas, with corrugations of adjacent sheets oriented in different directions and angularly offset from each other to form a plurality of passageways to provide plug flow and radial mixing of at least two components within the motionless mixing element and to provide a solid geometric surface area for the attachment of cells;
b) attaching cells to be cultivated and propagated to the surface area of the motionless mixing element disposed within the bioreactor;
c) applying nutrients to the bioreactor and maintaining the attached cells under conditions which permit cell growth and division, to provide for the propagation of the attached cells, and harvesting the cells, the improvement which comprises:
employing as said sheets of said motionless mixing element a woven, porous, fibrous sheet material providing a woven geometric surface area, the woven, porous, fibrous sheet material of selected dimensions, including fiber diameter and gauze/weave thickness, to provide for the attachment of the cells to the woven geometric surface area of the said motionless mixing element including said woven, porous, fibrous sheet material, with the ratio of the woven geometric surface area to that of said solid geometric surface area of the same motionless mixing element composed of said sheets of solid or perforated corrugated lamella being greater than 1.5, thereby providing for a greater surface area per unit volume of cells, and permitting enhancement in the amount of cells that are attached to the said motionless mixing element geometric surface area;
d) the woven, porous, fibrous sheet material comprising a corrugated woven metal wire sheet material having corrugations with a height of about 1/16th to 1/2inch;
e) the motionless mixing element having the lamellas angularly offset to adjacent lamellas up to an angle of 90 degrees; and
f) the cells to be propagated in the bioreactor being less than about 10 microns in size.
16. A bioreactor for the culturing and growing of anchorage-dependent cells therein, and which bioreactor comprises:
a) a housing;
b) a motionless mixing element within the housing composed of woven, porous, fibrous, wire metal sheet material having a geometric surface area, the woven, porous, fibrous, wire metal sheet material of selected dimensions, including fiber diameter and gauze/weave thickness, to provide attachment of the cells to the said geometric surface area of the said motionless mixing element including said woven, porous, fibrous, wire metal sheet material, with the ratio of the said geometric surface area to that of a surface area of the same motionless mixing element composed of a solid, or perforated, sheet material being greater than 1.5, and to provide for a woven geometric surface area with a per unit volume of cells greater than 425M2 /M3 thereby providing for a greater surface area per unit volume of cells, and permitting enhancement in the amount of cells that are attached to the said geometric surface area, to provide a plurality of channels therein which converge and diverge to form a plurality of mixing cells, each cell formed and bound by the junction of two inlet channels which converge toward each other at about right angles on one plane, and two outlet channels which diverge from each other at about right angles on another plane, the planes being rotated generally with respect to each other;
c) cells attached to the motionless mixing element for propagation for the cells;
d) a nutrient composition to permit the cell growth and division of the attached cells; and
e) means to harvest the cells from the bioreactor after propagation.
US08/114,462 1992-03-23 1993-08-31 Bioreactor method of culturing and propagating cells with a woven motionless mixing element Expired - Fee Related US5476783A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/114,462 US5476783A (en) 1992-03-23 1993-08-31 Bioreactor method of culturing and propagating cells with a woven motionless mixing element
US08/455,843 US5565361A (en) 1992-03-23 1995-05-31 Bioreactor for culturing and propagating cells with a woven motionless mixing element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85553292A 1992-03-23 1992-03-23
US08/114,462 US5476783A (en) 1992-03-23 1993-08-31 Bioreactor method of culturing and propagating cells with a woven motionless mixing element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US85553292A Continuation 1992-03-23 1992-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/455,843 Continuation US5565361A (en) 1992-03-23 1995-05-31 Bioreactor for culturing and propagating cells with a woven motionless mixing element

Publications (1)

Publication Number Publication Date
US5476783A true US5476783A (en) 1995-12-19

Family

ID=25321495

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/114,462 Expired - Fee Related US5476783A (en) 1992-03-23 1993-08-31 Bioreactor method of culturing and propagating cells with a woven motionless mixing element
US08/455,843 Expired - Fee Related US5565361A (en) 1992-03-23 1995-05-31 Bioreactor for culturing and propagating cells with a woven motionless mixing element

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/455,843 Expired - Fee Related US5565361A (en) 1992-03-23 1995-05-31 Bioreactor for culturing and propagating cells with a woven motionless mixing element

Country Status (1)

Country Link
US (2) US5476783A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565361A (en) * 1992-03-23 1996-10-15 Koch Engineering Company, Inc. Bioreactor for culturing and propagating cells with a woven motionless mixing element
US6534022B1 (en) 1999-10-15 2003-03-18 Abb Lummus Global, Inc. Conversion of nitrogen oxides in the presence of a catalyst supported on a mesh-like structure
US6667017B2 (en) 1999-10-15 2003-12-23 Abb Lummus Global, Inc. Process for removing environmentally harmful compounds
US7326564B2 (en) 2001-02-20 2008-02-05 St. Jude Medical, Inc. Flow system for medical device evaluation and production
CN101486966B (en) * 2008-09-12 2012-12-26 广州齐志生物工程设备有限公司 Bioreactor and method for animal cell adherent culture
US9057044B2 (en) 2006-08-30 2015-06-16 Meir Israelowitz Laminar flow reactor
US11043823B2 (en) * 2017-04-06 2021-06-22 Tesla, Inc. System and method for facilitating conditioning and testing of rechargeable battery cells
US11434461B2 (en) * 2018-03-20 2022-09-06 Keck Graduate Institute Of Applied Life Sciences Airlift perfusion bioreactor for the culture of cells

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001642A (en) * 1998-06-29 1999-12-14 Wyle Laboratories, Inc. Life Sciences Bioreactor and cell culturing processes using the bioreactor
US6734157B2 (en) 1999-12-28 2004-05-11 Kimberly-Clark Worldwide, Inc. Controlled release anti-microbial hard surface wiper
AU774993B2 (en) 1999-12-28 2004-07-15 Kimberly-Clark Worldwide, Inc. Use-dependent indicator system for absorbent articles
WO2008104588A1 (en) * 2007-02-28 2008-09-04 Cinvention Ag High surface cultivation system
US20080206862A1 (en) * 2007-02-28 2008-08-28 Cinvention Ag High surface cultivation system bag
EP3504315A4 (en) 2016-08-27 2020-04-15 3D Biotek, LLC Bioreactor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785620A (en) * 1971-04-29 1974-01-15 Sulzer Ag Mixing apparatus and method
US3918688A (en) * 1973-04-18 1975-11-11 Sulzer Ag Static mixing device
US4296204A (en) * 1978-01-25 1981-10-20 Merck & Co., Inc. Use of motionless mixer as cell culture propagator
GB2178447A (en) * 1985-06-18 1987-02-11 Yeda Res & Dev A matrix for cell cultivation in vitro
US4902418A (en) * 1985-11-22 1990-02-20 Sulzer Brothers Limited Element having a porous wall
JPH0328498A (en) * 1989-06-26 1991-02-06 Ishikawajima Constr Materials Co Ltd Cylindrical wall body for lining for excavated hole
CH678632A5 (en) * 1990-07-16 1991-10-15 Sulzer Ag Bio-reactor for catalysed reactions - comprises biological catalyst inside hollow semi-permeable plates in reaction vessel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476783A (en) * 1992-03-23 1995-12-19 Koch Engineering Company, Inc. Bioreactor method of culturing and propagating cells with a woven motionless mixing element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3785620A (en) * 1971-04-29 1974-01-15 Sulzer Ag Mixing apparatus and method
US3871624A (en) * 1971-04-29 1975-03-18 Sulzer Ag Mixing apparatus and method
US3918688A (en) * 1973-04-18 1975-11-11 Sulzer Ag Static mixing device
US4296204A (en) * 1978-01-25 1981-10-20 Merck & Co., Inc. Use of motionless mixer as cell culture propagator
GB2178447A (en) * 1985-06-18 1987-02-11 Yeda Res & Dev A matrix for cell cultivation in vitro
US4902418A (en) * 1985-11-22 1990-02-20 Sulzer Brothers Limited Element having a porous wall
JPH0328498A (en) * 1989-06-26 1991-02-06 Ishikawajima Constr Materials Co Ltd Cylindrical wall body for lining for excavated hole
CH678632A5 (en) * 1990-07-16 1991-10-15 Sulzer Ag Bio-reactor for catalysed reactions - comprises biological catalyst inside hollow semi-permeable plates in reaction vessel

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Paul, "Design and Scaleup of an Anchorage-Dependent Mammalian Cell Bioreactor", Annals New York Academy of Sciences, 589 (Biochem. Eng. 6), pp. 642-649, 1990.
Paul, Design and Scaleup of an Anchorage Dependent Mammalian Cell Bioreactor , Annals New York Academy of Sciences, 589 (Biochem. Eng. 6), pp. 642 649, 1990. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565361A (en) * 1992-03-23 1996-10-15 Koch Engineering Company, Inc. Bioreactor for culturing and propagating cells with a woven motionless mixing element
US6534022B1 (en) 1999-10-15 2003-03-18 Abb Lummus Global, Inc. Conversion of nitrogen oxides in the presence of a catalyst supported on a mesh-like structure
US20030180205A1 (en) * 1999-10-15 2003-09-25 Carlborg Joakim A. Conversion of nitrogen oxides in the presence of a catalyst supported on a mesh-like structure
US6667017B2 (en) 1999-10-15 2003-12-23 Abb Lummus Global, Inc. Process for removing environmentally harmful compounds
US6946107B2 (en) 1999-10-15 2005-09-20 Abb Lummus Global, Inc. Conversion of nitrogen oxides in the presence of a catalyst supported on a mesh-like structure
US7326564B2 (en) 2001-02-20 2008-02-05 St. Jude Medical, Inc. Flow system for medical device evaluation and production
US9057044B2 (en) 2006-08-30 2015-06-16 Meir Israelowitz Laminar flow reactor
CN101486966B (en) * 2008-09-12 2012-12-26 广州齐志生物工程设备有限公司 Bioreactor and method for animal cell adherent culture
US11043823B2 (en) * 2017-04-06 2021-06-22 Tesla, Inc. System and method for facilitating conditioning and testing of rechargeable battery cells
US11434461B2 (en) * 2018-03-20 2022-09-06 Keck Graduate Institute Of Applied Life Sciences Airlift perfusion bioreactor for the culture of cells

Also Published As

Publication number Publication date
US5565361A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
US5476783A (en) Bioreactor method of culturing and propagating cells with a woven motionless mixing element
US5290700A (en) Cell culture device
US4416993A (en) Apparatus with semi-permeable membrane, and method for cultivating micro-organisms
AU622921B2 (en) Cell culture apparatus
US6943008B1 (en) Bioreactor for cell culture
US4647539A (en) Method and apparatus for growing cells in vitro
US5416022A (en) Cell culture apparatus
JP2698308B2 (en) Microbial growth equipment
EP1326959B1 (en) Bio-reactor for the cultivation of micro-organisms and method for the production thereof
GB2178447A (en) A matrix for cell cultivation in vitro
EP0217848B1 (en) Reactor for cultivating biological material such as immobilised cells
US20040067585A1 (en) Cell cultivation surface and method of making the same
Margaritis et al. Novel bioreactor systems and their applications
US4242461A (en) Radial reactor for enzyme-catalyzed reactions
US5168058A (en) Cell culture carriers and method of use
CN2186755Y (en) Multipurpose culture plate
JPS63157978A (en) Method and apparatus for culturing animal cell
AU730424B2 (en) Apparatus to carry out photochemical and photocatalytic reactions and photoinduced processes
GB2075547A (en) Apparatus for cultivating micro organisms
US11198840B2 (en) Assembled bioreactor chamber suitable for perfusion culture
US4833081A (en) Bioreactor having cells in beads in a matrix
EP0267470A1 (en) Porous glass fiber mats for attachment of cells and biologically active substances
CN219489981U (en) Multilayer tissue inoculation culture dish
JP2701063B2 (en) Carrier for fixing filamentous fungi
CN213246189U (en) Planting rock wool

Legal Events

Date Code Title Description
CC Certificate of correction
AS Assignment

Owner name: KOCH-GLITSCH, INC., KANSAS

Free format text: CHANGE OF NAME;ASSIGNOR:KOCH ENGINEERING, INC.;REEL/FRAME:009662/0124

Effective date: 19980106

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: KGI, INC., KANSAS

Free format text: CHANGE OF NAME;ASSIGNOR:KOCH-GLITSCH, INC.;REEL/FRAME:013913/0700

Effective date: 20030104

AS Assignment

Owner name: KOCH-GLITSCH, LP, KANSAS

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:KOCH-GLITSCH, INC.;REEL/FRAME:013634/0820

Effective date: 20030505

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20031219

AS Assignment

Owner name: SULZER CHEMTECH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOCH-GLITSCH, LP;REEL/FRAME:015127/0291

Effective date: 20040315