US5474719A - Method for forming solid objects utilizing viscosity reducible compositions - Google Patents
Method for forming solid objects utilizing viscosity reducible compositions Download PDFInfo
- Publication number
- US5474719A US5474719A US07/655,681 US65568191A US5474719A US 5474719 A US5474719 A US 5474719A US 65568191 A US65568191 A US 65568191A US 5474719 A US5474719 A US 5474719A
- Authority
- US
- United States
- Prior art keywords
- composition
- viscosity
- layer
- coating
- dimensional object
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0037—Production of three-dimensional images
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/02—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
- B29C41/12—Spreading-out the material on a substrate, e.g. on the surface of a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/188—Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49013—Deposit layers, cured by scanning laser, stereo lithography SLA, prototyping
Definitions
- This invention relates to methods and apparatus for coating viscosity reducible compositions useful in the formation of solid objects by Solid Imaging means. More specifically, herein are disclosed methods and apparatus for coating heat liquefiable, pseudoplastic, plastic-flow, and/or thixotropic compositions in uniform thin layers thereby allowing the production of solid objects, with improved accuracy and speed, by Solid Imaging means.
- the apparatus is capable of generating, in photopolymer, simple three-dimensional objects from information stored in computer memory.
- a good review of the different methods is also given by a more recent publication, titled “A Review of 3D Solid Object Generation” by A. J. Herbert, Journal of Imaging Technology 15:186-190 (1989).
- the Hull U.S. Pat. No. 4,929,402 for example describes a dipping process where a platform is lowered either one layer thickness or is dipped below the distance of one layer in a vat then brought up to within one layer thickness of the surface of the photohardenable liquid.
- a platform is lowered either one layer thickness or is dipped below the distance of one layer in a vat then brought up to within one layer thickness of the surface of the photohardenable liquid.
- viscosity reducible compositions used in a Solid Imaging process entails that the composition must at some time be of relatively high viscosity during the practice of the invention described herein.
- other pertinent art such as Hull in U.S. Pat. Nos. 4,929,402 and 4,575,330, European Patent Applications EP 0 355 944 A2, WO 89/10254, WO 89/10255, WO 89/10249, and EP 0 354,637, teach away from the use of high viscosity compositions in the practice of Stereolithography.
- the DeSoto patents such as for example U.S. Pat. Nos.
- doctor blade is a higher shear application method (in comparison to allowing the composition to flow naturally over a surface) there is no indication that their disclosure coupled a high shear coating method and apparatus with an appropriate shear-thinning composition.
- sections which describe the movement of a doctor blade and the velocities of the liquid composition at a distance from the blade indicate that shear-thinning compositions are not anticipated.
- Japanese Patent Application Publications Kokai 61-114817 and 61-114818 (Morihara and Abe) from Fujutsu also indicate that higher viscosity compositions may be utilized with a doctor blade type apparatus, but make no mention of shear-thinning compositions and afford no indication of thickness of layers produced, amount of layer uniformity achieved, or the range of viscosity used and recommended.
- Japanese Patent Application Publications Kokai 61-114817 and 61-114818 (Morihara and Abe) from Fujutsu also describe apparatus wherein a predetermined amount of liquid photo-setting resin is deposited within a container through an elongated supply opening.
- the liquid is laid as a uniform coating within the container to form the layers, and in another case, the liquid is deposited in the container and smoothed out with a smoothing plate (doctor blade).
- a smoothing plate doctor blade
- 3-D Systems in their European Patent Application 0 361 847, also has higher vat walls to contain the composition.
- the composition is applied in excess by dipping the object surface below the composition surface level, however, the excess composition is not first added to the surface of the vat region and then removed by the doctor blade.
- Apparatus for the invention described herein allow for the deposition of excess photoformable composition which can be directly removed by the extrusion head supplying the composition, or a doctor blade spreading the composition, or by other means. This is possible since the coating and imaging is performed at the surface of the vat, not in a region contained by higher vat walls, and therefore the excess composition can be scraped from the vat surface, collected, and recycled for use during fabrication of the object.
- the thixotropic behavior of the Alcatel compositions ensures that the composition retains its placed position during this intermediate period.
- the composition is not applied pattern-wise and the thixotropic composition is being utilized to reduce distortions and to provide support to previously photoformed layers during coating.
- thermoplastic photoformable composition processes are U.S. Pat. Nos. 3,264,103 and 3,395,014, (Cohen and Webers) issued in 1966 and 1968 respectively.
- a thermoplastic photohardenable composition is applied, in thin layers as a solution, to a film and then allowed to dry.
- This coated film is then exposed with UV or visible light imagewise from the film side thereby cross-linking the exposed portions.
- a porous substrate such as for example a felt, is placed on the coating side and the materials are heated by various means causing the unexposed portions of the composition to soften while the exposed portions, with a higher melting temperature, do not soften.
- a viscosity reducible photoformable composition such as, for example, a heat liquefiable, pseudoplastic, plastic, or a thixotropic photoformable composition in combination with coating techniques designed to take advantage of the flow characteristics of these compositions.
- a viscosity reducible composition is a composition that is capable of becoming reduced in viscosity if heated, if a shear stress is applied, or if a combination of heat and shear stress is applied to the composition.
- a viscosity reduced composition should be understood as being presently reduced in viscosity by having been raised in temperature by heat, having had shear stresses recently applied, or having had both recent shear stresses and heat applied.
- a viscosity reduced composition becomes a viscosity reducible composition by cooling and/or by reducing the rate of applied shear.
- Heat liquefiable compositions used in Solid Imaging are compositions that are relatively high viscosity or solid during the imaging steps, but that can be coated in thin layers as a lower viscosity composition if heated during the coating step.
- the term "liquefiable" should be distinguished from something that is melted, since melting may infer that all components of the composition have been rendered liquid.
- a liquefied composition may have some components that are still, for example solid or crystalline, but which components are made fluid by other components in the composition that have been melted by heating.
- high viscosity should be understood to mean a liquid, a semi-solid, a gel, or a solid composition which exhibits either a yield value of 10 dynes/cm 2 or greater as a shear stress is applied, or which exhibits a viscosity of 7000 centipoise or greater at a very low shear rate of ⁇ 0.3/sec, assuming that testing occurs after an adequate no-shear-stress holding period in order to eliminate thixotropic effects, and that the composition is in a viscosity reducible state.
- Pseudoplastic compositions exhibit shear-thinning properties of flow, that is, if a portion of the composition medium is caused to move or flow, an interface region, between the moving portion and the remainder of the medium, decreases in apparent viscosity.
- the apparent viscosity decreases as a function of increasing shear rate. This lowering in apparent viscosity in this interfacial region, while the remainder of the medium retains substantially the same apparent higher viscosity, helps to ensure that the composition flow occurs primarily at the interface region, or slip zone, and that the flow is quickly damped in the remainder of the medium.
- plastic flow Bingham body compositions there is a decrease in viscosity in the interfacial region after a certain yield stress has been overcome.
- apparent viscosity will again increase immediately (assuming no substantial thermal increases have occurred due to work performed at this interface) once the shear rate is reduced.
- the composition will be termed thixotropic.
- Pseudoplastic, plastic, and thixotropic types of flows are differentiated from Newtonian flows in that, with a Newtonian flow, a shear applied to one portion of the medium usually creates some motion in regions somewhat distant from the shear interface region. Also, for Newtonian flow materials, viscosity is independent from shear.
- the layers of heat liquefiable (but cooled and therefore high viscosity or solid) composition and photoformed layers are removed form the platform substantially as a single mass.
- This mass is placed in an oven, for example, and heated in order to lower the viscosity of the heat liquefiable unexposed composition layers and in some cases in order to complete the photoformation of the exposed layers of the object.
- the heat liquefiable composition has lower viscosity it is more easily removed from the solid object that was photoformed.
- shear-thinning non-Newtonian compositions typically exhibit a greater reduction in interfacial apparent viscosity at greater shear rates
- apparatus that applies the shear quickly as a part of the coating process not only speeds the Solid Imaging process but also provides improved coating uniformity.
- the use of such coating speeds with an apparatus that coats a Newtonian composition would result in undesirable hydrodynamic effects and decreased coating uniformity. Therefore, herein are described novel methods and apparatus for applying such shear-thinning non-Newtonian compositions in thin layers quickly.
- FIG. 1 depicts the overall schematic of a preferred embodiment of the invention.
- FIG. 2A shows a more detailed view of a preferred coating device useful in applying viscosity reducible photoformable compositions in a Solid Imaging application.
- FIG. 2B shows further detail of the coating apparatus of FIG. 2A showing a preferred means of supplying excess applied composition prior to coating and a means of recycling excess composition subsequent to the coating operation.
- FIG. 3 shows a more preferred coating station in which excess applied composition is extruded, smoothed and recovered.
- FIG. 4 depicts a coating station that may prove useful in coating viscosity reducible solid or semi-solid compositions in a Solid Imaging operation.
- FIG. 5 exhibits a coating station in which excess applied viscosity reducible composition is removed utilizing a high shear rate apparatus in order to create a uniform coating during the Solid Imaging process.
- FIG. 6 depicts an alternative apparatus for building up layers of a viscosity reducible composition during the Solid Imaging process.
- the coating steps in a Solid Imaging process typically are a major contributor of loss of accuracy or tolerance in the solid objects being formed.
- the thickness and the uniformity of thickness of layers utilized in the making of solid objects by Solid Imaging means often defines the minimum tolerance that can be achieved in the final object.
- deflections and motions of substantially unsupported portions of object layers during construction often lead to gross inaccuracies in the solid object produced.
- This disclosure of viscosity reducible compositions utilized in conjunction with methods and apparatus for coating these compositions in a Solid Imaging process provides a means of producing accurate solid objects quickly.
- the Summary of Invention describes three types of shear-thinning non-Newtonian compositions that may prove useful in the Solid Imaging process.
- the first type mentioned is a pseudoplastic composition.
- pseudoplastic liquids are molten polyethylene and polypropylene, solutions of carboxymethylcellulose (CMC) in water, polyacrylamide in water and glycerin, and aluminum laurate in decalin and m-cresol.
- CMC carboxymethylcellulose
- Some paints, greases and pastes are examples of plastic flow type mixtures.
- Peanut butter is often used as an example of a material with with plastic flow or semi-solid characteristics.
- thixotropic materials or materials that show pseudoplastic or plastic flow behaviors which change with duration of shear and typically recover their viscosity after a period of time when shear is reduced or no longer present
- materials such as mayonnaise, drilling muds, some paints, and inks.
- a solid will have a yield value of greater than 10 4 dynes/cm 2 and a low-shear rate viscosity of greater than 10 4 poise.
- a semi-solid will have a yield value of greater than 10 3 dynes/cm 2 and a low-shear rate viscosity of greater than 10 3 poise.
- a gel will have a yield value of greater than 100 dynes/cm 2 and a low-shear rate viscosity of greater than 0.1 poise. It should be assumed that these values are for standard conditions.
- the Solid Imaging process involves the positioning of a translatable platform in a vat of photoformable composition such that a thin layer of composition, typically on the order of from 0.001" to 0.03" thick, covers the surface of the platform.
- a thin layer of composition typically on the order of from 0.001" to 0.03" thick
- the surface of the photoformable composition covering the platform is substantially co-planar with the surrounding surface of the composition in the vat.
- photoformable composition(s), or simply composition(s) refers to deformable compositions that harden or increase in viscosity upon exposure to specific radiation to which it has been sensitized.
- the term deformable refers to the initial state of the composition prior to exposure, that state being, for example, a liquid, a gel, a semi-solid, a solid, a paste, etc.
- the shape of the material can be substantially modified by, for example, gravitational forces, applied pressure, applied shear stress, applied heat, or a combination of these.
- a photoformed layer or part is created by, for example, solidifying, increasing the viscosity, or sintering the photoformable composition by exposure to radiation.
- surface tension effects are usually relied upon to provide a uniformly flat coating on the platform. In cases where just surface tension is relied upon for flattening of the layer, low viscosity liquid photoformable composition liquids are preferred since the time for these liquids to flatten is much shorter than the flattening time for higher viscosity liquids.
- the thin composition layer on the platform may be subjected to imagewise radiation by various means, such as for example, exposure with radiation through or reflected from a photomask, or direct write exposure with a scanning focused radiation beam.
- This imagewise radiation causes the photoformable composition to photoform, i.e., to gel, stiffen, harden, cross-link in the regions exposed.
- the platform, to which the photoformed layer substantially adheres moves at least one layer further into the vat and a new layer of photoformable composition is caused to cover the previous photoformed layer and the previous photoformable composition that was not exposed.
- Another imagewise exposure occurs that typically provides enough exposure to imagewise photoform the new composition layer and to allow this photoformed layer to adhere to the previous layer in regions where the new photoformed layer and the previous photoformed layer have common coordinate positions in the image plane.
- This process of moving the platform down at least one layer thickness, causing a photoformable composition layer to cover the previous layer, and creating an imagewise exposure is continued until all layers necessary for representing the solid object are completed. Then the platform and formed object are raised and the formed object is removed from the platform, drained, cleaned, and post-processed as required.
- the platform and the previously formed layers are dipped below the surface of the composition in the vat deeper than one layer thickness in order to expedite the flow of the composition over the previously photoformed layer surface, and then the platform and layers are raised till the upper surface of the previous layer is within one layers thickness of the nominal composition layer.
- the liquid composition will have a certain molecular polarity and the photoformed object will have a somewhat different molecular polarity. This difference in polarity introduces the potential for a liquid contact angle to be formed.
- the photoformable composition tends to bead up, thicker than desired, on the upper surface of the previously formed layer rather than draining off the surface until the draining composition levels in a plane with the rest of the composition in the vat.
- Viscosity reducible compositions and apparatus for applying such compositions as described herein do not solely rely on self-flattening effects to obtain coating uniformity, and such compositions are also less sensitive to surface tension forces that may arise and decrease the coating uniformity.
- Some Solid Imaging processes have resorted to the use of a doctor blade which is drawn across the surface of the composition in order to spread the thin layers of composition uniformly.
- a doctor blade which is drawn across the surface of the composition in order to spread the thin layers of composition uniformly.
- Such a coating means may improve the coating uniformity and speed, however some surface tension defects in the coating still arise.
- the doctor blade introduces significant hydrodynamic defects in the coating uniformity.
- Single layer doctor blade applied coatings can be extremely uniform if the substrate being coated is uniformly supported and if the substrate itself is uniformly smooth.
- both solid and liquid regions are being coated, so essentially the layer of composition being coated is applied to a non-uniform substrate, i.e., the previously photoformed region and the surrounding liquid composition.
- the process may be viewed as a liquid, with a head pressure on the advance side of the blade, i.e., ahead of the blade which is moving in a direction, which passes through an orifice defined by the edge of the blade and the substrate. If the substrate is uniformly supported and smooth, the orifice remains constant.
- the orifice is sometimes defined by the distance between the blade and the previously photoformed layer, and at other times the orifice is loosely defined by a viscous flow resistance of unexposed composition with a depth under the blade. It is clear that with different types of flow constraints under the blade, the coating applied will necessarily be non-uniform. However, the use of viscosity reducible compositions with doctor-blade coating apparatus will lessen the difference between the orifice over photoformed regions and the orifice over the unexposed viscosity reducible composition, and therefore an improvement in coating uniformity can be expected. This is true with shear-thinning compositions especially if the doctor blade speed of application is quick, where the rate of application creates a greater decrease in viscosity in the slip zone of coating.
- hydrodynamic effects reduce the uniformity of the coating of Newtonian compositions in Solid Imaging processes. For example, consider a doctor blade moving across the surface of a photoformable composition in which a series of photoformed layers and a platform are positioned in readiness for formation of a solid object by Solid Imaging means. Initially, the blade is in contact with the uppermost surface of the composition, positioned typically in a region not directly above the platform. As the blade begins to move linearly, it applies a shear force to the surface of the composition thereby causing the composition surface to move with a velocity and direction substantially the same as the doctor blade.
- compositions flows around the object and some of the composition creates a wave, with head pressure above the normal surface of the composition, which rises behind the blade, and creates a mound of excess composition on top of the previous layer of the object under formation.
- This wave mound is distinctive for doctor blade coated Solid Imaged objects and usually becomes more prevalent with objects that present high "walls" and have substantially large surface areas in the imaging cross-section.
- a suitable viscosity reducible composition is utilized with a doctor blade coating apparatus, the velocity of the composition at a short distance away from the doctor blade quickly approaches zero. Therefore, a substantial momentum of composition flow is not built up during doctor blade coating motion, and when the blade passes above the previously photoformed layer, a pressure wave is not formed and the coating applied over the previously photoformed layer is substantially flatter.
- a related coating defect that occurs with doctor blading of a Newtonian composition is that of distortion of substantially unsupported layers.
- Substantially unsupported layers should be taken to mean, in this disclosure, that a portion of a layer of a given thickness is attached to a previous layer in some locations but overhangs, whether as a cantilever or a beam span, the previous layer by an overhang length dimension greater than the layer thickness dimension.
- the only support means of this overhang is the inherent support of the overhang due to its inherent stiffness and attachment means to the previous layer, and any support the composition, beneath the cantilever or beam span, may impart.
- the blade produces a head pressure in the composition in advance of the blade and the blade induces a wave and pressure head in the composition against a "wall" behind the blade
- the cantilevered overhang will first be pushed down by the head pressure of the composition before the doctor blade, and then, when the wave pressure hits the layer from below, the layer will be pushed up behind the blade.
- all permutations of distortion in the overhang may occur should the blade be moved at fast or slow speeds, or should the overhang be coated from various blade directions of motion.
- the composition beneath the cantilevered overhang is essentially supported by a medium of relatively high apparent viscosity or by a solid medium, and therefore deflects less as the head pressure in advance of the blade motion passes over it. And, since there is essentially little or no pressure wave behind the blade, the overhang is not forced up behind the blade as the blade passes. Therefore, in the case of layers with an overhang, it is preferred to utilize a viscosity reducible composition to minimize overhang deflection.
- thermoplastic compositions While it is more preferable to use a heat liquefiable and shear-thinning composition that when cooled forms a solid or semi-solid, just pseudoplastic compositions are also advantageous, and plastic flow compositions are preferred over pseudoplastic compositions since the head pressure in advance of the blade must overcome the yield stress of the composition below the overhang in order to create a deflection of the overhang. Also preferred, however, are plastic flow compositions that are also thixotropic. Such compositions have the advantage of not only being shear-thinning with a yield, but the residual low viscosity behavior characteristic allows for some degree of self-levelling or bubble escape even after relatively high shear rates are no longer directly affecting the applied composition layer.
- photoformable compositions are comprised of materials that may not mix perfectly when placed in solution or in a dispersion. These different materials may tend to destabilize and come out of solution or dispersion over a period of time. Higher viscosity compositions will generally take longer to lose stability of the mixture. However, higher viscosity liquids are also more difficult to coat in thin layers. Viscosity reducible compositions provide the advantages of both needs; greater stability of the mix during most periods, while providing low apparent viscosity during coating in thin layers.
- shear-thinning non-Newtonian compositions for use in Solid Imaging is that for the most part, as the shear rate increases, the viscosity decreases. For most Solid Imaging coating applications therefore, shear rate increases translate to faster coating times in addition to improved coating uniformity. For example, assume that an object is being manufactured by Solid Imaging means, and surrounding the object is the unexposed viscosity reducible composition. In preparation for formation of the next layer of the object, the object and the surrounding composition is displaced relative to a vat surface by approximately 0.01". Next, a viscosity reduced composition is deposited in excess quantities on the surface of the object and the surrounding viscosity reducible composition.
- the shear stresses and composition flow occurs in a slip zone less than the thickness of a layer.
- the shear rate is 1000/sec.
- a low shear rate will be, ⁇ 0.3/sec
- a moderate shear rate will be 0.3/sec to 1000/sec
- a high shear rate will be greater than 1000/sec.
- FIG. 1 A preferred embodiment of this invention is illustrated in FIG. 1.
- an imaging station means including a radiation source 100, a radiation beam 102 emanating from the radiation source 100, a modulator 104, a modulated beam 102', and a scanned beam 102".
- a scanning assembly 120 comprising a Y direction scan motor 128 with a Y direction scan mirror 122, and an X direction scan motor 126 with an X direction scan mirror 124.
- the modulated beam 102' reflects off the Y direction scan mirror 122 and the X direction scan mirror 124 thereby producing scanned beam 102".
- a coating station 140 shown in more detail in FIG. 2A, but in FIG.
- the station 140 is shown with a photoformable composition handling assembly 150 and 150', a doctor blade translation means 148, and a platform translation means 146 (shown as an arrow for simplicity).
- a means for providing heat is shown with an Q or Q' and an arrow pointing into the composition handling assembly 150 and 150'.
- a computer assembly 130 adaptable to generate and store CAD (computer aided design) data, slice said data into data sets representing specific thicknesses of cross-sections of a three dimensional object, and control the motion of scanning beam 102" by means of scan assembly 120 through scanner communication line 132.
- CAD computer aided design
- Radiation means 100 is preferably a laser, producing a radiation beam 102.
- Radiation means 100 is preferably a laser, producing a radiation beam 102.
- the apparatus of the instant invention preferably utilizes relatively high power radiation means 100, such as, for example, a high power laser, which may have major wavelengths in the visible, infrared, or ultraviolet regions. High power is considered to be a power greater than 20 mW, and preferably over 100 mW as measured from the intensity of radiation beam 102.
- radiation means may also be utilized such as, for example, electron beams, x-rays, radio waves such as, for example, microwaves, and the like, as long as their energy type is matched with the sensitivity of the photoformable composition, and the appropriate conditions for their handling are observed according to established ways, well known in the art.
- means may be provided to modify the shape of the beam cross-section, of a laser for example, to any desirable shape, the preferred ordinary shape is circular, and the profile of the intensity of the beam is substantially gaussian with a maximum at the center of the circular shape.
- the scan assembly 120 and the driving electronics, contained as a part of the computer assembly 130, which controls the pointing of the scan assembly 120 and also generates the signal 134 to drive the modulator 104 is manufactured by Greyhawk (Greyhawk Systems, Inc., 1557 Centre Point Drive, Milpitas, Calif. 95035).
- Greyhawk Greenhawk Systems, Inc., 1557 Centre Point Drive, Milpitas, Calif. 95035
- the type of scanning is vector scanning.
- the rotation of the mirrors 122 and 124 varies from an angular velocity of zero to a maximum angular velocity. This causes the velocity of the scanned beam 102" at the surface of the composition within the coating assembly 140 to vary from a velocity of zero to a maximum velocity.
- the Greyhawk scanner creates a signal which is modified to pulse the modulator 104 such that a proportioned time length of pulse is given for a given distance the beam 102" has traveled in the image plane. Since the pulse generated causes the modulator 104 to allow a pulse of radiation beam 102 to pass, the result is a substantially uniform amount of exposure when scanning the composition in the image plane. This uniform amount of exposure ensures a uniform depth of photoformation in the composition and therefore improved object tolerances.
- the radiation beam 102, modulated beam 102' and scanned beam 102" are shaped and focused by optics (not shown) to ensure efficient operation of the modulator 104, and high resolution capability exposure at the composition surface.
- the presently preferred radiation source 100 is a Coherent Model 306, with output in wavelengths ranging over 351 nm to 363 nm and a specified output beam 102 power of approximately 450 mW.
- the presently preferred modulator 104 is an acousto-optic modulator and driver Model ME-75T and AOM-70U respectively, produced by IntraAction Corp., Bellwood, Ill. Coupled with the Greyhawk scanner electronics, is a digital computer capable of communicating with the other parts of the system and capable of outputting HPGL or CalComp files to the Greyhawk electronics.
- FIG. 2A exhibits an enlarged view of the coater assembly 240 shown in FIG. 1 as coater assembly 140, both of which are shown during the viscosity reducible (by heating and/or induced shear) composition coating step.
- the coater assembly 240 in FIG. 2A comprises a vat 249 which in this case is also a cylinder (in the sense of a chamber where a piston moves, and not necessarily cylindrical in shape) in which a movable platform 244 (acting as a piston) moves slidably, being moved by, for example, a drive screw 245 and platform translation means 246, which is fixed to vat 249.
- platforms translation and drive means may prove useful, such as for example, hydraulic drives, piezoelectric linear drives and the like well known in the art.
- the platform 244 supports both the photoformed object 243 and the photoformable composition 242. Shown is a relatively unsupported layer 243' which obtains support by its own stiffness and the support provided by the unheated and unsheared viscosity reducible composition 242. Doctor blade 241 translates in a direction shown by translation means arrow 248, but actually the direction of motion is reversible allowing application of the bead of applied composition 242' to be applied from either left to right or right to left.
- blade translation means 248 consists of a series of support rods and bearings (not shown for clarity) for holding the doctor blade 241 such that the length of the blade and the edge of the blade when translating describes a flat plane across the shown surface of vat 249.
- the blade translation means 248 drive mechanism may be, for example, hydraulic, stepper motor, belt and series of pulleys, drive screw and motor, piezoelectric, etc., or any method known in the art.
- a composition layer 242" is formed which is substantially co-planar with the plane described by the movement of the doctor blade 241 edge and substantially close in distance to this edge plane.
- Different rheological characteristics of the composition 242, coating application speeds of the doctor blade 241, application temperature conditions, and doctor blade 241 edge shapes play into the actual distance between the applied composition 242" surface plane and the plane described by the doctor blade 241 edge movement.
- the application composition 242' which receives shear forces by the motion of the blade 241 and especially receives shear forces as portions of the application composition 242' are applied passing through the effective gap or orifice made between the blade 241 edge and the previously coated surface of composition 242 or the surface of previously photoformed layer 243.
- the blade 241 may also provide heat to the applied composition 242, either by a separate heating means or by residual heat picked up during the steps shown in FIG. 2B.
- FIG. 2B shows an enlarged view of the photoformable composition handling assembly 250 also shown in FIG. 2A, however, FIG. 2B shows the doctor blade 241 abutting a screw conveyor shroud 256, which acting with conveyor screw 257, removes any excess applied composition 242" (shown in FIG. 2A) and transports it to a degassing and composition storage/supply chamber 254 where any air picked up is removed through tube 255 by vacuum means or the like.
- Pump 252 draws the supply composition 242"' from the chamber 254 through tube 253 and pumps it through tube and linear extrusion opening 258 above the vat 249 (shown in section view) surface forming a new amount of applied composition 242'.
- the conveyor screw 257 is preferably an elastomeric "thread" material that substantially scrapes the doctor blade 241 surface by rotation of the screw 257.
- a similar embodiment of the composition handling assembly 250 as that shown in FIG. 2B exists on the opposite side of the vat 249 shown in FIG. 2A as composition handling assembly 250'. Heat shown as Q and Q' with an arrow may be supplied to the composition handling assembly. This heat Q or Q' may also raise the temperature of the doctor blade 241.
- the essential operations such as removal of the excess applied composition from one side of the doctor blade, may be accomplished with compositions that, while still viscosity reducible compositions, are nevertheless capable of flowing by their own weight, and therefore all that is necessary is to allow the doctor blade to rest over a region of the vat where the composition can flow from the blade and be collected.
- a linear scraper could be run along the side of the doctor blade to remove excess applied composition left over from the previous coating operation.
- the blade could be pressed against a stop that forces the excess composition to pass under the blade to the opposite side of the blade, then this composition would be combined with new applied composition in preparation for the next coating step.
- alternative methods of supplying new applied composition in advance of the doctor blade might be for example, to have the operator lift the viscosity reducible photoformable composition in a container to a height and therefore allow the composition to flow by gravity, for sufficiently low viscosity compositions, as needed and as controlled by a valve.
- the composition could be pumped from a pressure tank when needed.
- the composition could be squeezed from a tube while the tube traveled along the length of the doctor blade, similar to squeezing toothpaste from a tube, in order to supply the applied composition in preparation for the next coating step.
- computer assembly 130 would initialize the various components, first by checking with the scan assembly 120, through scanner communication line 132, to ensure operability and to cause the scanned beam 102" to point preferably to a position away from the coating station 140.
- computer assembly 130 would initialize the coating station 140, referring now to FIG. 2, by moving the platform 244 (by means of platform translation motor 146 controlled through communication line 136 in FIG. 1) such that its upper surface is even with the surface of the vat 249. Then computer assembly 130 would translate the doctor blade 241 (by means of blade translation means 148 through communication line 138 in FIG.
- the computer assembly 130 may ensure readiness of the radiation source 100 by signaling through laser communication line 131.
- an operator chooses a CAD design, preferably in an .STL format, orients it and scales it to the desired size as verified through a video monitor and then sets the computer assembly 130 free to fabricate the object.
- the computer assembly 130 then slices the object data file into cross-sections, each cross-section representing an X-Y set of data representing a thickness of each individual cross-section of the object to be fabricated.
- the platform 244 in FIG. 2A is moved down a distance substantially equal to the thickness of the first cross-section, however, on the first layer the platform 244 may be moved a distance more or less depending on the coating characteristics of the composition 242 or the doctor blade 241 as disclosed earlier.
- pump 252 draws a quantity of supply composition 242"', through tube 253, from chamber 254, pumping the supply composition 242"' through tube and linear extrusion opening 258, thereby forming an mound of applied composition 242' in advance of the doctor blade 241.
- Enough applied composition 242' is supplied to uniformly fill the vat 249 region left voided by movement of the platform 244 one layer thickness down. Typically, some excess applied composition 242' is supplied to reduce the potential for air bubbles forming during the coating application.
- doctor blade 241 is translated, at a speed necessary to adequately shear-thin the applied composition 242', to the opposite side of the vat 249, thereby smoothing a thin composition layer 242" over the surface of the platform 244.
- computer assembly 130 directs scan assembly 120 X motor 126 and Y motor 128 to scan out the X-Y cross-section of the object to be formed.
- the beam 102 is modulated, by modulator 104 controlled through modulator communication line 134, by the computer assembly 130 in order to ensure proper exposure control within the image to be photoformed by scanning beam 102". Also simultaneously, referring again to FIG.
- doctor blade 241, which abuts screw conveyor shroud 256, is cleaned by screw conveyor 257, and the excess applied composition 242' is transferred to the chamber 254 where it is stored and where air is removed through tube 255.
- pump 252 drawing supply composition 242"' from chamber 254 through tube 253 again deposits an amount of applied composition 242' in a line in advance of doctor blade 241 in preparation for coating the next layer.
- Heat Q is supplied to heat the doctor blade 241, shroud 256, screw conveyor 257, chamber 254, transfer tubing 253, pump 252, supply and linear extrusion opening 258, supply composition 242"', and portions of vat 249 when heat liquefiable viscosity reducible compositions 242 are utilized.
- platform 244 moves down a distance substantially equal to the thickness of the second representative cross-sectional layer.
- the coating, scanning, blade cleaning, applied coating supply, and platform movement steps continue in sequence or simultaneously as described above until a three-dimensional is imaged.
- the platform 244 is raised, if the viscosity reducible composition 242 flows by its own weight, the composition handling assembly 250 collects the unexposed photoformable composition and stores it in chamber 254. Otherwise, the composition 242 and the object 243 are removed in bulk from the raised platform where they are separated from each other by oven heating, heat gun liquefying, brushing, pressurized air, blotting by absorbent materials, and the like means as necessary for the composition 242 in use.
- the composition 242 is then returned to chamber 254 for use in future Solid Imaging applications.
- the formed object 243 is further cleaned with heat, solvent, brushes, and the like, and post cured as necessary to obtain the desired final physical properties.
- FIG. 3 shows a coating method wherein a linear extrusion head 358, which translates across the surface of the vat by head translation means 348 (shown as an arrow for simplicity), extrudes an applied composition 342', of viscosity reducible composition 342, creating a new composition layer 342".
- the composition to be applied is stored in chamber 354 and is delivered through tubing 353. In this case for example, air fed into chamber 354 under pressure causes the composition to flow out of the extrusion head 358.
- a precise amount of applied composition 342' may be uniformly extruded, however, preferably, excess applied composition 342' is extruded from extrusion head 358 and this excess applied composition 342' moves before the head 358.
- the extrusion head 358 also acts as a doctor blade or an additional doctor blade (not shown) may be attached to the head 358 to smooth out the excess applied composition 342'.
- This extrusion head 358 may be adaptable to rotate about an axis 359 such that the extruded applied composition 342' leaves the extrusion head 358 opening in advance of the head 358 translation and the trailing edge of the extrusion head opening acts as a doctor blade.
- the extrusion head 358' stops At each end of the vat 349 the extrusion head 358' stops (In FIG.
- FIG. 3 shows the head 358 in two positions, one while coating and one while stopped.) where flow from tube 353' is stopped since the head 358' is blocked by the vat 349 surface.
- the excess applied composition 342' then drains off as drained composition 342"' where it is collected in trough 356 and can be reused.
- heat shown as a Q with an arrow
- methods of collecting excess applied composition 342' such as those shown in FIGS. 2B, may be employed.
- the platform 344 acting as a piston, translates down into vat 349 by means of a screw 345 driven by platform translation means 346 after each layer is imaged and prior to coating a new composition layer 342" on object layers 343 and composition 342.
- a screw 345 driven by platform translation means 346
- the trough 356 may contain a screw conveyor, or scraper, or may be heated to collect the drained composition 353"'.
- FIG. 4 depicts an preferred alternate coating apparatus for use with viscosity reducible compositions that have a very high yield value under low shear or for compositions that are heat liquefiable and solidify when not heated or when cooled.
- the composition handling apparatus 450 has elements similar to that shown in FIG. 3. However, in the case of these compositions 442, the vat is not necessary since the composition acts as a semi-solid or solid.
- a ring 449 may be placed at the end of travel of each extrusion head 458' travel to act as a type of valve to block the flow of material supplied to the extrusion head 458 by tube 453.
- the ring 449 may act as a form for the edges of the applied composition 442" during the coating of the composition 442" until its viscosity increases.
- Heat flow Q (which may be in the form of cooling or heating) may be supplied to the ring to either viscosity reduce or viscosity increase the composition 442" edges as necessary to allow release of the composition 442 from the ring 449, during platform 444 movement.
- Any suitable valve could be utilized in feed line 453' to block the flow when the head is not translating.
- heat shown as a Q with an arrow
- extrusion head 453 is translated by head translation means 448 (shown as an arrow for simplicity) across the surface of the platform 444 or the surface of a previously photoformed layer 443 and previously applied solidified composition 442 in such a manner as to create a new coating layer 442".
- Applied composition 442' which is viscosity reduced by applied shear or by heat, travels ahead of extrusion head 458, which also may act as a doctor blade. Once the new composition layer 442" is applied, it substantially increases in viscosity such that it is a near solid or solid. This increase in viscosity is due to a reduction in applied shear or due to cooling.
- the extrusion head 458 translates to ring 449 where flow is stopped from the extrusion head 458'. If desired, ring 449 may also include a screw conveyor or scraper to remove the excess applied composition 442' from the surface of the extrusion head 458'. Excess applied composition 442' may also be collected and reused by use of a drip pan under platform 444.
- Platform 444 is translated relative to the composition handling apparatus 450 and to the imaging apparatus (as shown in FIG. 1) by means of platform translation device 446 through means of screw 445. After each layer 442" is coated, the object layer is exposed imagewise creating a new object layer 443. Once all object layers 443 have been fabricated, the composition 442 and object 443 are removed from the platform 444. Removal of the solid or semi-solid composition 442 from the object 443 depends on the nature of the viscosity reducible composition 442 in use.
- the composition 442 can be removed by oven heating and liquefying of the composition 442, where the object 443 which does not liquefy remains, or by brushing, by ultrasound, or by use of a suitable solvent, or any combination of the above.
- FIG. 5 shows a coating apparatus wherein an excess of applied coating 542' is placed on the previous composition 542 and the previous object layers 543 using an elongated extrusion head 558 which translates over the surface of the vat. Shown attached to the extrusion head 558 and translating with the head 558 is a rotating knife assembly consisting of a composition collection shroud 556, a rotating blade shaft 561 and blades 562.
- a motor that causes the shaft 561 to rotate at high speeds and also causes the blades 562 to apply a high shear rate to the excess composition 542'.
- This causes the upper portion of excess applied composition 542"' to reduce in viscosity and also causes the removal of this upper portion without substantially reducing the viscosity of the remaining composition layer 542" or affecting the object layers 543 or the composition 542 in the remainder of the vat 549 (shown in partial view).
- the excess composition 542"' cut off by the rotating blades 562 is caught by the shroud 556 and drawn, for example, by vacuum to a storage tank (not shown) for reuse.
- the coating assembly is translated by head translation means 548.
- the blades 562 may remove the excess portions of applied composition 542"' much as a joiner removes the surface of wood.
- a coating system is not constrained to operate at the surface of a vat and may be useful even when the vat walls are higher than the image plane.
- a vibrating blade such as a microtome, or a quick translating piano wire cutter (like a cheese cutter), or even a heated wire cutter, or an air knife, etc. may prove useful high shear rate inducing devices that cause the excess applied composition at the surface of the vat or the surface of a solid or semi-solid composition to viscosity reduce in a very localized slip zone, thereby allowing removal of the excess composition without substantially affecting the remainder of the composition or the previous object layers.
- the platform 670 could be essentially a flat surface on top of which thin rings 680, for example first ring 680', second ring 680" and third ring 680"', are laid prior to coating of a photoformable composition layer 642". Any one of the coating methods shown in the previous figures could be utilized to create this composition layer 642" and the principles involved in coating would be similar.
- a surface 670 preferably substantially flat on which a first ring 680' also preferably substantially flat would be placed and affixed by, for example, adhesive, magnetism, friction, or mechanical means (not shown).
- the rings 680 may actually be square or of any shape desired so long as they are adapted to contain all portions of a representative cross-section of an object being fabricated and as long as they are adapted to contain the viscosity reduced and viscosity reducible photoformable composition being coated.
- the thickness of the rings 680 may vary according to the desired thickness of the representative slice being imaged and the rings 680 may be thicker or thinner than the representative imaged layer slice since coating thickness variations often are exhibited while coating depending on the composition and coating method utilized
- a uniform composition layer 642" is applied filling in the interior of the first ring 680' with a thickness substantially co-planar with the top of first ring 680'.
- composition layer 642" is imaged by means as described above and in FIG. 1.
- a second ring 680" is placed on top of the first ring 680' and affixed as described above.
- This second ring 680" is filled with a uniform layer 642" of composition as before and the next representative slice layer is imaged.
- This process continues by adding the rings 680, coating the composition layer 642" and imaging until all layers of a representative object have been coated and imaged.
- the rings 680 and object are removed from the platform 670 and the object is post-processed by methods as described elsewhere in this disclosure.
- the composition be of relatively high viscosity since the rings 680 may not necessarily exactly conform to the surfaces of each other or the platform 670 and therefore may have a tendency to leak as the object is being fabricated, thereby introducing the potential for distortion of the object. Higher viscosity liquids would not drain so quickly and therefore would be more forgiving of inaccuracies in the surface of the rings. Viscosity reducible compositions would be even more preferable for the same reasons and for reasons described elsewhere in this disclosure. Heat liquefiable compositions are even more preferred for use with this apparatus since the solidification or semi-solidification of the composition would aid in affixing the rings 680 to each other and to the platform 670.
- this heated composition was poured into a petri dish.
- the composition self-flattened and then solidified, by cooling, to a tacky solid.
- the composition was then exposed imagewise through the bottom of the petri dish.
- the petri dish and contents were heated until the unexposed portions of the composition could be poured off.
- the cooled remaining object was then removed and cleaned with trichloroethane, which had little effect, then acetone. A flat disk object was obtained.
- the exposed portions of the cooled composition, within the petri dish prior to heating, were indistinguishable from the unexposed portions.
- there is an exothermic heat generated by the polymerization in the exposed regions upon exposure, there is an exothermic heat generated by the polymerization in the exposed regions.
- solid or near solid photoformable compositions there were no such distinguishing features visible and there was no appreciable heat rise due to exotherm.
- the imaged region suddenly became visibly distinguishable.
- Such a phenomenon is a surprisingly fortuitous feature of a heat liquefiable photoformable composition.
- a liquefied layer is coated and allowed to cool to a solid, then exposed imagewise. Within this layer in the image regions, radicals are generated, however no substantial photoformation occurs. In essence there is a potential imagewise photoformation stored within the layer.
- a second layer of heat liquefiable photoformable composition is applied, allowed to cool, and imaged with similar results. Once all the layers are applied and imaged, there is essentially a three-dimensional region of potential photoformation produced, however, there has not yet been the formation of the object. Upon heating this region, the potential photoformation becomes an actual photoformation.
- the advantages of this method are that, the layers of potential photoformation are now in intimate contact, and not only do the radicals diffuse within the layer but they also diffuse into the interface between the layers. Therefore, the interlayer adhesion is substantially improved.
- the radicals were substantially not mobile and the inhibitors, such as oxygen, were also substantially decreased in mobility throughout the solidified potential photoformation region, there is the possibility for more radicals to be available to create photoformation when the object mass is heated. This not only improves interlayer adhesion, but also ensures more complete conversion within the formed object.
- the exothermic heat produced can quickly build up a temperature high enough to crack and deteriorate the object.
- the diffusion of radicals generated from, for example an exposure to radiation will reduce at temperatures below the glass transition temperature.
- the glass transition temperature of a medium typically increases as photoformation increases. Therefore, for example, if a photoformable medium is exposed at a temperature below the glass transition temperature, the diffusion of radicals and therefore rate of photoformation will initially be relatively low. But if this medium's temperature is raised to just above the glass transition temperature, the diffusion rate increases and photoformation increases. However, with increased photoformation of the medium, the glass transition temperature also increases.
- the rate of glass transition temperature increase is greater than the medium's temperature rate increase from the exothermic heat of the photoformation, the diffusion of radicals will decrease and therefore the photoformation reaction will become self-limiting. Should the rate of glass transition temperature increase be less than the medium's temperature rate increase due to exothermic heat, the photoformation reaction will become self-accelerating.
- such a composition as described above may contain components that are relatively inert to the photoformation process (including the temperatures reached during the photoformation exothermic heat) but are cured by other means, for example much higher temperatures or radiations of a different kind, and therefore impart additional useful physical properties to the object upon polymerization of the second component.
- the composition may contain, for example, a plasticizer, which allows a modicum of photoformation to occur starting from the time of exposure, but at such a slow rate that the exothermic heat is dissipated faster than it is produced.
- plasticized photoformable composition may still be solid during the Solid Imaging process in which, for example, a heat liquefiable coating method is used to form the object layers.
- the composition may contain components that have high heat capacity, which components serve to restrict the temperature rise and therefore the self-acceleration of the photoformation reaction.
- the potential photoformation object region could be subjected to controlled cycles of heating and cooling such that the self-acceleration is quenched by cooling.
- the potential photoformation object region could be placed in a medium, for example water, by which heat could be supplied, but if auto-acceleration created too high a temperature, the medium would either absorb the heat by heat capacity or by a phase transformation.
- the potential photoformation object could be heated from one side only to start the photoformation reaction and the self-accelerating photoformation would continue through the object region as a wave, but since the photoformation does not occur all at once, the temperature rise would not be as drastic.
- Celrad® 12 (Celanese Corporation, Louisville, Ky.), which is bisphenol A epoxylated-diacrylate, was mixed with 2% by final solution weight Irgacure® 651 and approximately 4% by final solution weight of TMPTA (Radcure Specialities, Inc.), which is trimethylolpropane triacrylate.
- the composition was a high viscosity liquid at room temperature. The composition was placed into two petri dishes and allowed to self-flatten. One petri dish was cooled to 8° C. causing the composition to solidify. Both samples, the room temperature (24° C.) sample and the cooled sample, were exposed to a circular beam of filtered light from a mercury arc lamp for one minute. The thickness of the room temperature sample hardened disk, when removed from the surrounding unexposed composition was 0.5 mm. The thickness of the cooled sample disk, isolated from the surrounding unexposed composition after the sample was warmed to room temperature, was 0.2 mm.
- a mixture of Celrad® 12 was mixed with 2% by weight Irgacure® I-651 and then cooled to approximately 3° C. to form a solid This solid mixture was heated to 35° C. poured, and doctor blade coated into a cavity formed by a cooled (at about 3° C.) metal support platform and a cooled metal ring of diameter 6 cm and 5 mm high connected to a metal bar.
- the surface of the coated composition was exposed from the top with the substantially collimated light of a filtered (330-360 nm) 200 W high pressure mercury arc lamp for one minute through a circular aperture. Then the bar and the ring was heated with a gas flame, causing the ring to liquefy the hardened composition at their interface.
- the platform and the hardened composition were lowered the distance of one layer (about 2 mm in this case but thicknesses of less than 1 mm can be easily achieved) such that a new cavity was formed above the hardened composition layer and the ring inner edge.
- the new cavity was filled again with heated composition and smoothed off.
- the composition was allowed to cool and the cooling was speeded up by blowing a stream of liquid nitrogen on the surface of the composition. The process was repeated another time. Then the support with the composition was placed in an oven at 50° C. The unexposed photoformable composition liquefied and the exposed part was isolated.
- a semi-solid i.e., a material with viscosity reducible characteristics similar to that of margarine or butter, was produced by mixing 11.3 grams of molten paraffin wax in 10 grams of Plex 6696 (Rhom Tech, Inc., New York, N.Y.), which is an unsaturated acrylic ester, 0.1 grams of Irgacure 651, and a surfactant FC-430 (3M Corporation, St. Paul, Minn.), which is a mixture of fluoroaliphatic polymeric esters and toluene, at 60° C.
- Plex 6696 Ros Tech, Inc., New York, N.Y.
- FC-430 surfactant
- This composition was smeared on a surface and then exposed, producing a white solid in the exposed regions Upon reheating to around 60° C. the unexposed regions liquefied and were absorbed by a paper towel. The remaining solid could be further cleaned with petroleum ether.
- a shear-thinning with a yield or Bingham body flow composition having a paste-like consistency was produced from the following formulation:
- An ashtray approximately three inches square by 0.33 inches high was fabricated using this mixture.
- the base of the ashtray was approximately two inches square and the various layers of approximately 10 mil thickness had cantilevered overhangs that increased gradually from the bottom first fabricated layers to the top last fabricated layers.
- the exposure and coating was accomplished using equipment as shown in FIGS. 1 and 2A, except that the excess applied composition was supplied manually in front of the doctor blade, at the edges of the vat, and there was no mechanical recovery of the composition.
- the material was coated with a high shear rate.
- the part was exposed using an Argon Ion laser operating in the UV (350-363 nm) and the scanning was vector scanning.
- the ashtray made with the viscosity reducible composition in this example, had improved surface flatness and more uniform layer thicknesses when coated utilizing a doctor blade operating at a speed to induce shear-thinning behavior in the composition during coating.
- the unexposed viscosity reducible composition was removed using mechanical means, for example forced air and towel wipes and mild solvent rinse, to clean the part.
- this composition has exhibited excellent stability left at rest for over a year.
- shear-thinning with a yield flow compositions have been made typically by adding particles or beads to a monomer or oligimer and photosensitizer composition.
- Some examples of such particles or beads are; TW-6 Cromalin® toners (E. I.
- du Pont de Nemours and Company, Wilmington, Del. which are cellulose acetate beads of approximately 2 ⁇ m diameter; or, zinc-diacrylate beads; or, poly-TMPTA beads (pre-polymerized TMPTA particles); or, microcapsules, hollow microspheres, etc., for example, Expancel® hollow microspheres (Expancel, Nobel Industries Sweden, Sundsvall, Sweden), which consist of isobutane gas surrounded by a copolymer of vinylidene chloride and acrylonitrile shell; or, other powders such as for example FluoTM 300 (at approximately 33% by weight mixture, for example) 3 ⁇ m average size PTFE powders (Micro Powders Inc., Yonkers, N.Y.).
- compositions given as examples in this disclosure may exhibit some degree of thixotropy.
- other compositions containing, for example, modified cellulose, colloidal silicas, or high molecular weight polyethylene oxides, and the like have a tendency to form a structure within the composition over a period of time.
- a thixotropic photosensitive composition is a mixture of V-Pyrol® (49 g) (GAF Chemical Corporation, Wayne, N.J.) and urethanediacrylate (see Example 1) (49 g) with 2% Irgacure combined and stirred at room temperature with Aerosil (SiO 2 , 5 g), which is amorphous silicon dioxide. This material shear-thins during coating and quickly forms a gel-like condition. After exposure, an object layer was isolated and wiped off. The part could also be developed (separated from the surrounding unexposed solution) using an organic solvent.
- thixotropy As with thixotropy, most of the solutions exhibited pseudoplastic flow behavior. However, in some cases, the thixotropic or yield stress characteristics were not predominant or measurable in the compositions.
- organic additives which have been included in photosensitive investment casting pattern compositions in relatively small amounts. These additives improve the stability of the microsphere containing compositions by imparting thixotropic flow behavior characteristics.
- Three examples of such materials are Thixcin® R, Thixatrol® ST, and Thixatrol SR (RHEOX, Inc., Hightstown, N.J.).
- Thixin® R trihydroxy stearin
- Thixatrol® ST are powdered organic derivatives of castor oil and Thixatrol® SR is a proprietary mixture of 30% solids in cyclohexanol/petroleum stock. These materials are sold as thixotropic agents, however, viscosity tests performed with these agents added to a microsphere containing pattern composition exhibited either pseudoplastic or plastic flow behavior without the characteristic thixotropic loop. Generally these agents are added to compositions at 0.2 to 0.8% by weight, though for higher thixotropy index compositions, as much as 2.0% by weight agent may be added.
- microspheres imparts a pseudoplastic or plastic flow characteristic to the photoformable composition.
- Example 7C Each of the above solutions in Examples 7A-7C were placed in separate brown bottles and examined periodically for separation. The solutions were rated OK if they appeared to have uniform opacity and NP (not preferred) if they exhibited a clear layer at the bottom of the solution. In the case where no "thixotropic" agent was added, the composition tested was that of Example 7C prior to the addition of Thixatrol® SR.
- thixotropic index is the actual meaning of the index is a measurement of the tendency of the composition to shear-thin as a function of shear rate.
- the thixotropic index is the ratio of the viscosity at the relatively high shear rate induced by a Wells-Brookfield Microviscometer operating at 30 RPM compared to the viscosity measured at 3 RPM. In this sense, no judgement can be made as to whether the compositions are specifically thixotropic, pseudoplastic, plastic flow (Bingham body), or some combination of these flow behaviors. However, the compositions measured were shear-thinning as opposed to Newtonian, dilatant, or rheopectic flow behavioral compositions.
- a photohardenable composition for solid imaging should contain at least one photohardenable monomer or oligomer and at least one photoinitiator.
- the words monomer and oligomer have substantially the same meaning and they may be used interchangeably.
- Suitable monomers which can be used alone or in combination with other monomers include t-butyl acrylate and methacrylate, 1,5-pentanediol diacrylate and dimethacrylate, N,N-diethylaminoethyl acrylate and methacrylate, ethylene glycol diacrylate and dimethacrylate, 1,4-butanediol diacrylate and dimethacrylate, diethylene glycol diacrylate and dimethacrylate, hexamethylene glycol diacrylate and dimethacrylate, 1,3-propanediol diacrylate and dimethacrylate, decamethylene glycol diacrylate and dimethacrylate, 1,4-cyclohexanediol diacrylate and dimethacrylate, 2,2-dimethylolpropane diacrylate and dimethacrylate, glycerol diacrylate and dimethacrylate, tripropylene glycol diacrylate and dimethacrylate, glycerol
- ethylenically unsaturated compounds having a molecular weight of at least 300, e.g., alkylene or a polyalkylene glycol diacrylate prepared from an alkylene glycol of 2 to 15 carbons or a polyalkylene ether glycol of 1 to 10 ether linkages, and those disclosed in U.S. Pat. No. 2,927,022, e.g., those having a plurality of addition polymerizable ethylenic linkages particularly when present as terminal linkages.
- Particularly preferred monomers are ethoxylated trimethylolpropane triacrylate, ethylated pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, 1,10-decanediol dimethylacrylate, di-(3-acryloxy-2-hydroxylpropyl)ether of bisphenol A oligomers, di-(3-methacryloxy-2-hydroxyl alkyl)ether of bisphenol A oligomers, urethane diacrylates and methacrylates and oligomers thereof, caprolactone acrylates and methacrylates, propoxylated neopentyl glycol diacrylate and methacrylate, and mixtures thereof.
- photoinitiators which are useful in the present invention alone or in combination are described in U.S. Pat. No. 2,760,863, and include vicinal ketaldonyl alcohols such as benzoin, pivaloin, acyloin ethers, e.g., benzoin methyl and ethyl ethers, benzil dimethyl ketal; Q-hydrocarbon-substituted aromatic acyloins, including ⁇ -methylbenzoin ⁇ -allylbenzoin, ⁇ -phenylbenzoin, 1-hydroxylcyclohexyl phenol ketone, diethoxyphenol acetophenone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholino-propanone-1.
- vicinal ketaldonyl alcohols such as benzoin, pivaloin, acyloin ethers, e.g., benzoin methyl and ethyl ethers, benzil dimethyl ket
- the photoinitiator or photoinitiator system is present in 0.05 to 10% by weight based on the total weight of the photohardenable composition.
- Other suitable photoinitiation systems which are thermally inactive but which generate free radicals upon exposure to actinic light at or below 185° C.
- substituted or unsubstituted polynuclear quinones which are compounds having two intracyclic carbon atoms in a conjugated carbocyclic ring system, e.g., 9,10-anthraquinone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertbutylanthraquinone, octamethylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, benz(a)anthracene-7,12 -dione, 2,3-naphthacene-5,12-dione, 2-methyl-1,4-naphthoquinone, 1,4-dimethylanthraquinone, 2,3-dimethylanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, retenequinone, 7,8,9,10
- photohardening is free radical polymerization
- other mechanisms of photohardening apply also within the realm of this invention.
- Such other mechanisms include but are not limited to cationic polymerization, anionic polymerization, condensation polymerization, addition polymerization, and the like.
- photohardenable compositions e.g., pigments, dyes, extenders, thermal inhibitors, interlayer and generally interfacial adhesion promoters, such as organosilane coupling agents, dispersants, surfactants, plasticizers, coating aids such as polyethylene oxides, etc. so long as the photohardenable compositions retain their essential properties.
- the plasticizers can be liquid or solid as well as polymeric in nature.
- plasticizers are diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, dibenzyl phthalate, alkyl phosphates, polyalkylene glycols, glycerol, poly(ethylene oxides), hydroxy ethylated alkyl phenol, tricresyl phosphate, triethyleneglycol diacetate, triethylene glycol caprate--caprylate, dioctyl phthalate and polyester plasticizers.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
______________________________________ Component Content (grams) ______________________________________ Novacure ® 3704 (Celanese 48 Speciality Resins, Louisville, Kentucky) acrylated esters of epoxy resins TMPEOTA (Arco Chemical Co., 48 Newtown Square, Pennsylvania) trimethylolpropane polyoxyethylene triacrylate Plasthall ® 4141 24 (triethylene glycol dicaprate, triethylene glycol dicaprylate CP Hall Company) Triton ® X-100 (Rhom & Haas Company, 1.6 Philadelphia, Pennsylvania) octylphenoxypolyethoxyethanol nonionic surfactant Irgacure ® 651 2.88 Microfine ® MF-6X (Trans Penn 60 Wax Corporation of Titusville, PA) 1 μm average size, micronized wax powder ______________________________________
______________________________________ Viscosity (poise) Yield Stress 0.3/s 100/s 3000/s (dynes/cm.sup.2) ______________________________________ 4600 35 9 1300 ______________________________________
______________________________________ Component % by Wt. ______________________________________ Photomer ® 4127 8.7 (propoxylated neopentylglycol diacrylate, Henkel Corporation, La Grange, IL) V-Pyrol ® /RC 26.2 (N-vinyl-2-pyrrolidone GAF Chem. Corp., Wayne, NJ) Plasthall ® 4141 18.6 Elvacite ® 2041 1.1 (polymethyl methacrylate Du Pont, Wilmington, DE) Ebecryl ® 3704 43.7 (Bisphenol A bis(2-hydroxypropyl) diacrylate, Radcure Specialties Inc., Louisville, KY) Irgacure ® 651 1.7 (2,2-dimethoxy-2-phenylacetophenone CIBA-Geigy Ltd., Switzerland) ______________________________________
______________________________________ Solution No Age Agent Example 7A Example 7B Example 7C ______________________________________ 2 hours NP OK OK OK 1 day NP OK OK OK 2 days NP OK OK NP 4 days NP OK OK NP 6 days NP OK OK NP ______________________________________
Claims (18)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/655,681 US5474719A (en) | 1991-02-14 | 1991-02-14 | Method for forming solid objects utilizing viscosity reducible compositions |
CA002061125A CA2061125A1 (en) | 1991-02-14 | 1992-02-12 | Method and apparatus for forming solid objects utilizing viscosity compositions |
JP4058849A JPH0775868B2 (en) | 1991-02-14 | 1992-02-13 | Method and apparatus for forming a three-dimensional object using a viscosity reducing composition |
AU10915/92A AU1091592A (en) | 1991-02-14 | 1992-02-13 | Method and apparatus for forming solid objects utilizing viscosity reducible compositions |
EP92301240A EP0499485B1 (en) | 1991-02-14 | 1992-02-14 | Method of forming solid objects |
DE69227391T DE69227391T2 (en) | 1991-02-14 | 1992-02-14 | Process for the manufacture of solid objects |
HK98113680A HK1012308A1 (en) | 1991-02-14 | 1998-12-16 | Method of forming solid objects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/655,681 US5474719A (en) | 1991-02-14 | 1991-02-14 | Method for forming solid objects utilizing viscosity reducible compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US5474719A true US5474719A (en) | 1995-12-12 |
Family
ID=24629921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/655,681 Expired - Lifetime US5474719A (en) | 1991-02-14 | 1991-02-14 | Method for forming solid objects utilizing viscosity reducible compositions |
Country Status (7)
Country | Link |
---|---|
US (1) | US5474719A (en) |
EP (1) | EP0499485B1 (en) |
JP (1) | JPH0775868B2 (en) |
AU (1) | AU1091592A (en) |
CA (1) | CA2061125A1 (en) |
DE (1) | DE69227391T2 (en) |
HK (1) | HK1012308A1 (en) |
Cited By (108)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5582876A (en) * | 1991-10-16 | 1996-12-10 | Eos Gmbh Optical Systems | Stereographic apparatus and method |
US5922364A (en) * | 1997-03-03 | 1999-07-13 | Young, Jr.; Albert C. | Stereolithography layering control system |
US5980812A (en) * | 1997-04-30 | 1999-11-09 | Lawton; John A. | Solid imaging process using component homogenization |
WO2000062994A1 (en) * | 1999-04-20 | 2000-10-26 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
US6174156B1 (en) * | 1990-03-01 | 2001-01-16 | Dsm N.V. | Solid imaging apparatus and method with coating station |
US6191382B1 (en) * | 1998-04-02 | 2001-02-20 | Avery Dennison Corporation | Dynamic laser cutting apparatus |
US6200646B1 (en) * | 1999-08-25 | 2001-03-13 | Spectra Group Limited, Inc. | Method for forming polymeric patterns, relief images and colored polymeric bodies using digital light processing technology |
US20030004600A1 (en) * | 2001-05-11 | 2003-01-02 | Stratasys, Inc. | Material and method for three-dimensional modeling |
US20030011103A1 (en) * | 1999-06-23 | 2003-01-16 | Stratasys, Inc. | Method for building three-dimensional models from thermoplastic modeling materials |
US6547552B1 (en) * | 2000-02-08 | 2003-04-15 | Efrem V. Fudim | Fabrication of three-dimensional objects by irradiation of radiation-curable materials |
US6554600B1 (en) * | 1998-10-09 | 2003-04-29 | Eos Gmbh Electro Optical Systems | Device for producing a three-dimensional object, especially a laser sintering machine |
US6574523B1 (en) | 2000-05-05 | 2003-06-03 | 3D Systems, Inc. | Selective control of mechanical properties in stereolithographic build style configuration |
US6656410B2 (en) | 2001-06-22 | 2003-12-02 | 3D Systems, Inc. | Recoating system for using high viscosity build materials in solid freeform fabrication |
US20040063035A1 (en) * | 2002-09-30 | 2004-04-01 | Fuji Photo Film Co., Ltd. | Stereolithographic resin composition comprising photo-curable component, sol-gel resin and filler and stereolithographic method using the same |
US20040104515A1 (en) * | 1999-06-23 | 2004-06-03 | Stratasys, Inc. | High-Temperature modeling method |
US6764636B1 (en) | 1999-03-01 | 2004-07-20 | 3D Systems, Inc. | Fast three-dimensional modeling method and device |
US20050004282A1 (en) * | 1999-04-20 | 2005-01-06 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
US20060100301A1 (en) * | 2003-11-06 | 2006-05-11 | Xiaorong You | Curable compositions and rapid prototyping process using the same |
US20060158456A1 (en) * | 2005-01-18 | 2006-07-20 | Stratasys, Inc. | High-resolution rapid manufacturing |
WO2006078304A2 (en) * | 2004-06-14 | 2006-07-27 | Align Technology, Inc. | Systems and methods for fabricating 3-d objects |
US20060172230A1 (en) * | 2005-02-02 | 2006-08-03 | Dsm Ip Assets B.V. | Method and composition for reducing waste in photo-imaging applications |
US20060231982A1 (en) * | 2003-07-23 | 2006-10-19 | Xiaorong You | Viscosity reducible radiation curable resin composition |
US20070001050A1 (en) * | 2005-06-30 | 2007-01-04 | Stratasys, Inc. | Cassette spool lock |
US20070003656A1 (en) * | 2005-07-01 | 2007-01-04 | Stratasys, Inc. | Rapid prototyping system with controlled material feedstock |
US20070105395A1 (en) * | 2005-11-04 | 2007-05-10 | Edward Kinzel | Laser functionalization and patterning of thick-film inks |
US20070145629A1 (en) * | 2003-02-26 | 2007-06-28 | Robby Ebert | Method and device for producing miniature objects or microstructured objects |
US20070179657A1 (en) * | 2006-01-31 | 2007-08-02 | Stratasys, Inc. | Method for building three-dimensional objects with extrusion-based layered deposition systems |
US20070233298A1 (en) * | 2006-04-03 | 2007-10-04 | Stratasys, Inc. | Method for optimizing spatial orientations of computer-aided design models |
US20070257055A1 (en) * | 2006-05-03 | 2007-11-08 | 3D Systems, Inc. | Material delivery system for use in solid imaging |
US20070259066A1 (en) * | 2006-05-03 | 2007-11-08 | 3D Systems, Inc. | Material delivery tension and tracking system for use in solid imaging |
US20080171284A1 (en) * | 2007-01-17 | 2008-07-17 | Hull Charles W | Method for Removing Excess Uncured Build Material in Solid Imaging |
US20080169589A1 (en) * | 2007-01-17 | 2008-07-17 | Sperry Charles R | Solid imaging apparatus and method |
US20080169586A1 (en) * | 2007-01-17 | 2008-07-17 | Hull Charles W | Imager Assembly and Method for Solid Imaging |
US20080170112A1 (en) * | 2007-01-17 | 2008-07-17 | Hull Charles W | Build pad, solid image build, and method for building build supports |
US20080179786A1 (en) * | 2007-01-17 | 2008-07-31 | Sperry Charles R | Cartridge for solid imaging apparatus and method |
US20080179787A1 (en) * | 2007-01-17 | 2008-07-31 | Sperry Charles R | Elevator and method for tilting solid image build platform for reducing air entrainment and for build release |
US20080181977A1 (en) * | 2007-01-17 | 2008-07-31 | Sperry Charles R | Brush assembly for removal of excess uncured build material |
US20080206383A1 (en) * | 2007-01-17 | 2008-08-28 | Hull Charles W | Solid Imaging System with Removal of Excess Uncured Build Material |
WO2008112061A1 (en) * | 2007-03-14 | 2008-09-18 | Stratasys, Inc. | Method of building three-dimensional objects with modified abs materials |
US20080226346A1 (en) * | 2007-01-17 | 2008-09-18 | 3D Systems, Inc. | Inkjet Solid Imaging System and Method for Solid Imaging |
US20080231731A1 (en) * | 2007-01-17 | 2008-09-25 | Hull Charles W | Imager and method for consistent repeatable alignment in a solid imaging apparatus |
US20090018685A1 (en) * | 2007-07-11 | 2009-01-15 | Stratasys, Inc. | Method for building three-dimensional objects with thin wall regions |
US20090025638A1 (en) * | 2005-07-27 | 2009-01-29 | Shofu Inc | Apparatus for Forming Layered Object |
US20090273122A1 (en) * | 2008-04-30 | 2009-11-05 | Stratasys, Inc. | Liquefier assembly for use in extrusion-based digital manufacturing systems |
US20090274540A1 (en) * | 2008-04-30 | 2009-11-05 | Stratasys, Inc. | Filament drive mechanism for use in extrusion-based digital manufacturing systems |
US20100086721A1 (en) * | 2008-10-02 | 2010-04-08 | Stratasys, Inc. | Support structure packaging |
US20100096072A1 (en) * | 2008-10-17 | 2010-04-22 | Stratasys, Inc. | Support material for digital manufacturing systems |
US20100112458A1 (en) * | 2004-06-22 | 2010-05-06 | Xetos Ag | Photopolymerisable composition |
US20100127433A1 (en) * | 2005-03-31 | 2010-05-27 | Francisco Medina | Methods and Systems for Integrating Fluid Dispensing Technology With Stereolithography |
US7795349B2 (en) | 1999-11-05 | 2010-09-14 | Z Corporation | Material systems and methods of three-dimensional printing |
US20100330264A1 (en) * | 2005-08-30 | 2010-12-30 | The Boeing Company | Colored coating and method |
US20100327479A1 (en) * | 2009-06-23 | 2010-12-30 | Stratasys, Inc. | Consumable materials having customized characteristics |
US20110059292A1 (en) * | 2005-04-22 | 2011-03-10 | Ryan Wicker | Hydrogel constructs using stereolithography |
US7905951B2 (en) | 2006-12-08 | 2011-03-15 | Z Corporation | Three dimensional printing material system and method using peroxide cure |
US7968626B2 (en) | 2007-02-22 | 2011-06-28 | Z Corporation | Three dimensional printing material system and method using plasticizer-assisted sintering |
US20110178621A1 (en) * | 2010-01-15 | 2011-07-21 | Stratasys, Inc. | Method for generating and building support structures with deposition-based digital manufacturing systems |
US20110186081A1 (en) * | 2010-01-05 | 2011-08-04 | Stratasys, Inc. | Support cleaning system |
WO2012021940A1 (en) * | 2010-08-20 | 2012-02-23 | Zydex Pty Ltd | Apparatus and method for making an object |
WO2012052991A2 (en) * | 2010-10-19 | 2012-04-26 | N.R. Spuntech Industries Ltd. | In-line printing process on wet non-woven fabric and products thereof |
US8167999B2 (en) | 2007-01-10 | 2012-05-01 | 3D Systems, Inc. | Three-dimensional printing material system with improved color, article performance, and ease of use |
US20120164322A1 (en) * | 2009-07-15 | 2012-06-28 | Phenix Systems | Device for forming thin films and method for using such a device |
US20120248657A1 (en) * | 2011-03-29 | 2012-10-04 | Technische Universitat Wien | Method for the layered construction of a shaped body made of highly viscous photopolymerizable material |
CN103111756A (en) * | 2013-02-05 | 2013-05-22 | 余振新 | Laser optical path guiding system of laser sinter molding equipment |
US8459280B2 (en) | 2011-09-23 | 2013-06-11 | Stratasys, Inc. | Support structure removal system |
US8460755B2 (en) | 2011-04-07 | 2013-06-11 | Stratasys, Inc. | Extrusion-based additive manufacturing process with part annealing |
US8801990B2 (en) | 2010-09-17 | 2014-08-12 | Stratasys, Inc. | Method for building three-dimensional models in extrusion-based additive manufacturing systems using core-shell semi-crystalline consumable filaments |
US8801949B2 (en) | 2011-09-22 | 2014-08-12 | Dow Global Technologies Llc | Method of forming open-network polishing pads |
US20140252685A1 (en) * | 2013-03-06 | 2014-09-11 | University Of Louisville Research Foundation, Inc. | Powder Bed Fusion Systems, Apparatus, and Processes for Multi-Material Part Production |
US8894799B2 (en) * | 2011-09-22 | 2014-11-25 | Dow Global Technologies Llc | Method of forming layered-open-network polishing pads |
US8920697B2 (en) | 2010-09-17 | 2014-12-30 | Stratasys, Inc. | Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments |
US8981002B2 (en) | 2009-03-19 | 2015-03-17 | Stratasys, Inc. | Biodegradable polymer compositions |
US9034237B2 (en) | 2012-09-25 | 2015-05-19 | 3D Systems, Inc. | Solid imaging systems, components thereof, and methods of solid imaging |
US9108291B2 (en) | 2011-09-22 | 2015-08-18 | Dow Global Technologies Llc | Method of forming structured-open-network polishing pads |
KR20150114790A (en) * | 2014-04-02 | 2015-10-13 | 성균관대학교산학협력단 | Thixotropic oligomer composition for stereolithography and three dimensional article prepared therefrom |
WO2015189837A1 (en) * | 2014-06-08 | 2015-12-17 | Massivit 3D Printing Technologies Ltd. | A method and appratus for manufacture of 3d objects |
US9359499B2 (en) | 2011-05-05 | 2016-06-07 | Stratasys, Inc. | Radiation curable polymers |
US20160332367A1 (en) * | 2015-05-15 | 2016-11-17 | Dentsply Sirona Inc. | Three-dimensional printing systems for rapidly producing objects |
US9498921B2 (en) | 2009-09-17 | 2016-11-22 | Phenix Systems | Method for creating an object, by means of laser treatment, from at least two different powder materials, and corresponding facility |
US9523934B2 (en) | 2013-07-17 | 2016-12-20 | Stratasys, Inc. | Engineering-grade consumable materials for electrophotography-based additive manufacturing |
US9592530B2 (en) | 2012-11-21 | 2017-03-14 | Stratasys, Inc. | Additive manufacturing with polyamide consumable materials |
US9708457B2 (en) | 2012-06-28 | 2017-07-18 | Stratasys, Inc. | Moisture scavenger composition |
US9714318B2 (en) | 2013-07-26 | 2017-07-25 | Stratasys, Inc. | Polyglycolic acid support material for additive manufacturing systems |
US9744722B2 (en) | 2012-11-21 | 2017-08-29 | Stratasys, Inc. | Additive manufacturing with polyamide consumable materials |
WO2016181378A3 (en) * | 2015-05-13 | 2017-11-09 | Massivit 3D Printing Technologies Ltd | A method and apparatus for manufacture of 3d objects |
US20170369731A1 (en) * | 2014-06-08 | 2017-12-28 | Massivit 3D Printing Technologies Ltd | Method and apparatus for manufacture of 3d objects |
US20180009162A1 (en) * | 2015-02-05 | 2018-01-11 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
US10059053B2 (en) | 2014-11-04 | 2018-08-28 | Stratasys, Inc. | Break-away support material for additive manufacturing |
US20180290380A1 (en) * | 2015-10-15 | 2018-10-11 | Saint-Gobain Ceramics & Plastics, Inc. | Method for forming a three dimensional body from a mixture with a high content of solid particles |
US20190176388A1 (en) * | 2017-12-07 | 2019-06-13 | Canon Kabushiki Kaisha | Method for manufacturing three-dimensional shaped object, additive manufacturing apparatus, and article |
US10414088B2 (en) * | 2015-12-30 | 2019-09-17 | National Central University | Platform structure for use in low-temperature manufacturing of scaffold for use in tissue engineering and method of low-temperature manufacturing scaffold for use in tissue engineering |
US10421233B2 (en) | 2017-05-15 | 2019-09-24 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US20200086554A1 (en) * | 2016-12-15 | 2020-03-19 | Prismlab China Ltd. | Photocuring-type three-dimensional printing device capable of automatic continuous printing, method and system |
US10766194B1 (en) | 2019-02-21 | 2020-09-08 | Sprintray Inc. | Apparatus, system, and method for use in three-dimensional printing |
US10935891B2 (en) | 2017-03-13 | 2021-03-02 | Holo, Inc. | Multi wavelength stereolithography hardware configurations |
US10953597B2 (en) | 2017-07-21 | 2021-03-23 | Saint-Gobain Performance Plastics Corporation | Method of forming a three-dimensional body |
US11007705B2 (en) | 2015-02-13 | 2021-05-18 | University Of Florida Research Foundation, Inc. | High speed 3D printing system for wound and tissue replacement |
US11034142B2 (en) * | 2017-03-15 | 2021-06-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Temperature regulation to improve additive 3D printing function |
US11124644B2 (en) | 2016-09-01 | 2021-09-21 | University Of Florida Research Foundation, Inc. | Organic microgel system for 3D printing of silicone structures |
US11141919B2 (en) | 2015-12-09 | 2021-10-12 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
US11148374B2 (en) | 2012-11-21 | 2021-10-19 | Stratasys, Inc. | Feedstock material for printing three-dimensional parts with crystallization kinetics control |
US11192302B2 (en) * | 2018-10-31 | 2021-12-07 | Carbon, Inc. | Apparatuses for additively manufacturing three-dimensional objects |
US11351735B2 (en) | 2018-12-26 | 2022-06-07 | Holo, Inc. | Sensors for three-dimensional printing systems and methods |
US11390016B2 (en) * | 2017-12-06 | 2022-07-19 | Massivit 3D Printing Technologies Ltd. | Complex shaped 3D objects fabrication |
US11400650B2 (en) | 2017-06-16 | 2022-08-02 | Holo, Inc. | Methods and systems for stereolithography three-dimensional printing |
WO2023003820A1 (en) * | 2021-07-19 | 2023-01-26 | Quadratic 3D, Inc. | Systems and methods for high throughput volumetric three-dimensional (3d) printing |
US20230123480A1 (en) * | 2021-10-14 | 2023-04-20 | Align Technology, Inc. | Recoating system with reduced resin evaporation |
US11679555B2 (en) | 2019-02-21 | 2023-06-20 | Sprintray, Inc. | Reservoir with substrate assembly for reducing separation forces in three-dimensional printing |
US12064917B2 (en) | 2012-11-21 | 2024-08-20 | Stratasys, Inc. | Method for printing three-dimensional parts with cyrstallization kinetics control |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4400523C2 (en) * | 1994-01-11 | 1996-07-11 | Eos Electro Optical Syst | Method and device for producing a three-dimensional object |
BR9607005A (en) * | 1995-02-01 | 1997-10-28 | 3D Systems Inc | Fast coating of three-dimensional objects formed on a cross-sectional base |
DE19515165C2 (en) * | 1995-04-25 | 1997-03-06 | Eos Electro Optical Syst | Device for producing an object using stereolithography |
WO1999005571A1 (en) * | 1997-07-21 | 1999-02-04 | Ciba Specialty Chemicals Holding Inc. | Sedimentation stabilized radiation-curable filled compositions |
BR9811801A (en) * | 1997-07-21 | 2000-09-19 | Ciba Sc Holding Ag | Viscosity stabilization of radiation curable compositions. |
US6780572B1 (en) * | 1999-08-05 | 2004-08-24 | Toudai Tlo, Ltd. | Optical lithography |
FR2813609A1 (en) * | 2000-09-01 | 2002-03-08 | Optoform Sarl Procedes De Prot | PHOTOPOLYMERIZABLE FOAM COMPOSITION, METHOD FOR OBTAINING THREE-DIMENSIONAL PARTS BY RAPID PROTOTYPING, DEVICE FOR IMPLEMENTING SAME, AND PART USED |
US7808156B2 (en) * | 2006-03-02 | 2010-10-05 | Visualsonics Inc. | Ultrasonic matching layer and transducer |
JP4800074B2 (en) * | 2006-03-10 | 2011-10-26 | 国立大学法人大阪大学 | Manufacturing method of stereolithography |
GB0712027D0 (en) | 2007-06-21 | 2007-08-01 | Materials Solutions | Rotating build plate |
DE102012219534A1 (en) * | 2012-10-25 | 2014-04-30 | Tools And Technologies Gmbh | Apparatus for producing a shaped body in layers |
GB201404854D0 (en) | 2014-03-18 | 2014-04-30 | Renishaw Plc | Selective solidification apparatus and method |
JP6686302B2 (en) * | 2014-09-17 | 2020-04-22 | 株式会社リコー | Active energy ray curable composition, active energy ray curable ink, composition container, image forming apparatus, image forming method, cured product, molded product |
JP6513432B2 (en) * | 2015-03-10 | 2019-05-15 | シーメット株式会社 | Optical shaping apparatus, method of manufacturing shaped article, and shaped article |
JP2018515371A (en) * | 2015-05-19 | 2018-06-14 | アディファブ アーペーエス | Layered modeling apparatus having a recoat unit and method using the layered modeling apparatus |
GB2550341A (en) * | 2016-05-12 | 2017-11-22 | Hewlett Packard Development Co Lp | Build Material Distributor Cleaning Element |
US20190217534A1 (en) * | 2016-06-22 | 2019-07-18 | Boomer Advanced Manufacturing Solutions Pty Ltd | Method and apparatus for generating three-dimensional objects |
JP2018141222A (en) * | 2017-02-28 | 2018-09-13 | セイコーエプソン株式会社 | Composition for producing three-dimensional molded article, and method for producing three-dimensional molded article |
EP3418033B1 (en) * | 2017-06-19 | 2020-01-01 | Cubicure GmbH | Method and device for lithography-based generative production of three-dimensional forms |
JP2021021008A (en) * | 2019-07-26 | 2021-02-18 | 株式会社ミマキエンジニアリング | Photohardenable ink for discharging |
JP7437893B2 (en) * | 2019-07-26 | 2024-02-26 | 株式会社ミマキエンジニアリング | Photocurable 3D dispenser ink and method for producing three-dimensional objects |
US20220282111A1 (en) * | 2019-07-26 | 2022-09-08 | Mimaki Engineering Co., Ltd. | Photocurable inkjet ink and method for manufacturing three-dimensional object |
CN112873838B (en) * | 2021-02-02 | 2022-04-05 | 中山大学 | Biological ink printing condition screening platform and screening method |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2775758A (en) * | 1951-05-25 | 1956-12-25 | Munz Otto John | Photo-glyph recording |
US3264103A (en) * | 1962-06-27 | 1966-08-02 | Du Pont | Photopolymerizable relief printing plates developed by dry thermal transfer |
US3395014A (en) * | 1963-06-07 | 1968-07-30 | Du Pont | Preparation of printing plates by heat plus a pressure gradient |
JPS61114818A (en) * | 1984-11-09 | 1986-06-02 | Fujitsu Ltd | Apparatus for forming solid configuration |
JPS61114817A (en) * | 1984-11-09 | 1986-06-02 | Fujitsu Ltd | Apparatus for forming solid configuration |
JPS61217219A (en) * | 1985-03-22 | 1986-09-26 | Fujitsu Ltd | Three-dimensional configuration forming device |
FR2583333A1 (en) * | 1985-06-14 | 1986-12-19 | Cilas Alcatel | Process for producing a model of an industrial component and device for implementing this process |
JPS63165222A (en) * | 1986-12-25 | 1988-07-08 | Ishikawajima Harima Heavy Ind Co Ltd | Scraping device of unloader |
US4844144A (en) * | 1988-08-08 | 1989-07-04 | Desoto, Inc. | Investment casting utilizing patterns produced by stereolithography |
JPH01204915A (en) * | 1988-01-27 | 1989-08-17 | Desoto Inc | Optical stereoscopic modeling resin composition |
US4863538A (en) * | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
WO1989010249A1 (en) * | 1988-04-18 | 1989-11-02 | 3D Systems, Inc. | Methods for curing partially polymerized parts |
WO1989010255A1 (en) * | 1988-04-18 | 1989-11-02 | 3D Systems, Inc. | Reducing stereolithographic part distortion through isolation of stress |
WO1989010254A1 (en) * | 1988-04-18 | 1989-11-02 | 3D Systems, Inc. | Stereolithographic supports |
EP0354637A2 (en) * | 1988-04-18 | 1990-02-14 | 3D Systems, Inc. | CAD/CAM stereolithographic data conversion |
EP0361847A2 (en) * | 1988-09-26 | 1990-04-04 | 3D Systems, Inc. | Recoating of stereolithographic layers |
US4929402A (en) * | 1984-08-08 | 1990-05-29 | 3D Systems, Inc. | Method for production of three-dimensional objects by stereolithography |
EP0376571A2 (en) * | 1988-12-28 | 1990-07-04 | Sony Corporation | Apparatus and method for producing three-dimensional objects |
US4942001A (en) * | 1988-03-02 | 1990-07-17 | Inc. DeSoto | Method of forming a three-dimensional object by stereolithography and composition therefore |
US4942006A (en) * | 1988-12-01 | 1990-07-17 | Michael Ladney | Method of and apparatus for injection molding with pressurized-fluid assist |
US4943928A (en) * | 1988-09-19 | 1990-07-24 | Campbell Albert E | Elongated carrier with a plurality of spot-sources of heat for use with stereolithographic system |
US4945032A (en) * | 1988-03-31 | 1990-07-31 | Desoto, Inc. | Stereolithography using repeated exposures to increase strength and reduce distortion |
US4961154A (en) * | 1986-06-03 | 1990-10-02 | Scitex Corporation Ltd. | Three dimensional modelling apparatus |
US5002855A (en) * | 1989-04-21 | 1991-03-26 | E. I. Du Pont De Nemours And Company | Solid imaging method using multiphasic photohardenable compositions |
US5002854A (en) * | 1989-04-21 | 1991-03-26 | E. I. Du Pont De Nemours And Company | Solid imaging method using compositions containing core-shell polymers |
US5031120A (en) * | 1987-12-23 | 1991-07-09 | Itzchak Pomerantz | Three dimensional modelling apparatus |
US5141680A (en) * | 1988-04-18 | 1992-08-25 | 3D Systems, Inc. | Thermal stereolighography |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5106288A (en) * | 1988-04-11 | 1992-04-21 | Austral Asian Lasers Pty Ltd. | Laser based plastic model making workstation |
JP2715527B2 (en) * | 1989-03-14 | 1998-02-18 | ソニー株式会社 | 3D shape forming method |
-
1991
- 1991-02-14 US US07/655,681 patent/US5474719A/en not_active Expired - Lifetime
-
1992
- 1992-02-12 CA CA002061125A patent/CA2061125A1/en not_active Abandoned
- 1992-02-13 AU AU10915/92A patent/AU1091592A/en not_active Abandoned
- 1992-02-13 JP JP4058849A patent/JPH0775868B2/en not_active Expired - Lifetime
- 1992-02-14 EP EP92301240A patent/EP0499485B1/en not_active Expired - Lifetime
- 1992-02-14 DE DE69227391T patent/DE69227391T2/en not_active Expired - Lifetime
-
1998
- 1998-12-16 HK HK98113680A patent/HK1012308A1/en not_active IP Right Cessation
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2775758A (en) * | 1951-05-25 | 1956-12-25 | Munz Otto John | Photo-glyph recording |
US3264103A (en) * | 1962-06-27 | 1966-08-02 | Du Pont | Photopolymerizable relief printing plates developed by dry thermal transfer |
US3395014A (en) * | 1963-06-07 | 1968-07-30 | Du Pont | Preparation of printing plates by heat plus a pressure gradient |
US4929402A (en) * | 1984-08-08 | 1990-05-29 | 3D Systems, Inc. | Method for production of three-dimensional objects by stereolithography |
JPS61114818A (en) * | 1984-11-09 | 1986-06-02 | Fujitsu Ltd | Apparatus for forming solid configuration |
JPS61114817A (en) * | 1984-11-09 | 1986-06-02 | Fujitsu Ltd | Apparatus for forming solid configuration |
JPS61217219A (en) * | 1985-03-22 | 1986-09-26 | Fujitsu Ltd | Three-dimensional configuration forming device |
FR2583333A1 (en) * | 1985-06-14 | 1986-12-19 | Cilas Alcatel | Process for producing a model of an industrial component and device for implementing this process |
US4961154A (en) * | 1986-06-03 | 1990-10-02 | Scitex Corporation Ltd. | Three dimensional modelling apparatus |
US4863538A (en) * | 1986-10-17 | 1989-09-05 | Board Of Regents, The University Of Texas System | Method and apparatus for producing parts by selective sintering |
JPS63165222A (en) * | 1986-12-25 | 1988-07-08 | Ishikawajima Harima Heavy Ind Co Ltd | Scraping device of unloader |
US5031120A (en) * | 1987-12-23 | 1991-07-09 | Itzchak Pomerantz | Three dimensional modelling apparatus |
JPH01204915A (en) * | 1988-01-27 | 1989-08-17 | Desoto Inc | Optical stereoscopic modeling resin composition |
US4942001A (en) * | 1988-03-02 | 1990-07-17 | Inc. DeSoto | Method of forming a three-dimensional object by stereolithography and composition therefore |
US4945032A (en) * | 1988-03-31 | 1990-07-31 | Desoto, Inc. | Stereolithography using repeated exposures to increase strength and reduce distortion |
EP0354637A2 (en) * | 1988-04-18 | 1990-02-14 | 3D Systems, Inc. | CAD/CAM stereolithographic data conversion |
EP0355944A2 (en) * | 1988-04-18 | 1990-02-28 | 3D Systems, Inc. | Methods for curing partially polymerized parts |
WO1989010254A1 (en) * | 1988-04-18 | 1989-11-02 | 3D Systems, Inc. | Stereolithographic supports |
WO1989010255A1 (en) * | 1988-04-18 | 1989-11-02 | 3D Systems, Inc. | Reducing stereolithographic part distortion through isolation of stress |
WO1989010249A1 (en) * | 1988-04-18 | 1989-11-02 | 3D Systems, Inc. | Methods for curing partially polymerized parts |
US5141680A (en) * | 1988-04-18 | 1992-08-25 | 3D Systems, Inc. | Thermal stereolighography |
US4844144A (en) * | 1988-08-08 | 1989-07-04 | Desoto, Inc. | Investment casting utilizing patterns produced by stereolithography |
US4943928A (en) * | 1988-09-19 | 1990-07-24 | Campbell Albert E | Elongated carrier with a plurality of spot-sources of heat for use with stereolithographic system |
EP0361847A2 (en) * | 1988-09-26 | 1990-04-04 | 3D Systems, Inc. | Recoating of stereolithographic layers |
US4942006A (en) * | 1988-12-01 | 1990-07-17 | Michael Ladney | Method of and apparatus for injection molding with pressurized-fluid assist |
EP0376571A2 (en) * | 1988-12-28 | 1990-07-04 | Sony Corporation | Apparatus and method for producing three-dimensional objects |
US5002855A (en) * | 1989-04-21 | 1991-03-26 | E. I. Du Pont De Nemours And Company | Solid imaging method using multiphasic photohardenable compositions |
US5002854A (en) * | 1989-04-21 | 1991-03-26 | E. I. Du Pont De Nemours And Company | Solid imaging method using compositions containing core-shell polymers |
Non-Patent Citations (7)
Title |
---|
A Review of 3D Solid Object Generation, by A. J. Herbert, Journal of Imaging Technology, vol. 15, No. 4, Aug. 1989, pp. 186 190. * |
A Review of 3D Solid Object Generation, by A. J. Herbert, Journal of Imaging Technology, vol. 15, No. 4, Aug. 1989, pp. 186-190. |
Automatic method for fabricating a three dimensional plastic model with photo hardening polymer, by Hideo Kodama, Rev. Sci. Instrum. (52)11, Nov. 1981, pp. 1770 1773. * |
Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer, by Hideo Kodama, Rev. Sci. Instrum. (52)11, Nov. 1981, pp. 1770-1773. |
Reexamination Certificate of U.S. Patent 4,575,330 (Published Dec. 19, 1989). * |
Solid Object Generation, by Alan J. Herbert, Journal of Applied Photographic Engineering, vol. 8, No. 4, Aug. 1982, pp. 185 188. * |
Solid Object Generation, by Alan J. Herbert, Journal of Applied Photographic Engineering, vol. 8, No. 4, Aug. 1982, pp. 185-188. |
Cited By (204)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6340297B1 (en) | 1990-03-01 | 2002-01-22 | Dsm N.V. | Solid imaging apparatus with coating station |
US6733267B2 (en) | 1990-03-01 | 2004-05-11 | Dsm Desotech, Inc. | Solid imaging apparatus and method with coating station |
US20050013890A1 (en) * | 1990-03-01 | 2005-01-20 | Dsm Desotech, Inc. | Solid imaging apparatus and method with coating station |
US6174156B1 (en) * | 1990-03-01 | 2001-01-16 | Dsm N.V. | Solid imaging apparatus and method with coating station |
US5582876A (en) * | 1991-10-16 | 1996-12-10 | Eos Gmbh Optical Systems | Stereographic apparatus and method |
US5922364A (en) * | 1997-03-03 | 1999-07-13 | Young, Jr.; Albert C. | Stereolithography layering control system |
USRE37875E1 (en) * | 1997-04-30 | 2002-10-15 | John A. Lawton | Solid imaging process using component homogenization |
US5980812A (en) * | 1997-04-30 | 1999-11-09 | Lawton; John A. | Solid imaging process using component homogenization |
US6191382B1 (en) * | 1998-04-02 | 2001-02-20 | Avery Dennison Corporation | Dynamic laser cutting apparatus |
US6554600B1 (en) * | 1998-10-09 | 2003-04-29 | Eos Gmbh Electro Optical Systems | Device for producing a three-dimensional object, especially a laser sintering machine |
US6764636B1 (en) | 1999-03-01 | 2004-07-20 | 3D Systems, Inc. | Fast three-dimensional modeling method and device |
US7754807B2 (en) * | 1999-04-20 | 2010-07-13 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
CN1320992C (en) * | 1999-04-20 | 2007-06-13 | 斯特拉塔西斯公司 | Soluble material and process for three-dimensional modeling |
US20100270707A1 (en) * | 1999-04-20 | 2010-10-28 | Stratasys, Inc. | Souluble material and process for three-dimensional modeling |
US8227540B2 (en) | 1999-04-20 | 2012-07-24 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
US7534386B2 (en) | 1999-04-20 | 2009-05-19 | Stratasys, Inc. | Material and method for three-dimensional modeling |
WO2000062994A1 (en) * | 1999-04-20 | 2000-10-26 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
US20050004282A1 (en) * | 1999-04-20 | 2005-01-06 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
US6790403B1 (en) * | 1999-04-20 | 2004-09-14 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
US20030011103A1 (en) * | 1999-06-23 | 2003-01-16 | Stratasys, Inc. | Method for building three-dimensional models from thermoplastic modeling materials |
US7172715B2 (en) | 1999-06-23 | 2007-02-06 | Stratasys, Inc. | Filament spool auto-change in a modeling machine |
US20040126452A1 (en) * | 1999-06-23 | 2004-07-01 | Stratasys, Inc. | Filament loading system in an extrusion apparatus |
US20040217517A1 (en) * | 1999-06-23 | 2004-11-04 | Stratasys, Inc. | Filament spool auto-change in a modeling machine |
US20040104515A1 (en) * | 1999-06-23 | 2004-06-03 | Stratasys, Inc. | High-Temperature modeling method |
US7297304B2 (en) | 1999-06-23 | 2007-11-20 | Stratasys, Inc. | High-temperature modeling method |
US6923634B2 (en) | 1999-06-23 | 2005-08-02 | Stratasys, Inc. | Filament loading system in an extrusion apparatus |
US20040129823A1 (en) * | 1999-06-23 | 2004-07-08 | Stratasys, Inc. | Method for loading filament in an extrusion apparatus |
US7169337B2 (en) | 1999-06-23 | 2007-01-30 | Stratasys, Inc. | Method for loading filament in an extrusion apparatus |
US7374712B2 (en) | 1999-06-23 | 2008-05-20 | Stratasys, Inc. | Method for building three-dimensional models from thermoplastic modeling materials |
US6200646B1 (en) * | 1999-08-25 | 2001-03-13 | Spectra Group Limited, Inc. | Method for forming polymeric patterns, relief images and colored polymeric bodies using digital light processing technology |
US7795349B2 (en) | 1999-11-05 | 2010-09-14 | Z Corporation | Material systems and methods of three-dimensional printing |
US6547552B1 (en) * | 2000-02-08 | 2003-04-15 | Efrem V. Fudim | Fabrication of three-dimensional objects by irradiation of radiation-curable materials |
US6574523B1 (en) | 2000-05-05 | 2003-06-03 | 3D Systems, Inc. | Selective control of mechanical properties in stereolithographic build style configuration |
US20030004600A1 (en) * | 2001-05-11 | 2003-01-02 | Stratasys, Inc. | Material and method for three-dimensional modeling |
US7314591B2 (en) | 2001-05-11 | 2008-01-01 | Stratasys, Inc. | Method for three-dimensional modeling |
US6656410B2 (en) | 2001-06-22 | 2003-12-02 | 3D Systems, Inc. | Recoating system for using high viscosity build materials in solid freeform fabrication |
US20040063035A1 (en) * | 2002-09-30 | 2004-04-01 | Fuji Photo Film Co., Ltd. | Stereolithographic resin composition comprising photo-curable component, sol-gel resin and filler and stereolithographic method using the same |
US20070145629A1 (en) * | 2003-02-26 | 2007-06-28 | Robby Ebert | Method and device for producing miniature objects or microstructured objects |
EP2301742A1 (en) | 2003-07-23 | 2011-03-30 | DSM IP Assets B.V. | Viscosity reducible radiation curable resin composition |
CN101775197B (en) * | 2003-07-23 | 2012-09-26 | 帝斯曼知识产权资产管理有限公司 | Viscosity reducible radiation curable resin composition |
US20060231982A1 (en) * | 2003-07-23 | 2006-10-19 | Xiaorong You | Viscosity reducible radiation curable resin composition |
US20060100301A1 (en) * | 2003-11-06 | 2006-05-11 | Xiaorong You | Curable compositions and rapid prototyping process using the same |
WO2006078304A2 (en) * | 2004-06-14 | 2006-07-27 | Align Technology, Inc. | Systems and methods for fabricating 3-d objects |
WO2006078304A3 (en) * | 2004-06-14 | 2009-04-09 | Align Technology Inc | Systems and methods for fabricating 3-d objects |
US20100112458A1 (en) * | 2004-06-22 | 2010-05-06 | Xetos Ag | Photopolymerisable composition |
US8603730B2 (en) | 2004-06-22 | 2013-12-10 | Xetos Ag | Photopolymerisable composition |
WO2006020279A3 (en) * | 2004-07-26 | 2007-04-05 | Stratasys Inc | Soluble material and process for three-dimensional modeling |
WO2006020279A2 (en) * | 2004-07-26 | 2006-02-23 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
US20060158456A1 (en) * | 2005-01-18 | 2006-07-20 | Stratasys, Inc. | High-resolution rapid manufacturing |
US20070229497A1 (en) * | 2005-01-18 | 2007-10-04 | Stratasys, Inc. | High-resolution rapid manufacturing |
US7236166B2 (en) | 2005-01-18 | 2007-06-26 | Stratasys, Inc. | High-resolution rapid manufacturing |
US7502023B2 (en) | 2005-01-18 | 2009-03-10 | Stratasys, Inc. | High-resolution rapid manufacturing |
US20080286450A1 (en) * | 2005-02-02 | 2008-11-20 | Dsm Ip Assets B.V. | Method and composition for reducing waste in photo-imaging applications |
US8871133B2 (en) | 2005-02-02 | 2014-10-28 | Dsm Ip Assets B.V. | Method and composition for reducing waste in photo-imaging applications |
US20100001437A1 (en) * | 2005-02-02 | 2010-01-07 | Dsm Ip Assets B.V. | Method and composition for reducing waste in photo-imaging applications |
US20060172230A1 (en) * | 2005-02-02 | 2006-08-03 | Dsm Ip Assets B.V. | Method and composition for reducing waste in photo-imaging applications |
US20100127433A1 (en) * | 2005-03-31 | 2010-05-27 | Francisco Medina | Methods and Systems for Integrating Fluid Dispensing Technology With Stereolithography |
US8252223B2 (en) * | 2005-03-31 | 2012-08-28 | Board Of Regents, The University Of Texas System | Methods and systems for integrating fluid dispensing technology with stereolithography |
US8197743B2 (en) | 2005-04-22 | 2012-06-12 | Keck Graduate Institute | Hydrogel constructs using stereolithography |
US20110059292A1 (en) * | 2005-04-22 | 2011-03-10 | Ryan Wicker | Hydrogel constructs using stereolithography |
US7341214B2 (en) | 2005-06-30 | 2008-03-11 | Stratasys, Inc. | Cassette spool lock |
US20070001050A1 (en) * | 2005-06-30 | 2007-01-04 | Stratasys, Inc. | Cassette spool lock |
US7384255B2 (en) | 2005-07-01 | 2008-06-10 | Stratasys, Inc. | Rapid prototyping system with controlled material feedstock |
US20070003656A1 (en) * | 2005-07-01 | 2007-01-04 | Stratasys, Inc. | Rapid prototyping system with controlled material feedstock |
US8267683B2 (en) * | 2005-07-27 | 2012-09-18 | Shofu Inc. | Apparatus for forming layered object |
US20090025638A1 (en) * | 2005-07-27 | 2009-01-29 | Shofu Inc | Apparatus for Forming Layered Object |
US8697179B2 (en) * | 2005-08-30 | 2014-04-15 | The Boeing Company | Colored coating and method |
US20100330264A1 (en) * | 2005-08-30 | 2010-12-30 | The Boeing Company | Colored coating and method |
US20070105395A1 (en) * | 2005-11-04 | 2007-05-10 | Edward Kinzel | Laser functionalization and patterning of thick-film inks |
US20090299517A1 (en) * | 2006-01-31 | 2009-12-03 | Stratasys, Inc. | Method for building three-dimensional objects with extrusion-based layered deposition systems |
US7899569B2 (en) | 2006-01-31 | 2011-03-01 | Stratasys, Inc. | Method for building three-dimensional objects with extrusion-based layered deposition systems |
US7555357B2 (en) | 2006-01-31 | 2009-06-30 | Stratasys, Inc. | Method for building three-dimensional objects with extrusion-based layered deposition systems |
US20070179657A1 (en) * | 2006-01-31 | 2007-08-02 | Stratasys, Inc. | Method for building three-dimensional objects with extrusion-based layered deposition systems |
US20070233298A1 (en) * | 2006-04-03 | 2007-10-04 | Stratasys, Inc. | Method for optimizing spatial orientations of computer-aided design models |
US7403833B2 (en) | 2006-04-03 | 2008-07-22 | Stratasys, Inc. | Method for optimizing spatial orientations of computer-aided design models |
US7931460B2 (en) | 2006-05-03 | 2011-04-26 | 3D Systems, Inc. | Material delivery system for use in solid imaging |
US20070259066A1 (en) * | 2006-05-03 | 2007-11-08 | 3D Systems, Inc. | Material delivery tension and tracking system for use in solid imaging |
US7467939B2 (en) | 2006-05-03 | 2008-12-23 | 3D Systems, Inc. | Material delivery tension and tracking system for use in solid imaging |
US20090110763A1 (en) * | 2006-05-03 | 2009-04-30 | 3D Systems, Inc. | Material Delivery Tension and Tracking System for Use in Solid Imaging |
US20070257055A1 (en) * | 2006-05-03 | 2007-11-08 | 3D Systems, Inc. | Material delivery system for use in solid imaging |
US7905951B2 (en) | 2006-12-08 | 2011-03-15 | Z Corporation | Three dimensional printing material system and method using peroxide cure |
US8157908B2 (en) | 2006-12-08 | 2012-04-17 | 3D Systems, Inc. | Three dimensional printing material system and method using peroxide cure |
US8167999B2 (en) | 2007-01-10 | 2012-05-01 | 3D Systems, Inc. | Three-dimensional printing material system with improved color, article performance, and ease of use |
US7731887B2 (en) | 2007-01-17 | 2010-06-08 | 3D Systems, Inc. | Method for removing excess uncured build material in solid imaging |
US20080169586A1 (en) * | 2007-01-17 | 2008-07-17 | Hull Charles W | Imager Assembly and Method for Solid Imaging |
US20080179787A1 (en) * | 2007-01-17 | 2008-07-31 | Sperry Charles R | Elevator and method for tilting solid image build platform for reducing air entrainment and for build release |
US7706910B2 (en) | 2007-01-17 | 2010-04-27 | 3D Systems, Inc. | Imager assembly and method for solid imaging |
US20080171284A1 (en) * | 2007-01-17 | 2008-07-17 | Hull Charles W | Method for Removing Excess Uncured Build Material in Solid Imaging |
US20080169589A1 (en) * | 2007-01-17 | 2008-07-17 | Sperry Charles R | Solid imaging apparatus and method |
US8221671B2 (en) | 2007-01-17 | 2012-07-17 | 3D Systems, Inc. | Imager and method for consistent repeatable alignment in a solid imaging apparatus |
US20080181977A1 (en) * | 2007-01-17 | 2008-07-31 | Sperry Charles R | Brush assembly for removal of excess uncured build material |
US7614866B2 (en) | 2007-01-17 | 2009-11-10 | 3D Systems, Inc. | Solid imaging apparatus and method |
US20080206383A1 (en) * | 2007-01-17 | 2008-08-28 | Hull Charles W | Solid Imaging System with Removal of Excess Uncured Build Material |
US20080179786A1 (en) * | 2007-01-17 | 2008-07-31 | Sperry Charles R | Cartridge for solid imaging apparatus and method |
US20080231731A1 (en) * | 2007-01-17 | 2008-09-25 | Hull Charles W | Imager and method for consistent repeatable alignment in a solid imaging apparatus |
US20080170112A1 (en) * | 2007-01-17 | 2008-07-17 | Hull Charles W | Build pad, solid image build, and method for building build supports |
US7771183B2 (en) | 2007-01-17 | 2010-08-10 | 3D Systems, Inc. | Solid imaging system with removal of excess uncured build material |
US8105066B2 (en) | 2007-01-17 | 2012-01-31 | 3D Systems, Inc. | Cartridge for solid imaging apparatus and method |
US8465689B2 (en) | 2007-01-17 | 2013-06-18 | 3D Systems, Inc. | Elevator and method for tilting solid image build platform for reducing air entrainment and for build release |
US8003039B2 (en) | 2007-01-17 | 2011-08-23 | 3D Systems, Inc. | Method for tilting solid image build platform for reducing air entrainment and for build release |
US20080226346A1 (en) * | 2007-01-17 | 2008-09-18 | 3D Systems, Inc. | Inkjet Solid Imaging System and Method for Solid Imaging |
US8506862B2 (en) | 2007-02-22 | 2013-08-13 | 3D Systems, Inc. | Three dimensional printing material system and method using plasticizer-assisted sintering |
US7968626B2 (en) | 2007-02-22 | 2011-06-28 | Z Corporation | Three dimensional printing material system and method using plasticizer-assisted sintering |
WO2008112061A1 (en) * | 2007-03-14 | 2008-09-18 | Stratasys, Inc. | Method of building three-dimensional objects with modified abs materials |
US20090018685A1 (en) * | 2007-07-11 | 2009-01-15 | Stratasys, Inc. | Method for building three-dimensional objects with thin wall regions |
US8050786B2 (en) | 2007-07-11 | 2011-11-01 | Stratasys, Inc. | Method for building three-dimensional objects with thin wall regions |
US20090273122A1 (en) * | 2008-04-30 | 2009-11-05 | Stratasys, Inc. | Liquefier assembly for use in extrusion-based digital manufacturing systems |
US20090274540A1 (en) * | 2008-04-30 | 2009-11-05 | Stratasys, Inc. | Filament drive mechanism for use in extrusion-based digital manufacturing systems |
US7897074B2 (en) | 2008-04-30 | 2011-03-01 | Stratasys, Inc. | Liquefier assembly for use in extrusion-based digital manufacturing systems |
US7896209B2 (en) | 2008-04-30 | 2011-03-01 | Stratasys, Inc. | Filament drive mechanism for use in extrusion-based digital manufacturing systems |
US8155775B2 (en) | 2008-10-02 | 2012-04-10 | Stratasys, Inc. | Support structure packaging |
US20100086721A1 (en) * | 2008-10-02 | 2010-04-08 | Stratasys, Inc. | Support structure packaging |
US8246888B2 (en) | 2008-10-17 | 2012-08-21 | Stratasys, Inc. | Support material for digital manufacturing systems |
US20100096072A1 (en) * | 2008-10-17 | 2010-04-22 | Stratasys, Inc. | Support material for digital manufacturing systems |
US8981002B2 (en) | 2009-03-19 | 2015-03-17 | Stratasys, Inc. | Biodegradable polymer compositions |
US9714319B2 (en) | 2009-03-19 | 2017-07-25 | Stratasys, Inc. | Biodegradable polymer compositions |
US20100327479A1 (en) * | 2009-06-23 | 2010-12-30 | Stratasys, Inc. | Consumable materials having customized characteristics |
US20120164322A1 (en) * | 2009-07-15 | 2012-06-28 | Phenix Systems | Device for forming thin films and method for using such a device |
US9440285B2 (en) * | 2009-07-15 | 2016-09-13 | Phenix Systems | Device for forming thin films and method for using such a device |
US9498921B2 (en) | 2009-09-17 | 2016-11-22 | Phenix Systems | Method for creating an object, by means of laser treatment, from at least two different powder materials, and corresponding facility |
US20110186081A1 (en) * | 2010-01-05 | 2011-08-04 | Stratasys, Inc. | Support cleaning system |
US9592539B2 (en) | 2010-01-05 | 2017-03-14 | Stratasys, Inc. | Support cleaning system |
US9855589B2 (en) | 2010-01-05 | 2018-01-02 | Stratasys, Inc. | Support cleaning system |
US20110178621A1 (en) * | 2010-01-15 | 2011-07-21 | Stratasys, Inc. | Method for generating and building support structures with deposition-based digital manufacturing systems |
US9573323B2 (en) | 2010-01-15 | 2017-02-21 | Stratasys, Inc. | Method for generating and building support structures with deposition-based digital manufacturing systems |
US8983643B2 (en) | 2010-01-15 | 2015-03-17 | Stratasys, Inc. | Method for generating and building support structures with deposition-based digital manufacturing systems |
US8877115B2 (en) | 2010-08-20 | 2014-11-04 | Xydex Pty Ltd | Apparatus and method for making an object |
US9375881B2 (en) | 2010-08-20 | 2016-06-28 | Zydex Pty Ltd | Method for making an object |
WO2012021940A1 (en) * | 2010-08-20 | 2012-02-23 | Zydex Pty Ltd | Apparatus and method for making an object |
US10695979B2 (en) | 2010-09-17 | 2020-06-30 | Stratasys, Inc. | Core/shell filament for use with extrusion-based additive manufacturing system |
US10493695B2 (en) | 2010-09-17 | 2019-12-03 | Stratasys, Inc. | Additive manufacturing method for building three-dimensional objects with core-shell arrangements, and three-dimensional objects thereof |
US8920697B2 (en) | 2010-09-17 | 2014-12-30 | Stratasys, Inc. | Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments |
US8801990B2 (en) | 2010-09-17 | 2014-08-12 | Stratasys, Inc. | Method for building three-dimensional models in extrusion-based additive manufacturing systems using core-shell semi-crystalline consumable filaments |
US9738031B2 (en) | 2010-09-17 | 2017-08-22 | Stratasys, Inc. | Additive manufacturing method for building three-dimensional objects with core-shell arrangements |
WO2012052991A2 (en) * | 2010-10-19 | 2012-04-26 | N.R. Spuntech Industries Ltd. | In-line printing process on wet non-woven fabric and products thereof |
US8821979B2 (en) | 2010-10-19 | 2014-09-02 | N. R. Spuntech Industries Ltd. | In-line printing process on wet non-woven fabric and products thereof |
RU2584203C2 (en) * | 2010-10-19 | 2016-05-20 | Н.Р. Спантек Индастриз Лтд. | Flow method of printing wet nonwoven material and products obtained using said method |
WO2012052991A3 (en) * | 2010-10-19 | 2012-08-02 | N.R. Spuntech Industries Ltd. | In-line printing process on wet non-woven fabric and products thereof |
US9079357B2 (en) * | 2011-03-29 | 2015-07-14 | Ivoclar Vivadent Ag | Method for the layered construction of a shaped body made of highly viscous photopolymerizable material |
US20120248657A1 (en) * | 2011-03-29 | 2012-10-04 | Technische Universitat Wien | Method for the layered construction of a shaped body made of highly viscous photopolymerizable material |
US8460755B2 (en) | 2011-04-07 | 2013-06-11 | Stratasys, Inc. | Extrusion-based additive manufacturing process with part annealing |
US9359499B2 (en) | 2011-05-05 | 2016-06-07 | Stratasys, Inc. | Radiation curable polymers |
US9108291B2 (en) | 2011-09-22 | 2015-08-18 | Dow Global Technologies Llc | Method of forming structured-open-network polishing pads |
US8894799B2 (en) * | 2011-09-22 | 2014-11-25 | Dow Global Technologies Llc | Method of forming layered-open-network polishing pads |
US8801949B2 (en) | 2011-09-22 | 2014-08-12 | Dow Global Technologies Llc | Method of forming open-network polishing pads |
US9283716B2 (en) | 2011-09-23 | 2016-03-15 | Statasys, Inc. | Support structure removal system |
US10016945B2 (en) | 2011-09-23 | 2018-07-10 | Stratasys, Inc. | Support structure removal system |
US8459280B2 (en) | 2011-09-23 | 2013-06-11 | Stratasys, Inc. | Support structure removal system |
US9708457B2 (en) | 2012-06-28 | 2017-07-18 | Stratasys, Inc. | Moisture scavenger composition |
US9034237B2 (en) | 2012-09-25 | 2015-05-19 | 3D Systems, Inc. | Solid imaging systems, components thereof, and methods of solid imaging |
US9592530B2 (en) | 2012-11-21 | 2017-03-14 | Stratasys, Inc. | Additive manufacturing with polyamide consumable materials |
US11148374B2 (en) | 2012-11-21 | 2021-10-19 | Stratasys, Inc. | Feedstock material for printing three-dimensional parts with crystallization kinetics control |
US12064917B2 (en) | 2012-11-21 | 2024-08-20 | Stratasys, Inc. | Method for printing three-dimensional parts with cyrstallization kinetics control |
US9744722B2 (en) | 2012-11-21 | 2017-08-29 | Stratasys, Inc. | Additive manufacturing with polyamide consumable materials |
CN103111756A (en) * | 2013-02-05 | 2013-05-22 | 余振新 | Laser optical path guiding system of laser sinter molding equipment |
CN103111756B (en) * | 2013-02-05 | 2015-09-09 | 余振新 | The laser optical path guidance system of laser sintering and moulding equipment |
US20140252685A1 (en) * | 2013-03-06 | 2014-09-11 | University Of Louisville Research Foundation, Inc. | Powder Bed Fusion Systems, Apparatus, and Processes for Multi-Material Part Production |
US9523934B2 (en) | 2013-07-17 | 2016-12-20 | Stratasys, Inc. | Engineering-grade consumable materials for electrophotography-based additive manufacturing |
US10061221B2 (en) | 2013-07-17 | 2018-08-28 | Evolve Additive Solutions, Inc. | Engineering-grade consumable materials for electrophotography-based additive manufacturing system |
US9714318B2 (en) | 2013-07-26 | 2017-07-25 | Stratasys, Inc. | Polyglycolic acid support material for additive manufacturing systems |
KR20150114790A (en) * | 2014-04-02 | 2015-10-13 | 성균관대학교산학협력단 | Thixotropic oligomer composition for stereolithography and three dimensional article prepared therefrom |
US20170369731A1 (en) * | 2014-06-08 | 2017-12-28 | Massivit 3D Printing Technologies Ltd | Method and apparatus for manufacture of 3d objects |
KR101834690B1 (en) | 2014-06-08 | 2018-03-05 | 매시빗 3디 프린팅 테크놀로지스 리미티드 | A method and appratus for manufacture of 3d objects |
US20210292595A1 (en) * | 2014-06-08 | 2021-09-23 | Massivit 3D Printing Technologies Ltd | Method and appratus for manufacture of 3d objects |
US9216543B1 (en) | 2014-06-08 | 2015-12-22 | Massivit 3D Printing Technologies Ltd | Method of forming a three-dimensional object |
WO2015189837A1 (en) * | 2014-06-08 | 2015-12-17 | Massivit 3D Printing Technologies Ltd. | A method and appratus for manufacture of 3d objects |
US10167409B2 (en) * | 2014-06-08 | 2019-01-01 | Massivit 3D Printing Technologies Ltd | Method and appratus for manufacture of 3D objects |
US10059053B2 (en) | 2014-11-04 | 2018-08-28 | Stratasys, Inc. | Break-away support material for additive manufacturing |
US11046014B2 (en) | 2014-11-04 | 2021-06-29 | Stratasys, Inc. | Break-away support material for additive manufacturing |
US20180009162A1 (en) * | 2015-02-05 | 2018-01-11 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
US10974445B2 (en) * | 2015-02-05 | 2021-04-13 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
US10792855B2 (en) * | 2015-02-05 | 2020-10-06 | Carbon, Inc. | Method of additive manufacturing by intermittent exposure |
US11007705B2 (en) | 2015-02-13 | 2021-05-18 | University Of Florida Research Foundation, Inc. | High speed 3D printing system for wound and tissue replacement |
WO2016181378A3 (en) * | 2015-05-13 | 2017-11-09 | Massivit 3D Printing Technologies Ltd | A method and apparatus for manufacture of 3d objects |
US20160332367A1 (en) * | 2015-05-15 | 2016-11-17 | Dentsply Sirona Inc. | Three-dimensional printing systems for rapidly producing objects |
US10639877B2 (en) * | 2015-05-15 | 2020-05-05 | Dentsply Sirona Inc. | Three-dimensional printing systems for rapidly producing objects |
US20180290380A1 (en) * | 2015-10-15 | 2018-10-11 | Saint-Gobain Ceramics & Plastics, Inc. | Method for forming a three dimensional body from a mixture with a high content of solid particles |
US12064919B2 (en) * | 2015-10-15 | 2024-08-20 | Saint-Gobain Ceramics & Plastics, Inc. | Method for forming a three dimensional body from a mixture with a high content of solid particles |
EP3362265B1 (en) | 2015-10-15 | 2021-04-21 | Saint-Gobain Ceramics&Plastics, Inc. | Method for forming a three dimensional body from a mixture with a high content of solid particles |
US11141919B2 (en) | 2015-12-09 | 2021-10-12 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
US11845225B2 (en) | 2015-12-09 | 2023-12-19 | Holo, Inc. | Multi-material stereolithographic three dimensional printing |
US10414088B2 (en) * | 2015-12-30 | 2019-09-17 | National Central University | Platform structure for use in low-temperature manufacturing of scaffold for use in tissue engineering and method of low-temperature manufacturing scaffold for use in tissue engineering |
US11124644B2 (en) | 2016-09-01 | 2021-09-21 | University Of Florida Research Foundation, Inc. | Organic microgel system for 3D printing of silicone structures |
US20200086554A1 (en) * | 2016-12-15 | 2020-03-19 | Prismlab China Ltd. | Photocuring-type three-dimensional printing device capable of automatic continuous printing, method and system |
US11628615B2 (en) * | 2016-12-15 | 2023-04-18 | Prismlab China Ltd. | Photocuring-type three-dimensional printing device capable of automatic continuous printing |
US10935891B2 (en) | 2017-03-13 | 2021-03-02 | Holo, Inc. | Multi wavelength stereolithography hardware configurations |
US11034142B2 (en) * | 2017-03-15 | 2021-06-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Temperature regulation to improve additive 3D printing function |
US10882251B2 (en) * | 2017-05-15 | 2021-01-05 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US11161301B2 (en) | 2017-05-15 | 2021-11-02 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US10421233B2 (en) | 2017-05-15 | 2019-09-24 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US10464259B2 (en) | 2017-05-15 | 2019-11-05 | Holo, Inc. | Viscous film three-dimensional printing systems and methods |
US11400650B2 (en) | 2017-06-16 | 2022-08-02 | Holo, Inc. | Methods and systems for stereolithography three-dimensional printing |
US10953597B2 (en) | 2017-07-21 | 2021-03-23 | Saint-Gobain Performance Plastics Corporation | Method of forming a three-dimensional body |
US11390016B2 (en) * | 2017-12-06 | 2022-07-19 | Massivit 3D Printing Technologies Ltd. | Complex shaped 3D objects fabrication |
US11565465B2 (en) * | 2017-12-07 | 2023-01-31 | Canon Kabushiki Kaisha | Method for manufacturing three-dimensional shaped object, additive manufacturing apparatus, and article |
US20190176388A1 (en) * | 2017-12-07 | 2019-06-13 | Canon Kabushiki Kaisha | Method for manufacturing three-dimensional shaped object, additive manufacturing apparatus, and article |
US11654625B2 (en) | 2018-10-31 | 2023-05-23 | Carbon, Inc. | Apparatuses for additively manufacturing three-dimensional objects |
US11192302B2 (en) * | 2018-10-31 | 2021-12-07 | Carbon, Inc. | Apparatuses for additively manufacturing three-dimensional objects |
US11351735B2 (en) | 2018-12-26 | 2022-06-07 | Holo, Inc. | Sensors for three-dimensional printing systems and methods |
US11548224B2 (en) | 2019-02-21 | 2023-01-10 | Sprintray, Inc. | Apparatus, system, and method for use in three-dimensional printing |
US11679555B2 (en) | 2019-02-21 | 2023-06-20 | Sprintray, Inc. | Reservoir with substrate assembly for reducing separation forces in three-dimensional printing |
US10766194B1 (en) | 2019-02-21 | 2020-09-08 | Sprintray Inc. | Apparatus, system, and method for use in three-dimensional printing |
WO2023003820A1 (en) * | 2021-07-19 | 2023-01-26 | Quadratic 3D, Inc. | Systems and methods for high throughput volumetric three-dimensional (3d) printing |
US20230123480A1 (en) * | 2021-10-14 | 2023-04-20 | Align Technology, Inc. | Recoating system with reduced resin evaporation |
Also Published As
Publication number | Publication date |
---|---|
CA2061125A1 (en) | 1992-08-15 |
JPH0775868B2 (en) | 1995-08-16 |
DE69227391T2 (en) | 1999-04-29 |
EP0499485A2 (en) | 1992-08-19 |
EP0499485B1 (en) | 1998-10-28 |
EP0499485A3 (en) | 1992-12-16 |
DE69227391D1 (en) | 1998-12-03 |
HK1012308A1 (en) | 1999-07-30 |
AU1091592A (en) | 1992-08-27 |
JPH0577324A (en) | 1993-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5474719A (en) | Method for forming solid objects utilizing viscosity reducible compositions | |
US5236812A (en) | Solid imaging method and apparatus | |
EP0435564B1 (en) | Solid imaging system | |
EP0499486B1 (en) | Investment casting method and pattern material | |
US5094935A (en) | Method and apparatus for fabricating three dimensional objects from photoformed precursor sheets | |
EP0393674B1 (en) | Solid imaging method utilizing photohardenable compositions of self limiting thickness by phase separation | |
US5002855A (en) | Solid imaging method using multiphasic photohardenable compositions | |
EP0414215B1 (en) | Solid imaging method utilizing compositions comprising thermally coalescible materials | |
US4996010A (en) | Methods and apparatus for production of three-dimensional objects by stereolithography | |
EP0465273B1 (en) | Solid imaging system using inhibition of photohardening | |
US5051334A (en) | Solid imaging method using photohardenable compositions containing hollow spheres | |
AU642022B2 (en) | Solid imaging system using incremental photoforming | |
EP0393675B1 (en) | Solid imaging method using photohardenable materials of self limiting thickness | |
EP0436352B1 (en) | Solid imaging method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE Free format text: LICENSE;ASSIGNORS:FAN, ROXY N.;GROSSA, MARIO;LAWTON, JOHN A.;REEL/FRAME:005919/0507;SIGNING DATES FROM 19910412 TO 19910418 |
|
AS | Assignment |
Owner name: DSM, N.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:E.I. DU PONT DE NEMOURS AND COMPANY;REEL/FRAME:009996/0898 Effective date: 19990429 |
|
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19991212 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20000908 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: DSM IP ASSETS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DSM N.V.;REEL/FRAME:014863/0133 Effective date: 20031208 |
|
FPAY | Fee payment |
Year of fee payment: 12 |