US5440202A - Electron beam device having a direct current feed with switching stages therein - Google Patents

Electron beam device having a direct current feed with switching stages therein Download PDF

Info

Publication number
US5440202A
US5440202A US08/030,889 US3088993A US5440202A US 5440202 A US5440202 A US 5440202A US 3088993 A US3088993 A US 3088993A US 5440202 A US5440202 A US 5440202A
Authority
US
United States
Prior art keywords
electron beam
collector
anode
stages
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/030,889
Inventor
Hans-Gunter Mathews
Wolfram Schminke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PL TECHNOLOGIES AG
Original Assignee
Eckold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eckold AG filed Critical Eckold AG
Assigned to ASEA BROWN BOVERI LTD. reassignment ASEA BROWN BOVERI LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHMINKE, WOLFRAM, MATHEWS, HANS-GUNTER
Assigned to THOMCAST AG reassignment THOMCAST AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASEA BROWN BOVERI LTD.
Application granted granted Critical
Publication of US5440202A publication Critical patent/US5440202A/en
Assigned to PL TECHNOLOGIES AG reassignment PL TECHNOLOGIES AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: THOMCAST AG
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/19Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in series, e.g. for voltage multiplication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • H01J23/0275Multistage collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/34Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses

Definitions

  • the present invention relates to an electron beam device comprising
  • Such an electron beam device is known, for example, as a quasi-optical gyrotron with a "depressed collector” from the Article by H.-G. Mathews, J. de Physique, Colloque C1, supplement au no. 1, Tome 50, January 1989, pages C1-643 to C1-658 (in particular, see FIG. 11 in this document).
  • ECRH Electro Cyclotron Resonance Heating
  • a series circuit of ignitrons is also used as a "crowbar", which limits or destroys the energy stored in the system.
  • a high-power tetrode such as that offered commercially by, for example, Asea Brown Boveri AG under the type number CQK 200-4, has been successful as switching and regulating tube.
  • gyrotron tubes such as, for example, the GT 92-5p type, also manufactured and offered by Asea Brown Boveri AG, operate with cathode voltages of up to -90 kV and currents of up to 50 A which must be provided by the feed arrangement. In individual cases, feed arrangements are also used which supply up to 3 gyrotron tubes at the same time.
  • a separate low-power tube modulator is used in the prior art, which switches the auxiliary or modulation anode between 0 and approx. +30 kV with respect to the cathode potential.
  • Gyrotron tubes without an auxiliary anode are also used, the modulation in this case being limited by the switching speed of the high-power cathode modulator.
  • gyrotron tubes of the next generation will be equipped with a so-called "depressed collector” described in the printed document mentioned initially, the potential of which is lowered with respect to the anode and which, as an electron collector, decelerates the electrons of the high-power electron beam before it is dissipated.
  • a desirable feature with respect to the efficiency would be a division of the collector into several collector stages arranged successively which would in each case be on a lower potential step.
  • this would require high-power high-tension feed arrangements for supplying the individual collector stages which could only be implemented at great expense by means of the high-voltage tube modulators used in the prior art.
  • one object of the invention is to develop electron beam devices of the type initially mentioned in such a manner that they exhibit reduced technical complexity and increased reliability and safety, the efficiency being improved at the same time.
  • the collector comprises several collector stages arranged successively in the direction of the beam axis, which are in each case on a lower potential step;
  • the stepped potentials of the collector stages are provided by corresponding taps between the switching stages of the high-voltage direct-current supply.
  • the core of the invention consists of providing as a feed arrangement for the collector stages a series circuit of switchable medium-voltage sources which, on the one hand, can be easily designed in semiconductor technology and, on the other hand, provide different potentials in a simple manner by means of taps between the stages.
  • the switchability of the individual stages provides for fast disconnection of the entire feed arrangement in the case of an emergency without requiring additional "crowbar" circuits.
  • each of the switching stages comprises the secondary winding of a line transformer, a switching stage rectifier connected thereto, subsequent means for smoothing the rectified voltage and at least one switching stage switch located at the output and controlled by a stage controller;
  • a reversely polarized cascade diode is arranged in each case between the outputs of each switching stage.
  • FIGS. 1a, 1b show diagrammatic arrangements of the electrodes with their associated connected voltage and current values for gyrotron tubes of the prior art
  • FIG. 1c shows a diagrammatic arrangement, corresponding to the FIGS. 1a, 1b, for a gyrotron tube with 1-stage "depressed collector" of the prior art
  • FIGS. 1d, 1e show diagrammatic arrangements of the electrodes with their associated connected voltage and current values in two connection variants for gyrotron tubes having a multi-stage collector, which are the subject-matter of the invention
  • FIG. 2 shows the circuit diagram of an exemplary embodiment of a device according to the invention comprising a feed arrangement, consisting of series-connected switching stages, for the collector stages;
  • FIG. 3 shows an embodiment of the feed arrangement for the collector stages according to FIG. 3.
  • a cathode 1 for example in the form of a ring cathode
  • an anode 3 as main anode
  • a collector 4 as electron collector
  • the cathode 1 instead of an anode 3 going through to the cathode 1 (FIG. 1b), the anode 3 can be shortened at the cathode end and can be supplemented by a separate auxiliary anode 2 (FIG. 1a). Both variants are also possible in the other FIGS. 1c-1e and are indicated by dashed lines.
  • Exemplary connected values, that is to say voltages and currents, of the individual electrodes are specified in the associated boxes in the Figures: in FIG. 1a (with the auxiliary anode 2 as modulation anode), the cathode 1 is at a potential of -80 kV with a current of 50 A, the auxiliary anode is switchably connected to potentials of -80 kV or -50 kV (with approx. 10 mA current), the anode 3, like the collector 4, is at the zero potential, the anode drawing only approx. 50 mA but the collector drawing a 50 A current.
  • the connected value of this electrode is missing; the connected values of the other electrodes, in contrast, are unchanged.
  • the potential difference between cathode 1 and anode 3 is again 80 kV.
  • the cathode 1 is at a potential of -40 KV with a current of 50A
  • the auxiliary anode 2 is switchably connected to potentials of -40 KV and -10 KV
  • the anode 3 is at a potential of 40 KV with a current of 50 mA
  • the collector 4 is at a potential of 0 KV with a current of 50A.
  • the (1-stage) collector 4 is in this case not at anode potential but its potential is between that of the anode and of the cathode. It thus decelerates the electrons in the electron beam and is called a "depressed collector" because of its lowered potential.
  • FIGS. 1d and 1e An exemplary arrangement of a gyrotron according to the invention is reproduced in FIGS. 1d and 1e, the two Figures (analogously to FIGS. 1a and 1c) only differing by different connected values at the individual electrodes.
  • the collector 4 is no longer a 1-stage collector in this case but comprises several (in this case four) collector stages 6 which are partially constructed as rings and partially as a conical collector. In the case of FIG.
  • the cathode 1 is at a potential of -80 KV with a current of 50A
  • the auxiliary anode 2 is switchably connected to potentials of -80 KV and -50 KV
  • the anode 3 is at a potential of 0 KV with a current of 50 mA
  • the collector stages 6 have the stepped connected values A1, A2, A3 and A4, which are associated with potentials of, for example, -40, -50, -60 and -80 kV and currents of 15, 20, 10 and 5 A, respectively.
  • the cathode 1 is at a potential of -40 KV with a current of 50A
  • the auxiliary anode 2 is switchably connected to potentials of -40 KV and -10 KV
  • the anode 3 is at a potential of 40 KV with a current of 50 mA
  • the corresponding stepped connected values are designated by A5, A6, A7 and A8 and are linked to potentials of 0, -10, -20 and -40 kV and currents of again 15, 20, 10 and 5 A, respectively.
  • FIG. 2 A preferred exemplary embodiment of the invention in the form of a gyrotron according to FIG. 1e with an associated feed arrangement is shown in FIG. 2.
  • the feed arrangement for supplying the electrodes 1, 2, 3 and 4 (with collector stages 6) comprises, on the one hand, a conventional supply section 14 which is constructed of a line transformer 8 connected to the power line, followed by a rectifier 9 and a capacitor C for smoothing.
  • This conventional supply section 14 supplies a constant direct voltage which is between the first of the four collector stages 6 (with connected value A5), which is connected to ground, and the anode 3 (connected value All; e.g. +40 kV, 50 mA according to FIG. 1e) and positively biases the anode 3 with respect to collector 4.
  • the anode current is limited by a resistor R2.
  • the feed arrangement comprises, on the other hand, a high-tension direct-current supply 13 which consists of a plurality of similar switching stages S1, S2, S3, S4, S5, S6 which are in each case constructed as switchable medium-voltage sources and are connected in series with their outputs.
  • This high-tension direct-current supply 13 provides the stepped potentials needed for the collector stages 6 by means of its actual outputs and corresponding taps between its switching stages S1, S2, S3, S4, S5, S6.
  • the positive output of the high-tension direct-current source 13 is connected to the negative output of the conventional section, which is connected to ground as reference potential, the negative output of the high-tension direct-current source 13 is connected at the same time to the cathode 1 and to the last one of the four collector stages 6 (connected values A9 corresponding to -40 kV, 50 A and A8 corresponding to -40 kV, 5 A).
  • the intermediate connected values A6 and A7 (-10 kV, 20 A and -20 kV, 10 A) for the two center collector stages are provided via two taps which are provided within the high-tension direct-current supply 13, for example between the switching stages S2 and S3 and, respectively, S4 and S5.
  • the auxiliary anode 2 is kept at the reference potential (ground) of the first collector stage or respectively of the positive output of the high-tension direct-current supply 13 via a current-limiting resistor R1.
  • a switching tube 7 can be provided which pulls the potential of the auxiliary anode 2 to the cathode potential on turn-on.
  • Connected value A10 is thus switchable between the reference potentials of the first collector stage or the positive output of the high-tension direct-current supply 13 and the cathode potential A9.
  • the high-tension direct-current supply 13 provides the various potentials (connected values) needed for the stage collector with little circuit complexity and can be rapidly switched on and off when needed so that both additional "crowbar" circuits and modulation tubes can be omitted.
  • a preferred exemplary embodiment of the internal structure of a high-voltage direct-current supply 13 according to FIG. 2 is shown in FIG. 3: the individual switching stages S1, S2, S3, S4, S5, S6 are switchable medium-voltage sources which are supplied from an alternating-voltage source 11 (the line system) via a line transformer 12 with a primary winding and a plurality of secondary windings.
  • Each of the similar switching stages S1, S2, S3, S4, S5, S6 comprises a switching stage rectifier GS connected to the associated secondary winding, which is followed by means for smoothing, for example a series-connected switching stage inductor LS and a parallel-connected switching stage capacitor CS.
  • a controllable switching stage switch SS preferably a power semiconductor in the form of a GTO (Gate Turn-Off Thyristor) or IGBT (Insulated Gate Bipolar Transistor), is provided in at least one of the direct-voltage outputs. The totality of the switching stage switches SS is selected by a stage controller 10.
  • the individual switching stages S1, S2, S3, S4, S5, S6 are connected in series with their direct-voltage outputs, a reversely polarized cascade diode DK being in each case arranged as freewheeling diode between the outputs of a switching stage.
  • the direct voltages of the individual switching stages S1, S2, S3, S4, S5, S6 e.g. 1-10 kV
  • S1, S2, S3, S4, S5, S6 then add up to form a total output voltage (of, e.g. 40 kV).
  • Various voltages Changing with time can be preset at the outputs and intermediate taps by optionally switching on various switching stages. A reliable rapid disconnection is achieved by the fact that the switching stage switches SS are opened simultaneously in all switching stages S1, S2, S3, S4, S5, S6 by the stage controller 10.
  • the high-tension direct-current supply allows rapid connection and disconnection within a few ( ⁇ 20) microseconds
  • the high-tension direct-current supply potential can float because of its DC isolation
  • the device has very high efficiency
  • the circuit configuration is modular and comparatively simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Microwave Tubes (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

In an electron beam device having a cathode (1), in which a high-power electron beam propagating along a beam axis (5) is generated, an anode (3) arranged behind the cathode (1) in the direction of beam axis (5), and a collector (4), arranged behind the anode (3) in the direction of the beam axis (5), for decelerating the electrons of the electron beam, the collector (4) is constructed of several collector stages (6) which are arranged successively in the direction of the beam axis (5) and which successively decrease in potential. A high-voltage direct-current supply (13), which consists of a series of similar switching stages (S1, . . . , S6) which are in each case constructed as switchable medium-voltage sources and the outputs of which are connected in series, is provided for the feed arrangement. The potentials of the collector stages (6) are provided by corresponding taps between the switching stages (S1, . . . , S6) of the high-voltage direct-current supply (13 ).

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an electron beam device comprising
(a) a cathode which is at a cathode potential and in which a high-power electron beam propagating along a beam axis is generated;
(b) an anode arranged behind the cathode in the direction of the beam axis, which is at an anode potential which is increased compared with the cathode potential and accelerates the electrons of the electron beam;
(c) a collector arranged behind the anode in the direction of the beam axis for decelerating the electrons of the electron beam, the collector being at a collector potential which is lower than the anode potential; and
(d) a feed arrangement for providing the individual potentials for the cathode, anode and the collector.
Such an electron beam device is known, for example, as a quasi-optical gyrotron with a "depressed collector" from the Article by H.-G. Mathews, J. de Physique, Colloque C1, supplement au no. 1, Tome 50, January 1989, pages C1-643 to C1-658 (in particular, see FIG. 11 in this document).
2. Discussion of Background
Feed arrangements for high-power gyrotron tubes are used, for example, for plasma heating in plasma fusion experiments (ECRH=Electron Cyclotron Resonance Heating) at present mainly operate with a system of high-tension transformer, rectifier, tube modulator and capacitor bank. To protect the gyrotron tube, a series circuit of ignitrons is also used as a "crowbar", which limits or destroys the energy stored in the system. A high-power tetrode such as that offered commercially by, for example, Asea Brown Boveri AG under the type number CQK 200-4, has been successful as switching and regulating tube.
Currently used gyrotron tubes such as, for example, the GT 92-5p type, also manufactured and offered by Asea Brown Boveri AG, operate with cathode voltages of up to -90 kV and currents of up to 50 A which must be provided by the feed arrangement. In individual cases, feed arrangements are also used which supply up to 3 gyrotron tubes at the same time.
To turn the gyrotron tube off or on, a separate low-power tube modulator is used in the prior art, which switches the auxiliary or modulation anode between 0 and approx. +30 kV with respect to the cathode potential. Gyrotron tubes without an auxiliary anode are also used, the modulation in this case being limited by the switching speed of the high-power cathode modulator.
To increase their efficiency, gyrotron tubes of the next generation will be equipped with a so-called "depressed collector" described in the printed document mentioned initially, the potential of which is lowered with respect to the anode and which, as an electron collector, decelerates the electrons of the high-power electron beam before it is dissipated.
A desirable feature with respect to the efficiency would be a division of the collector into several collector stages arranged successively which would in each case be on a lower potential step. However, this would require high-power high-tension feed arrangements for supplying the individual collector stages which could only be implemented at great expense by means of the high-voltage tube modulators used in the prior art.
SUMMARY OF THE INVENTION
Accordingly, one object of the invention is to develop electron beam devices of the type initially mentioned in such a manner that they exhibit reduced technical complexity and increased reliability and safety, the efficiency being improved at the same time.
In a device of the type initially mentioned, this object is achieved by the fact that
(e) the collector comprises several collector stages arranged successively in the direction of the beam axis, which are in each case on a lower potential step;
(f) the feed arrangement comprises a high-voltage direct-current supply which consists of a plurality of similar switching stages which are in each case constructed as switchable medium-voltage sources and the outputs of which are connected in series; and
(g) the stepped potentials of the collector stages are provided by corresponding taps between the switching stages of the high-voltage direct-current supply.
The core of the invention consists of providing as a feed arrangement for the collector stages a series circuit of switchable medium-voltage sources which, on the one hand, can be easily designed in semiconductor technology and, on the other hand, provide different potentials in a simple manner by means of taps between the stages. In addition, the switchability of the individual stages provides for fast disconnection of the entire feed arrangement in the case of an emergency without requiring additional "crowbar" circuits.
A preferred embodiment of the device according to the invention is characterized by the fact that
(a) each of the switching stages comprises the secondary winding of a line transformer, a switching stage rectifier connected thereto, subsequent means for smoothing the rectified voltage and at least one switching stage switch located at the output and controlled by a stage controller; and
(b) a reversely polarized cascade diode is arranged in each case between the outputs of each switching stage.
This results in a feed arrangement which, in another design and operating mode, has already been successful as a high-voltage direct-current supply for the neutral particle injection in plasma experiments (see also EP-B1-0,134,505) and as pulse step modulator (PSM) in broadcast transmitters.
Further embodiments are obtained from the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the invention becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
FIGS. 1a, 1b show diagrammatic arrangements of the electrodes with their associated connected voltage and current values for gyrotron tubes of the prior art;
FIG. 1c shows a diagrammatic arrangement, corresponding to the FIGS. 1a, 1b, for a gyrotron tube with 1-stage "depressed collector" of the prior art;
FIGS. 1d, 1e show diagrammatic arrangements of the electrodes with their associated connected voltage and current values in two connection variants for gyrotron tubes having a multi-stage collector, which are the subject-matter of the invention;
FIG. 2 shows the circuit diagram of an exemplary embodiment of a device according to the invention comprising a feed arrangement, consisting of series-connected switching stages, for the collector stages; and
FIG. 3 shows an embodiment of the feed arrangement for the collector stages according to FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout several views, the invention will be explained without restricting its general applicability in connection with gyrotrons. However, it can be generally used in all devices in which a high-power electron beam is generated, guided along a beam axis and is decelerated again in a collector and is dissipated. It can thus also be applied to other high-power microwave tubes, particularly klystrons and free-electron lasers (FEL).
As is shown in the diagrammatic arrangement of FIGS. 1a or 1b, a cathode 1 (for example in the form of a ring cathode), an anode 3 (as main anode) and a collector 4 (as electron collector) are arranged successively along a beam axis 5 in an evacuated space in a gyrotron of the conventional type. Instead of an anode 3 going through to the cathode 1 (FIG. 1b), the anode 3 can be shortened at the cathode end and can be supplemented by a separate auxiliary anode 2 (FIG. 1a). Both variants are also possible in the other FIGS. 1c-1e and are indicated by dashed lines.
Exemplary connected values, that is to say voltages and currents, of the individual electrodes are specified in the associated boxes in the Figures: in FIG. 1a (with the auxiliary anode 2 as modulation anode), the cathode 1 is at a potential of -80 kV with a current of 50 A, the auxiliary anode is switchably connected to potentials of -80 kV or -50 kV (with approx. 10 mA current), the anode 3, like the collector 4, is at the zero potential, the anode drawing only approx. 50 mA but the collector drawing a 50 A current. Naturally, in the gyrotron without an auxiliary anode according to FIG. 1b, the connected value of this electrode is missing; the connected values of the other electrodes, in contrast, are unchanged.
In the gyrotron arrangement according to FIG. 1c, which is also known from FIG. 11 of the printed document initially mentioned, the potential difference between cathode 1 and anode 3 is again 80 kV. The cathode 1 is at a potential of -40 KV with a current of 50A, the auxiliary anode 2 is switchably connected to potentials of -40 KV and -10 KV, the anode 3 is at a potential of 40 KV with a current of 50 mA, and the collector 4 is at a potential of 0 KV with a current of 50A. The (1-stage) collector 4, however, is in this case not at anode potential but its potential is between that of the anode and of the cathode. It thus decelerates the electrons in the electron beam and is called a "depressed collector" because of its lowered potential.
An exemplary arrangement of a gyrotron according to the invention is reproduced in FIGS. 1d and 1e, the two Figures (analogously to FIGS. 1a and 1c) only differing by different connected values at the individual electrodes. The collector 4 is no longer a 1-stage collector in this case but comprises several (in this case four) collector stages 6 which are partially constructed as rings and partially as a conical collector. In the case of FIG. 1d, the cathode 1 is at a potential of -80 KV with a current of 50A, the auxiliary anode 2 is switchably connected to potentials of -80 KV and -50 KV, and the anode 3 is at a potential of 0 KV with a current of 50 mA, while the collector stages 6 have the stepped connected values A1, A2, A3 and A4, which are associated with potentials of, for example, -40, -50, -60 and -80 kV and currents of 15, 20, 10 and 5 A, respectively. In the case of FIG. 1e, the cathode 1 is at a potential of -40 KV with a current of 50A, the auxiliary anode 2 is switchably connected to potentials of -40 KV and -10 KV, and the anode 3 is at a potential of 40 KV with a current of 50 mA, while; the corresponding stepped connected values are designated by A5, A6, A7 and A8 and are linked to potentials of 0, -10, -20 and -40 kV and currents of again 15, 20, 10 and 5 A, respectively.
A preferred exemplary embodiment of the invention in the form of a gyrotron according to FIG. 1e with an associated feed arrangement is shown in FIG. 2. The feed arrangement for supplying the electrodes 1, 2, 3 and 4 (with collector stages 6) comprises, on the one hand, a conventional supply section 14 which is constructed of a line transformer 8 connected to the power line, followed by a rectifier 9 and a capacitor C for smoothing. This conventional supply section 14 supplies a constant direct voltage which is between the first of the four collector stages 6 (with connected value A5), which is connected to ground, and the anode 3 (connected value All; e.g. +40 kV, 50 mA according to FIG. 1e) and positively biases the anode 3 with respect to collector 4. The anode current is limited by a resistor R2.
The feed arrangement comprises, on the other hand, a high-tension direct-current supply 13 which consists of a plurality of similar switching stages S1, S2, S3, S4, S5, S6 which are in each case constructed as switchable medium-voltage sources and are connected in series with their outputs. This high-tension direct-current supply 13 provides the stepped potentials needed for the collector stages 6 by means of its actual outputs and corresponding taps between its switching stages S1, S2, S3, S4, S5, S6. The positive output of the high-tension direct-current source 13 is connected to the negative output of the conventional section, which is connected to ground as reference potential, the negative output of the high-tension direct-current source 13 is connected at the same time to the cathode 1 and to the last one of the four collector stages 6 (connected values A9 corresponding to -40 kV, 50 A and A8 corresponding to -40 kV, 5 A).
The intermediate connected values A6 and A7 (-10 kV, 20 A and -20 kV, 10 A) for the two center collector stages are provided via two taps which are provided within the high-tension direct-current supply 13, for example between the switching stages S2 and S3 and, respectively, S4 and S5. The auxiliary anode 2 is kept at the reference potential (ground) of the first collector stage or respectively of the positive output of the high-tension direct-current supply 13 via a current-limiting resistor R1. In addition, a switching tube 7 can be provided which pulls the potential of the auxiliary anode 2 to the cathode potential on turn-on. Connected value A10 is thus switchable between the reference potentials of the first collector stage or the positive output of the high-tension direct-current supply 13 and the cathode potential A9.
The high-tension direct-current supply 13 provides the various potentials (connected values) needed for the stage collector with little circuit complexity and can be rapidly switched on and off when needed so that both additional "crowbar" circuits and modulation tubes can be omitted. A preferred exemplary embodiment of the internal structure of a high-voltage direct-current supply 13 according to FIG. 2 is shown in FIG. 3: the individual switching stages S1, S2, S3, S4, S5, S6 are switchable medium-voltage sources which are supplied from an alternating-voltage source 11 (the line system) via a line transformer 12 with a primary winding and a plurality of secondary windings.
Each of the similar switching stages S1, S2, S3, S4, S5, S6 comprises a switching stage rectifier GS connected to the associated secondary winding, which is followed by means for smoothing, for example a series-connected switching stage inductor LS and a parallel-connected switching stage capacitor CS. A controllable switching stage switch SS, preferably a power semiconductor in the form of a GTO (Gate Turn-Off Thyristor) or IGBT (Insulated Gate Bipolar Transistor), is provided in at least one of the direct-voltage outputs. The totality of the switching stage switches SS is selected by a stage controller 10.
The individual switching stages S1, S2, S3, S4, S5, S6 are connected in series with their direct-voltage outputs, a reversely polarized cascade diode DK being in each case arranged as freewheeling diode between the outputs of a switching stage. The direct voltages of the individual switching stages S1, S2, S3, S4, S5, S6 (e.g. 1-10 kV) then add up to form a total output voltage (of, e.g. 40 kV). Various voltages Changing with time can be preset at the outputs and intermediate taps by optionally switching on various switching stages. A reliable rapid disconnection is achieved by the fact that the switching stage switches SS are opened simultaneously in all switching stages S1, S2, S3, S4, S5, S6 by the stage controller 10.
It should be noted at this point that, naturally, the supply section 14 in FIG. 2 can also be omitted. The positive output of the high-tension direct-current supply 13 is then connected directly to the anode 3 and is at the same time at ground potential.
Overall, the device according to the invention results in the following advantages:
no additional "crowbar" circuit is necessary for reliable disconnection in an emergency;
the high-tension direct-current supply allows rapid connection and disconnection within a few (≈20) microseconds;
the high-tension direct-current supply potential can float because of its DC isolation;
the device has very high efficiency;
the circuit configuration is modular and comparatively simple.
Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.

Claims (10)

What is claimed as new and desired to be secured by Letters Patent of the United States is:
1. An electron beam device, comprising:
a cathode, an anode, and a collector arranged successively along a beam axis within an evacuated space; and
a feed arrangement connected to and providing potentials for said cathode, said anode, and said collector, wherein:
said cathode is at a cathode potential and generates, in response thereto, a high-power electron beam propagating along said beam axis;
said anode is at an anode potential which is higher than said cathode potential and accelerates, in response thereto, electrons of said high-power electron beam;
said collector comprises several collector stages arranged successively along said beam axis, said collector stages having successively decreasing potentials, each successively decreasing potential being lower than said anode potential so as to decelerate, in response thereto, said electrons of said high-power electron beam;
said feed arrangement comprises a high-voltage direct-current supply with a negative and a positive output, said supply consisting of a plurality of identical switching stages, said plurality of switching stages having outputs which are respectively connected in series, and each of said plurality of identical switching stages being a controllable medium-voltage source which can be separately switched on and off via a stage controller; and
wherein said successively decreasing potentials of said collector stages are provided by connecting said collector stages to respective taps between said switching stages of said high-voltage direct-current supply, said anode potential is provided by connecting said anode to said positive output of said high-voltage direct current supply, and said cathode potential is provided by connecting said cathode to said negative output of said high-voltage direct-current supply.
2. An electron beam device according to claim 1, wherein:
said high-voltage direct-current supply comprises a line transformer with at least one primary winding and a plurality of secondary windings;
each of said switching stages is connected to and comprises a respective one of said secondary windings of said line transformer;
each of said switching stages comprises a respective switching stage rectifier connected to a corresponding secondary winding, respective smoothing means connected to a corresponding switching stage rectifier for smoothing a rectified voltage of said rectifier, and at least one controllable switching stage switch respectively connected to a corresponding smoothing means and said respective at least one switching stage switch being controlled by said stage controller; and
wherein a respective reversely polarized cascade diode is arranged between outputs of each of said switching stages.
3. An electron beam device according to claim 2, wherein said switching stage switches comprise gate-turn-off power semiconductor components.
4. An electron beam device according to claim 3, wherein said gate-turn-off power semiconductor components are gate-turn-off thyristors.
5. An electron beam device according to claim 3, wherein said gate-turn-off power semiconductor components are insulated gate bipolar transistors.
6. An electron beam device according to any of claims 1-5, wherein:
said negative output of said high-voltage direct-current supply is connected both to said cathode and to the collector stage which is at a lowest potential among said collector stages;
a second direct-voltage source is provided with a positive output and a negative output; and
wherein said positive output of said second direct voltage source is connected to said anode, and said negative output of said second direct voltage source is connected to said negative output of said high-voltage direct-current supply.
7. An electron beam device according to claim 6,
wherein said positive output of said high-voltage direct-current supply is connected to said anode and to ground potential.
8. An electron beam device according to claim 7, wherein said high-voltage direct-current supply has a maximum output voltage on the order of 10 kilovolts.
9. An electron beam device according to claim 8, wherein said successively decreasing potentials of said collector stages are between said cathode potential and said anode potential in magnitude.
10. An electron beam device according to claim 9, wherein said electron beam device is one of a gyrotron, a klystron, a free-electron laser, and a high-power microwave tube.
US08/030,889 1992-03-28 1993-03-12 Electron beam device having a direct current feed with switching stages therein Expired - Lifetime US5440202A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4210294.4 1992-03-28
DE4210294A DE4210294A1 (en) 1992-03-28 1992-03-28 Electron beam device

Publications (1)

Publication Number Publication Date
US5440202A true US5440202A (en) 1995-08-08

Family

ID=6455360

Family Applications (1)

Application Number Title Priority Date Filing Date
US08/030,889 Expired - Lifetime US5440202A (en) 1992-03-28 1993-03-12 Electron beam device having a direct current feed with switching stages therein

Country Status (7)

Country Link
US (1) US5440202A (en)
EP (1) EP0563543B1 (en)
JP (1) JPH0684474A (en)
CN (1) CN1079335A (en)
CA (1) CA2090391A1 (en)
DE (2) DE4210294A1 (en)
ES (1) ES2090724T3 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650751A (en) * 1993-09-03 1997-07-22 Litton Systems, Inc. Inductive output tube with multistage depressed collector electrodes providing a near-constant efficiency
US5780970A (en) * 1996-10-28 1998-07-14 University Of Maryland Multi-stage depressed collector for small orbit gyrotrons
US6262536B1 (en) 2000-02-18 2001-07-17 Litton Systems, Inc. Crowbar circuit for linear beam device having multi-stage depressed collector
US6380803B2 (en) 1993-09-03 2002-04-30 Litton Systems, Inc. Linear amplifier having discrete resonant circuit elements and providing near-constant efficiency across a wide range of output power
US6462474B1 (en) * 2000-03-21 2002-10-08 Northrop Grumman Corp. Grooved multi-stage depressed collector for secondary electron suppression
US6601641B1 (en) 2000-03-31 2003-08-05 Thomcast Communications, Inc. Oil cooled multistage depressed collector high power amplifier
US6617791B2 (en) 2001-05-31 2003-09-09 L-3 Communications Corporation Inductive output tube with multi-staged depressed collector having improved efficiency
US20140097747A1 (en) * 2012-10-09 2014-04-10 Pl Technologies Ag Stabilized high-voltage power supply
US20140217885A1 (en) * 2013-02-07 2014-08-07 The Board Of Trustees Of The Leland Stanford Junior University Pulsed Depressed Collector
US8823422B2 (en) 2010-03-24 2014-09-02 Koninklijke Philips N.V. Circuit for switching electric potentials via autarkic, self-supplying stages
CN113130276A (en) * 2021-04-20 2021-07-16 中国科学院空天信息创新研究院 Multistage depressed collector

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2284453A (en) * 1993-12-02 1995-06-07 Tai Her Yang Double-acting anti-backlash gearing system
DE59804120D1 (en) * 1997-09-29 2002-06-20 Thomcast Ag Turgi Controllable high-voltage direct current supply and its application
CN101453824B (en) * 2007-11-30 2011-05-04 核工业西南物理研究院 Anode high voltage power for electronic cyclotron
EP2437386A1 (en) * 2010-10-04 2012-04-04 PL Technologies AG Stabilized high-voltage power supply
CN105813366A (en) * 2014-12-29 2016-07-27 核工业西南物理研究院 Novel operation method of high power klystron with anode and anode power supply device
CN105185676B (en) * 2015-08-12 2017-05-31 安徽华东光电技术研究所 Three-level depressed collector level structure
CN106300989B (en) * 2016-09-05 2018-11-13 南华大学 A kind of gamut can be changed the variable high direct voltage high frequency switch power in modulated waveform forward position and its control method
CN110225641B (en) * 2018-03-01 2023-09-05 郑州大学 Multi-gap vacuum switch based on plasma jet triggering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526805A (en) * 1967-04-27 1970-09-01 Tokyo Shibaura Electric Co Microwave electron tube device
US3644778A (en) * 1969-10-23 1972-02-22 Gen Electric Reflex depressed collector
US4101804A (en) * 1976-06-23 1978-07-18 Telefonaktiebolaget L M Ericsson Traveling wave tube with depressed collector power supply
JPS53116002A (en) * 1977-03-18 1978-10-11 Nec Corp Power unit for microwave electron tube
US4323853A (en) * 1979-02-23 1982-04-06 Nippon Electric Co., Ltd. Circuit for protecting traveling-wave tubes against faults of a power supply
DE3610524A1 (en) * 1986-03-27 1987-10-01 Siemens Ag CIRCUIT ARRANGEMENT TO PROTECT AGAINST THERMAL OVERLOAD OF WALKING TUBE AMPLIFIERS WITH MULTI-COLLECTOR WALKING TUBES
US4866344A (en) * 1986-09-19 1989-09-12 Varian Associates, Inc. High voltage power supply for a microwave electron tube

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB824921A (en) * 1954-11-26 1959-12-09 Vickers Electrical Co Ltd Improvements relating to velocity modulated electron beam devices operating with a pulsed power supply
FR1590167A (en) * 1968-09-27 1970-04-13
US4277721A (en) * 1979-09-07 1981-07-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multistage depressed collector for dual mode operation
CH666147A5 (en) * 1983-09-08 1988-06-30 Bbc Brown Boveri & Cie HIGH VOLTAGE DC SUPPLY WITH OVERCURRENT PROTECTION.
US4707637A (en) * 1986-03-24 1987-11-17 Hughes Aircraft Company Plasma-anode electron gun

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3526805A (en) * 1967-04-27 1970-09-01 Tokyo Shibaura Electric Co Microwave electron tube device
US3644778A (en) * 1969-10-23 1972-02-22 Gen Electric Reflex depressed collector
US4101804A (en) * 1976-06-23 1978-07-18 Telefonaktiebolaget L M Ericsson Traveling wave tube with depressed collector power supply
JPS53116002A (en) * 1977-03-18 1978-10-11 Nec Corp Power unit for microwave electron tube
US4323853A (en) * 1979-02-23 1982-04-06 Nippon Electric Co., Ltd. Circuit for protecting traveling-wave tubes against faults of a power supply
DE3610524A1 (en) * 1986-03-27 1987-10-01 Siemens Ag CIRCUIT ARRANGEMENT TO PROTECT AGAINST THERMAL OVERLOAD OF WALKING TUBE AMPLIFIERS WITH MULTI-COLLECTOR WALKING TUBES
US4866344A (en) * 1986-09-19 1989-09-12 Varian Associates, Inc. High voltage power supply for a microwave electron tube

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
G. Palz, et al., Siemens Zeitschrift 50, 1976, pp. 446 450. Stromversorgungs einheiten fur Ric htfunk Wanderfeldrohren . *
G. Palz, et al., Siemens-Zeitschrift 50, 1976, pp. 446-450. "Stromversorgungs einheiten fur Ric htfunk-Wanderfeldrohren".
H. G. Mathews, Journal de Physique, Jan. 1989, pp. C1 643 C1 658. Gyrotrons for ECR Ion . *
H.-G. Mathews, Journal de Physique, Jan. 1989, pp. C1-643-C1-658. "Gyrotrons for ECR Ion".
L. Elias, IEEE Journal of Quantum Electronics, vol. QE 23, No. 9, Sep. 1987, pp. 1470 1475 Free Electron Laser Research at the University of California, Santa Barbara . *
L. Elias, IEEE Journal of Quantum Electronics, vol. QE-23, No. 9, Sep. 1987, pp. 1470-1475 "Free-Electron Laser Research at the University of California, Santa Barbara".
M. Kawai, et al., J. Appl. Phys. vol. 66, No. 7, Oct. 1989, pp. 2789 2793. Development and quality measurements of cold relativistic electron beam for low Y free electron lasers . *
M. Kawai, et al., J. Appl. Phys. vol. 66, No. 7, Oct. 1989, pp. 2789-2793. "Development and quality measurements of cold relativistic electron beam for low-Y free-electron lasers".

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650751A (en) * 1993-09-03 1997-07-22 Litton Systems, Inc. Inductive output tube with multistage depressed collector electrodes providing a near-constant efficiency
US6380803B2 (en) 1993-09-03 2002-04-30 Litton Systems, Inc. Linear amplifier having discrete resonant circuit elements and providing near-constant efficiency across a wide range of output power
US5780970A (en) * 1996-10-28 1998-07-14 University Of Maryland Multi-stage depressed collector for small orbit gyrotrons
US6262536B1 (en) 2000-02-18 2001-07-17 Litton Systems, Inc. Crowbar circuit for linear beam device having multi-stage depressed collector
WO2001061723A1 (en) * 2000-02-18 2001-08-23 Litton Systems, Inc. Voltage reducing means for linear beam device having multi-stage depressed collector
US6462474B1 (en) * 2000-03-21 2002-10-08 Northrop Grumman Corp. Grooved multi-stage depressed collector for secondary electron suppression
US6601641B1 (en) 2000-03-31 2003-08-05 Thomcast Communications, Inc. Oil cooled multistage depressed collector high power amplifier
US6617791B2 (en) 2001-05-31 2003-09-09 L-3 Communications Corporation Inductive output tube with multi-staged depressed collector having improved efficiency
US8823422B2 (en) 2010-03-24 2014-09-02 Koninklijke Philips N.V. Circuit for switching electric potentials via autarkic, self-supplying stages
US20140097747A1 (en) * 2012-10-09 2014-04-10 Pl Technologies Ag Stabilized high-voltage power supply
US9041288B2 (en) * 2012-10-09 2015-05-26 Ampegon Ag Stabilized high-voltage power supply
US20140217885A1 (en) * 2013-02-07 2014-08-07 The Board Of Trustees Of The Leland Stanford Junior University Pulsed Depressed Collector
US9177748B2 (en) * 2013-02-07 2015-11-03 The Board Of Trustees Of The Leland Stanford Junior University Pulsed depressed collector
CN113130276A (en) * 2021-04-20 2021-07-16 中国科学院空天信息创新研究院 Multistage depressed collector

Also Published As

Publication number Publication date
JPH0684474A (en) 1994-03-25
DE59303531D1 (en) 1996-10-02
CN1079335A (en) 1993-12-08
EP0563543B1 (en) 1996-08-28
DE4210294A1 (en) 1993-09-30
EP0563543A1 (en) 1993-10-06
ES2090724T3 (en) 1996-10-16
CA2090391A1 (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US5440202A (en) Electron beam device having a direct current feed with switching stages therein
US11101740B2 (en) Modular power supply system
Zhong et al. Review on solid-state-based Marx generators
US8493759B2 (en) Inverter
US4231083A (en) Power conversion apparatus
JPH06103952A (en) Electron-beam high-voltage changeover power supply
EP0998018B1 (en) Inverter
US5237225A (en) Switching arrangement for an rf gto
WO2020003348A1 (en) Self-feeding circuit and power conversion device
US6340912B1 (en) Solid state magnetron switcher
EP4423912A1 (en) Gate unit for a gate-commutated thyristor and integrated gate-commutated thyristor
US5731967A (en) Converter circuit arrangement with minimal snubber
Tomljenovic et al. Solid-state DC power supplies for gyrotrons and NBI sources
CA2243618C (en) Method and device for driving a turn-off thyristor
US4151444A (en) Voltage switching circuit for a color display system
US6178076B1 (en) Power-electronic circuit arrangement for compensating for mains system disturbances and mains voltage reductions
JPS6176071A (en) Power source for neutral particle incident device
Vinnikov et al. Development of auxiliary power supplies for the 3.0 kV DC rolling stock
AU617629B2 (en) Gate control circuit for a gto thyristor
US3335316A (en) Inverter unit with automatic output interruption upon associated equipment failure
EP0973249A1 (en) Inherently stabilised DC high voltage generator
WO2024124538A1 (en) Ac-to-ac power converter
Mondino The ITER pulsed power supply system
JP2021111450A (en) Dc cutoff device
US3379929A (en) D.c. circuit breaker device including one or more auxiliary anodes

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION UNDERGOING PREEXAM PROCESSING

AS Assignment

Owner name: ASEA BROWN BOVERI LTD., SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATHEWS, HANS-GUNTER;SCHMINKE, WOLFRAM;REEL/FRAME:006617/0940;SIGNING DATES FROM 19930208 TO 19930212

AS Assignment

Owner name: THOMCAST AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASEA BROWN BOVERI LTD.;REEL/FRAME:006714/0968

Effective date: 19930909

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: PL TECHNOLOGIES AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THOMCAST AG;REEL/FRAME:027816/0294

Effective date: 20120216