US5331293A - Compensated digital frequency synthesizer - Google Patents
Compensated digital frequency synthesizer Download PDFInfo
- Publication number
- US5331293A US5331293A US07/940,259 US94025992A US5331293A US 5331293 A US5331293 A US 5331293A US 94025992 A US94025992 A US 94025992A US 5331293 A US5331293 A US 5331293A
- Authority
- US
- United States
- Prior art keywords
- signal
- output
- output signal
- accumulator
- demodulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 claims description 9
- 230000004044 response Effects 0.000 claims description 9
- 230000003111 delayed effect Effects 0.000 claims description 7
- 230000003321 amplification Effects 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000013139 quantization Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 235000004507 Abies alba Nutrition 0.000 description 1
- 241000191291 Abies alba Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C3/00—Angle modulation
- H03C3/02—Details
- H03C3/09—Modifications of modulator for regulating the mean frequency
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/02—Digital function generators
- G06F1/03—Digital function generators working, at least partly, by table look-up
- G06F1/0321—Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
- G06F1/0328—Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/02—Automatic control of frequency or phase; Synchronisation using a frequency discriminator comprising a passive frequency-determining element
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B2202/00—Aspects of oscillators relating to reduction of undesired oscillations
- H03B2202/07—Reduction of undesired oscillations through a cancelling of the undesired oscillation
- H03B2202/076—Reduction of undesired oscillations through a cancelling of the undesired oscillation by using a feedback loop external to the oscillator, e.g. the so-called noise degeneration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03B—GENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
- H03B28/00—Generation of oscillations by methods not covered by groups H03B5/00 - H03B27/00, including modification of the waveform to produce sinusoidal oscillations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03C—MODULATION
- H03C1/00—Amplitude modulation
- H03C1/02—Details
- H03C1/04—Means in or combined with modulating stage for reducing angle modulation
Definitions
- This invention relates generally to the field of frequency synthesis and more specifically to a low spurious output digital synthesizer.
- DDS direct digital synthesizers
- Conventional direct digital synthesizers usually comprise at least a high speed clock, a programmable shift register and an N-bit accumulator which includes a carry out output.
- the carry out output signal from the synthesizer has an average frequency (Fo) equal to the clock frequency (Fc) divided by the accumulator length (2 n ) times the phase increment value (program value, P).
- Fo average frequency
- n the resolution of the frequency output. For example, if we assume a clock frequency of 1 gigahertz and a accumulator having 32 bits the resolution can be calculated as:
- a spectral analysis of a conventional DDS output signal would show that the output frequency Fo and its harmonics include sideband spurs (spurious emissions).
- sideband spurs or jitter
- These sideband spurs when viewed from a spectrum analyzer exhibit a pattern which resemble a Christmas-tree around each output frequency and their respective harmonics, at an offset frequency equal to the resolution of the accumulator, and also at harmonics of the offset frequencies.
- the sideband spur levels will vary according to the jitter pattern generated by the relationship of the value of "P" to the value of "2 n " in the previously mentioned formula.
- These spurs typically make conventional DDS output signals unstable as low noise RF signal sources.
- FIG. 1 is a block diagram of a communication device having a direct digital synthesizer in accordance with the present invention.
- FIG. 2 is a block diagram of a demodulator as used in FIG. 1 in accordance with the present invention.
- FIG. 3 is a block diagram of the program delay block in accordance with the present invention.
- Radio 100 utilizes a direct digital synthesizer (DDS) section in accordance with thepresent invention.
- the digital synthesizer section includes an input means such as input terminal 102 for receiving a desired modulation signal.
- the modulation signal is then sent through an analog to digital (A/D) converter 104 where the analog modulation signal is converted into a digital bit stream.
- A/D analog to digital
- the digital bit stream is then sent to an accumulator 108 having an "N" bit long register in order to modulate the accumulator.
- accumulator 108 could be a 32 bit long accumulator.
- An analog-to-digital converter (A/D) 104 is coupled to accumulator 108.
- A/D converter 104 includes an input terminal for receiving an external analog modulation signal 102 which A/D converter104 converts into digital form and provides to accumulator 108.
- the digitalinformation provided by shift register 120 and A/D converter 104 are then processed by accumulator 108 to yield the accumulator output signal 144.
- Output 144 of accumulator 108 which is the instantaneous phase value, is inturn converted into sine amplitude (could also be converted into cosine or triangular wave forms depending on the application) by memory table (ROM look-up table) 110.
- the memory table output is then reconverted into an analog signal by digital to analog converter (D/A) 112.
- the analog output signal provided by D/A converter 112 not only contains the desired sine wave as its major component, but also includes the higherfrequency image components due to the conversion of a sampled wave form. Inorder to reduce the image signals to a desirable level, a low pass filter 114 is included. Both the memory table 110 and the D/A converter 112 are also clocked by a reference clock means such as clock 124.
- the present invention's spur compensation method consists of first demodulating the DDS output signal (Fo) using demodulator 118.
- the demodulated signal is substantially inverted and the inverted output signal (-Vout) 142 is then amplified forming a compensation signal (Vcomp)146 which is used to modulate synthesized clock 124.
- the modulated clock signal 140 is then fed back into accumulator 108 which helps cancel out the jitter (unwanted modulation caused by the operation of the digital synthesizer section) in the accumulator's carry out edges.
- a demodulator means such as demodulator 118, comprises a demodulator with adjustable delay 118, optional shift registers 120 and amplifier 122, as shown in FIG. 1. Demodulator 118 will be discussed in more detail later in this discussion. In order not to compensate the desired analog modulation signal (MOD IN), the desired modulation signal is added (summed) to the -V OUT signal 142 prior to being applied to clock 124.
- the DDS output signal (Fo) 116 is coupled to conventional radio frequency transmitter 128 and receiver 132 sections as known in the art.
- a controller means such as controller 130 which can be a conventional microprocessor or microcontroller having associated control software controls the operation of both receiver 132 and transmitter 128.
- Controller 130 can have on board memory sections such as RAM, ROM and EEPROM.
- Transmitter 128 and receiver 132 sections are selectively coupled to antenna 136 via antenna switch 134.
- Controller 130 provides the programvalues to accumulator 108 and also controls demodulator 138 and A/D 104.
- the amplitude of the demodulated compensation signal Vcomp signal 146 is adjusted with respect to the sideband spurs until spur cancellation occursby adjusting the gain applied to amplifier 122.
- the modulation signal that is applied to input terminal 102 is also applied to gain stage 122 in order to prevent compensation of the desired modulation signal.
- the modulation signal which can be an analog message, is applied via line 152 to a programmable attenuator circuit 146.
- the programmable attenuator is under the control of controller 130 via line 150.
- the output signal 148 ofattenuator 146 is then applied to gain stage 122 in order to sum the outputsignal 148 with the -V OUT signal 142.
- the summing of both signals together by the gain stage 122 (which can be a programmable op-amp or other similar device) prevents compensation (cancellation) of the desired modulation signal (MOD IN applied to input terminal 102), when the V comp signal is generated.
- Programmable attenuator 146 provides for improved spur compensation capabilities given that the compensation circuit adjusts the amplitude of the desired modulation signal (under the control of controller 130) which is applied to clock 124 (V COMP ) in order to achieve compensation balance while preventing the compensationof the desired modulation signal (MOD IN signalapplied to terminal 102).
- Controller 130 provides adjustment values via bus 154 to shift registers 120 which are in turn sent to amplifier 122 for use in adjusting the deviation level of Vcomp signal 146.
- the modulated clock signal 140 is then fed back into accumulator 108 in order to provide spur cancellation.
- adjustment versus output frequency will be controlled by the program value "P" (sent from controller 130 to shift registers 120 to accumulator 108) and spur cancellation will be maintained.
- controller 130 will have stored program values in its associated memory section which would be associated with different output signal frequencies (Fo) 116. These values can be generated and stored in radio 100 during the radio manufacturing process. For example, controller 130 would know the exact values to send amplifer stage 122 and demodulator 118 in order to acheive optimum spur cancellation for a specific F0 signal 116 frequency.
- Demodulator 200 includes an input terminal 204for receiving the DDS signal (Fo) 116.
- the DDS signal is then sent to a phase-shifting circuit 202 which produces first and second signals such asan in-phase wave form (I) 216 and a quadrature wave form (Q) 214.
- the (I) and (Q) signals are approximately 90 degrees out of phase with respect to each other.
- Phase-shifting circuit 202 can be designed as a divide-by-fourcircuit in order to yield the 90 degree out of phase signals or by use of other well known phase-shifting circuit designs.
- the quadrature signal (Q) 214 is applied to a programmable delay circuit 210 and also directly to phase detector 208. While the (I) in-phase signal216 is coupled to mixer means 212 directly.
- the design provides for a demodulator having a time delay path adjusted to be 90 degrees out of phase as compared to the non-delayed path.
- the in-phase signal 216 and thedelayed quadrature signal 222 are then mixed together using mixer 212 in order to provide for the inverted demodulated output signal (-Vout) 218 (signal 142 in FIG. 1).
- Output signal (-Vout) 218 (having only FM product)will have a bandwidth determined by time delay circuit 210. The compensation of the jitter spurs occur within this bandwidth.
- the preferable bandwidth of -Vout 218 would be in the range of 100 Khz to 1 Mhz. The specific bandwidth designed for will depend on the specific communication application the circuit is to be used in.
- the programmable delay 210 is adjusted via a control signal which is sent via input 220 (same as the signal 138 in FIG. 1).
- the programmable delay is also adjusted by the feedback provided by phase detector circuit 208.
- Agood discussion of time-delay frequency demodulation can be found in a bookentitled "Communication Circuits: Analysis and Design", by Kenneth K. Clarke and Donald T. Hess, Second printing, September 1978, published by Addison-Wesley Publishing Company, pages 615-618, and which is hereby incorporated by reference. More specifically, page 616 discusses a time-delay frequency demodulator and the output of the demodulator (see equation 12.5-27).
- the control signal which is sent to input 220 comes from shift registers 120 in FIG. 1.
- Shift registers 120 provide for a compensation control signal (e.g., digital word) whose specific value is provided by controller130.
- Phase detector 208 determines if the quadrature signal which has been delayed 222 and the quadrature signal (Q) 214 that has been fed directly to phase detector 208 are in phase. If the two signals are not in phase, an adjustment signal is sent to adder 206 for adjustment of the programmable delay circuit 210.
- the adjustment signal from phase detector 208 can either positively or negatively adjust adder 206.
- Adder 206 adds the adjustment signal provided by phase detector 208 with the compensationword sent via input 220 in order to keep the quadrature signal edges aligned by adjusting the amount of delay provided by delay circuit 210.
- Multiplexer 302 simply selectsat what point of the 64 delay stages to tab the signal in order to provide the delayed output signal 218.
- the control signal presented at input 308 corresponds to the output signal of adder 206, shown in FIG. 2. This control signal can originate from controller 130 as shown in the preferredembodiment or from other circuitry found in radio 100.
- each of the delay stages in the 64 stage delaysection 306 provides approximately 40 nanosecond additional delay to the delay path.
- multiplexer 302 choosing at what point along the 64 stagepath to tap the delay section.
- the longer the delay provided by delay circuit 300 the more gain that is provided to the output signal -Vout 218.But, the longer the delay provided by circuit 300, the narrower the bandwidth of the demodulator.
- the design choice between the amount of gainprovided and the amount of bandwidth provided by circuit 200 will depend onthe specific application being designed.
- the amount of gain amplifier 122 will provide will be controlled by prestored values which are stored in controller 130.
- FIG. 4 a second embodiment of a communication device using the present invention is shown.
- the embodiment shown in FIG. 4 utilizes the carry out terminal of accumulator 410 instead of the phase accumulation terminal as used in FIG. 1.
- the accumulator output signal 428 is provided to transmitter 422 and receiver 418 without the need of a look-up table or D/A converter after being filtered by low pass filter 412.
- synthesized clock 406 could be a 1 gigahertz clock and the program values (P) sent to accumulator 410 would be such to cause a 450 MHz carrier signal to be generated as output signal428.
- synthesizer 400 would be switching back and forth between a divide by 2 and a divide by 3 operation since sometimes it would take 3 clock cycles to generate a carrier signal, and sometimes it would take 2 clock cycles to generate a carrier signal. But over time, it would average out to an output signal 428 having a frequencyof 450 MHz.
- the accumulator's carry out signal 428 is demodulated after it has been filtered by low pass filter 412 by demodulator 414.
- the inverted demodulated signal (-Vout) is then amplified by an amplifier means such as amplifier 408.
- the amount of amplification will depend as inthe circuit of FIG. 1, on the amount of signal deviation required in order to compensate for the induced modulation (spurs).
- Amplifier 408, like amplifier 122 in FIG. 1, also receives the desired modulation signal (MOD IN) after being sent through attenuator 430 in order to prevent compensation of the desired modulation signal.
- Attenuator stage 430 receives the desired modulation signal via line 436 and the amount of attenuation provided by the attenuator 430 is under the control of controller 420 via line 434.
- the amplified compensation signal (Vcomp) is then coupled back into clock 124 in order to modulate the clock signal in order to balance out any unwanted spurs.
- the goal of the compensation network is to reduce all of the unwanted spurs while having no effect on the desired modulation (MOD IN).
- the modulation of the clock 406 by the compensation circuit reduces the carry out jitter associated with quantization errors in the digital synthesizer since the modulated clock signal (Fc, compensation clock signal) is fed back into accumulator 410.
- modulation will preferably be two-spot, with the program value "P" being modulated by the output signal of analog-to-digital converter (A/D) 404 and the modulation signal (in this case, prior to being converted into digital form) is added to the inverse demodulated signal (-Vout) as signal 432.
- A/D analog-to-digital converter
- -Vout inverse demodulated signal
- Communication device 400 as shown includes an A/D converter 404 having an input terminal for receiving a modulation input signal 402. The digitized signal is then sent to 32 bit accumulator 410.
- Carry out signal 428 of accumulator 410 is filtered by low pass filter 412 with the filtered signal being sent to transmitter 422 and receiver 418.
- the signal is also coupled back to the compensation circuit comprising demodulator 414 in order to minimize the output signal jitter.
- the inverted demodulated signal -Vout is sent to amplifier stage 408 were the -Vout signal is amplified.
- the amount of amplification provided by amplifier 408 is determined by the values sent by controller 420 (via shift registers 416).
- the amount of gain provided by amplifier 408 is adjusted by the signal sent by shift registers 416 until cancellation occurs (balance is maintained).
- the number of bits (resolution level) used for gain and delay adjustment, plus the total timedelay from the accumulator 410 to the output of amplifier 408 will determine the degree of balance which the circuit can achieve.
- Compensation signal (Vcomp) is then coupled to clock 406 in order to modulate the clock signal and compensate for any accumulator carry out jitters as previously discussed.
- the present invention provides for an improvement in modulation balance since only one modulation adjustment is needed, no "Ko" variation (open loop gain variation) versus frequency is required, as in other synthesizercompensation schemes such as that taught in U.S. Pat. No. 5,021,754, entitled "Fractional-N Synthesizer Having Modulation Spur Compensation", by Shepherd et al., and which is hereby incorporated by reference.
- the total amount of compensation achieved will be determined by the resolutionof the adjustment attenuators.
- the lock time and the Hum and Noise specification of the circuit will be dominated by the loop bandwidth response of the demodulator.
- the transient response of the compensation network will also have a major effect on both the lock time performance aswell as the communication device's Hum and Noise specifications.
- the present invention provides for an improved spur compensateddigital synthesizer by compensating for accumulator jitter.
- the compensation scheme demodulates the accumulator carry out output signal and then inverts the "sense" of the modulation signal. The inverted signal is then used to modulate the reference clock signal (Fc) of the accumulator.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
F.sub.o =(F.sub.c /2.sup.n)*P
1 GHZ/2.sup.32 =0.2328 Hz.
Claims (10)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/940,259 US5331293A (en) | 1992-09-02 | 1992-09-02 | Compensated digital frequency synthesizer |
PCT/US1993/007590 WO1994006204A1 (en) | 1992-09-02 | 1993-08-13 | Compensated digital frequency synthesizer |
DE69328445T DE69328445T2 (en) | 1992-09-02 | 1993-08-13 | COMPENSATED, DIGITAL FREQUENCY SYNTHETIZER |
EP93920003A EP0704117B1 (en) | 1992-09-02 | 1993-08-13 | Compensated digital frequency synthesizer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/940,259 US5331293A (en) | 1992-09-02 | 1992-09-02 | Compensated digital frequency synthesizer |
Publications (1)
Publication Number | Publication Date |
---|---|
US5331293A true US5331293A (en) | 1994-07-19 |
Family
ID=25474515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/940,259 Expired - Lifetime US5331293A (en) | 1992-09-02 | 1992-09-02 | Compensated digital frequency synthesizer |
Country Status (4)
Country | Link |
---|---|
US (1) | US5331293A (en) |
EP (1) | EP0704117B1 (en) |
DE (1) | DE69328445T2 (en) |
WO (1) | WO1994006204A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391996A (en) * | 1993-11-19 | 1995-02-21 | General Instrument Corporation Of Delaware | Techniques for generating two high frequency signals with a constant phase difference over a wide frequency band |
US5568096A (en) * | 1995-04-19 | 1996-10-22 | Telefonaktiebolaget Lm Ericsson | Apparatus and method for using negative FM feedback in high quality oscillator devices |
US5722052A (en) * | 1996-02-28 | 1998-02-24 | Motorola, Inc. | Switching current mirror for a phase locked loop frequency synthesizer and communication device using same |
US5943613A (en) * | 1996-11-07 | 1999-08-24 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for reducing standby current in communications equipment |
US6094082A (en) * | 1998-05-18 | 2000-07-25 | National Semiconductor Corporation | DLL calibrated switched current delay interpolator |
US6587011B2 (en) * | 2000-06-26 | 2003-07-01 | Stmicroelectronics S.A. | Low cost digital FM modulator |
US20040169773A1 (en) * | 2003-02-28 | 2004-09-02 | Johnson Richard A. | Tuner suitable for integration and method for tuning a radio frequency signal |
US20050090222A1 (en) * | 2003-10-24 | 2005-04-28 | Knecht Thomas A. | Tuneable frequency translator |
US20050117071A1 (en) * | 2003-02-28 | 2005-06-02 | Silicon Laboratories, Inc. | Tuner using a direct digital frequency synthesizer, television receiver using such a tuner, and method therefor |
US7023368B1 (en) * | 2004-08-31 | 2006-04-04 | Euvis, Inc. | Digital-to-analog signal converting apparatus and method to extend usable spectrum over Nyquist frequency |
WO2006061812A2 (en) * | 2004-12-10 | 2006-06-15 | Analog Devices, Inc. | A digital frequency synthesiser and a method for producing a frequency sweep |
US7227346B1 (en) * | 2005-08-23 | 2007-06-05 | Timing Solutions Corporation | Two channel digital phase detector |
US20090092203A1 (en) * | 2007-10-05 | 2009-04-09 | Motorola, Inc. | Adaptive self-quieter suppression for ofdm wireless communication systems |
US9531392B2 (en) * | 2012-04-26 | 2016-12-27 | Skyworks Solutions, Inc. | Methods related to frequency synthesis control |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3840225A1 (en) * | 2019-12-20 | 2021-06-23 | Stichting IMEC Nederland | Rf transmitter |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816774A (en) * | 1988-06-03 | 1989-03-28 | Motorola, Inc. | Frequency synthesizer with spur compensation |
US4901265A (en) * | 1987-12-14 | 1990-02-13 | Qualcomm, Inc. | Pseudorandom dither for frequency synthesis noise |
US4905177A (en) * | 1988-01-19 | 1990-02-27 | Qualcomm, Inc. | High resolution phase to sine amplitude conversion |
US5021754A (en) * | 1990-07-16 | 1991-06-04 | Motorola, Inc. | Fractional-N synthesizer having modulation spur compensation |
US5111162A (en) * | 1991-05-03 | 1992-05-05 | Motorola, Inc. | Digital frequency synthesizer having AFC and modulation applied to frequency divider |
US5130671A (en) * | 1990-12-26 | 1992-07-14 | Hughes Aircraft Company | Phase-locked loop frequency tracking device including a direct digital synthesizer |
US5162763A (en) * | 1991-11-18 | 1992-11-10 | Morris Keith D | Single sideband modulator for translating baseband signals to radio frequency in single stage |
US5184092A (en) * | 1990-12-26 | 1993-02-02 | Hughes Aircraft Company | Phase-locked loop frequency tracking device including a direct digital synthesizer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4866404A (en) * | 1988-09-15 | 1989-09-12 | General Electric Company | Phase locked frequency synthesizer with single input wideband modulation system |
-
1992
- 1992-09-02 US US07/940,259 patent/US5331293A/en not_active Expired - Lifetime
-
1993
- 1993-08-13 EP EP93920003A patent/EP0704117B1/en not_active Expired - Lifetime
- 1993-08-13 WO PCT/US1993/007590 patent/WO1994006204A1/en active IP Right Grant
- 1993-08-13 DE DE69328445T patent/DE69328445T2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4901265A (en) * | 1987-12-14 | 1990-02-13 | Qualcomm, Inc. | Pseudorandom dither for frequency synthesis noise |
US4905177A (en) * | 1988-01-19 | 1990-02-27 | Qualcomm, Inc. | High resolution phase to sine amplitude conversion |
US4816774A (en) * | 1988-06-03 | 1989-03-28 | Motorola, Inc. | Frequency synthesizer with spur compensation |
US5021754A (en) * | 1990-07-16 | 1991-06-04 | Motorola, Inc. | Fractional-N synthesizer having modulation spur compensation |
US5130671A (en) * | 1990-12-26 | 1992-07-14 | Hughes Aircraft Company | Phase-locked loop frequency tracking device including a direct digital synthesizer |
US5184092A (en) * | 1990-12-26 | 1993-02-02 | Hughes Aircraft Company | Phase-locked loop frequency tracking device including a direct digital synthesizer |
US5111162A (en) * | 1991-05-03 | 1992-05-05 | Motorola, Inc. | Digital frequency synthesizer having AFC and modulation applied to frequency divider |
US5162763A (en) * | 1991-11-18 | 1992-11-10 | Morris Keith D | Single sideband modulator for translating baseband signals to radio frequency in single stage |
Non-Patent Citations (4)
Title |
---|
"Communication Circuits: Analysis and Design" by Kenneth K. Clarke and Donald T. Hess, Sep. 198, pp. 615-618. Addison-Wesley. |
"Q2334 Dual Direct Digital Synthesizer Technical Data Sheet" Jun. 1991, pp. 1-35 by Qualcomm, Inc. (no author). |
Communication Circuits: Analysis and Design by Kenneth K. Clarke and Donald T. Hess, Sep. 198, pp. 615 618. Addison Wesley. * |
Q2334 Dual Direct Digital Synthesizer Technical Data Sheet Jun. 1991, pp. 1 35 by Qualcomm, Inc. (no author). * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391996A (en) * | 1993-11-19 | 1995-02-21 | General Instrument Corporation Of Delaware | Techniques for generating two high frequency signals with a constant phase difference over a wide frequency band |
US5568096A (en) * | 1995-04-19 | 1996-10-22 | Telefonaktiebolaget Lm Ericsson | Apparatus and method for using negative FM feedback in high quality oscillator devices |
US5722052A (en) * | 1996-02-28 | 1998-02-24 | Motorola, Inc. | Switching current mirror for a phase locked loop frequency synthesizer and communication device using same |
US5943613A (en) * | 1996-11-07 | 1999-08-24 | Telefonaktiebolaget Lm Ericsson | Method and apparatus for reducing standby current in communications equipment |
US6094082A (en) * | 1998-05-18 | 2000-07-25 | National Semiconductor Corporation | DLL calibrated switched current delay interpolator |
US6587011B2 (en) * | 2000-06-26 | 2003-07-01 | Stmicroelectronics S.A. | Low cost digital FM modulator |
US7447493B2 (en) * | 2003-02-28 | 2008-11-04 | Silicon Laboratories, Inc. | Tuner suitable for integration and method for tuning a radio frequency signal |
US20050117071A1 (en) * | 2003-02-28 | 2005-06-02 | Silicon Laboratories, Inc. | Tuner using a direct digital frequency synthesizer, television receiver using such a tuner, and method therefor |
US20060073800A1 (en) * | 2003-02-28 | 2006-04-06 | Silicon Laboratories, Inc. | Selectable high-side/low-side mix for high intermediate frequency (IF) receivers |
US7558546B2 (en) | 2003-02-28 | 2009-07-07 | Silicon Laboratories, Inc. | Selectable high-side/low-side mix for high intermediate frequency (IF) receivers |
US20040169773A1 (en) * | 2003-02-28 | 2004-09-02 | Johnson Richard A. | Tuner suitable for integration and method for tuning a radio frequency signal |
US7425995B2 (en) | 2003-02-28 | 2008-09-16 | Silicon Laboratories, Inc. | Tuner using a direct digital frequency synthesizer, television receiver using such a tuner, and method therefor |
US20050090222A1 (en) * | 2003-10-24 | 2005-04-28 | Knecht Thomas A. | Tuneable frequency translator |
US7158767B2 (en) | 2003-10-24 | 2007-01-02 | Cts Corporation | Tuneable frequency translator |
US7023368B1 (en) * | 2004-08-31 | 2006-04-04 | Euvis, Inc. | Digital-to-analog signal converting apparatus and method to extend usable spectrum over Nyquist frequency |
US7365608B2 (en) | 2004-12-10 | 2008-04-29 | Analog Devices, Inc. | Digital frequency synthesiser and a method for producing a frequency sweep |
WO2006061812A3 (en) * | 2004-12-10 | 2006-08-31 | Analog Devices Inc | A digital frequency synthesiser and a method for producing a frequency sweep |
WO2006061812A2 (en) * | 2004-12-10 | 2006-06-15 | Analog Devices, Inc. | A digital frequency synthesiser and a method for producing a frequency sweep |
CN101073046B (en) * | 2004-12-10 | 2010-05-12 | 阿纳洛格装置公司 | A digital frequency synthesiser and a method for producing a frequency sweep |
US7227346B1 (en) * | 2005-08-23 | 2007-06-05 | Timing Solutions Corporation | Two channel digital phase detector |
US7436166B1 (en) | 2005-08-23 | 2008-10-14 | Timing Solutions Corporation | Direct digital synthesizer producing a signal representing an amplitude of a sine wave |
US20090092203A1 (en) * | 2007-10-05 | 2009-04-09 | Motorola, Inc. | Adaptive self-quieter suppression for ofdm wireless communication systems |
US8238480B2 (en) | 2007-10-05 | 2012-08-07 | Motorola Mobility Llc | Adaptive self-quieter suppression for OFDM wireless communication systems |
US9531392B2 (en) * | 2012-04-26 | 2016-12-27 | Skyworks Solutions, Inc. | Methods related to frequency synthesis control |
Also Published As
Publication number | Publication date |
---|---|
EP0704117A4 (en) | 1996-05-01 |
DE69328445T2 (en) | 2000-11-23 |
EP0704117A1 (en) | 1996-04-03 |
WO1994006204A1 (en) | 1994-03-17 |
DE69328445D1 (en) | 2000-05-25 |
EP0704117B1 (en) | 2000-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5331293A (en) | Compensated digital frequency synthesizer | |
US6975687B2 (en) | Linearized offset QPSK modulation utilizing a sigma-delta based frequency modulator | |
AU746796B2 (en) | A post-filtered delta sigma for controlling a phase locked loop modulator | |
JP3268138B2 (en) | Communication device, frequency synthesizer and synthesis method | |
JP3226577B2 (en) | Vector modulation system, vector modulator | |
US6018275A (en) | Phase locked loop with down-conversion in feedback path | |
JP3173788B2 (en) | Digital transmission equipment and direct conversion receiver | |
EP0944172A3 (en) | Phase-locked loop for generating an output signal in two or more frequency ranges | |
WO1991015056A1 (en) | Direct digital synthesizer driven phase lock loop frequency synthesizer with hard limiter | |
WO1995016304A1 (en) | Phase/frequency modulator | |
JPH06509217A (en) | multi-loop synthesizer | |
SK280889B6 (en) | Circuit arrangement of automatic gain control for digital television signal receivers | |
US5784413A (en) | Direct digital synthesis frequency-agile QPSK modulator | |
JP4027429B2 (en) | Frequency modulator and transmitter and transceiver incorporating the frequency modulator | |
US5424688A (en) | Frequency synthesizer apparatus incorporating phase modulation tracking means | |
JPH02180430A (en) | Frequency synthesizer | |
EP0991182B1 (en) | Sweep pilot technique for a control system that reduces distortion produced by electrical circuits | |
US7167528B2 (en) | Modulation system for modulating data onto a carrier signal with offsets to compensate for doppler effect and allow a frequency synthesizing system to make steps equal to channel bandwidth | |
US5949290A (en) | Voltage controlled oscillator tuning apparatus and method | |
KR102077620B1 (en) | Low Phase Noise Ultra-wideband Frequency Synthesizer and Frequency Synthesizer method | |
JPH06268544A (en) | Communication system using improved synthesizer | |
US7894545B1 (en) | Time alignment of polar transmitter | |
US20050070234A1 (en) | Translational loop RF transmitter architecture for GSM radio | |
KR950022207A (en) | Receiver in Satellite Communication Using El-Band Phase Shift Keying Modulation | |
GB2325362A (en) | Transceiver which uses transmission signal as local oscillator for reception |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MOTOROLA, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:SHEPHERD, WAYNE P.;HECK, JOSEPH P.;REEL/FRAME:006260/0809 Effective date: 19920831 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: WI-LAN INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOTOROLA SOLUTIONS, INC.;REEL/FRAME:026889/0573 Effective date: 20100126 |
|
AS | Assignment |
Owner name: QUARTERHILL INC., CANADA Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:WI-LAN INC.;QUARTERHILL INC.;REEL/FRAME:042914/0596 Effective date: 20170601 |
|
AS | Assignment |
Owner name: WI-LAN INC., CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUARTERHILL INC.;REEL/FRAME:043168/0323 Effective date: 20170601 |