US5307796A - Methods of forming fibrous filtration face masks - Google Patents
Methods of forming fibrous filtration face masks Download PDFInfo
- Publication number
- US5307796A US5307796A US07/632,964 US63296490A US5307796A US 5307796 A US5307796 A US 5307796A US 63296490 A US63296490 A US 63296490A US 5307796 A US5307796 A US 5307796A
- Authority
- US
- United States
- Prior art keywords
- fibers
- woven
- web
- fibrous material
- bicomponent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/541—Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D13/00—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
- A41D13/05—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
- A41D13/11—Protective face masks, e.g. for surgical use, or for use in foul atmospheres
- A41D13/1107—Protective face masks, e.g. for surgical use, or for use in foul atmospheres characterised by their shape
- A41D13/1138—Protective face masks, e.g. for surgical use, or for use in foul atmospheres characterised by their shape with a cup configuration
- A41D13/1146—Protective face masks, e.g. for surgical use, or for use in foul atmospheres characterised by their shape with a cup configuration obtained by moulding
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/542—Adhesive fibres
- D04H1/544—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
- D04H1/542—Adhesive fibres
- D04H1/55—Polyesters
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62B—DEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
- A62B23/00—Filters for breathing-protection purposes
- A62B23/02—Filters for breathing-protection purposes for respirators
- A62B23/025—Filters for breathing-protection purposes for respirators the filter having substantially the shape of a mask
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/02—Types of fibres, filaments or particles, self-supporting or supported materials
- B01D2239/0216—Bicomponent or multicomponent fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/065—More than one layer present in the filtering material
- B01D2239/0681—The layers being joined by gluing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/08—Special characteristics of binders
- B01D2239/086—Binders between particles or fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/10—Filtering material manufacturing
Definitions
- This invention pertains to methods of forming fibrous-filtration-face-masks from non-woven webs of thermally bonding fibers.
- the invention also pertains to fibrous-filtration-face-masks made from non-woven webs of thermally bonding fibers, which masks maintain low degrees of surface fuzz after being subjected to abrasion.
- Fibrous-filtration-face-masks are well known in the respiratory art. Such face masks are worn over the breathing passages of a person and typically serve at least one of two purposes: (1) to prevent impurities or contaminants from entering the wearer's breathing tract; and (2) to protect others from being exposed to bacteria and other contaminants exhaled by the wearer. In the first situation, the mask would be worn in an environment where the air contains particles harmful to the wearer. In the second situation, the mask would be worn, for example, in an operating room to protect a patient from infection.
- the shaping layer may reside on an inner portion of the mask (adjacent to the face of the wearer), or it may reside on an outer portion or on both inner and outer portions of the mask.
- the filtration layer resides outside the inner shaping layer.
- the shaping layers disclosed in U.S. Pat. Nos. 4,807,619 and 4,536,440 have been made by molding non-woven webs of thermally bonding fibers in heated molds.
- the heated molds operate at temperatures above a softening point of the bonding component of the thermally bonding fibers.
- a web of thermally bonding fibers is placed in a heated mold and is subjected to pressure and heat to form a shaping layer for a face mask. This kind of molding operation is known as a "hot molding process".
- the present invention is directed to providing shaping layers for face masks which have improved surface fuzz properties.
- Bicomponent fiber means a fiber composed of two or more components comprising different polymeric compositions having dissimilar softening temperatures, which components are arranged in separate and distinct regions along the length of the fiber;
- Binder fiber means monofilament thermally bonding fibers
- Preskinning means to heat at least a surface of a fibrous web to a temperature that permits fibers on a surface of the web to become bonded to each other, the heating occurring before a molding operation in which the fibrous web is heated in its entirety and molded;
- Softening temperature means the lowest temperature at which a fiber component is softened to an extent that permits that fiber component to bond to another fiber and retain that bonded condition when cooled;
- Fiber fiber means non-thermally bonding fibers
- Thermally bonding fibers mean fibers that bond to adjacent contacting fibers after being heated above their softening temperature and subsequently cooled.
- This invention includes a method of forming a shaping layer for a face mask from a non-woven web containing thermally bonding fibers, where surface fuzz creation on the shaping layer of the face mask is greatly minimized.
- a method of the invention comprises the steps: (a) heating a non-woven web of fibrous material that contains: (i) at least about forty weight-percent thermally bonding fibers based on the weight of the non-woven fibrous material, at least about ten weight-percent of the non-woven fibrous material being bicomponent fibers; and optionally (ii) staple fibers, to a temperature at which the thermally bonding fibers, including at least one component of the bicomponent fibers are softened; and then (b) molding the heated non-woven web of fibrous material, while the thermally bonding fibers and the at least one component of the bicomponent fibers are still soft, in a mold having molding members that are at a temperature below the softening temperatures of the thermally bonding fibers and all components of the bicomponent fibers.
- a preferred method for reducing surface fuzz creation includes an additional step of preskinning the web of non-woven fibrous material.
- the present invention also includes a fibrous face mask that maintains a low degree of surface fuzz throughout normal use of the mask.
- the fibrous face mask comprises: (a) a means for securing the mask to the face of the wearer; and (b) a non-woven fibrous layer attached to the securing means and containing (i) at least about forty weight-percent thermally bonding fibers based on the weight of the fibers in the non-woven fibrous layer, at least about ten weight-percent of the fibers in the non-woven fibrous layer being bicomponent fibers, and (ii) optionally staple fibers, the non-woven fibrous layer being molded in a cup-shaped configuration and having a surface fuzz value of not less than 7.5 after being subjected to abrasion in a surface fuzz abrasion test as described below.
- a primary object of this invention is to substantially reduce the creation of surface fuzz on a shaping layer of a face mask made from a non-woven web of thermally bonding fibers.
- this invention provides new methods for forming face masks which possess superior operating characteristics over the prior art methods of hot molding non-woven webs of thermally bonding fibers.
- hot molding methods of forming fibrous filtration face masks there is a tendency for fibers in the non-woven web to stick to the hot molds.
- the molded shells deform upon opening of the molds.
- the shells will be permanently deformed upon cooling.
- the hot molding process therefore tends to generate excess quantities of fiber waste.
- sticking may be avoided in hot molding by carefully controlling the process parameters, the process window (variation in process conditions) is relatively narrow and becomes extremely difficult to control in a continuous process.
- another object of this invention is to provide a method of forming a shaping layer from a non-woven web of thermally bonding fibers, which method avoids fibers sticking to the molds.
- FIG. 1 is a front view of a face mask.
- FIG. 2 is a cross-section of a face mask having shaping layers and a filtration layer.
- FIG. 3 is a side view in partial cross-section of an apparatus for forming a face mask in accordance with the present invention.
- FIG. 4 is a cross-section taken along lines 4--4 of FIG. 3.
- FIG. 5 is a cross-section taken along lines 5--5 of FIG. 3.
- FIG. 6 is a line graph illustrating surface fuzz values for shells obtained by hot molding and cold molding non-woven fibrous webs consisting of bicomponent and binder fibers.
- a shaping layer for a face mask, where, throughout normal use of the mask, very few fibers rise a relatively short distance from the surface of the shaping layer.
- a shaping layer is formed by cold molding a non-woven web containing at least 40 weight-percent thermally bonding fibers, at least about 10 weight-percent of the fibers in the non-woven web are bicomponent fibers; the remaining thermally bonding fibers being binder fibers.
- the non-woven web containing bicomponent fiber is first heated to a temperature that is equal to or above the softening temperature of the thermally bonding fibers, including at least one bonding component of the bicomponent fiber, but preferably, not above the melting temperature of the non-bonding component of the bicomponent fiber. Heating temperatures will vary depending on the composition of the thermally bonding fibers. In general, when using bicomponent fibers having a copolyester or copolyolefin bonding component, heating temperatures will range from about 110° C. (230° F.) to about 230° C. (450° F.).
- the non-woven web After the non-woven web is heated, it is then placed in a molding apparatus before hardening of the thermally bonding fibers and the bicomponent fibers' softened component.
- the molding apparatus has cup-shaped molding members that are at a temperature below the softening temperature of the bonding components of the non-woven web.
- the molds are closed upon the heated fibrous web, the web takes the shape of the molds, and the thermally bonding fibers (including softened portions of the bicomponent fiber) harden.
- the non-woven web preferably is cooled to a temperature below the glass transition temperature of the web's bonding components.
- the molded non-woven web or shaping layer is removed from the molds
- the resulting shaping layer has a permanent shape which conforms to a person's face, and maintains a low degree of surface fuzz.
- a shaping layer is formed by a method which also includes the step of preskinning the non-woven fibrous web. It was surprisingly discovered that by heating fibers on the surface of the non-woven web (so that those fibers become bonded to each other) before molding, fuzz resulting from normal abrasion may be further minimized.
- preferred preskinning temperatures are at from about 110° C. to 230° C. (230°-450° F.), more preferably at from 120° C. to 170° C. (250°-340° F.). Preskinning temperatures may vary depending upon factors such as the composition of the bonding component(s) of the non-woven web and the rate at which the fibrous material is passed through the preskinning stage.
- FIG. 1 An example of a face mask is shown in FIG. 1.
- Numeral 10 generally designates the face mask.
- Mask 10 has a shell or mask body 12, elastic bands 14, and a pliable dead-soft band 16 of metal such as aluminum.
- Elastic bands 14 are stapled or otherwise attached to mask body 12 for holding mask 10 over the wearer's face.
- Pliable dead soft band 16 permits mask 10 to be shaped and held in a desired fitting relationship on the nose of the wearer.
- Mask body 12 has a cup shape so that it stands out in spaced relation from the wearer's face and makes a snug low-pressure contact over the bridge of the nose, across the cheeks, and under the chin.
- FIG. 2 illustrates an example of a cross-section of a mask body 12.
- Mask body 12 may have a plurality of layers, as indicated by numerals 13, 15, and 17.
- Layer 13 is an outer shaping layer
- layer 15 is a filtration layer
- layer 17 is an inner shaping layer. Shaping layers 13 and 17 support filtration layer 15 and provide shape to mask body 12.
- shaping layers also have other functions, which in the case of an outermost layer may even be a primary function, such as protection of the filtration layer and prefiltration of a gaseous stream.
- layer one layer may in fact comprise several sublayers, assembled to obtain desired thickness or weight.
- only one, generally inner, shaping layer is included in a face mask, but shaping may be accomplished more durably and conveniently if two shaping layers are used, for example, one on each side of the filtration layer as shown in FIG. 2. If only a low degree of filtration is needed, a face mask could comprise a shaping layer by itself; that is, without a filtration layer.
- the non-woven fibrous construction of the shaping layer provides it with a filtering capacity--although typically not as great as a filtering layer--which permits the shaping layer to screen out larger particles such as saliva from the wearer and relatively large particulate matter in the air.
- a shaping layer contains fibers that have bonding components which allow the fibers to be bonded to one another at points of fiber intersection.
- the bonding components allow adjacent-contacting fibers to coalesce when subjected to heat and cooled.
- Such thermally bonding fibers typically come in monofilament and bicomponent form.
- Bicomponent fibers are the preferred fibers for use in forming shaping layers of this invention.
- Suitable bicomponent fibers useful for forming shaping layers include, for example, coextensive side-by-side configurations, coextensive concentric sheath-core configurations such as MELTY fibers by Unitika Limited of Osaka, Japan, and SOFFIT fibers by Kuraray of Osaka, Japan (marketed by Chori America, Inc., Los Angeles), and coextensive elliptical sheath-core configurations such as CHISSO ES by Chisso, Inc. of Osaka, Japan (marketed by Marubeni Corp., New York, N.Y.).
- One particularly useful bicomponent fiber for producing the shaping layers of this invention has a generally concentric sheath-core configuration having a core of crystalline polyethylene terephthalate (PET) surrounded by a sheath of an amorphous copolyester polymer blend.
- PET polyethylene terephthalate
- This bicomponent fiber is manufactured by Unitika Limited and is sold as MELTY Type 4080 fiber.
- Another particularly suitable bicomponent fiber is a concentric sheath/core fiber having a core of crystalline PET and a sheath of a modified copolyolefin blend (such as the blend described in U.S. Pat. No. 4,684,576), which is marketed under the tradename CELBOND, Type 255, by Hoechst Celanese, Charlotte, N.C.
- the fibers in the shaping layer are usually between 1 and 200 denier and preferably average greater than 1 denier but less than 50 denier.
- the shaping layer(s) contains a mixture of synthetic staple fiber, preferably crimped, binder fiber, and bicomponent fiber.
- Shaping layers which maintain low degrees of surface fuzz can be prepared from fiber mixtures preferably having (1) staple and (2 ) binder fibers and bicomponent fibers in a weight-percent ratios ranging from 60:40 to 0:100.
- the shaping layers consist essentially of at least about 20 weight-percent bicomponent fiber, zero to 80 weight-percent binder fiber, and zero to 60 weight-percent (better less than 50 weight-percent) staple fibers.
- More preferred shaping layers have at least 50 weight-percent bicomponent fiber, and more preferably at least75 weight-percent bicomponent fiber. It has been found that a greater amount of bicomponent fiber in the web produces a shaping layer that has a lesser tendency to fuzz. Because bicomponent fibers typically are more expensive than binder and staple fibers, cost considerations may prescribe using less than 100 percent bicomponent fibers in the non-woven web.
- face mask shaping layers may be prepared without bicomponent fiber.
- thermally bonding fibers for example, binder fibers of a heat-flowable polyester may be included together with staple, preferably crimped, fibers in a non-woven fibrous web. The non-woven web containing thermally bonding binder fibers is preskinned before the heating and molding steps.
- Binder fibers are typically made from polymeric materials that soften and bond to other fibers when heated and cooled. Binder fibers will typically retain their fibrous structure after bonding. Examples of binder fibers are KODEL Type 444 fibers made by Eastman Chemical of Kingsport, Tenn., and Type 259 fibers made by Hoechst Celanese of Charlotte, N.C. Upon heating of the non-woven web, the binder fibers soften and adhere to adjacent-contacting fibers. When the non-woven web is cooled in the molding step, bonds develop at fiber intersection points. Bonding components such as acrylic latex may also be applied to a web of fibers used to form a shaping layer (e.g., as a supplement to the bonding components of binder or bicomponent fibers).
- bonding components in the form of powdered heat-activatable adhesive resins may be cascaded onto a web of fibers, whereupon when the web is heated the fibers in the web become bonded together at intersection points by the added resin.
- Shaping layers of the invention preferably are free from such added bonding components because they increase material and processing costs and can contribute to increased flammability of the finished face masks.
- Staple fibers suitable for use in forming face mask shaping layers are non-thermally bonding fibers, typically, synthetic single component fibers such as fibers made from PET, nylon, and rayon.
- PET fibers are the more preferred staple fibers (such as TREVIRA Type 121 available from Hoechst Celanese, Charlotte, N.C.).
- a non-woven web of fibers to be used as a shaping layer can be conveniently prepared on a RANDO WEBBER (Rando Corporation, Cincinnati, N.Y.) air-laying machine or a carding machine.
- the bicomponent fibers and other fibers are typically used in conventional staple lengths suitable for such equipment.
- Non-woven webs formed on air-laying or carding machines contain the fibers in a loose-unbonded-random orientation.
- the fibers selected for use in the filtration layer depend upon the kind of particulate to be filtered.
- Particularly useful filtration fibers are webs of melt-blown fibers, such as those disclosed in Wente, Van A., "Superfine Thermoplastic Fibers", 48 Industrial Engineering Chemistry, 1342 et seq (1956). Webs of meltblown fibers provide especially good filtration layers when used in a persistent electrically charged form (see U.S. Pat. No. 4,215,682 to Kubik et al).
- these melt-blown fibers are microfibers having an average diameter of less than about 10 micrometers.
- Other particularly useful filtration fibers are electrically-charged-fibrillated-film-fibers as disclosed in U.S. Pat. No. RE 31,285 to Van Turnhout. Rosinwool fibrous webs and webs of glass fibers are also useful, as are solution blown, or electrostatically sprayed fibers, especially in microfiber form.
- a preferred face mask of this invention has a filtration layer containing blown micro-fibers, preferably electrically-charged blown micro-fibers.
- This filtration layer is disposed between two shaping layers containing bicomponent fibers and staple fibers.
- the outer shaping layer has about 70 weight-percent bicomponent fibers and about 30 weight-percent staple fibers.
- the inner shaping layer contains about60 weight percent bicomponent fibers and 40 weight percent staple fibers.
- the outer shaping layer provides a greater degree of support for the mask than the inner shaping layer and also tends to maintain a lower surface fuzz content because it contains a greater amount of bicomponent fiber.
- FIG. 3 illustrates an apparatus for forming shells 15 for face masks in accordance with the methods of this invention.
- Shells 15 are produced by passing in superimposed relation a first non-woven fibrous web 11, a filtration layer 31, and a second non-woven fibrous web 41 through a preskinning stage 18, a heating stage 20, and a cold molding stage 22.
- webs 11 and 41 are each heated to an extent that bonding components of fibers on surfaces 23 and 27 are softened.
- the lower surface 23 of web 11 and the upper surface 27 of web 41 contact heated calender rolls 19 to soften the bonding components of the fibers.
- calender rolls 19 Upon leaving calender rolls 19, the softened components of the fibers harden, and the fibers on surfaces 23 and 27 become bonded to each other.
- Webs 11 and 41 and filtration layer 31 are then placed on a moving oven belt 21 and enter heating stage 20.
- infra-red (IR) heaters 26 and hot air impingement 24 through perforations 33 heat the thermally bonding fibers in webs 11 and 41 to soften the bonding components of the fibers throughout the webs.
- Oven belt 21 has a mesh construction which permits IR heat 26 and hot air impingement 24 to strike surface 23.
- a ferris wheel type arrangement 32 may be employed to provide a continuous molding process.
- Ferris wheel arrangement 32 includes a first and a second rotating apparatus, 35 and 36 respectively.
- Male molding members 29 are located on bars 40 of rotating apparatus 35
- female molding members 30 are located on bars 40 of rotating apparatus 36.
- Molding members 29 and 30 turn in a clockwise rotation and are each driven by a chain 42 on sprockets 43. At the point of molding, members 29 and 30 come together to shape webs 11 and 41 into cup-shaped shells 15.
- preskinning is accomplished in the method shown in FIG. 3 by passing the non-woven webs through calender rolls 19, preskinning could also be accomplished, for example, by using other heating means such as IR heaters, heated bars, or the like.
- Calender rolls are preferred, however, because the preskinning temperatures can be more easily controlled and pressure from the rolls presses stray fibers inwardly towards the web.
- the rolls are gapped.
- the gap between the rolls preferably is large enough to avoid web handling problems associated with calendering, but is small enough to permit fiber bonding on the surface of the web.
- the gap preferably is less than the thickness of the non-woven web. In general, the rolls would be gapped at about one to sixteen millimeters.
- the temperature of the calender rolls should be great enough to soften the fibers, but should not be so hot as to melt the fibers.
- the non-woven webs should not be preskinned to an extent that the pressure drop of an airstream through the resulting shaping layer is substantially greater than the pressure drop through a non-preskinned shaping layer.
- non-woven webs of thermally bonding fibers are subject to shrinkage during the heating stage.
- the non-woven webs tend to contract inwardly when exposed to heat.
- Web shrinkage should be avoided so that a greater amount of shells can be formed from a particular web.
- a means for preventing web shrinkage be employed in the present invention.
- Such a means may include, for example, pins, hooks, or belts that would secure the edges of the web(s) as it moved through the heating stage.
- the web could also be restrained from contracting by pinning it to the oven or conveyor belt with air impingement. To a limited extent, preskinning will also retard web shrinkage during the heating stage.
- FIGS. 3 and 4 An example of a means for preventing web shrinkage is shown in FIGS. 3 and 4.
- Edge belts 34 are employed there to secure edges 25 of webs 11 and 41. As webs 11 and 41 pass through heating stage 20 on oven belt 21, edges 25 are pinned to oven belt 21 by pressure executed from edge belts 34 and shoe 39. This pressure continues to be applied until the molds close upon the webs.
- edge belts 34 pins or hooks could be employed on belt 21 to prevent a non-woven fibrous web from contracting during the heating step.
- air impingement may be used at the heating stage to secure the non-woven web against the oven belt.
- air impingement is preferably employed on only one side of the non-woven web. If air impingement is applied on both sides of a web, the web tends to float: it is not secured to the oven belt in a manner that prevents contracting.
- a preferred method of air impingement is to place the air impingement nozzles on one side of the web between the IR heaters.
- any web restraining means may be employed. If, however, a shaping layer is being molded in conjunction with a filtration layer, it is preferred that edge belts, hooks, or pins be used to restrain the non-woven web.
- cup-shaped shaping layers were formed using cold and hot molding techniques and various fiber blends.
- the shaping layers were tested for surface fuzz after being subjected to abrasion, and the results of those tests are tabulated in Table 1.
- FIG. 5 a comparison of surface fuzz values for cold and hot molded fibrous shells is illustrated.
- the data plotted in FIG. 5 is for shells consisting of bicomponent and binder fibers.
- Line 37 indicates surface fuzz values for hot molded shells
- line 38 indicates surface fuzz values for cold molded shells.
- non-woven fibrous webs were cold molded.
- the molded non-woven webs contained bicomponent fibers that had a PET core surrounded by a sheath of a copolyester blend.
- the fibrous web was preskinned.
- Examples 1-20 demonstrate that surface fuzz creation is reduced with preskinning and increasing bicomponent fiber content.
- the examples also demonstrate that surface fuzz creation is further reduced with increasing preskinning temperatures. In all of these examples, the molded fibers did not stick to the molds.
- a non-woven fibrous web composed of 100 percent bicomponent MELTY Type 4080 fibers formed in a RANDO WEBBER air-laying machine was molded into shaping layers.
- the web was heated to a temperature of approximately 190° C by simultaneously applying hot air and infra-red heat to the web. Hot air impinged upon the top of the web and IR heat was applied to the top and bottom of the web. After heating, the hot web was molded by placing it between cup-shaped unheated male and female molds. Four shells were randomly selected and were then tested for surface fuzz. These shells had a calculated average fuzz value of 9.5
- Each molded shell was placed on a cup-shaped mandrel and was subjected to abrasion by dragging a stiff, flat brush over a surface of the face mask from the base of one side to the base of an opposing side. A total force of approximately 1.3 Newtons was exerted by the brush on each shell.
- the brush employed was a SCRUBTEAM 1876 (nondetergent version) brush available from 3M, Medical-Surgical Products Division, St. Paul, Minn.
- a SCRUBTEAM brush has polypropylene bristles about 0.18 mm in diameter extending 1 cm from a resin layer into which they are embedded at a density of about 240 bristles per cm 2 .
- the scale is used in the following manner.
- the shell receives that fuzz value. For example, a shell would receive a fuzz value of 9.0 when its highest fibers are 1 mm in length and are 11 in number.
- the shell receives the average of those fuzz values. For example, a shell would be given a fuzz value of 8.5 when its highest fibers are determined to be 3 mm in length and are 11 in number.
- a shaping layer was prepared and tested using the procedures described in Example 1, except the non-woven web was preskinned between 9-10 mm gapped hot calendar rolls at 132° C. (270° F.) before heating. Results are tabulated in Table 1.
- a shaping layer was prepared and tested using the procedures described in example 2, except the nonwoven web was preskinned between 9-10 mm gapped hot calendar rolls at 154° C. (310° F.). Results are tabulated in Table 1.
- Shaping layers were prepared and tested using the procedures described in Example 1, except: (1) the non-woven fibrous webs comprised 62 wt. % MELTY Type 4080 bicomponent fiber, 22 wt. % Type 444 binder fiber, and 16 wt. % PET staple fibers; and (2 ) the webs were preskinned between 9-10 mm gapped hot calendar rolls at 121 ° C. (250° F.) and 143° C. (290° F.) respectively.
- the surface fuzz results are tabulated in Table 1.
- CELBOND Type 255 bicomponent fiber was used.
- the fibrous web comprised 62 wt. % CELBOND Type 255 bicomponent fiber, 22 wt. % 444 binder fiber, and 16 wt. % TREVIRA PET staple fiber.
- Example 21 there was no preskinning.
- Example 22 and 23 the non-woven fibrous webs were preskinned between 9-10 mm gapped hot calendar rolls at 143° C. (290° F.) and 166° C. (330° F.) respectively. All the samples were cold molded.
- the surface fuzz values were 6.6, 8.0, and 8.0 respectively. This data is tabulated in Table 1.
- Examples 21-23 demonstrate that surface fuzz may be reduced by cold molding fibrous webs containing bicomponent fibers having a sheath of a modified copolyolefin and a core of crystalline PET. These examples also demonstrate that preskinning further reduces surface fuzz.
- a shaping layer was formed by hot molding a non-woven fibrous web containing MELTY Type 4080 bicomponent fibers.
- the non-woven web contained 100 wt. % MELTY Type 4080 bicomponent fibers
- the web contained 85 wt. % MELTY Type 4080 bicomponent fiber and 15 wt. % KODEL Type 444 binder fiber
- the web contained 70 wt. % MELTY Type 4080 fiber and 30 wt. % KODEL Type 444 binder fiber.
- Each of these webs were placed between molds that were heated to a temperature of about 120° C. (250° F.) for approximately six seconds.
- Six shells were randomly selected from each molded web, each shell was tested for surface fuzz, and the average fuzz values for each group of six shells were determined. The tests were performed in the manner described in Example 1.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nonwoven Fabrics (AREA)
- Filtering Materials (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
- Treatment Of Fiber Materials (AREA)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/632,964 US5307796A (en) | 1990-12-20 | 1990-12-20 | Methods of forming fibrous filtration face masks |
AU90818/91A AU651415B2 (en) | 1990-12-20 | 1991-11-15 | Methods of forming fibrous filtration face masks |
DE69104732T DE69104732T2 (de) | 1990-12-20 | 1991-11-15 | Verfahren zur herstellung von filtermasken aus fasern. |
DK92901261.5T DK0563135T3 (da) | 1990-12-20 | 1991-11-15 | Fremgangsmåde til fremstilling af ansigtsfiltermasker af fibre |
KR1019930701823A KR100221707B1 (ko) | 1990-12-20 | 1991-11-15 | 섬유상 여과성 안면 마스크를 제조하는 방법 |
BR919107253A BR9107253A (pt) | 1990-12-20 | 1991-11-15 | Processo de modelagem de uma camada de conformacao fibrosa nao-trancada para uma mascara facial,camada de conformacao para uma mascara facial,mascara facial,e,processo de filtracao de particulas no ar e exaladas de uma pessoa |
EP92901261A EP0563135B1 (en) | 1990-12-20 | 1991-11-15 | Methods of forming fibrous filtration face masks |
CA002096636A CA2096636C (en) | 1990-12-20 | 1991-11-15 | Methods of forming fibrous filtration face masks |
JP4502296A JP3023173B2 (ja) | 1990-12-20 | 1991-11-15 | 濾過型繊維顔面マスクの形成方法 |
PCT/US1991/008531 WO1992011405A1 (en) | 1990-12-20 | 1991-11-15 | Methods of forming fibrous filtration face masks |
MXPA94004036A MXPA94004036A (es) | 1990-12-20 | 1991-12-16 | Metodo para formar mascaras faciales fibrosas defiltracion. |
MX9102585A MX9102585A (es) | 1990-12-20 | 1991-12-16 | Metodo para formar mascaras faciales fibrosas de filtracion. |
AR91321481A AR245791A1 (es) | 1990-12-20 | 1991-12-20 | Un metodo para formar una capa de formacion fibrosa no tejida para una mascara facial. |
US08/661,834 US7131442B1 (en) | 1990-12-20 | 1996-06-11 | Fibrous filtration face mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/632,964 US5307796A (en) | 1990-12-20 | 1990-12-20 | Methods of forming fibrous filtration face masks |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15498993A Division | 1990-12-20 | 1993-11-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5307796A true US5307796A (en) | 1994-05-03 |
Family
ID=24537715
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/632,964 Expired - Lifetime US5307796A (en) | 1990-12-20 | 1990-12-20 | Methods of forming fibrous filtration face masks |
US08/661,834 Expired - Lifetime US7131442B1 (en) | 1990-12-20 | 1996-06-11 | Fibrous filtration face mask |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/661,834 Expired - Lifetime US7131442B1 (en) | 1990-12-20 | 1996-06-11 | Fibrous filtration face mask |
Country Status (12)
Country | Link |
---|---|
US (2) | US5307796A (es) |
EP (1) | EP0563135B1 (es) |
JP (1) | JP3023173B2 (es) |
KR (1) | KR100221707B1 (es) |
AR (1) | AR245791A1 (es) |
AU (1) | AU651415B2 (es) |
BR (1) | BR9107253A (es) |
CA (1) | CA2096636C (es) |
DE (1) | DE69104732T2 (es) |
DK (1) | DK0563135T3 (es) |
MX (2) | MX9102585A (es) |
WO (1) | WO1992011405A1 (es) |
Cited By (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5558089A (en) * | 1994-10-13 | 1996-09-24 | Minnesota Mining And Manufacturing Company | Respirator nose clip |
DE19518285A1 (de) * | 1995-05-18 | 1996-11-21 | Lohmann Gmbh & Co Kg | Mechanisch verfestigter Vliesstoff zur Herstellung von formstabilen Formteilen |
US5620785A (en) * | 1995-06-07 | 1997-04-15 | Fiberweb North America, Inc. | Meltblown barrier webs and processes of making same |
WO1997023246A2 (en) * | 1995-12-22 | 1997-07-03 | Kimberly-Clark Worldwide, Inc. | High efficiency breathing mask fabrics |
US5656368A (en) * | 1992-08-04 | 1997-08-12 | Minnesota Mining And Manufacturing Company | Fibrous filtration face mask having corrugated polymeric microfiber filter layer |
US5704349A (en) | 1987-10-02 | 1998-01-06 | Tecnol Medical Products, Inc. | Surgical face mask with darkened glare-reducing strip and visor |
US5804512A (en) * | 1995-06-07 | 1998-09-08 | Bba Nonwovens Simpsonville, Inc. | Nonwoven laminate fabrics and processes of making same |
US5851355A (en) * | 1996-11-27 | 1998-12-22 | Bba Nonwovens Simpsonville, Inc. | Reverse osmosis support substrate and method for its manufacture |
WO1998058558A1 (en) * | 1997-06-24 | 1998-12-30 | Minnesota Mining And Manufacturing Company | Respiratory masks having comfortable inner cover web |
WO1999024119A1 (en) | 1997-11-11 | 1999-05-20 | Minnesota Mining And Manufacturing Company | Respiratory masks having valves and other components attached to the mask by a printed patch of adhesive |
USD412573S (en) * | 1994-10-14 | 1999-08-03 | 3M Innovative Properties Company | Nose clip for a filtering face mask |
US6026511A (en) * | 1997-12-05 | 2000-02-22 | 3M Innovative Properties Company | Protective article having a transparent shield |
EP0989221A2 (en) * | 1998-09-22 | 2000-03-29 | Tietex International Ltd. | Breathable molded structure |
US6102039A (en) * | 1997-12-01 | 2000-08-15 | 3M Innovative Properties Company | Molded respirator containing sorbent particles |
US6139308A (en) * | 1998-10-28 | 2000-10-31 | 3M Innovative Properties Company | Uniform meltblown fibrous web and methods and apparatus for manufacturing |
US6156680A (en) * | 1998-12-23 | 2000-12-05 | Bba Nonwovens Simpsonville, Inc. | Reverse osmosis support substrate and method for its manufacture |
US6159881A (en) * | 1994-09-09 | 2000-12-12 | Kimberly-Clark Worldwide, Inc. | Thermoformable barrier nonwoven laminate |
US6161540A (en) * | 1998-04-28 | 2000-12-19 | Cabot Safety Intermediate Corporation | Respirator filter having a pleated filter layer |
WO2001030449A1 (en) | 1999-10-22 | 2001-05-03 | 3M Innovative Properties Company | Retention assembly with compression element and method of use |
US6457473B1 (en) | 1997-10-03 | 2002-10-01 | 3M Innovative Properties Company | Drop-down face mask assembly |
US6460539B1 (en) | 2000-09-21 | 2002-10-08 | 3M Innovative Properties Company | Respirator that includes an integral filter element, an exhalation valve, and impactor element |
US6604524B1 (en) | 1999-10-19 | 2003-08-12 | 3M Innovative Properties Company | Manner of attaching component elements to filtration material such as may be utilized in respiratory masks |
US20040011362A1 (en) * | 2002-07-18 | 2004-01-22 | 3M Innovative Properties Company | Crush resistant filtering face mask |
US20040016345A1 (en) * | 2002-07-25 | 2004-01-29 | 3M Innovative Properties Company | Molded filter element that contains thermally bonded staple fibers and electrically-charged microfibers |
US6718981B2 (en) | 2002-02-07 | 2004-04-13 | Venanzio Cardarelli | Dental mask |
US6732733B1 (en) | 1997-10-03 | 2004-05-11 | 3M Innovative Properties Company | Half-mask respirator with head harness assembly |
US20040253371A1 (en) * | 2003-06-10 | 2004-12-16 | Janney Mark A. | Filter and method of fabricating |
US20050139217A1 (en) * | 2003-12-31 | 2005-06-30 | K. C. Chiam | Respiratory mask with inserted spacer |
US6988500B1 (en) | 2003-05-15 | 2006-01-24 | J. Palmero Sales Company, Inc. | Fog free medical face mask |
US20060096263A1 (en) * | 2004-11-05 | 2006-05-11 | Kahlbaugh Brad E | Filter medium and structure |
US20060096932A1 (en) * | 2004-11-05 | 2006-05-11 | Dema Keh B | High strength, high capacity filter media and structure |
US7131442B1 (en) * | 1990-12-20 | 2006-11-07 | Minnesota Mining And Manufacturing Company | Fibrous filtration face mask |
US20070023047A1 (en) * | 2005-07-26 | 2007-02-01 | Moshe Zalsman | Face mask particularly useful as medical face mask |
US20070044803A1 (en) * | 2005-08-25 | 2007-03-01 | Xue Thomas J | Respirator having preloaded nose clip |
US20070056256A1 (en) * | 2005-09-12 | 2007-03-15 | Frederick Tepper | Electrostatic air filter |
US20070068529A1 (en) * | 2005-09-27 | 2007-03-29 | Suresh Kalatoor | Respirator that uses a polymeric nose clip |
US20070144524A1 (en) * | 2005-12-22 | 2007-06-28 | Martin Philip G | Filtering Face Mask with a Unidirectional Valve Having a Stiff Unbiased Flexible Flap |
US20070175196A1 (en) * | 2005-09-12 | 2007-08-02 | Argonide Corporation | Drinking water filtration device |
US20070199567A1 (en) * | 2006-01-25 | 2007-08-30 | Kanzer Steve H | Droplet collection devices and methods to detect and control airborne communicable diseases utilizing rfid |
EA008896B1 (ru) * | 2006-09-04 | 2007-08-31 | Закрытое Акционерное Общество «Северо-Западный Научно-Технический Центр "Портативные Средства Индивидуальной Защиты" Имени А.А. Гуняева» | Способ скрепления термопластичных слоистых материалов и устройство для его осуществления |
WO2007135700A2 (en) | 2006-05-18 | 2007-11-29 | Cl.Com S.R.L. | New protective mask against biological agents made of two parts |
US20080011303A1 (en) * | 2006-07-17 | 2008-01-17 | 3M Innovative Properties Company | Flat-fold respirator with monocomponent filtration/stiffening monolayer |
US20080099022A1 (en) * | 2006-10-26 | 2008-05-01 | 3M Innovative Properties Company | Respirator That Uses A Predefined Nose Foam Shape |
US20090000624A1 (en) * | 2007-06-28 | 2009-01-01 | 3M Innovative Properties Company | Respirator having a harness and methods of making and fitting the same |
WO2009038904A1 (en) | 2007-09-20 | 2009-03-26 | 3M Innovative Properties Company | Filtering face-piece respirator that has expandable mask body |
US20090090364A1 (en) * | 2007-10-09 | 2009-04-09 | 3M Innovative Properties Company | Filtering face-piece respirator having nose clip molded into the mask body |
EP2049203A2 (en) * | 2006-07-31 | 2009-04-22 | 3M Innovative Properties Company | Molded monocomponent monolayer respirator |
US20090211581A1 (en) * | 2008-02-26 | 2009-08-27 | Vishal Bansal | Respiratory mask with microporous membrane and activated carbon |
US7601262B1 (en) | 2001-06-22 | 2009-10-13 | Argonide Corporation | Sub-micron filter |
US20090255542A1 (en) * | 2008-04-11 | 2009-10-15 | 3M Innovative Properties Company | Mask nose clip and a respiratory mask |
US20090293279A1 (en) * | 2008-06-02 | 2009-12-03 | 3M Innovative Properties Company | Method of making electret articles based on zeta potential |
US20090293730A1 (en) * | 2006-04-26 | 2009-12-03 | Volo Giovanni D | Two-stage air filter and mask incorporating the same |
US20100252047A1 (en) * | 2009-04-03 | 2010-10-07 | Kirk Seth M | Remote fluorination of fibrous filter webs |
US20110041471A1 (en) * | 2007-12-06 | 2011-02-24 | Sebastian John M | Electret webs with charge-enhancing additives |
EP2298095A2 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Horizontal flat-fold filtering face-piece respirator having indicia of symmetry |
US20110137082A1 (en) * | 2008-06-02 | 2011-06-09 | Li Fuming B | Charge-enhancing additives for electrets |
US20110154987A1 (en) * | 2008-06-02 | 2011-06-30 | Li Fuming B | Electret webs with charge-enhancing additives |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US20110277769A1 (en) * | 2010-05-12 | 2011-11-17 | Mei-Sheng Teng | Three Dimensional Face Mask |
US8061356B2 (en) | 2008-02-19 | 2011-11-22 | Prestige Ameritech Ltd. | Directional flat face mask |
EP2412407A1 (en) | 2010-07-26 | 2012-02-01 | 3M Innovative Properties Co. | Filtering face-piece respiratory having foam shaping layer |
EP2428127A2 (en) | 2007-05-03 | 2012-03-14 | 3M Innovative Properties Company | Maintenance-free respirator that has concave portions on opposing sides of mask top section |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
WO2013086146A2 (en) * | 2011-12-09 | 2013-06-13 | 3M Innovative Properties Company | Respirator made from in-situ air-laid web(s) |
US8794238B2 (en) | 2010-12-28 | 2014-08-05 | 3M Innovative Properties Company | Splash-fluid resistant filtering face-piece respirator |
US9027554B2 (en) | 2011-12-06 | 2015-05-12 | 3M Innovative Properties Company | Respirator having foam shaping layer with recessed regions surrounding air passageways |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
WO2015130591A1 (en) | 2014-02-27 | 2015-09-03 | 3M Innovative Properties Company | Respirator having elastic straps having openwork structure |
US9247788B2 (en) | 2013-02-01 | 2016-02-02 | 3M Innovative Properties Company | Personal protective equipment strap retaining devices |
US9259058B2 (en) | 2013-02-01 | 2016-02-16 | 3M Innovative Properties Company | Personal protective equipment strap retaining devices |
WO2016028553A1 (en) | 2014-08-18 | 2016-02-25 | 3M Innovative Properties Company | Respirator including polymeric netting and method of forming same |
US9309131B2 (en) | 2012-06-27 | 2016-04-12 | Argonide Corporation | Aluminized silicious powder and water purification device incorporating same |
WO2016069342A1 (en) | 2014-10-31 | 2016-05-06 | 3M Innovative Properties Company | Respirator having corrugated filtering structure |
US9463340B1 (en) | 2015-05-20 | 2016-10-11 | Marc Irwin Epstein | Draping particulate filter for the nostrils and mouth and method of manufacture thereof |
US9468782B2 (en) | 2013-08-08 | 2016-10-18 | Richard H. Koehler | Face mask seal for use with respirator devices and surgical facemasks, having an anatomically defined geometry conforming to critical fit zones of human facial anatomy, and capable of being actively custom fitted to the user's face |
US9468783B1 (en) | 2015-05-20 | 2016-10-18 | Marc Irwin Epstein | Draping particulate filter for the nostrils and mouth and method of manufacture thereof |
WO2017083289A1 (en) | 2015-11-11 | 2017-05-18 | 3M Innovative Properties Company | Shape retaining flat-fold respirator |
USD788373S1 (en) * | 2015-09-09 | 2017-05-30 | Masket, LLC | Filtering facemask holder |
WO2018052874A1 (en) | 2016-09-16 | 2018-03-22 | 3M Innovative Properties Company | Exhalation valve and respirator including same |
US9994720B2 (en) | 2012-04-25 | 2018-06-12 | Ppg Industries Ohio, Inc. | Methods for producing 1,5,7-triazabicyclo[4.4.0]dec-5-ene by reaction of a disubstituted carbodiimide and dipropylene triamine |
EP3391943A1 (en) | 2007-05-03 | 2018-10-24 | 3M Innovative Properties Company | Maintenance-free flat-fold respirator that includes a graspable tab |
USD837456S1 (en) * | 2017-05-11 | 2019-01-01 | Medline Industries, Inc. | Adjustable mask |
US20190000163A1 (en) * | 2015-12-23 | 2019-01-03 | Avent, Inc. | Facemask and Method of Manufacturing Same |
USD844253S1 (en) * | 2018-03-12 | 2019-03-26 | Makrite Industries Inc. | Face mask |
US10245537B2 (en) | 2012-05-07 | 2019-04-02 | 3M Innovative Properties Company | Molded respirator having outer cover web joined to mesh |
US10674776B2 (en) | 2009-09-11 | 2020-06-09 | Breathe Safely, Inc. | Face mask with seal within seal and optional bridging seal |
USD892410S1 (en) * | 2018-12-27 | 2020-08-04 | Alexandru David | Dust mask |
USD897606S1 (en) * | 2017-04-06 | 2020-09-29 | Healthy Breath Limited | Mask |
US10850141B2 (en) | 2017-05-11 | 2020-12-01 | Medline Industries, Inc. | Mask with self-adherent securement strap and methods therefor |
WO2020261150A1 (en) | 2019-06-28 | 2020-12-30 | 3M Innovative Properties Company | Core-sheath fibers, nonwoven fibrous web, and respirator including the same |
WO2020261034A1 (en) | 2019-06-28 | 2020-12-30 | 3M Innovative Properties Company | Filter assembly, prefilter assembly, and respirator including the same |
CN113279147A (zh) * | 2021-05-11 | 2021-08-20 | 深圳市华必达科技有限公司 | 一种氧化石墨烯抗菌改性高强度熔喷无纺滤布及制法 |
WO2021204469A1 (en) | 2020-04-08 | 2021-10-14 | Formfiber Denmark Aps | A method of manufacturing a filtration material for hygienic use, air filtration material and uses of the filtration material |
US11219255B2 (en) | 2020-04-08 | 2022-01-11 | Terry Earl Brady | Self-contained, mobile breathing apparatus or appliance that supplies pathogen and endotoxin free, rhythmically breathable air to the wearer or treated space through active, continuous bio-deactivation and destruction of bacteria, fungi, viral and allergenic/antigenic matter safely when using benign, household, rechargeable filtration media |
USD941989S1 (en) * | 2020-09-25 | 2022-01-25 | Huhtamaki, Inc. | Respiratory mask |
WO2022091060A1 (en) | 2020-11-02 | 2022-05-05 | 3M Innovative Properties Company | Core-sheath fibers, nonwoven fibrous web, and filtering articles including the same |
WO2022130080A1 (en) | 2020-12-18 | 2022-06-23 | 3M Innovative Properties Company | Electrets comprising a substituted cyclotriphosphazene compound and articles therefrom |
US11413481B2 (en) | 2015-05-12 | 2022-08-16 | 3M Innovative Properties Company | Respirator tab |
USD967950S1 (en) * | 2020-06-19 | 2022-10-25 | Shanghai Yuanqin Purification Technology Co., Ltd. | Particulate respirator |
USD968589S1 (en) * | 2020-09-22 | 2022-11-01 | Maria Ximena Osorio | Face mask |
US11529484B2 (en) * | 2014-06-17 | 2022-12-20 | ResMed Pty Ltd | Seal forming portion, pad and cushion for a patient interface and method of manufacturing |
USD982155S1 (en) * | 2021-09-10 | 2023-03-28 | Vitacore Industries Inc. | Respirator with shield |
USD983964S1 (en) * | 2022-03-10 | 2023-04-18 | Staeger Clear Packaging Limited | Protective face mask |
USD984634S1 (en) * | 2020-10-13 | 2023-04-25 | Simpler Products LLC | Face mask |
USD991442S1 (en) * | 2020-09-07 | 2023-07-04 | Alexandru David | Dust mask |
US11786764B2 (en) | 2020-06-10 | 2023-10-17 | Noah Lang | Personal protective equipment system for safe air, train or bus travel protecting against infectious agents including novel coronavirus—COVID-19 |
US11813581B2 (en) | 2017-07-14 | 2023-11-14 | 3M Innovative Properties Company | Method and adapter for conveying plural liquid streams |
US20230368239A1 (en) * | 2020-11-30 | 2023-11-16 | Wells Fargo Bank, N.A. | System and method for sensor-based mask detection |
US11904191B2 (en) | 2007-05-03 | 2024-02-20 | 3M Innovative Properties Company | Anti-fog respirator |
USD1025345S1 (en) * | 2020-11-25 | 2024-04-30 | Rootous System Inc. | Air purification mask |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5643507A (en) * | 1993-08-17 | 1997-07-01 | Minnesota Mining And Manufacturing Company | Filter media having an undulated surface |
WO1995005232A1 (en) * | 1993-08-17 | 1995-02-23 | Minnesota Mining And Manufacturing Company | Filter media having an undulated surface |
CA2160282A1 (en) * | 1995-02-14 | 1996-08-15 | Michael R. Gildersleeve | Supported membrane assembly |
WO1996028216A1 (en) * | 1995-03-09 | 1996-09-19 | Minnesota Mining And Manufacturing Company | Fold flat respirators and processes for preparing same |
US5665235A (en) * | 1995-05-09 | 1997-09-09 | Pall Corporation | Supported fibrous web assembly |
DE102007050369A1 (de) * | 2006-10-24 | 2008-04-30 | Weinmann Geräte für Medizin GmbH + Co. KG | Bebänderte Haltevorrichtung für Beatmungsmasken |
US20080251209A1 (en) * | 2007-04-16 | 2008-10-16 | Hung-Ho Chen | Automatic elastic band fusion apparatus for face mask |
US20090014006A1 (en) * | 2007-07-10 | 2009-01-15 | Levin Eric M | Novelty mask cover |
US8398793B2 (en) | 2007-07-20 | 2013-03-19 | Curt G. Joa, Inc. | Apparatus and method for minimizing waste and improving quality and production in web processing operations |
US9387131B2 (en) | 2007-07-20 | 2016-07-12 | Curt G. Joa, Inc. | Apparatus and method for minimizing waste and improving quality and production in web processing operations by automated threading and re-threading of web materials |
CN102553097A (zh) | 2007-11-27 | 2012-07-11 | 3M创新有限公司 | 具有单向阀的面罩 |
US20090235934A1 (en) * | 2008-03-24 | 2009-09-24 | 3M Innovative Properties Company | Filtering face-piece respirator having an integrally-joined exhalation valve |
US11083916B2 (en) | 2008-12-18 | 2021-08-10 | 3M Innovative Properties Company | Flat fold respirator having flanges disposed on the mask body |
US8640704B2 (en) | 2009-09-18 | 2014-02-04 | 3M Innovative Properties Company | Flat-fold filtering face-piece respirator having structural weld pattern |
JP2011092698A (ja) | 2009-09-18 | 2011-05-12 | Three M Innovative Properties Co | 把持機構指標を有するフィルタ式顔面装着呼吸マスク |
US8528560B2 (en) | 2009-10-23 | 2013-09-10 | 3M Innovative Properties Company | Filtering face-piece respirator having parallel line weld pattern in mask body |
US8967147B2 (en) | 2009-12-30 | 2015-03-03 | 3M Innovative Properties Company | Filtering face-piece respirator having an auxetic mesh in the mask body |
WO2011090588A2 (en) | 2009-12-30 | 2011-07-28 | 3M Innovative Properties Company | Method of making an auxetic mesh |
US9603752B2 (en) | 2010-08-05 | 2017-03-28 | Curt G. Joa, Inc. | Apparatus and method for minimizing waste and improving quality and production in web processing operations by automatic cuff defect correction |
WO2012061831A1 (en) | 2010-11-05 | 2012-05-10 | Salutaris Llp | Ergonomic protective air filtration devices and methods for manufacturing the same |
US20120125341A1 (en) | 2010-11-19 | 2012-05-24 | 3M Innovative Properties Company | Filtering face-piece respirator having an overmolded face seal |
TWI435741B (zh) | 2010-11-22 | 2014-05-01 | Kang Na Hsiung Entpr Co Ltd | The method of manufacturing a cup-type masks and its products |
US20130063587A1 (en) | 2011-03-09 | 2013-03-14 | Curt G. Joa, Inc. | Apparatus and method for minimizing waste and improving quality and production in web processing operations by automatic narrow web twist defect correction |
JP5946622B2 (ja) * | 2011-10-06 | 2016-07-06 | Jxエネルギー株式会社 | 網状体の製造方法 |
USD668395S1 (en) * | 2012-03-20 | 2012-10-02 | Joseph Stork Smith | Blackout mask cover |
US20140041671A1 (en) | 2012-08-10 | 2014-02-13 | 3M Innovative Properties Company | Refill filtering face-piece respirator |
US20140182600A1 (en) | 2012-12-27 | 2014-07-03 | 3M Innovative Properties Company | Filtering face-piece respirator having welded indicia hidden in pleat |
US11116998B2 (en) | 2012-12-27 | 2021-09-14 | 3M Innovative Properties Company | Filtering face-piece respirator having folded flange |
US10182603B2 (en) | 2012-12-27 | 2019-01-22 | 3M Innovative Properties Company | Filtering face-piece respirator having strap-activated folded flange |
US9408424B2 (en) | 2013-01-10 | 2016-08-09 | 3M Innovative Properties Company | Filtering face-piece respirator having a face seal comprising a water-vapor-breathable layer |
WO2015006679A2 (en) | 2013-07-11 | 2015-01-15 | Aqua Turf International, Inc. | Air filtration mask with opening front cover |
US9603396B2 (en) | 2013-08-29 | 2017-03-28 | 3M Innovative Properties Company | Filtering face-piece respirator having nose notch |
US9770057B2 (en) | 2013-08-29 | 2017-09-26 | 3M Innovative Properties Company | Filtering face-piece respirator having nose cushioning member |
US10143864B2 (en) | 2013-11-15 | 2018-12-04 | 3M Innovative Properties Company | Respirator having noncircular centroid-mounted exhalation valve |
CN103704906B (zh) * | 2013-12-07 | 2016-06-29 | 成都和煦医疗科技有限公司 | 乳胶贴合棉蜂窝口罩及其生产工艺 |
US10040621B2 (en) | 2014-03-20 | 2018-08-07 | 3M Innovative Properties Company | Filtering face-piece respirator dispenser |
US9868002B2 (en) | 2014-07-17 | 2018-01-16 | 3M Innovative Properties Company | Respirator including contrast layer |
RU2015141569A (ru) | 2015-09-30 | 2017-04-05 | 3М Инновейтив Пропертиз Компани | Складной респиратор с лицевой маской и клапаном выдоха |
WO2017066284A1 (en) | 2015-10-12 | 2017-04-20 | 3M Innovative Properties Company | Filtering face-piece respirator including functional material and method of forming same |
WO2018081227A1 (en) | 2016-10-28 | 2018-05-03 | 3M Innovative Properties Company | Respirator including reinforcing element |
RU2671037C2 (ru) | 2017-03-17 | 2018-10-29 | 3М Инновейтив Пропертиз Компани | Складной респиратор с лицевой маской типа ffp3 |
TR202007418A2 (tr) * | 2020-05-12 | 2021-01-21 | Telasis Tekstil Ueruenleri San Tic A S | Yüksek etki̇nli̇kte fi̇ltrasyon yüzeyleri̇ni̇n üreti̇m yöntemi̇ ve bunlarin maske üzeri̇nde uygulamasi |
CN111501159A (zh) * | 2020-05-26 | 2020-08-07 | 际华三五四二纺织有限公司 | 一种可水洗、可重复使用的口罩面料及其织造工艺 |
US11786853B2 (en) | 2020-08-10 | 2023-10-17 | F.N. Smith Corporation | Facepiece electrostatic charging devices and methods thereof |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB966855A (en) * | 1959-08-19 | 1964-08-19 | Minnesota Mining & Mfg | Nonwoven fabric articles and their manufacture |
US3167816A (en) * | 1961-11-30 | 1965-02-02 | Internat Fabric Molders Inc | Apparatus for making brassieres and other garments |
GB1002447A (en) * | 1961-02-24 | 1965-08-25 | Minnesota Mining & Mfg | Filter-type face masks |
US3225768A (en) * | 1961-07-17 | 1965-12-28 | Jantzen Inc | Fabric laminated brassiere |
US3320346A (en) * | 1961-07-17 | 1967-05-16 | Jantzen Inc | Method of producing fabric laminated articles |
US3765998A (en) * | 1971-01-11 | 1973-10-16 | Allied Chem | Shapable fiber-reinforced low molecular weight polyethylene terephthalate |
US3799174A (en) * | 1972-06-26 | 1974-03-26 | Int Fabric Molders Inc | Molded breast cup and method of making the same |
US3891377A (en) * | 1973-06-22 | 1975-06-24 | Int Fabric Molders Inc | Apparatus for fabric molding |
US4258093A (en) * | 1979-04-26 | 1981-03-24 | Brunswick Corporation | Molding nonwoven, needle punched fabrics into three dimensional shapes |
EP0038743A1 (fr) * | 1980-04-18 | 1981-10-28 | Seplast, Société Anonyme dite | Procédé de traitement superficiel d'une couche filtrante fibreuse, non tissée et très aérée, formant électret et son application aux filtres et aux masques respiratoires notamment |
EP0138549A2 (en) * | 1983-10-11 | 1985-04-24 | Minnesota Mining And Manufacturing Company | Method of making shaped articles from webs of becomponent fibers |
US4536440A (en) * | 1984-03-27 | 1985-08-20 | Minnesota Mining And Manufacturing Company | Molded fibrous filtration products |
US4729371A (en) * | 1983-10-11 | 1988-03-08 | Minnesota Mining And Manufacturing Company | Respirator comprised of blown bicomponent fibers |
EP0264112A2 (en) * | 1986-10-17 | 1988-04-20 | Chisso Corporation | Nonwoven fabrics and method for producing them |
US4807619A (en) * | 1986-04-07 | 1989-02-28 | Minnesota Mining And Manufacturing Company | Resilient shape-retaining fibrous filtration face mask |
US4850347A (en) * | 1980-06-09 | 1989-07-25 | Metric Products, Inc. | Face mask |
WO1989010989A1 (en) * | 1988-05-05 | 1989-11-16 | Danaklon A/S | Bicomponent synthetic fibre and process for producing same |
US4892695A (en) * | 1988-06-10 | 1990-01-09 | Manville Corporation | Process for making a moldable fibrous mat |
US4921645A (en) * | 1987-09-01 | 1990-05-01 | Minnesota Mining And Manufacturing Company | Process of forming microwebs and nonwoven materials containing microwebs |
EP0391726A2 (en) * | 1989-04-07 | 1990-10-10 | JOHNSON & JOHNSON MEDICAL, INC. | Improved filtration medium and face mask containing the same |
US5019311A (en) * | 1989-02-23 | 1991-05-28 | Koslow Technologies Corporation | Process for the production of materials characterized by a continuous web matrix or force point bonding |
US5066351A (en) * | 1987-05-20 | 1991-11-19 | The Boeing Company | Hot/cold press forming methods for shaping thermoformable materials |
US5106555A (en) * | 1989-07-28 | 1992-04-21 | Nippon Oil Co., Ltd. | Process for the continuous production of high-strength and high-modulus polyethylene material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59137552A (ja) * | 1983-01-20 | 1984-08-07 | チッソ株式会社 | 不織布 |
CA1243963A (en) | 1983-02-01 | 1988-11-01 | Harvey J. Berg | Molded nonwoven shaped articles |
US5307796A (en) * | 1990-12-20 | 1994-05-03 | Minnesota Mining And Manufacturing Company | Methods of forming fibrous filtration face masks |
-
1990
- 1990-12-20 US US07/632,964 patent/US5307796A/en not_active Expired - Lifetime
-
1991
- 1991-11-15 AU AU90818/91A patent/AU651415B2/en not_active Ceased
- 1991-11-15 EP EP92901261A patent/EP0563135B1/en not_active Expired - Lifetime
- 1991-11-15 JP JP4502296A patent/JP3023173B2/ja not_active Expired - Lifetime
- 1991-11-15 CA CA002096636A patent/CA2096636C/en not_active Expired - Fee Related
- 1991-11-15 BR BR919107253A patent/BR9107253A/pt not_active IP Right Cessation
- 1991-11-15 KR KR1019930701823A patent/KR100221707B1/ko not_active IP Right Cessation
- 1991-11-15 WO PCT/US1991/008531 patent/WO1992011405A1/en active IP Right Grant
- 1991-11-15 DE DE69104732T patent/DE69104732T2/de not_active Expired - Fee Related
- 1991-11-15 DK DK92901261.5T patent/DK0563135T3/da active
- 1991-12-16 MX MX9102585A patent/MX9102585A/es unknown
- 1991-12-16 MX MXPA94004036A patent/MXPA94004036A/es not_active Application Discontinuation
- 1991-12-20 AR AR91321481A patent/AR245791A1/es active
-
1996
- 1996-06-11 US US08/661,834 patent/US7131442B1/en not_active Expired - Lifetime
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB966855A (en) * | 1959-08-19 | 1964-08-19 | Minnesota Mining & Mfg | Nonwoven fabric articles and their manufacture |
GB1002447A (en) * | 1961-02-24 | 1965-08-25 | Minnesota Mining & Mfg | Filter-type face masks |
US3225768A (en) * | 1961-07-17 | 1965-12-28 | Jantzen Inc | Fabric laminated brassiere |
US3320346A (en) * | 1961-07-17 | 1967-05-16 | Jantzen Inc | Method of producing fabric laminated articles |
US3167816A (en) * | 1961-11-30 | 1965-02-02 | Internat Fabric Molders Inc | Apparatus for making brassieres and other garments |
US3765998A (en) * | 1971-01-11 | 1973-10-16 | Allied Chem | Shapable fiber-reinforced low molecular weight polyethylene terephthalate |
US3799174A (en) * | 1972-06-26 | 1974-03-26 | Int Fabric Molders Inc | Molded breast cup and method of making the same |
US3891377A (en) * | 1973-06-22 | 1975-06-24 | Int Fabric Molders Inc | Apparatus for fabric molding |
US4258093A (en) * | 1979-04-26 | 1981-03-24 | Brunswick Corporation | Molding nonwoven, needle punched fabrics into three dimensional shapes |
EP0038743A1 (fr) * | 1980-04-18 | 1981-10-28 | Seplast, Société Anonyme dite | Procédé de traitement superficiel d'une couche filtrante fibreuse, non tissée et très aérée, formant électret et son application aux filtres et aux masques respiratoires notamment |
US4363682A (en) * | 1980-04-18 | 1982-12-14 | Seplast | Process for the superficial treatment of a fibrous filtering layer, which is non-woven and highly aerated, forming electret |
US4850347A (en) * | 1980-06-09 | 1989-07-25 | Metric Products, Inc. | Face mask |
EP0138549A2 (en) * | 1983-10-11 | 1985-04-24 | Minnesota Mining And Manufacturing Company | Method of making shaped articles from webs of becomponent fibers |
US4729371A (en) * | 1983-10-11 | 1988-03-08 | Minnesota Mining And Manufacturing Company | Respirator comprised of blown bicomponent fibers |
US4536440A (en) * | 1984-03-27 | 1985-08-20 | Minnesota Mining And Manufacturing Company | Molded fibrous filtration products |
US4807619A (en) * | 1986-04-07 | 1989-02-28 | Minnesota Mining And Manufacturing Company | Resilient shape-retaining fibrous filtration face mask |
EP0264112A2 (en) * | 1986-10-17 | 1988-04-20 | Chisso Corporation | Nonwoven fabrics and method for producing them |
US5066351A (en) * | 1987-05-20 | 1991-11-19 | The Boeing Company | Hot/cold press forming methods for shaping thermoformable materials |
US4921645A (en) * | 1987-09-01 | 1990-05-01 | Minnesota Mining And Manufacturing Company | Process of forming microwebs and nonwoven materials containing microwebs |
WO1989010989A1 (en) * | 1988-05-05 | 1989-11-16 | Danaklon A/S | Bicomponent synthetic fibre and process for producing same |
US4892695A (en) * | 1988-06-10 | 1990-01-09 | Manville Corporation | Process for making a moldable fibrous mat |
US5019311A (en) * | 1989-02-23 | 1991-05-28 | Koslow Technologies Corporation | Process for the production of materials characterized by a continuous web matrix or force point bonding |
US5147722A (en) * | 1989-02-23 | 1992-09-15 | Koslow Technologies Corporation | Process for the production of materials and materials produced by the process |
EP0391726A2 (en) * | 1989-04-07 | 1990-10-10 | JOHNSON & JOHNSON MEDICAL, INC. | Improved filtration medium and face mask containing the same |
US5106555A (en) * | 1989-07-28 | 1992-04-21 | Nippon Oil Co., Ltd. | Process for the continuous production of high-strength and high-modulus polyethylene material |
Non-Patent Citations (2)
Title |
---|
Beauchamp, M., "His Cups Runneth Over", 139 Forbes 105 (Apr. 20, 1987). |
Beauchamp, M., His Cups Runneth Over , 139 Forbes 105 (Apr. 20, 1987). * |
Cited By (190)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5704349A (en) | 1987-10-02 | 1998-01-06 | Tecnol Medical Products, Inc. | Surgical face mask with darkened glare-reducing strip and visor |
US7131442B1 (en) * | 1990-12-20 | 2006-11-07 | Minnesota Mining And Manufacturing Company | Fibrous filtration face mask |
US5656368A (en) * | 1992-08-04 | 1997-08-12 | Minnesota Mining And Manufacturing Company | Fibrous filtration face mask having corrugated polymeric microfiber filter layer |
US5804295A (en) * | 1992-08-04 | 1998-09-08 | Minnesota Mining And Manufacturing Company | Fibrous filtration face mask having corrugated polymeric microfiber filter layer |
US5763078A (en) * | 1992-08-04 | 1998-06-09 | Minnesota Mining And Manufacturing Company | Filter having corrugated nonwoven webs of polymeric microfiber |
US6159881A (en) * | 1994-09-09 | 2000-12-12 | Kimberly-Clark Worldwide, Inc. | Thermoformable barrier nonwoven laminate |
US5558089A (en) * | 1994-10-13 | 1996-09-24 | Minnesota Mining And Manufacturing Company | Respirator nose clip |
USD412573S (en) * | 1994-10-14 | 1999-08-03 | 3M Innovative Properties Company | Nose clip for a filtering face mask |
DE19518285C2 (de) * | 1995-05-18 | 2000-06-21 | Lohmann Gmbh & Co Kg | Mechanisch verfestigter Vliesstoff zur Herstellung von formstabilen Formteilen |
DE19518285A1 (de) * | 1995-05-18 | 1996-11-21 | Lohmann Gmbh & Co Kg | Mechanisch verfestigter Vliesstoff zur Herstellung von formstabilen Formteilen |
US5645057A (en) * | 1995-06-07 | 1997-07-08 | Fiberweb North America, Inc. | Meltblown barrier webs and processes of making same |
US5620785A (en) * | 1995-06-07 | 1997-04-15 | Fiberweb North America, Inc. | Meltblown barrier webs and processes of making same |
US5804512A (en) * | 1995-06-07 | 1998-09-08 | Bba Nonwovens Simpsonville, Inc. | Nonwoven laminate fabrics and processes of making same |
WO1997023246A3 (en) * | 1995-12-22 | 1997-08-21 | Kimberly Clark Co | High efficiency breathing mask fabrics |
US5817584A (en) * | 1995-12-22 | 1998-10-06 | Kimberly-Clark Worldwide, Inc. | High efficiency breathing mask fabrics |
WO1997023246A2 (en) * | 1995-12-22 | 1997-07-03 | Kimberly-Clark Worldwide, Inc. | High efficiency breathing mask fabrics |
US5851355A (en) * | 1996-11-27 | 1998-12-22 | Bba Nonwovens Simpsonville, Inc. | Reverse osmosis support substrate and method for its manufacture |
WO1998058558A1 (en) * | 1997-06-24 | 1998-12-30 | Minnesota Mining And Manufacturing Company | Respiratory masks having comfortable inner cover web |
US6041782A (en) * | 1997-06-24 | 2000-03-28 | 3M Innovative Properties Company | Respiratory mask having comfortable inner cover web |
US6732733B1 (en) | 1997-10-03 | 2004-05-11 | 3M Innovative Properties Company | Half-mask respirator with head harness assembly |
US6457473B1 (en) | 1997-10-03 | 2002-10-01 | 3M Innovative Properties Company | Drop-down face mask assembly |
WO1999024119A1 (en) | 1997-11-11 | 1999-05-20 | Minnesota Mining And Manufacturing Company | Respiratory masks having valves and other components attached to the mask by a printed patch of adhesive |
US6125849A (en) * | 1997-11-11 | 2000-10-03 | 3M Innovative Properties Company | Respiratory masks having valves and other components attached to the mask by a printed patch of adhesive |
US6102039A (en) * | 1997-12-01 | 2000-08-15 | 3M Innovative Properties Company | Molded respirator containing sorbent particles |
US6234171B1 (en) | 1997-12-01 | 2001-05-22 | 3M Innovative Properties Company | Molded respirator containing sorbent particles |
US6026511A (en) * | 1997-12-05 | 2000-02-22 | 3M Innovative Properties Company | Protective article having a transparent shield |
US6161540A (en) * | 1998-04-28 | 2000-12-19 | Cabot Safety Intermediate Corporation | Respirator filter having a pleated filter layer |
EP0989221A3 (en) * | 1998-09-22 | 2001-07-11 | Tietex International Ltd. | Breathable molded structure |
EP0989221A2 (en) * | 1998-09-22 | 2000-03-29 | Tietex International Ltd. | Breathable molded structure |
US6139308A (en) * | 1998-10-28 | 2000-10-31 | 3M Innovative Properties Company | Uniform meltblown fibrous web and methods and apparatus for manufacturing |
US6492286B1 (en) | 1998-10-28 | 2002-12-10 | 3M Innovative Properties Company | Uniform meltblown fibrous web |
US6156680A (en) * | 1998-12-23 | 2000-12-05 | Bba Nonwovens Simpsonville, Inc. | Reverse osmosis support substrate and method for its manufacture |
US7069931B2 (en) | 1999-10-19 | 2006-07-04 | 3M Innovative Properties Company | Method of making a filtering face mask that has an exhalation valve attached thereto |
US7007695B2 (en) | 1999-10-19 | 2006-03-07 | 3M Innovative Properties Company | Manner of attaching component elements to filtration material such as may be utilized in respiratory masks |
US20050252839A1 (en) * | 1999-10-19 | 2005-11-17 | 3M Innovative Properties Company | Method of making a filtering face mask that has an exhalation valve attached thereto |
US20040035426A1 (en) * | 1999-10-19 | 2004-02-26 | Curran Desmond T. | Manner of attaching component elements to filtration material such as may be utilized in respiratory masks |
US6959709B2 (en) | 1999-10-19 | 2005-11-01 | 3M Innovative Properties Company | Manner of attaching component elements to filtration material such as may be utilized in respiratory masks |
US6604524B1 (en) | 1999-10-19 | 2003-08-12 | 3M Innovative Properties Company | Manner of attaching component elements to filtration material such as may be utilized in respiratory masks |
US6729332B1 (en) | 1999-10-22 | 2004-05-04 | 3M Innovative Properties Company | Retention assembly with compression element and method of use |
US6705317B2 (en) | 1999-10-22 | 2004-03-16 | 3M Innovative Properties Company | Retention assembly with compression element and method of use |
WO2001030449A1 (en) | 1999-10-22 | 2001-05-03 | 3M Innovative Properties Company | Retention assembly with compression element and method of use |
US6460539B1 (en) | 2000-09-21 | 2002-10-08 | 3M Innovative Properties Company | Respirator that includes an integral filter element, an exhalation valve, and impactor element |
US7601262B1 (en) | 2001-06-22 | 2009-10-13 | Argonide Corporation | Sub-micron filter |
US6718981B2 (en) | 2002-02-07 | 2004-04-13 | Venanzio Cardarelli | Dental mask |
US20040011362A1 (en) * | 2002-07-18 | 2004-01-22 | 3M Innovative Properties Company | Crush resistant filtering face mask |
US6923182B2 (en) * | 2002-07-18 | 2005-08-02 | 3M Innovative Properties Company | Crush resistant filtering face mask |
CN1665412B (zh) * | 2002-07-18 | 2011-06-01 | 3M创新有限公司 | 抗挤压的过滤面罩 |
EP1523251B1 (en) * | 2002-07-18 | 2007-08-08 | 3M Innovative Properties Company | Crush resistant filtering face mask |
US20040016345A1 (en) * | 2002-07-25 | 2004-01-29 | 3M Innovative Properties Company | Molded filter element that contains thermally bonded staple fibers and electrically-charged microfibers |
US6827764B2 (en) | 2002-07-25 | 2004-12-07 | 3M Innovative Properties Company | Molded filter element that contains thermally bonded staple fibers and electrically-charged microfibers |
US6988500B1 (en) | 2003-05-15 | 2006-01-24 | J. Palmero Sales Company, Inc. | Fog free medical face mask |
US6998009B2 (en) * | 2003-06-10 | 2006-02-14 | Ut-Battelle, Llc | Filter and method of fabricating |
US20040253371A1 (en) * | 2003-06-10 | 2004-12-16 | Janney Mark A. | Filter and method of fabricating |
US20050139217A1 (en) * | 2003-12-31 | 2005-06-30 | K. C. Chiam | Respiratory mask with inserted spacer |
US7086401B2 (en) * | 2003-12-31 | 2006-08-08 | Megatech Scientific Pte Ltd. | Respiratory mask with inserted spacer |
US8021457B2 (en) | 2004-11-05 | 2011-09-20 | Donaldson Company, Inc. | Filter media and structure |
US9795906B2 (en) | 2004-11-05 | 2017-10-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US20060096263A1 (en) * | 2004-11-05 | 2006-05-11 | Kahlbaugh Brad E | Filter medium and structure |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US20060096932A1 (en) * | 2004-11-05 | 2006-05-11 | Dema Keh B | High strength, high capacity filter media and structure |
US8268033B2 (en) | 2004-11-05 | 2012-09-18 | Donaldson Company, Inc. | Filter medium and structure |
US8277529B2 (en) | 2004-11-05 | 2012-10-02 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US11504663B2 (en) | 2004-11-05 | 2022-11-22 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8512435B2 (en) | 2004-11-05 | 2013-08-20 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8641796B2 (en) | 2004-11-05 | 2014-02-04 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US7314497B2 (en) | 2004-11-05 | 2008-01-01 | Donaldson Company, Inc. | Filter medium and structure |
US7985344B2 (en) | 2004-11-05 | 2011-07-26 | Donaldson Company, Inc. | High strength, high capacity filter media and structure |
US20080073296A1 (en) * | 2004-11-05 | 2008-03-27 | Donaldson Company Inc. | High strength, high capacity filter media and structure |
USRE49097E1 (en) | 2004-11-05 | 2022-06-07 | Donaldson Company, Inc. | Filter medium and structure |
US10610813B2 (en) | 2004-11-05 | 2020-04-07 | Donaldson Company, Inc. | Filter medium and breather filter structure |
USRE47737E1 (en) | 2004-11-05 | 2019-11-26 | Donaldson Company, Inc. | Filter medium and structure |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8460424B2 (en) | 2005-02-04 | 2013-06-11 | Donaldson Company, Inc. | Aerosol separator; and method |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
US20070023047A1 (en) * | 2005-07-26 | 2007-02-01 | Moshe Zalsman | Face mask particularly useful as medical face mask |
US8171933B2 (en) | 2005-08-25 | 2012-05-08 | 3M Innovative Properties Company | Respirator having preloaded nose clip |
US20070044803A1 (en) * | 2005-08-25 | 2007-03-01 | Xue Thomas J | Respirator having preloaded nose clip |
US7311752B2 (en) | 2005-09-12 | 2007-12-25 | Argonide Corporation | Electrostatic air filter |
US7390343B2 (en) | 2005-09-12 | 2008-06-24 | Argonide Corporation | Drinking water filtration device |
US20070056256A1 (en) * | 2005-09-12 | 2007-03-15 | Frederick Tepper | Electrostatic air filter |
US20070175196A1 (en) * | 2005-09-12 | 2007-08-02 | Argonide Corporation | Drinking water filtration device |
US20070068529A1 (en) * | 2005-09-27 | 2007-03-29 | Suresh Kalatoor | Respirator that uses a polymeric nose clip |
US20070144524A1 (en) * | 2005-12-22 | 2007-06-28 | Martin Philip G | Filtering Face Mask with a Unidirectional Valve Having a Stiff Unbiased Flexible Flap |
US7503326B2 (en) | 2005-12-22 | 2009-03-17 | 3M Innovative Properties Company | Filtering face mask with a unidirectional valve having a stiff unbiased flexible flap |
US20070199567A1 (en) * | 2006-01-25 | 2007-08-30 | Kanzer Steve H | Droplet collection devices and methods to detect and control airborne communicable diseases utilizing rfid |
US20090255535A1 (en) * | 2006-01-25 | 2009-10-15 | Kanzer Steve H | Droplet collection devices and methods to detect and control airborne communicable diseases utilizing rfid |
US8182568B2 (en) * | 2006-04-26 | 2012-05-22 | Volo Giovanni D | Two-stage air filter and mask incorporating the same |
US20090293730A1 (en) * | 2006-04-26 | 2009-12-03 | Volo Giovanni D | Two-stage air filter and mask incorporating the same |
WO2007135700A2 (en) | 2006-05-18 | 2007-11-29 | Cl.Com S.R.L. | New protective mask against biological agents made of two parts |
US20090283096A1 (en) * | 2006-05-18 | 2009-11-19 | Cl.Com S.R.L. | Protective mask against biological agents made of two parts |
US20080011303A1 (en) * | 2006-07-17 | 2008-01-17 | 3M Innovative Properties Company | Flat-fold respirator with monocomponent filtration/stiffening monolayer |
US9770058B2 (en) | 2006-07-17 | 2017-09-26 | 3M Innovative Properties Company | Flat-fold respirator with monocomponent filtration/stiffening monolayer |
US10575571B2 (en) | 2006-07-17 | 2020-03-03 | 3M Innovative Properties Company | Flat-fold respirator with monocomponent filtration/stiffening monolayer |
US20110132374A1 (en) * | 2006-07-31 | 2011-06-09 | 3M Innovative Properties Company | Molded monocomponent monolayer respirator |
EP2049203A4 (en) * | 2006-07-31 | 2011-12-07 | 3M Innovative Properties Co | MONOLAYER AND MOLDED MONOCOMPONENT RESPIRATOR |
EP2049203A2 (en) * | 2006-07-31 | 2009-04-22 | 3M Innovative Properties Company | Molded monocomponent monolayer respirator |
US8512434B2 (en) | 2006-07-31 | 2013-08-20 | 3M Innovative Properties Company | Molded monocomponent monolayer respirator |
EA008896B1 (ru) * | 2006-09-04 | 2007-08-31 | Закрытое Акционерное Общество «Северо-Западный Научно-Технический Центр "Портативные Средства Индивидуальной Защиты" Имени А.А. Гуняева» | Способ скрепления термопластичных слоистых материалов и устройство для его осуществления |
US20080099022A1 (en) * | 2006-10-26 | 2008-05-01 | 3M Innovative Properties Company | Respirator That Uses A Predefined Nose Foam Shape |
WO2008051726A1 (en) | 2006-10-26 | 2008-05-02 | 3M Innovative Properties Company | Respirator that uses a predefined nose foam shape |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
US11904191B2 (en) | 2007-05-03 | 2024-02-20 | 3M Innovative Properties Company | Anti-fog respirator |
EP3391943A1 (en) | 2007-05-03 | 2018-10-24 | 3M Innovative Properties Company | Maintenance-free flat-fold respirator that includes a graspable tab |
EP2428127A2 (en) | 2007-05-03 | 2012-03-14 | 3M Innovative Properties Company | Maintenance-free respirator that has concave portions on opposing sides of mask top section |
US11877604B2 (en) | 2007-05-03 | 2024-01-23 | 3M Innovative Properties Company | Maintenance-free respirator that has concave portions on opposing sides of mask top section |
EP4134136A1 (en) | 2007-05-03 | 2023-02-15 | 3M Innovative Properties Company | Maintenance-free flat-fold respirator that includes a graspable tab |
US20090000624A1 (en) * | 2007-06-28 | 2009-01-01 | 3M Innovative Properties Company | Respirator having a harness and methods of making and fitting the same |
WO2009038904A1 (en) | 2007-09-20 | 2009-03-26 | 3M Innovative Properties Company | Filtering face-piece respirator that has expandable mask body |
US8066006B2 (en) | 2007-10-09 | 2011-11-29 | 3M Innovative Properties Company | Filtering face-piece respirator having nose clip molded into the mask body |
US20090090364A1 (en) * | 2007-10-09 | 2009-04-09 | 3M Innovative Properties Company | Filtering face-piece respirator having nose clip molded into the mask body |
US20110041471A1 (en) * | 2007-12-06 | 2011-02-24 | Sebastian John M | Electret webs with charge-enhancing additives |
US8529671B2 (en) | 2007-12-06 | 2013-09-10 | 3M Innovative Properties Comany | Electret webs with charge-enhancing additives |
US8061356B2 (en) | 2008-02-19 | 2011-11-22 | Prestige Ameritech Ltd. | Directional flat face mask |
US20090211581A1 (en) * | 2008-02-26 | 2009-08-27 | Vishal Bansal | Respiratory mask with microporous membrane and activated carbon |
US20090255542A1 (en) * | 2008-04-11 | 2009-10-15 | 3M Innovative Properties Company | Mask nose clip and a respiratory mask |
US8613795B2 (en) | 2008-06-02 | 2013-12-24 | 3M Innovative Properties Company | Electret webs with charge-enhancing additives |
US7765698B2 (en) | 2008-06-02 | 2010-08-03 | 3M Innovative Properties Company | Method of making electret articles based on zeta potential |
US20110154987A1 (en) * | 2008-06-02 | 2011-06-30 | Li Fuming B | Electret webs with charge-enhancing additives |
US20110137082A1 (en) * | 2008-06-02 | 2011-06-09 | Li Fuming B | Charge-enhancing additives for electrets |
US20090293279A1 (en) * | 2008-06-02 | 2009-12-03 | 3M Innovative Properties Company | Method of making electret articles based on zeta potential |
US9885154B2 (en) | 2009-01-28 | 2018-02-06 | Donaldson Company, Inc. | Fibrous media |
US10316468B2 (en) | 2009-01-28 | 2019-06-11 | Donaldson Company, Inc. | Fibrous media |
US8524041B2 (en) | 2009-01-28 | 2013-09-03 | Donaldson Company, Inc. | Method for forming a fibrous media |
US9353481B2 (en) | 2009-01-28 | 2016-05-31 | Donldson Company, Inc. | Method and apparatus for forming a fibrous media |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
US10464001B2 (en) | 2009-04-03 | 2019-11-05 | 3M Innovative Properties Company | Remote fluorination of fibrous filter webs |
US20100252047A1 (en) * | 2009-04-03 | 2010-10-07 | Kirk Seth M | Remote fluorination of fibrous filter webs |
US20110162653A1 (en) * | 2009-04-03 | 2011-07-07 | 3M Innovative Properties Company | Remote fluorination of fibrous filter webs |
WO2010114826A1 (en) | 2009-04-03 | 2010-10-07 | 3M Innovative Properties Company | Remote fluorination of fibrous filter webs |
US10674776B2 (en) | 2009-09-11 | 2020-06-09 | Breathe Safely, Inc. | Face mask with seal within seal and optional bridging seal |
EP2298095A2 (en) | 2009-09-18 | 2011-03-23 | 3M Innovative Properties Co. | Horizontal flat-fold filtering face-piece respirator having indicia of symmetry |
US9826786B2 (en) | 2009-09-18 | 2017-11-28 | 3M Innovative Properties Company | Horizontal flat-fold filtering face-piece respirator having indicia of symmetry |
US8176918B2 (en) * | 2010-05-12 | 2012-05-15 | Mei-Sheng Teng | Three dimensional face mask |
US20110277769A1 (en) * | 2010-05-12 | 2011-11-17 | Mei-Sheng Teng | Three Dimensional Face Mask |
EP2412407A1 (en) | 2010-07-26 | 2012-02-01 | 3M Innovative Properties Co. | Filtering face-piece respiratory having foam shaping layer |
US8794238B2 (en) | 2010-12-28 | 2014-08-05 | 3M Innovative Properties Company | Splash-fluid resistant filtering face-piece respirator |
US9027554B2 (en) | 2011-12-06 | 2015-05-12 | 3M Innovative Properties Company | Respirator having foam shaping layer with recessed regions surrounding air passageways |
WO2013086146A2 (en) * | 2011-12-09 | 2013-06-13 | 3M Innovative Properties Company | Respirator made from in-situ air-laid web(s) |
CN103958000A (zh) * | 2011-12-09 | 2014-07-30 | 3M创新有限公司 | 由原位气流法纤维网制成的呼吸器 |
WO2013086146A3 (en) * | 2011-12-09 | 2013-08-01 | 3M Innovative Properties Company | Respirator made from in-situ air-laid web(s) |
RU2564624C1 (ru) * | 2011-12-09 | 2015-10-10 | 3М Инновэйтив Пропертиз Компани | Респиратор, выполненный из одного или нескольких полотен материала, айрлайд, изготовленного на месте формования респиратора |
US9994720B2 (en) | 2012-04-25 | 2018-06-12 | Ppg Industries Ohio, Inc. | Methods for producing 1,5,7-triazabicyclo[4.4.0]dec-5-ene by reaction of a disubstituted carbodiimide and dipropylene triamine |
US10245537B2 (en) | 2012-05-07 | 2019-04-02 | 3M Innovative Properties Company | Molded respirator having outer cover web joined to mesh |
US9707538B2 (en) | 2012-06-27 | 2017-07-18 | Argonide Corporation | Aluminized silicious powder and water purification device incorporating same |
US9309131B2 (en) | 2012-06-27 | 2016-04-12 | Argonide Corporation | Aluminized silicious powder and water purification device incorporating same |
US9247788B2 (en) | 2013-02-01 | 2016-02-02 | 3M Innovative Properties Company | Personal protective equipment strap retaining devices |
US9259058B2 (en) | 2013-02-01 | 2016-02-16 | 3M Innovative Properties Company | Personal protective equipment strap retaining devices |
US9468782B2 (en) | 2013-08-08 | 2016-10-18 | Richard H. Koehler | Face mask seal for use with respirator devices and surgical facemasks, having an anatomically defined geometry conforming to critical fit zones of human facial anatomy, and capable of being actively custom fitted to the user's face |
US10207129B2 (en) | 2013-08-08 | 2019-02-19 | Richard H. Koehler | Face mask seal for use with respirator devices and surgical facemasks, having an anatomically defined geometry conforming to critical fit zones of human facial anatomy, and capable of being actively custom fitted to the user's face |
WO2015130591A1 (en) | 2014-02-27 | 2015-09-03 | 3M Innovative Properties Company | Respirator having elastic straps having openwork structure |
US10653901B2 (en) | 2014-02-27 | 2020-05-19 | 3M Innovative Properties Company | Respirator having elastic straps having openwork structure |
US11529484B2 (en) * | 2014-06-17 | 2022-12-20 | ResMed Pty Ltd | Seal forming portion, pad and cushion for a patient interface and method of manufacturing |
US12048811B2 (en) | 2014-06-17 | 2024-07-30 | ResMed Pty Ltd | Seal forming portion, pad and cushion for a patient interface and method of manufacturing |
US11033763B2 (en) | 2014-08-18 | 2021-06-15 | 3M Innovative Properties Company | Respirator including polymeric netting and method of forming same |
WO2016028553A1 (en) | 2014-08-18 | 2016-02-25 | 3M Innovative Properties Company | Respirator including polymeric netting and method of forming same |
WO2016069342A1 (en) | 2014-10-31 | 2016-05-06 | 3M Innovative Properties Company | Respirator having corrugated filtering structure |
US11413481B2 (en) | 2015-05-12 | 2022-08-16 | 3M Innovative Properties Company | Respirator tab |
US9463340B1 (en) | 2015-05-20 | 2016-10-11 | Marc Irwin Epstein | Draping particulate filter for the nostrils and mouth and method of manufacture thereof |
US9468783B1 (en) | 2015-05-20 | 2016-10-18 | Marc Irwin Epstein | Draping particulate filter for the nostrils and mouth and method of manufacture thereof |
USD788373S1 (en) * | 2015-09-09 | 2017-05-30 | Masket, LLC | Filtering facemask holder |
WO2017083289A1 (en) | 2015-11-11 | 2017-05-18 | 3M Innovative Properties Company | Shape retaining flat-fold respirator |
US11213080B2 (en) | 2015-11-11 | 2022-01-04 | 3M Innovative Properties Company | Shape retaining flat-fold respirator |
US20190000163A1 (en) * | 2015-12-23 | 2019-01-03 | Avent, Inc. | Facemask and Method of Manufacturing Same |
WO2018052874A1 (en) | 2016-09-16 | 2018-03-22 | 3M Innovative Properties Company | Exhalation valve and respirator including same |
USD897606S1 (en) * | 2017-04-06 | 2020-09-29 | Healthy Breath Limited | Mask |
USD837456S1 (en) * | 2017-05-11 | 2019-01-01 | Medline Industries, Inc. | Adjustable mask |
US10850141B2 (en) | 2017-05-11 | 2020-12-01 | Medline Industries, Inc. | Mask with self-adherent securement strap and methods therefor |
USD848678S1 (en) | 2017-05-11 | 2019-05-14 | Medline Industries, Inc. | Adjustable mask |
US11813581B2 (en) | 2017-07-14 | 2023-11-14 | 3M Innovative Properties Company | Method and adapter for conveying plural liquid streams |
USD844253S1 (en) * | 2018-03-12 | 2019-03-26 | Makrite Industries Inc. | Face mask |
USD892410S1 (en) * | 2018-12-27 | 2020-08-04 | Alexandru David | Dust mask |
WO2020261150A1 (en) | 2019-06-28 | 2020-12-30 | 3M Innovative Properties Company | Core-sheath fibers, nonwoven fibrous web, and respirator including the same |
WO2020261034A1 (en) | 2019-06-28 | 2020-12-30 | 3M Innovative Properties Company | Filter assembly, prefilter assembly, and respirator including the same |
US11219255B2 (en) | 2020-04-08 | 2022-01-11 | Terry Earl Brady | Self-contained, mobile breathing apparatus or appliance that supplies pathogen and endotoxin free, rhythmically breathable air to the wearer or treated space through active, continuous bio-deactivation and destruction of bacteria, fungi, viral and allergenic/antigenic matter safely when using benign, household, rechargeable filtration media |
DE112021000774T5 (de) | 2020-04-08 | 2023-03-02 | Formfiber Denmark Aps | Verfahren zur herstellung eines filtrationsmaterials zur hygienischen verwendung und eines luftfiltrationsmaterials |
WO2021204469A1 (en) | 2020-04-08 | 2021-10-14 | Formfiber Denmark Aps | A method of manufacturing a filtration material for hygienic use, air filtration material and uses of the filtration material |
US11786764B2 (en) | 2020-06-10 | 2023-10-17 | Noah Lang | Personal protective equipment system for safe air, train or bus travel protecting against infectious agents including novel coronavirus—COVID-19 |
USD967950S1 (en) * | 2020-06-19 | 2022-10-25 | Shanghai Yuanqin Purification Technology Co., Ltd. | Particulate respirator |
USD991442S1 (en) * | 2020-09-07 | 2023-07-04 | Alexandru David | Dust mask |
USD968589S1 (en) * | 2020-09-22 | 2022-11-01 | Maria Ximena Osorio | Face mask |
USD941989S1 (en) * | 2020-09-25 | 2022-01-25 | Huhtamaki, Inc. | Respiratory mask |
USD984634S1 (en) * | 2020-10-13 | 2023-04-25 | Simpler Products LLC | Face mask |
WO2022091060A1 (en) | 2020-11-02 | 2022-05-05 | 3M Innovative Properties Company | Core-sheath fibers, nonwoven fibrous web, and filtering articles including the same |
USD1025345S1 (en) * | 2020-11-25 | 2024-04-30 | Rootous System Inc. | Air purification mask |
US20230368239A1 (en) * | 2020-11-30 | 2023-11-16 | Wells Fargo Bank, N.A. | System and method for sensor-based mask detection |
WO2022130080A1 (en) | 2020-12-18 | 2022-06-23 | 3M Innovative Properties Company | Electrets comprising a substituted cyclotriphosphazene compound and articles therefrom |
CN113279147A (zh) * | 2021-05-11 | 2021-08-20 | 深圳市华必达科技有限公司 | 一种氧化石墨烯抗菌改性高强度熔喷无纺滤布及制法 |
USD982155S1 (en) * | 2021-09-10 | 2023-03-28 | Vitacore Industries Inc. | Respirator with shield |
USD983964S1 (en) * | 2022-03-10 | 2023-04-18 | Staeger Clear Packaging Limited | Protective face mask |
Also Published As
Publication number | Publication date |
---|---|
JP3023173B2 (ja) | 2000-03-21 |
WO1992011405A1 (en) | 1992-07-09 |
MXPA94004036A (es) | 2004-12-13 |
MX9102585A (es) | 1992-07-01 |
AU651415B2 (en) | 1994-07-21 |
EP0563135A1 (en) | 1993-10-06 |
CA2096636C (en) | 2003-02-25 |
AU9081891A (en) | 1992-07-22 |
BR9107253A (pt) | 1994-03-22 |
KR930703496A (ko) | 1993-11-30 |
CA2096636A1 (en) | 1992-06-21 |
JPH06504329A (ja) | 1994-05-19 |
DE69104732T2 (de) | 1995-05-11 |
EP0563135B1 (en) | 1994-10-19 |
AR245791A1 (es) | 1994-02-28 |
KR100221707B1 (ko) | 1999-09-15 |
DE69104732D1 (de) | 1994-11-24 |
US7131442B1 (en) | 2006-11-07 |
DK0563135T3 (da) | 1995-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5307796A (en) | Methods of forming fibrous filtration face masks | |
KR101009201B1 (ko) | 내분쇄성 여과 안면 마스크 | |
US4807619A (en) | Resilient shape-retaining fibrous filtration face mask | |
EP1285594B1 (en) | Filtering face mask | |
KR101869568B1 (ko) | 마스크 본체 내에 팽창 메시를 갖는 안면부 여과식 호흡기 | |
JPS60215372A (ja) | 成形された繊維質濾過製品 | |
US20170232278A1 (en) | Respirator made from in-situ air-laid web(s) | |
KR20120087174A (ko) | 보강된 필터 매체 | |
KR102159651B1 (ko) | 서브필터층을 포함하여 낮은 흡기저항 및 여과효율이 향상된 마스크 | |
GB2280620A (en) | Face mask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MINNESOTA MINING & MANUFACTURING COMPANY, SAINT PA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:KRONZER, JOSEPH P.;STUMO, ROGER J.;DYRUD, JAMES F.;AND OTHERS;REEL/FRAME:005579/0702 Effective date: 19901219 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |